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Part Il Outline

An overview of methods and algorithms

otivation - parameterized / stochastic equations
@ Motivation - p ized / stochastic equati
@ Brief taxonomy of deterministic and stochastic numerical strategies
© Monte Carlo FEM (MCFEM)
© Stochastic Galerkin FEM (SGFEM)
© Comparisons to SCFEM
omputational complexity of solving the
C ional lexity of solving the SGFEM

@ Numerical illustrations of complexity results
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Parameterized PDEs

Motivation: Parameterized PDE models

Deterministic and stochastic coefficients

parameters FI(DI)E) [m(ogi]e| 0 quantity of
d F(a = —
yeUCR — D CyR n—123 interest Qu(y)]

@ The operator F, linear or nonlinear, depends on a vector of d parameters
y = (y1,92,...,ya) €U = [[?_, Us, which can be deterministic or stochastic.

o Deterministic setting: y are known or controlled by the user.

e Goal: a query y € U, quickly approximation the solution map y — u(y) € V.

@ Stochastic setting: y may be affected by uncertainty and are modeled as a
random vector y : Q — U with joint PDF ¢ : U — Ry s.t. o(y) = [T, 0i(y:).

PZelIcU]= /p(y) dy, i.e., transform the measure P to R?
I

o Remark: replace (2, F, P) with (U, B(U), o(y)dy), where B(U) denotes the Borel
o-algebra on U and p(y)dy is the distribution measure of y.
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Parameterized PDEs

UQ for parameterized PDE models ¥ OAK RIDGE

il 1

Goals of forward UQ

Goal: Approximate u or some statistical Qol depending on u, i.e.
Efu], Varu], Plu > uo] = E[1{ysu0}]

with as minimal computational cost as possible.

Quantity of interest (Qol) Qu], e.g., multi-dimensional expectation

E[u](z) = / u(y,z)p(y)dy, wherey €U and x € D
u

@ directly approximate Q[u]

@ find a surrogate of the solution u (approximating the map y — u(-,y))
— use the surrogate to cheaply compute any desired quantity of interest
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Parameterized PDEs

Parameterized PDEs - coefficients
a(z, y) satisifies CC and AN

Piecewise constant random fields: Let {Dk}zzl be a non-overlapping partition of D.
We consider d
a(w,y) = ao(x) + Y _owysxp, (z)
k=1

where o), > 0 for all k, ao(x) is large enough to satisfy (CC), and xp, is the indicator
function of the set Dx.
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Parameterized PDEs

Parameterized PDEs - coefficients
a(z, y) satisifies CC and AN

Karhunen-Log&ve expansion: a 2" order random field with continuous covariance function
can be represented as an infinite sum of r.v.s via a KL expansion. When the expansion

decays quickly, we may truncate

d
a(z,y) ~ o(x) + >_er(@)yr.

k=1

Here g is the mean, {\, = Var[yx], o }i_ are the largest eigenpairs of Cov[a](z1, z2).

(a) Mode 1 (b) Mode 2 {¢) Mode 3 {d) Mode 4

Clayton G. Webster, csm.ornl.gov/~cgwebster Uncertainty q


csm.ornl.gov/~cgwebster

Parameterized PDEs

Parameterized PDEs - coefficients
a(z, y) satisifies CC and AN

Karhunen-Log&ve expansion: a 2" order random field with continuous covariance function
can be represented as an infinite sum of r.v.s via a KL expansion. When the expansion

decays quickly, we may truncate

d
a(z,y) ~ o(x) + >_er(@)yr.

k=1

Here g is the mean, {\, = Var[yx], o }i_ are the largest eigenpairs of Cov[a](z1, z2).

(a) Mode 1 (b) Mode 2 (¢) Mode 3 (d) Mode 6
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Sargsyan, Safta, Chowdhary, Castorena, de Bord, Debusschere, “UQTk v3.0.1 Manual,” SAND2016-9215
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Parameterized PDEs

Parameterized PDEs - coefficients
2, y) satisifies CC and AN

In certain models, it is more appropriate to perform a Karhunen-Loéve expansion on the
logarithmic scale: for a constant ag > 0, log(a — ao)(z,y) = po + ZZ=1<Pkyk-
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Hunt, Saad, Chapel, “Numerical Simulation of Ground-Water Flow in La Crosse County, Wisconsin" Report 03-4154 (2003)
Heath, “Basic Ground-Water Hydrology,” USGS: Water-Supply Paper 2220 (1983)
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Parameterized PDEs

UQ for parameterized PDE models

Some assumptions

Continuity and coercivity (CC)

Forallz € D andy €U, 0 < amin < a(2,y) < Gmax-

Analyticity (AN)

The complex continuation of a, represented as the map a : C* — L>°(D), is an
L (D)-valued analytic function on C.

| \

Existence and uniqueness of solutions (EU)

For all y € U the PDE problem admits an unique solution w € V, where V is a suitable
finite or infinite dimensional Hilbert or Banach space. In addition

Yy e, 3C(y) > 0 such that ||u(y)|lv < C(y)

Some simple consequences:
@ The PDE induces a map « = u(y) : U — V.
o If [, C(y)Po(y)dy < oo then u c LL(U, V).
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Parameterized PDEs

A simple illustrative example ¥.C

i IOk d 1 ~National 1
Parameterized elliptic problems: U = [—1,1]%, V = Hj

V(oo y)Vu(e,y) = f&) zeD,yelU
u(z,y) =0 ze€dD,yel
Assume a(x,y) satisfies (CC) and (AN), and that f € L?*(D), then:
Vyeu, uly)e HY(D)=V and fuly)ly < —|fll 2
o Lax-Milgram ensures the existence and uniqueness of solution u € L(U, V).

