
COCHORDAL ZERO DIVISOR GRAPHS AND BETTI NUMBERS
OF THEIR EDGE IDEALS

LE XUAN DUNG AND THANH VU

Abstract. We associate a sequence of positive integers, termed the type sequence,
with a cochordal graph. Using this type sequence, we compute all graded Betti
numbers of its edge ideal. We then classify all positive integer n such that the zero
divisor graph of Z /nZ is cochordal and determine all the graded Betti numbers of
its edge ideal.

1. Introduction

Rather, Imran, and Pirzada [RIP] recently provided formulae for the Betti numbers
of the edge ideals of zero divisor graphs of Z /nZ, denoted by Γ(Zn) when n is of the
form p4, p2q, and pqr where p, q, r are distinct prime numbers. These zero divisor
graphs are all cochordal. Equivalently, by the result of Fröberg [F], their edge ideals
have a linear free resolution. Motivated by this result, we first classify all n for which
the zero divisor graph of Z /nZ is cochordal.

Theorem 1.1. Let n ≥ 2 be a positive integer. Then Γ(Zn) is cochordal if and only
if n is one of the following forms:

(1) n = pa,
(2) n = paq,
(3) n = pqr,

where p, q, r are distinct prime numbers and a is a positive integer.

We then associate a new invariant to each cochordal graph, called the type sequence.
Using the type sequence of a cochordal graph, we compute all the graded Betti num-
bers of its edge ideal. Consequently, we derive formulae for the Betti numbers of the
edge ideals of zero divisor graphs of Z /nZ when n is of the form n = pa, n = paq, or
n = pqr where p, q, r are distinct prime numbers. Let us now introduce these concepts
in more detail.

Beck [B] introduced the zero divisor graph Γ(R) of a commutative ring R and
studied the finitenistic of the colorings of Γ(R) and its algebraic consequences. The
structure of zero divisor graphs was furthered analyzed and developed by Anderson
and Livingston [AL] and Mulay [M] among others. They particularly focused on a
smaller induced subgraph defined by the equivalence classes of zero divisors of R,
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known as the compressed zero divisor graph of R. Spiroff and Wickham [SW] carried
this study further to investigate the associated primes of R. We will build on this
idea further in our study.

Definition 1.2. Let R be a commutative ring with unity. Denote by Z(R) the set of
zero divisors of R. The zero divisor graph of R, denoted by Γ(R) is a graph on the
vertex set Z(R)\{0} and {u, v} is an edge of Γ(R) if uv = 0.

Arunkumara, Cameron, Kavaskar, and Tamizh Chelvam [ACKT] recently proved
that zero divisor graphs are universal, even when R is restricted to boolean rings, or
the rings of integers modulo n. In other words, for any finite graph G, there exists a
positive integer n such that G is an induced subgraph of Γ(Zn). As a first step toward
understand the homological invariants of edge ideals of Γ(Zn), we classify all n for
which Γn is cochordal.

Definition 1.3. A simple graph G is called a chordal graph if every cycle of length
at least 4 in G has a chord. G is cochordal if its complement G is chordal.

Let G be a simple graph on a vertex set V (G) and edge set E(G). A subset
U ⊆ V (G) is called a vertex cover of G if for every edge {u, v} ∈ E(G) either u or
v belongs to U . We denote by KU,V the complete bipartite graph with a bipartition
V (G) = U ∪ V . When U = {u} we also denote KU,V by Ku,V . Motivated by the
Dirac’s theorem [Di] on chordal graphs, we define

Definition 1.4. Let P = (uk, Uk, uk−1, Uk−1, . . . , u1, U1) be an ordered set of vertices
ui and subsets Ui ⊆ V of a set of vertices V such that ui /∈ Uj for j ≤ i. We define
recursively the graphs Gi as follows

(1) G1 = Ku1,U1 ;
(2) V (Gj) = V (Gj−1) ∪ V (Kuj ,Uj

), E(Gj) = E(Gj−1) ∪ E(Kuj ,Uj
).