Affine and non-affine coefficients:

© a(z,y) = ao(z) + i, yii(x).

@ a(z.y) = ao(e) + (T, van(@)) " g €.

9 a(z,y) = ao(z) +exp (Z?zl yﬂ/h(x)) (e.g., truncated KL expansion in the log scale)

Remark. In what follows - can be extended to nonlinear elliptic (u*), parabolic, and
some hyperbolic PDEs, all defined on unbounded high-dimensional domains.

Clayton G. Webster, csm.ornl.gov/~cgwebster
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Parameterized PDEs

A simple illustrative example ¥.C

~National 1

Parameterized elliptic weak formulation

The parameterized (stochastic) weak form of problem is given by:

Find u € L%(U; Hy (D)) such that Vv € L2(U; Hy (D))

/ Blu, v)()o(y) dy = / F)o(y) dy,
u u
where

Blu, o](y) = / oz, y)Vu(z, y) - Vo(z, y)de,

D
and

F(v):/Df(x)v(x,y)dx.

o It follows from (CC) that B(y) is a symmetric, uniformly coercive, and continuous
bilinear operator on H{ (D) for every y € U.

o Lax-Milgram ensures the existence and uniqueness of solution u € L2 (U, H} (D)).
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Parameterized PDEs

Analyticity of the solution *.0 lillI{JDGE

p=(pi)ici<d, pi > 1 Vi

@ Polydisc: O, = @), {2z € C;|zi| < pi}.

izt
o Polyellipse: £, = ), {Z‘+21 ;2 € C,|z] = pi} .

Theorem. [Tran, W., Zhang '16]

Assume a(z,y) satisfies CC and AN. Then the function z — u(z) is well-defined and
analytic in an open neighborhood of some polyellipse £, (or polydisc O,).

alxy) = agx) + yy(x)

a(xy) = a0 + (yw())*

a(xy) = a () + e

Im(y)

-1 1 2

0 1 -1 1
He(y) ReiY)
Domain of complex unlform e|||pt|C|ty for some random fields.

> 2

Remark. The high-dimensional discontinuous case is analyzed in:
[Gunzburger, W., Zhang '14], [Burkardt, Gunzburger, W., Zhang '15 (SINUM), '16 (SIREV)]
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Numerical methods

Brief taxonomy of numerical strategies
General approaches | -
There have been many formulations and approaches to solve parameterized
deterministic and stochastic PDEs:

wal Lab

% OAK RIDGE

@ Statistical sampling methods:
@ Brute-force Monte Carlo (MC): convergence rate independent of the number of
random variables, robust, embarrassingly parallel - very slow convergence
@ Quasi MC (QMC), Latin Hypercube Sampling (LHS), Lattice Rules, etc.

o Variance reduction techniques: important, conditional and correlated sampling -
limitations when confronted with large number of RVs

@ Indirect methods (require closure approx.):
@ Moment methods: derive equations for the moments of the quantities of interest -
not applicable to nonlinear problems or non-Gaussian RVs

o PDEs for PDFs (e.g., Fokker-Planck equations): derive a system of PDEs whose
solution approximates the probability distributions / densities - boundary
conditions and higher dimensions are challenging

Nov., 2016 11/44
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Numerical methods

Brief taxonomy of numerical strategies

General approaches Il

© Direct methods: compute an approximate surrogate to u(z,y) in a suitable
subspace and use this solution to compute the desired statistics, e.g., stochastic
Galerkin (projections), stochastic collocation, etc.

@ Interval analysis : maximum bounds of output uncertainty - can dramatically
overestimated to uncertainties

@ Perturbation-based methods : Taylor expansion around a mean solution - can only
be used for linear Qols and when the variance in solution is small

@ Operator-based methods : compute the inverse of a given operator, if it exists, by
using a Neumann series expansion or the weighted integral method - restricted to
small magnitude uncertainties and often limited to static problems

@ Stochastic polynomial approximations: Taylor, Galerkin projections, interpolation
and collocation, discrete least squares, and compressed sensing - challenges
include: optimal polynomial subspaces, curse of dimensionality, adaptive and
anisotropic refinement, low stochastic regularity and discontinuities, etc.

Clayton G. Webster, csm.ornl.gov/~cguebster i tification & approximation theory for PP ov., 2016 12/44
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Numerical methods

Brief taxonomy of numerical strategies *.0 1{]II{JDGE
Stochastic FEMs [Gunzburger, W., Zhang, '14 (Acta Numerica)]

o Monte Carlo methods: Let {y. € U}]" , denote a set of random sample points

Blu] = - 3" u(y)

o Simple to implement, parallelize, and convergence rate is independent of d.
e Asymptotic rate is O(1//m).

e Unable to simultaneously approximate y — u(y).
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Numerical methods

Brief taxonomy of numerical strategies
Stochastic FEMs [Gunzburger, W., Zhang, '14 (Acta Numerica)]

o Simple to implement, parallelize, and convergence rate is independent of d.
e Asymptotic rate is O(1//m).

e Unable to simultaneously approximate y — u(y).

o Polynomial approximations: Let v = (v1,...,v4) € A C ¢ a multi-index set, and

W, be multivariate polynomials in Pa(U) = span {Hj:1 yit't wi < vy Vi}.
Approximate the solution u by:

up(z,y) = Z ()P (y) €V QPAMU)

veA

o Takes advantage of the smoothness and/or the sparsity structure of w.

o Can feature faster convergence than MC.

o The evaluation of up requires the computation of ¢,, (in possibly) high-dimensions.