We call P a cochordal constructible system of a graph G if G = Gk and Uj is a vertex
cover of Gj−1 for all j = 2, . . . , k. The type of P is defined by type(P ) = (ak, . . . , a1)
where aj = |Uj| for all j = 1, . . . , k.

Theorem 1.5. A graph G is cochordal if and only if it has a cochordal constructible
system P.

Definition 1.6. The type of a cochordal constructible system P of a cochordal graph
G is also called a type of G.

The notion of type of a cochordal graph is motivated from the work of Corso and
Nagel [CN1, CN2]. For example, the Ferrers graph Gλ associated with a partition
λ has type λ. The following is a generalization of the results of Corso and Nagel to
arbitrary cochordal graphs.

Theorem 1.7. The Betti numbers of the edge ideal of a cochordal graph of type
(ak, . . . , a1) is given by

βi(S/I) =

(
ak
i

)
+

(
ak−1 + 1

i

)
+ · · ·+

(
a1 + k − 1

i

)
−
(

k

i+ 1

)
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for all i ≥ 1.

We then apply to compute all the Betti numbers of Γ(Zn) when n is of the form
n = pa, n = paq, or n = pqr.

Theorem 1.8. Let a ≥ 2 be a positive integer and p be a prime number. Then
I = I(Γ(Zpa)) has a linear free resolution and

βi(S/I) =
a−1∑

j=⌈a
2
⌉

pa−j−1(p− 1)

(
pj − 2

i

)
,

for all i ≥ 1. In particular, pd(S/I) = pa−1 − 2.

Theorem 1.9. Let a be a positive integer and p, q be two distinct prime numbers.
Then I = I(Γ(Zpaq)) has a linear free resolution and

βi(S/I) =
a−1∑

j=⌈a
2
⌉

pa−j−1(p− 1)

(
qpj − 2

i

)
+

⌈a
2
⌉−1∑

j=0

pa−j−1(p− 1)

(
(q − 1)pj + pa−j − 2

i

)
,

for all i ≥ 1. In particular,

pd(S/I) =

{
qpa−1 − 2 if a ≥ 2,

q + p− 3 if a = 1.

Theorem 1.10. Let p < q < r be prime numbers. Then I = I(Γ(Zpqr)) has a linear
free resolution and

βi(S/I) = (p− 1)

(
qr + p− 3

i

)
+ (q − 1)

(
pr + q − 3

i

)
+ (r − 1)

(
pq + r − 3

i

)
,

for all i ≥ 1. In particular, pd(S/I) = qr + p− 3

In Section 2, we discuss cochordal constructible systems and prove Theorem 1.5.
We then prove Theorem 1.7 and deduce its consequences. In Section 3, we establish
Theorem 1.1 and compute all the Betti numbers of edge ideals of zero divisor graphs
of Z /nZ when they are cochordal.

2. Cochordal constructible systems

In this section, we introduce the notion of cochordal constructible system and prove
that any cochordal graph can be constructed from a cochordal constructible system.
From that, we deduce a formula for all the Betti numbers of edge ideals of cochordal
graphs.

We fix the following notation throughout the paper. Assume that S = k[x1, . . . , xn]
is a standard graded polynomial ring over a field k with the graded maximal ideal
m = (x1, . . . , xn). An ideal P generated by variables of S is called a monomial prime
ideal. If P = (xi1 , . . . , xis), we denote by suppP = {i1, . . . , is}.

3



Let I = (f1, . . . , ft) be a monomial ideal of S and y be a variable of S. Let
J = (fj | y does not divide fj). Then I has a unique decomposition, called the y-
partition of I, I = J + yL, where yL = (fj | y divides fj).

2.1. Betti numbers. Let M be a finitely generated graded S-module. For integers
i, j with i ≥ 0, the i-th Betti number of M in degree j is

βi,j(M) = dimkTor
S
i (k,M)j.

The projective dimension of M , denoted by pdS(M) and regularity of M , denoted by
regS(M) are defined by

pdS(M) = sup{i | βi,j(M) ̸= 0 for some j},
regS(M) = sup{j − i | βi,j(M) ̸= 0}.

The following result is well-known.

Lemma 2.1. Let x be a variable and I a nonzero homogeneous ideal of S. Then

βi,j(xI) = βi,j−1(I) for all i ≥ 0.

2.2. Betti splittings. Betti splittings were introduced by Francisco, Ha, and Van
Tuyl [FHV] for monomial ideals. We follows the treatment of Betti splittings in [NV].
Let P, I, J be proper homogeneous ideals of S such that P = I + J .

Definition 2.2. The decomposition P = I+J is called a Betti splitting if for all i ≥ 0,
the following equality of Betti numbers holds: βi(P ) = βi(I) + βi(J) + βi−1(I ∩ J).

Lemma 2.3. Let I be a quadratic monomial ideal and x be a variable. Then the
x-partition of I, I = xP + J is a Betti splitting.

Proof. Since I is generated by quadratic monomials, P is generated by variables. The
conclusion follows from [NV, Corollary 4.12]. □

2.3. Cochordal constructible systems. Let G be a simple graph on vertex set
V (G) = [n] and edge set E(G) ⊆ V (G)× V (G). The edge ideal of G is defined by

I(G) = (xixj | {i, j} is an edge of G) ⊂ S.

The following is an essential property of cochordal graphs.

Lemma 2.4. Let I = I(G) be the edge ideal of a cochordal graph. Then there exists a
variable xi such that I : xi = P is a monomial prime ideal. In other words, I = xiP+J
and J ⊂ P .

Proof. The conclusion follows from [JV, Proposition 3.19]. □

Proof of Theorem 1.5. First, assume that G is cochordal. We prove by induction on
n that G has a cochordal constructible system. The base case n = 2 is clear. Now,
assume that n ≥ 3. By Lemma 2.4, there exists a variable xi such that I(G) :
xi = P is a monomial prime ideal. Hence, U = suppP is a vertex cover of G′, the
induced subgraph of G on V (G) \ {i}. By induction, G′ has a cochordal constructible
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system P′ = (uk−1, Uk−1, . . . , u1, U1). Set uk = i and Pk = U , we deduce that P =
(uk, Uk, . . . , u1, U1) is a cochordal constructible system of G.

Now, assume that G has a cochordal constructible system P. We prove by induction
on k that G is cochordal. By the result of Fröberg [F], it suffices to prove that
reg(I(G)) = 2. By definition, G = Gk. The base case k = 1 is clear. By induction
Gk−1 is cochordal and I(Gk) = xkPk + I(Gk−1) where xk corresponds to the vertex
uk and Pk is the monomial prime ideals generated by variables corresponding to
Uk. By Lemma 2.3, the decomposition I(Gk) = xkPk + I(Gk−1) is a Betti splitting.
Furthermore, by assumption, xkPk ∩ I(Gk−1) = xkI(Gk−1). Hence,

reg(I(Gk)) = max{reg(I(Gk−1)), reg(xPk), reg(xkI(Gk−1))− 1} = 2.

The conclusion follows. □

2.4. Betti numbers of cochordal graphs. Let G be a cochordal graph of type
(ak, . . . , a1). By Theorem 1.5, the edge ideal of G can be written as

I(G) = xkPk + xk−1Pk−1 + · · ·+ x1P1

where Pj is a monomial prime ideal generated by aj variables. Let Ij = xjPj+· · ·+x1P1

for all j = 1, . . . , k.

Proof of Theorem 1.7. We prove by induction on k. The case k = 1 is clear as I1 =
x1P1 with P1 is a monomial prime ideal generated by a1 variables.