Clayton G. Webster, csm.ornl.gov/~cgwebster
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Numerical methods

Discretizing the physical domain

Parameterized finite element approximations

All methods require a further discretization over the physical domain D. Here we rely
on the finite element method, though finite differences and finite volume may be used
when appropriate. Let

@ T, triangulation of D

o un(y) € Vi(D) C H}(D), finite element space

o {¢i(x)}/",, piecewise linear polynomial basis for V4 (D) having cardinality .J,

Discretization results in the linear system: A(y)c(y) =F VyeclU.
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MCFEM

Monte Carlo FEM (MCFEM)

Approximation statistics of Qols Q[u]

O Classical approach: Choose a number of realizations, m € 4, and let {yx},2, be
a given sample set of random abscissas

Clayton G. Webster, csm.ornl.gov/~cgwebster Uncertainty ication & approxim. theory for PPD
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MCFEM

Monte Carlo FEM (MCFEM) ¥.C

~National 1

Approximation statistics of Qols Q[u]

O Classical approach: Choose a number of realizations, m € 4, and let {yx},2, be
a given sample set of random abscissas

@ For each k =1,...,m sample iid realizations of the diffusion a(yx,x), the load
f(yx,x) and find a FEM approximation up (yx, - ) € Wi(D) s.t.

{ -V (a(ykv ')vuh(yka )) = f(yka ')7 in D
un(yk, -) = 0, on 9D

If desired evaluate the Qol @ (un(yx, -))

I Clayton G. Webster, csm.ornl.gov/~cguebster Uncertainty quantification & approximation theory for PPDEs — Nov., 2016 15/44
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MCFEM

Monte Carlo FEM (MCFEM) #,(

~National 1

Approximation statistics of Qols Q[u]

O Classical approach: Choose a number of realizations, m € 4, and let {yx},2, be
a given sample set of random abscissas

@ For each k =1,...,m sample iid realizations of the diffusion a(yx,x), the load
f(yk, ) and find a FEM approximation up (yk, - ) € Wi(D) s.t

{ -V (a(ykv ')vuh(yka )) = f(yka ')7 in D
un(yk, -) = 0, on 9D

If desired evaluate the Qol Q (un(yk, -))

@ Approximate statistics, e.g. expectations E[uy](z), by sample averages:

m

E [un(y)](z) = Zuh Yr)p =& (unym), yr el

I Clayton G. Webster, csm.ornl.gov/~cguebster Uncertainty quantification & approximation theory for PPDEs — Nov., 2016
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MCFEM

Monte Carlo FEM (MCFEM) #,(

~National 1

Approximation statistics of Qols Q[u]

O Classical approach: Choose a number of realizations, m € 4, and let {yx},2, be
a given sample set of random abscissas

@ For each k =1,...,m sample iid realizations of the diffusion a(yx,x), the load
f(yk, ) and find a FEM approximation up (yk, - ) € Wi(D) s.t

{ -V (a(ykv ')vuh(yka )) = f(yka ')7 in D
un(yk, -) = 0, on 9D

If desired evaluate the Qol @ (un(yx, -))

@ Approximate statistics, e.g. expectations E[uy](z), by sample averages:

m

E [un(y)](z) = Zuh Yr)p =& (unym), yr el

Goal: Compute, with high probability, sample statistics, e.g.

IE[urn] — & (un;m)|| < TOL

I Clayton G. Webster, csm.ornl.gov/~cguebster Uncertainty quantification & approximation theory for PPDEs — Nov., 2016
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MCFEM

Convergence of the MCFEM

Error splitting

Elu] — & (up;m) = (]E[u - uh]) +
-_—

Spatial Discret.

@ Spatial discretization error:

1L~ wn]ll 2 py + B IEf = wnlll gy ) < Ch*JE [1F122 ]
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MCFEM

Convergence of the MCFEM

Error splitting

Elu] = & (un;m) = (E [u— uh]) + (E[uh] - T}LZUh(yk)p(yk)>
N—— k=1

Spatial Discret.

Statistical Error

@ Spatial discretization error:

1L~ wn]ll 2 py + B IEf = wnlll gy ) < Ch*JE [1F122 ]

o Statistical Error: Within confidence level « € (0,1), 3 §(a) > 0 s.t.