Now, assume that the statement holds for k−1. Note that, β1(S/I) = ak+· · ·+a1 =
ak + (ak−1 + 1) + · · · + (a1 + k − 1) −

(
k
2

)
. Thus, we may assume that i ≥ 2. By the

proof of Theorem 1.5, the decomposition Ik = xkPk + Ik−1 is a Betti splitting and
xkPk ∩ Ik−1 = xkIk−1. Hence, we have for all i ≥ 2,

βi(S/Ik) = βi(S/Ik−1) + βi−1(S/Ik−1) + βi(S/(xkPk)).

By induction, we have

βi(S/Ik−1) =

(
ak−1

i

)
+ · · ·+

(
a1 + k − 2

i

)
−
(
k − 1

i+ 1

)
βi−1(S/Ik−1) =

(
ak−1

i− 1

)
+ · · ·+

(
a1 + k − 2

i− 1

)
−
(
k − 1

i

)
.

The conclusion follows from Lemma 2.1, the fact that βi(S/Pk) =
(
ak
i

)
, and the

binomial identity
(
n
i

)
+
(

n
i−1

)
=

(
n+1
i

)
. □

Dochtermann [Doc] gave a formula for the Betti numbers of the ideal of the com-
plement of a d-chordal cluster. His formula requires the computation of the maximal
clique sizes containing the exposed edge at each step. Generally, our method is compu-
tationally simpler, as it depends on the number of variables, whereas Dochtermann’s
formula depends on the number of generators of I.

5



Example 2.5. Consider the following edge ideal

I = x3(x1, x2) + x2(x1, x4) + x1(x5, x6) ⊆ R = k[x1, . . . , x6].

According to Dochtermann’s formula, we see that the sequence of exposed edges are
x1x6, x1x5, x1x2, x1x3, x2x3, x2x4. Hence, the kj-invariants are 0, 1, 2, 3, 1, 2. In our
formula, I has type (2, 2, 2). Also, I can be rewritten as

I = x1(x2, x3, x5, x6) + x2(x3, x4).

Thus, I also has type (4, 2). By Theorem 1.7, the Betti table of I is

0 1 2 3
− − − − −
2 6 9 5 1

Corollary 2.6. Let G be a cochordal graph of type (ak, . . . , a1). Then pd(S/I(G)) =
max{ak, ak−1 + 1, . . . , a1 + k − 1}.

Proof. The conclusion follows from Theorem 1.7. □

Remark 2.7. Antonino Ficarra pointed out that Lemma 2.4 holds more generally
for quadratic monomial ideals having linear free resolutions [Fi, Lemma 2.4]. Hence,
we can extend our concept of type sequence to any quadratic monomial ideal with a
linear free resolution. This fact also follows from taking the polarization. In particular,
Theorem 1.7 and Corollary 2.6 hold for arbitrary quadratic monomial ideals having a
linear free resolution.

3. Cochordal zero divisor graphs

This section is devoted to proving Theorem 1.1 and computing Betti numbers of
edge ideals of zero divisor graphs of Z /nZ when n is of the form n = pa, n = paq, or
n = pqr where p, q, r are distinct prime numbers and a is a positive integer. We first
recall the definition of compressed zero divisor graphs.

Let R be a commutative ring with unity. We denote by Z∗(R) the set of nonzero
zero divisors of R. For x ∈ R, we denote by [x] the set of equivalence class of all y in
R such that ann(x) = ann(y).

Definition 3.1. The compressed zero divisor graph of R, denoted by ΓE(R), is a
graph on the vertex set consisting of equivalence classes of elements in Z∗(R) and two
distinct equivalence classes [x] and [y] are joined by an edge if and only if [x] · [y] = [0].

We now prove that when n = pa, n = paq, or n = pqr, Γ(R) is cochordal and
compute its type sequence. Each element of R = Z /nZ has a representative i such
that 0 ≤ i ≤ n − 1. Thus, we can view the vertex set of Γ(R) as a subset of
{1, . . . , n−1}. We order the vertices of Γ(R) within the same equivalence class by the
natural order on Z. We also use the following convention: if s1, . . . , sk are sequences,
then s = (sk, . . . , s1) denotes the concatenation of the sequences sk, . . . , s1.
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Lemma 3.2. Let p be a prime number and a be a positive integer at least 2. Let

si = (pi − pa−i−1 − 1, pi − pa−i−1 − 2, . . . , pi − pa−i) for i = ⌈a
2
⌉, . . . , a− 1.