P

Elun] = - Y un(pi)o(un)
k=1

HG (D)
(M,)? ||E[un] — & (un; m)||Hé(D) —0,n— o0 as.

for all B € (0,1/2) with M,, = 2¢
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MCFEM

Other sampling-based methods

Attempting to cope with the curse of dimensionality

Let {yx}ro, be iid samples. Approximate expectations of Qols by sample averages:

E[Q(u(y))] » ZQ (yr))eo(yr), yx €U

@ Monte Carlo methods: e(m) = O (m’lm)
abscissas are (pseudo) random numbers

Clayton G. Webster, csm.ornl.gov/~cguebster Uncertainty quantification & approximation theory for PP


csm.ornl.gov/~cgwebster

MCFEM

Other sampling-based methods ¥ OAK RIDGE

il 1

Attempting to cope with the curse of dimensionality

Let {yx}ro, be iid samples. Approximate expectations of Qols by sample averages:

ElQ(uy))] = — > Quulm)olys), i €U
k=1

@ Monte Carlo methods: e(m) = O (m’lm)
abscissas are (pseudo) random numbers

@ Quasi-Monte Carlo methods: &(m) ~ O (m ™" (log(m))?)
abscissas are low discrepancy sequences

I Clayton G. Webster, csm.ornl i ification & approximation theory for PPDE: Nov., 2016
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MCFEM

Other sampling-based methods #,g im‘_"“

Attempting to cope with the curse of dimensionality

Let {yx}ro, be iid samples. Approximate expectations of Qols by sample averages:

ElQ(uy))] = — > Quulm)olys), i €U
k=1

@ Monte Carlo methods: e(m) = O (m’lm)
abscissas are (pseudo) random numbers
@ Quasi-Monte Carlo methods: &(m) ~ O (m ™" (log(m))?)
abscissas are low discrepancy sequences
@ Latin Hypercube Sampling: (m) &~ O (m ™" (log(m))?)
abscissas are chosen to ensure “good” spacing in each 1-D component

T
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MCFEM

Other sampling-based methods

Attempting to cope with the curse of dimensionality

Let {yx}ro, be iid samples. Approximate expectations of Qols by sample averages:

EQu)] ~ — 3 Qulyn)e(ys), we €U

m
k

@ Monte Carlo methods: e(m) = O (m’lm)
abscissas are (pseudo) random numbers

@ Quasi-Monte Carlo methods: &(m) ~ O (m ™" (log(m))?)
abscissas are low discrepancy sequences

@ Latin Hypercube Sampling: (m) &~ O (m ™" (log(m))?)

abscissas are chosen to ensure “good” spacing in each 1-D component
Q Lattice rules: e(m) =~ O (m_l(log(m))(d*'l)m)

abscissas are “good” lattice points
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MCFEM

Other sampling-based methods

Attempting to cope with the curse of dimensionality

Let {yx}ro, be iid samples. Approximate expectations of Qols by sample averages:

E[Q(u(y))] ~ ZQ (yr))o(yr), ye €U
=1

m

@ Monte Carlo methods: (m) ~ O (m‘l/2)
abscissas are (pseudo) random numbers

@ Quasi-Monte Carlo methods: e(1m) ~ O (m ™" (log(1m)))
abscissas are low discrepancy sequences

@ Latin Hypercube Sampling: e(m) ~ O (mfl(log(m))d)

abscissas are chosen to ensure “good” spacing in each 1-D component
@ Lattice rules: e(m) = O ('rrfl(log(77z))(d+1)/2)

abscissas are “good” lattice points

Pros: Allow for reusability of deterministic codes and the convergence rate is
independent of the regularity of u(y) (and dimension with MC methods)

I Clayton G. Webster, csm.ornl.gov/~cguebster i tification & approximation theory for PPDEs — Nov., 2016


csm.ornl.gov/~cgwebster

MCFEM

Other sampling-based methods

Attempting to cope with the curse of dimensionality

Let {yx}r_, be iid samples. Approximate expectations of Qols by sample averages:

E[Q(u(y))] = ZQ u(yr))e(yr), yr €U

m

O Monte Carlo methods: e(m) ~ O (m_l/Q)
abscissas are (pseudo) random numbers

@ Quasi-Monte Carlo methods: £(1m) ~ O (m ™" (log(m))?)
abscissas are low discrepancy sequences

@ Latin Hypercube Sampling: () ~ O (m ™" (log(1m))?)

abscissas are chosen to ensure “good” spacing in each 1-D component
Q Lattice rules: e(m) =~ O (771,’1(log(m))(d+1)/2)

abscissas are “good” lattice points

Cons: The sampling methods do not yield fully discrete approximations and slow
convergence rates do not exploit the possible regularity of the functional

I Clayton G. Webster, csm.ornl.gov/~cguebster i tification & approximation theory for PPD!
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Polynomial methods

Multivariate polynomial approximations ¥ OAK RIDGE

wial Lah
First: d = 1-dimensional example with bounded RVs o

@ Assume a is an exponential Karhunen-Loéve expansion and f deterministic:
a(z,y) = amin + explbo(z) + Zi:l bn(2)yn]
@ U, bounded: U, = [yZ”",ym”]

n

Im(z)

The analyticity region is given by:
5(Z/{n§p‘n) = {Z eC: |[m(z)| < Pn}.

g

1 u IG5 Re(z)

pn = —m——
" 4V An|ballL oy

@ Approximate by Chebyshev/Legendre polynomials in y,, yields exponential
convergence: error < Ce™ P

2pn 4pn®
Pryp o f14+ 22

0 < gn =log U] AE

@ Anisotropic behavior with respect to the “direction” n

@ Similar results for unbounded RVs and various random expansions
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Polynomial methods

Be careful of the cursel! *.0 lilllhl)c 2

Tensor product polynomial approximation in higher dimensions

@ The analyticity of the solution u(y) w.r.t. each random direction y,, suggests the
use of multivariate polynomial approximation.

what is the correct polynomial approximation subspace?