Then Γ(Zpa) is cochordal and has a type s = (sa−1, . . . , s⌈a
2
⌉).

Proof. Let n = pa and R = Z /nZ. For each i = 1, . . . , a− 1, we denote by

Vi = {x ∈ R | [x] = [pi]}.
First, we have |Vi| = φ(pa−i) = φi = pa−i−1(p−1), where φ(n) is the Euler’s function.
We assume that Vi = {vi,1, . . . , vi,φi

} and vi,j < vi,j+1 for all i and j. We now define

Ui,j = Vi−1 ∪ Vi−2 ∪ · · · ∪ Va−i ∪ {vi,1, . . . , vi,j−1}
for i = ⌈a

2
⌉, . . . , a − 1 and j = 1, . . . , φi. Note that {vi1,j1 , vi2,j2} is an edge of Γn if

and only if i1 + i2 ≥ a. Hence, the ordered set P = (vi,j, Ui,j | i = a− 1, . . . , ⌈a
2
⌉, j =

φi, . . . , 1) is a cochordal constructible system of Γ(Zn). By Theorem 1.5, Γ(Zn) is
cochordal. Finally, we have

|Ui,j| = |Vi−1|+ · · ·+ |Va−i|+ j − 1

= pa−i(p− 1)
(
1 + · · ·+ p2i−a−1

)
+ j − 1

= pi − pa−i + j − 1,

for all i = ⌈a
2
⌉, . . . , a− 1 and j = 1, . . . , φi. The conclusion follows. □

Lemma 3.3. Let p, q be distinct prime numbers and a be a positive integer. Let

si = (qpi − pa−i−1 − 1, qpi − pa−i−1 − 2, . . . , qpi − pa−i) for i = ⌈a
2
⌉, . . . , a− 1,

si = ((q − 1)pi + pa−i−1(p− 1)− 1, (q − 1)pi + pa−i−1(p− 1)− 2, . . . , (q − 1)pi)

for i = 0, . . . , ⌈a
2
⌉ − 1.

Then Γ(Zpaq) is cochordal and has a type s = (sa−1, . . . , s0).

Proof. Let n = paq and R = Z /nZ. We set

Ui = {x ∈ R | [x] = [pi]} for i = 1, . . . , a,

Vi = {x ∈ R | [x] = [piq]} for i = 0, . . . , a− 1.

Then, |Ua| = q − 1 and

|Ui| = φ(pa−iq) = pa−i−1(p− 1)(q − 1) for i = 1, . . . , a− 1

|Vi| = φ(pa−i) = φi = pa−i−1(p− 1) for i = 0, . . . , a− 1.

We assume that Vi = {vi,1, . . . , vi,φi
} and vi,j < vi,j+1 for all i and j. We now define

Wi,j = Ua ∪ Ua−1 ∪ · · · ∪ Ua−i ∪ Vi−1 ∪ · · · ∪ Va−i ∪ {vi,1, . . . , vi,j−1}
for i = 0, . . . , a−1 and j = 1, . . . , φi. For x ∈ Ui and y ∈ Vj, we have {x, y} is an edge
of Γn if and only if i+j ≥ a. For x ∈ Vi and y ∈ Vj, we have {x, y} i an edge of Γn if and
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only if i+j ≥ a. Hence, the ordered set P = (vi,j,Wi,j | i = a−1, . . . , 0, j = φi, . . . , 1)
is a cochordal constructible system of Γ(Zn). By Theorem 1.5, Γ(Zn) is cochordal.
By the proof of Lemma 3.2, we have