@ The solution must be approximated w.r.t. all RV's y1,...,yqs = possibly
high-dimensional problem!
how do we compute numerical approximations within those subspaces?

@ The numerical method must convergence using as few d.o.f.'s as possible

what is the resulting complexity of my polynomial approximation?

Clayton G. Webster, csm.ornl.gov/~cguebster Uncertainty quantification & approximation theory for PPDI 2016
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Polynomial methods

Be careful of the cursel ¥.OAK RIDGE

. . . . . . . nal 1
Tensor product polynomial approximation in higher dimensions

@ The analyticity of the solution u(y) w.r.t. each random direction y,, suggests the
use of multivariate polynomial approximation.

what is the correct polynomial approximation subspace?

@ The solution must be approximated w.r.t. all RV's y1,...,yqs = possibly
high-dimensional problem!
how do we compute numerical approximations within those subspaces?

@ The numerical method must convergence using as few d.o.f.'s as possible

what is the resulting complexity of my polynomial approximation?

Curse of dimensionality: (Isotropic) TP's of degree p in d dimensions

error < Ce™ 97, #d.of. M= (p+1)¢
i

1
—gm d - u . . n
error < Ce 97" Impractical in higher dimensions

Clayton G. Webster, csm.ornl.gov/~cguebster Uncertainty icati il i 2016
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Polynomial methods

Multivariate polynomial approximations ¥.OAK RIDGE

3 . 2 2 nal 1
Major challenge: curse of dimensionality

© Taylor approximations: [Cohen et. al. '10, '11; Tran, W., Zhang '14, '15]
o ¥, (y)=yY and ¢ = ﬁa"u(o) can be computed recursively.

o useful when 9; have non-overlapping supports (affine “inclusion problems™)

@ Galerkin projection methods: [Wiener '38, Ghanem, Spanos '99; Xiu, Karniadakis '02;
Babuska et. al. '02; Todor, Schwab '03; Tran, W., Zhang '14; Dexter, W. '15]

o {¥,} is a multivariate orthonormal polynomial basis in y, e.g., Legendre
polynomials, Hermite polynomials, etc.

o up is the L2 projection of u on P (U), with dim(Py) = #(A) = N.

o Couples the parametric and physical degrees of freedom.

© Interpolation methods: [Smolyak, '63; Griebel et. al '99,’04; Nobile, Tempone, W. '08a, b;
Jantsch, W., Zhang '13, '15; Gunzburger, Jantsch, Teckentrup, W., '15]

o Given m > #(A) evaluations {u(yx)}}" ;. and {¥,} a Lagrange basis.
o wuy is the interpolant of u over an associated grid (structured vs. unstructured).
o Non-intrusive, sample-based approaches. Allow the use of legacy code.

e May be unstable if the interpolation nodes are poorly chosen (i.e., m >> #(A)).
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Polynomial methods

Multivariate polynomial approximations

continued...

@ Discrete least squares: [Cohen et. al. '13; Migliorati et. al. '13, Narayan et. al. '13; Zhou et. al.
'14; Chkifa et. al. '15]

o Given m evaluations {u(yg)}p~ . find (cu)vea by minimizing

D llulyr) — ua(yi)ll3 g2

k=1

o Mitigate Runge's phenomenon.

o Reconstruct statistics of u, and stability of the design matrix requires m >> #(A).

Q Compressed sensing: [Doostan, Owhadi '11; Mathelin, Gallivan '12; Yang, Karniadakis '13;
Rauhut, Schwab '14; Adcock '15, '16; Chkifa, Dexter, Tran, W. '15]

o Given an enriched set Ag, and m << #(A) evaluations {u(yg)}7-,, find
(cv)ven, by solving the following minimization problem:

argmin ||61,HV)£1(A0), subject to u(yx) = Z e ()P (yi)-
veAg

o Number of samples to recover the best s-term scales linearly in s (up to log factors).

o ¢! minimization may be impractical in high dimensional problems.
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Polynomial methods

Multivariate polynomial approximations

Selection of (lower) index sets in high-dimensions

@ The efficiency of polynomial approximations depends on the selection of A.

o Standard approaches: impose index sets A a priori. The cardinality of the
polynomial space Px(U) can grow quickly with respect to the dimension d.

@ Some most common choices of index sets A

Tensor Product Total Degree Hyperbolic Cross Smolyak v
Aw) = {v e N": max v, < w} Aw) = {reN": Su < w} Aw)={reNV: [+ D w1} Aw) ={reNV: 3 f(w) < f(w)},
with £(v) = [logy(v)], v = 2.

o ldeally, the “optimal” A C N has minimal cardinality and enables the
approximation of y — wu(y) (in high dimensions) with maximum accuracy for a
given given computational cost.

Clayton G. Webster, csm.ornl.gov/~cguebster Uncertainty q on theory for PP Nov., 2016

22/44


csm.ornl.gov/~cgwebster

Polynomial methods

Multivariate polynomial approximations

Selection of (lower) index sets in high-dimensions

@ The efficiency of polynomial approximations depends on the selection of A.

o Standard approaches: impose index sets A a priori. The cardinality of the
polynomial space Px(U) can grow quickly with respect to the dimension d.

@ Some most common choices of index sets A

Tensor Product Total Degree Hyperbolic Cross Smolyak v
Aw) = {v e N": max v, < w} Aw) = {reN": Su < w} Aw)={reNV: [+ D w1} Aw) ={reNV: 3 f(w) < f(w)},
with £(v) = [logy(v)], v = 2.

o ldeally, the “optimal” A C N has minimal cardinality and enables the
approximation of y — wu(y) (in high dimensions) with maximum accuracy for a
given given computational cost.
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A priori selection of polynomial spaces ¥.C

T

Polynomial methods

- Narional Lat

Several choices for polynomial multi-index v € A,:
@ Tensor products (TP): max,  pn < p (Intractable for large d),
o Total degree (TD): 3¢_,  pn <p,
o Hyperbolic cross (HC): [1¢_,(pn +1) <p+1,

o Smolyak method (SM): 3°¢_  f(pn) < f(p) with s = { Trh

[loga(p)], P = 2

TD: 35, pn < P HC T, (pn +1) < (p+ 1)

TD, HC & SM all reduce the curse of dimensionality w.r.t. TP methods.
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Polynomial methods

A priori selection of polynomial spaces g-,(_)'\l"]llh_pc_u_i

Anisotropic representations

Several choices for polynomial multi-index v € A,:
@ Tensor products (TP): max, a.,pn < p (Intractable for large d),
o Total degree (TD): Zizl anpn < P,

o Hyperbolic cross (HC): [1¢_, (pn + 1) <p+1,

o Smolyak method (SM): 3¢ _, av. f(pn) < f(p) with s = { ohy

[loga(p)1, P = 2

Anisotropic: introduce weight vector & = (a1,...,aq) € ]Ri, with apmin =1

ATD: 32, anpn < p AHC: T, (P + D" < p+ 1

[oT0. | 7“@ - _
B TD-aniss| B HC-anisa|

TD, HC & SM all reduce the curse of dimensionality w.r.t. TP methods.
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Polynomial methods

Example: d = 2 with monomial basis
TD space vs. TP space

4th order accurate TD space compared with the TP space:

v1+1v2 <0 1
vi+re <1 Y1 Y2
v +ve <2 y3 Y1y2 v3
v+ <3 ur Yiye Y15 s
ni+w<4 |yt yiye viys y1ys s
Yiy2 s yiys Y, yiys L. y1y2
Y1Yy2 Y1Y2 Y1Y2
yiys yiys
max(vi,v2) <4 yiys

Monomials up to 4th degree. Those below the line are the useless monomials we
capture (using tensor products) and are not needed (and not possible) in higher
dimensions - they don't add the asymptotic accuracy and the cost increases exponential
as the dimensions increase.
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Polynomial methods

Example: d = 2 with monomial basis g-,(_)'\l"]llh_pc_: >

TD space vs. TP space

4th order accurate TD space compared with the TP space:

v1+1v2 <0 1
vi+re <1 Y1 Y2
v +ve <2 y3 Y1y2 v3
v+ <3 ur Yiye Y15 s
ni+w<4 |yt yiye viys y1ys s
Y12 yiys yiys Y1Ys
yiys viys Yiys
yiys yiys
max(vi,v2) <4 yiys

Monomials up to 4th degree. Those below the line are the useless monomials we
capture (using tensor products) and are not needed (and not possible) in higher
dimensions - they don't add the asymptotic accuracy and the cost increases exponential
as the dimensions increase.

m =dim [Pa, (U)] = mmp = (‘ZJ{;’!)! <<mte =(p+1)?
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Polynomial methods

General basis in d dimensions

Total degree versus Tensor products

T

d= p= m = total # of probabilistic
# RVs, | maximal degree degrees of freedom
dim(U) | of polynomials using total using tensor
degree basis | product basis
3 3 20 64
5 56 216
5 3 56 1,024
5 252 7,776
10 3 286 1,048,576
5 3,003 60, 046, 176
20 3 1,771 >1x 10"
5 53,130 >3 x 10'°
100 3 176,851 > 1 x 10%
5 96,560,646 | >6x 107

@ tensor products become computational infeasible in higher dimensions
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Polynomial methods

A brief taxonomy of methods

For numerical solution of parameterized stochastic PDEs input

Stochastic finite element methods (SFEMs)

Direct (spectral) methods

Galerkin @ methods for which spatial discretization is

e effected using finite element methods (FEMs)®

@ Stochastic sampling methods (SSMs):
random samples in U of PDE inputs are used to
compute ensemble averages of statistical Qols,
e.g. MCFEM - non-intrusive

Monte Carlo

Sampling-based methods
Stochastic polynomial approximation
@ Stochastic Galerkin methods (SGMs):
probabilistic discretization is also effected by a spectral Galerkin projection onto,
e.g., an L,Q,—orthogonal basis (Wiener or polynomial chaos) - fully intrusive
@ Stochastic Collocation methods (SCMs):
probabilistic discretization is effected by collocating the FE solution on a particular

set of of points and then connect the realizations with suitable interpolatory basis
(Lagrangian) - non-intrusive
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Stochastic Galerkin FEM (SGFEM) ¥0 lilllhl)G‘