|Wi,j| = |Ua|+ · · ·+ |Ua−i|+ |Vi−1|+ · · ·+ |Va−i|+ j − 1

= (q − 1) + (q − 1)(p− 1)(1 + · · ·+ pi−1) + pi − pa−i + j − 1

= (q − 1)pi + pi − pa−i + j − 1

= qpi − pa−i + j − 1,

for all i = ⌈a
2
⌉, . . . , a− 1 and j = 1, . . . , φi. For i = 0, . . . , ⌈a

2
⌉ − 1 and j = 1, . . . , φi,

we have

|Wi,j| = |Ua|+ · · ·+ |Ua−i|+ j − 1

= (q − 1)pi + j − 1.

The conclusion follows. □

Lemma 3.4. Let p, q, r be distinct prime numbers. Let

s1 = (r + (p− 1)(q − 1)− 2, . . . , (p− 1)(q − 1))

s2 = (pr − p+ q − 2, . . . , pr − p)

s3 = (qr + p− 3, . . . , qr − 1).

Then Γ(Zpqr) is cochordal and has a type s = (s3, s2, s1).

Proof. Let n = pqr and R = Z /nZ. We assume that p < q < r and set

U1 = {x ∈ R | [x] = [p], U2 = {x ∈ R | [x] = [q]}, U3 = {x ∈ R | [x] = [r]}
V1 = {x ∈ R | [x] = [pq]}, V2 = {x ∈ R | [x] = [pr]}, V3 = {x ∈ R | [x] = [qr]}.

Let φ1 = |V1| = r − 1, φ2 = |V2| = q − 1, and φ3 = |V3| = (p − 1). Write Vi =
{vi,1, . . . , vi,φi

} and vi,j < vi,j+1 for all i = 1, 2, 3 and j = 1, . . . , φi. We now define

W1,j = U3 ∪ {v1,1, . . . , v1,j−1} for j = 1, . . . , φ1

W2,j = V1 ∪ U2 ∪ {v2,1, . . . , v2,j−1} for j = 1, . . . , φ2

W3,j = V1 ∪ V2 ∪ U1 ∪ {v3,1, . . . , v3,j−1} for j = 1, . . . , φ3.

Then the ordered set P = (vi,j,Wi,j | i = 3, 2, 1, j = φi, . . . , 1) is a cochordal con-
structible system of Γ(Zn). By Theorem 1.5, Γ(Zn) is cochordal. Finally, we have

|W1,j| = |U3|+ j − 1 = (p− 1)(q − 1) + j − 1 for j = 1, . . . , φ1,

|W2,j| = |V1|+ |U2|+ j − 1 = pr − p+ j − 1 for j = 1, . . . , φ2,

|W3,j| = |V1|+ |V2|+ |U1|+ j − 1 = qr + j − 2 for j = 1, . . . , φ3.

The conclusion follows. □

We are now ready for
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Proof of Theorem 1.1. First, we assume that G = Γ(Zn) is cochordal. In particular,
its induced matching number is 1. We divide the proof into several steps.

Step 1. n has at most 3 prime factors. Assume by contradiction that n has more than
3 prime factors, say n = pa11 pa22 pa33 pa44 m where m is a positive integer and p1, . . . , p4 are
distinct prime numbers not dividing m. Let x = pa11 pa22 m, y = pa33 pa44 m, u = pa11 pa33 m
and v = pa22 pa44 m. Then {x, y} and {u, v} form an induced matching of G, which is a
contradiction.

Step 2. If n has 3 prime factors then n = pqr. Assume by contradiction that
n = paqbrc for some a > 1 and b, c are positive integers. Let x = pa, y = qbrc,
u = pa−1qb, and v = prc. Then {x, y} and {u, v} form an induced matching of G, a
contradiction.