Motivation: univariate Hermite polynomials

Motivation: The Lg—orthogonal basis was originally proposed to approximate white
noise processes with Gaussian measure [Wiener, 1938].
@ the univariate Hermite polynomials H(y) serve as the foundation for the construction of
the multi-dimensional Hermite polynomials - orthogonal with respect to the Gaussian
measure

The PDF of a Gaussian RV is o(y) = \/%e
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(d =2, p =5) Hermite polynomials
TD subspace: v1 +vs <5

>

H(2’2) H(0,5)’H(5,0) H(1,4)7H(4,1) H(Q,g),H(372)

I Clayton G. Webster, csm.ornl.gov/~cgwebster


csm.ornl.gov/~cgwebster

The Askey scheme

Classification of hypergeometric orthogonal polynomials

4Fa(4) Wilson Racah
i Continuous
3F2(3) %ﬂ:‘l'w;?#'s Hahn Hahn Dual Hahn
Meixner
2Fi(2) - Jacobi Meixner Krawtchouk
Pollaczek
WFi(M) Laguerre Charlier 2Fo(1)
2Fo(0) Hermite
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The Askey scheme ¥.C

-MNartional 1
Connections between PDF and the orthogonal polynomials e

| Distribution  Density function Polynomial Support |
—

Normal —~=e ¥ Hermite H,(y) [—00, 00]

Uniform 3 Legendre Py (y) [—1,1]
e B -~

Beta % Jacobi PSP (y) [—1,1]
Exponential eV Laguerre Ly, (y) [0, 0]
Gamma % Generalized Laguerre L™ (y) [0, 0]
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Stochastic Galerkin FEM (SGFEM)

Orthogonal projection, implementation and solving challenges, and convergence rate

Let {Up}pen, be a global orthonormal basis w.r.t. g, then the Galerkin projection onto
span{¥;}pen, yields the coupled system of equations:

Z (Up(Y)A(Y)Vq(y))eca = (F,Up(y)), Vp €Ay
qch, ——

= Kpq € R/*n =: Fdop € R

o Too large to store and solve directly, K ¢ RY»/n*No/u for N, = #(A,)
@ Number of nonzero blocks K, 4 depends on a(z,y), can be fully block-dense

o Computing the entries of K may require computing a d x n dimensional integral

Convergence is sub-exponential w.r.t. to the stochastic discretization.

Proposition (spectral convergence). [Todor, Schwab '07]
When the map z — u(z) is analytic, and A, total degree then:

llu —ua, “LZO(Z/{;H(%(D)) < Ciexp(=Czp) VpE€EN,

for some constants C1, C> > 0 depending only on a, f, d.
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Stochastic Galerkin method

Orthogonal expansion of the coefficient a(z, y)

T

When a(z,y) is not affine it is advantageous to approximate, i.e.,
a"(z,y) =D pcn, ar(2)Vi(y) = a(x,y) sub-exponentially as 7 — oo.

Substituting a” (z,y) into the Galerkin equations for a(z,y) we obtain

quAP [Kr]p,qcz = Foo,p Vp € Ap

where K, =3, Gr® Ak has Kronecker product structure, and

Gilpa = (Telpla), and  [Axli, = / 0 (2)V5(z) - Vo (x)dz.
D

K, approximates the full Galerkin system K when a(z,y) & Pa,. (U)

Letting » = 2p yields K, = K due to orthogonality of {Up} [Matthies, Keese '05]
Only need to store {Gy} € RY?*Np and {Ax} € R7:*7n

@ Allows control over the cost of solving by varying r, since

1l
e
T

lw ="l L2 @my (py) < —a"llL2@wsL= (D))

Clayton G. Webster, csm.ornl.gov/~cguebster i tification & approximation theory for PPDEs — Nov., 2016


csm.ornl.gov/~cgwebster

Stochastic Galerkin method

Orthogonal expansion of a(x,y) and well-posedness

i viforr=3 LA E L el

bl

= -
1 1 1 |
3 0 9— 3 0 3 0 o
-1 -1 -1 -1
2 2 a2
2 -1 [0 ] -1 -1 [ ] F] -1 2
Redy) Redy)
Wie v o =16
1 1
£ H 0 0
= |
2 2
-1 -1 [0 ] 1 -1 -1 [0 ] F] =3 -1 n [ !
) Rety) Rety)

Must be careful when choosing projection order to assure that the problem is
well-posed. One way to guarantee this is to choose 7 < r < 2p, where

7 :=min{r € No : la — a"||Ls @220 (D)) < @min, Vv € No, v > 1}
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Comparison to interpolation methods #,(

) ) ) ~National 1
Stochastic collocation FEM: general setting

@ Choose a set of points {yx € I‘};n:”1 according to the measure
Q(y)d(y) = H::1 Qn(yn)d(yn)

@ For each k solve the FE solution ug(x) = u(yk, x), given ax(x) = a(yk,z) and
fr(@) = f(yx, @).

© Interpolate the sampled values:
Ia,lu] = Zuk y) € P, (U) @ Vh,

yielding the fully discrete SC approximation in, where £;. € Pa,, (i) are suitable
combinations of global (Lagrange) interpolants.