Step 3. If n has 2 prime factors then n = paq. Assume by contradiction that n = paqb

where a, b > 1 are positive integers. Let x = pa, y = qb, u = pa−1qb−1 and v = pqw
where w is any prime divisor of pq − 1. Then u ̸= v and {x, y} and {u, v} form an
induced matching of G, a contradiction.
The conclusion then follows from Lemma 3.2, Lemma 3.3, and Lemma 3.4. □

We now apply Theorem 1.7 to compute all the Betti numbers of Γ(Zn) when n is
of the form n = pa, n = paq, or n = pqr.

Proof of Theorem 1.8. Let sj = (sj,1, . . . , sj,φj
) with φj = pa−j−1(p− 1) and

sj,1 = pj − pa−j−1 − 1

sj,ℓ = sj,ℓ−1 − 1 for ℓ = 2, . . . , φj.

By Lemma 3.2, Γ(Zn) has a type s = (sa−1, . . . , s⌈a
2
⌉). By Theorem 1.7, we deduce

that

βi(S/I) =
a−1∑

j=⌈a
2
⌉

φj

(
sj,1 +

∑a−1
ℓ=j+1 φℓ

i

)
.

For j < a− 1, we have

(3.1)
a−1∑

ℓ=j+1

φℓ = (p− 1)
a−1∑

ℓ=j+1

pa−ℓ−1 = pa−j−1 − 1.

The conclusion follows. □

Proof of Theorem 1.9. Let sj = (sj,1, . . . , sj,φj
) with φj = pa−j−1(p − 1) be such that

sj,ℓ = sj,ℓ−1 − 1 for ℓ = 2, . . . , φj and

sj,1 = qpj − pa−j−1 − 1 for j = ⌈a
2
⌉, . . . , a− 1

sj,1 = (q − 1)pj + pa−j−1(p− 1)− 1 for j = 0, . . . , ⌈a
2
⌉ − 1.
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By Lemma 3.3, Theorem 1.7, and the proof of Theorem 1.8, we deduce that

βi(S/I) =
a−1∑
j=0

φj

(
sj,1 +

∑a−1
ℓ=j+1 φℓ

i

)
.

The conclusion then follows from Eq. (3.1). □

Proof of Theorem 1.10. The conclusion follows from Lemma 3.4 and Theorem 1.7. □

Remark 3.5. Rather, Imran, and Pirzada [RIP] and Pirzada and Rather [PR] used
Hochster’s formula [HH, Theorem 8.1.1] to compute the Betti numbers of the edge
ideals of Γn when n is of the form pa, paq, and pqr. The authors provided closed
formulae when a ≤ 4 in the first case and a ≤ 2 in the second case. Our method
is entirely different and yields a complete answer. Additionally, our formulae are
simpler. By Theorem 1.10, the last Betti number of Γpqr is p− 1. Hence, the the first
statement in [RIP, Proposition 4.8] is incorrect.

Remark 3.6. Theorem 1.7 is useful for calculating the Betti numbers of other classes
of cochordal graphs. We will explore this further in subsequent work.
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44 (2016), 165–199. 4
[PR] S. Pirzada and S. A. Rather, On the linear strand of edge ideals of some zero-divisor graphs,

Comm. Algebra 51 (2023), 620–632. 10
[RIP] B. A. Rather, M. Imran, and S. Pirzada, Linear strand of edge ideals of zero divisor graphs of

the ring Zn, Communications in Algebra, DOI:10.1080/00927872.2024.2363953 1, 10
[SW] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero

divisors, Comm. Algebra 39 (2011), 2338–2348. 2

Department of Algebra and Geometry, Hong Duc University, No. 565 Quang
Trung Street, Dong Ve Ward, Thanh Hoa, Vietnam

Email address: lexuandung@hdu.edu.vn

Institute of Mathematics, VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam
Email address: vuqthanh@gmail.com

11


	1. Introduction
	2. Cochordal constructible systems
	2.1. Betti numbers
	2.2. Betti splittings
	2.3. Cochordal constructible systems
	2.4. Betti numbers of cochordal graphs

	3. Cochordal zero divisor graphs
	Acknowledgments
	References