Compute a quantity of interest, e.g., E[u](x)

Efu](z) ~ / T, [ul( W) ew)dy = Zuk / Wewdy =S us(@)

N , k=1

precomputed weights
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Comparison to (interpolatory) SCFEM ¥0 K RIDGE

Optimality of the SGFEM - in terms of DOFs

Given a fixed multi-index set A, let ua, be the SGFEM on Pa, (i), then:

u—u . <C, min uU—v . .
|| Ap||L§(u,H3(D)) ~ “Ya Ve H(D)BPA, (U) H ||Lg(u,Hg(D))

We can construct an interpolation operator Zy, : C°(U) — Pa, (U) for which

u— Ia,(ulll ooy < (La, +1 min U — V|| 100 1y
|| Ap[ ]”LQ (U;HF (D)) = ( Ap )veHg(D)@PAp(u) || ||LQ (U;HY (D))

S La, + Dllw = ua, ll e @iy (o)

where Ly, = ||IAP||LSO(M)_,Lgo(u) is the Lebesgue constant of Zy,.
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Comparison to (interpolatory) SCFEM g-,(_)'\l"]llh_pc_u_i

Optimality of the SGFEM - in terms of DOFs

Given a fixed multi-index set A, let ua, be the SGFEM on Pa, (i), then:

u—u . <C, min u—v . .
|| Ap”Lg(u,Hg(D)) ~ La Ve H(D)BPA, (U) H ||L§(M,H3(D))

We can construct an interpolation operator Zy, : C°(U) — Pa, (U) for which

u— Ia,(ulll ooy < (La, +1 min U — V|| 100 1y
|| Ap[ ]”LQ (U;HF (D)) = ( Ap )veHg(D)@PAp(u) || ||LQ (U;HY (D))

S (]LAp + Dju — uAp”Lgo(u;Hé(D))v
where Ly, = ||IAP||LSO(M)_,Lgo(u) is the Lebesgue constant of Zy,.
Recall:

@ m > #(A,) in the construction of Zy,

o Implies the optimality of the Galerkin projection in terms of the stochastic degrees
of freedom #(A,)

@ How do they relate in terms of computational complexity or stability?
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Complexity

Computational complexity of solving the SGFEM

Iterative solvers and conditioning challenges

K., is symmetric positive-definite, hence preconditioned conjugate gradients can be
used to solve and we have the error at the k-th step:

/e —1\%
le” — C’"’(k)HKT <2 <ﬁ> e — cr,(o)”Kr. (1)
o ¢ and ¢”®) are the initial guess and the output at the k-th iteration, resp.

@ K, is the condition number of K,., depends on 5, p, and r

We use a simple preconditioner: P := Gg ® Ag, (mean-based block-diagonal)

8000 o Go =T ¢ R e for orthonormal {¥,}
Unpreconditioned:  Preconditioned:
oh=1/2 o h=1/2 ) . 1 1 -1
h=1/4 | |wh=1/4 o Easy toinvert since P7" = G5~ ® A,
6000 |=h=1/8 o h=1/8
Bl -h = 1/16] o h = 1/16] . ) )
e o Complexity of applying is O(Jp) * N, when
;mo incomplete Cholesky is used
"é @ Removes dependence of h in k., condition number
2000 of preconditioned system still depends on 7 and p
@ Better preconditioners are available, but are more

challenging to implement and analyze cost
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Complexity

Computational complexity of solving the SGFEM

Given K, = ZkeAr Gr ® Ak, we define
M(pa T) = ZkeATnnz(Gk) = #{(k7p7 q) : <\I’k\Pp\IIQ>Q 7& Oak € A’Npaq € AP}
Pictorially, M (p,r) = # of black pixels in the matrices:

Figure Block sparsity of K, for fixed p = 3, increasing » = 0,1,2.3,4,5.

Each CG iteration requires M (p, r) matrix-vector products of complexity O(Jx), where
O(Jy) depends on the connectivity of Ty, hence

@ cost without preconditioning: WS = O(J) * M(p,r) * N3

@ cost with preconditioner P: WPSC = O(Jn) * (N, + M(p, 7)) * NP2

Ni;’esf, NS are number of CG iterations required to converge to a given tolerance with

and without preconditioning, respectively.

Basic unit of cost is in terms FLOPS.
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Complexity

SGFEM - How to count M(p,r)?

Theorem ((sparsity of G) [Dexter, W. Zhang '16].
Letd,p,reN, d>1, 0< TI% 2p, k€ A,, and g; be even Vi. Then

nz(Ge) = Y clk,0) d;ff),

where (k. b) = T#’E‘s/*?e) for ¢ = [|k|/2] and |k| even,
2#(Sk,e)  otherwise,

and S = {s €N§ : |s| = ¢, s; < k; Vi}, with #(Sk.¢) equal to the coefficient of ¢*

in the generating function Pi(t) = %, Z;?i:l t0.

Moreover,

k|
M(p,r) = Znnz(Gk) = Z Z c(k,é)(dzgeg)

kEA, ke, 0=[|k|/2]

< iOQmin{gﬂ', (d+gj/21>} (d;:ry) (d+p; [j/21>
< 2min{2’“7 <d+[i’"/21)} <d;p> <d;r>.

I Clayton G. Webster, csm.ornl.gov/~cgwebster Uncertainty quantification & approximation theory for PPDEs — Nov., 2016 39/44


csm.ornl.gov/~cgwebster

Complexity

SGFEM - bounds for M(p,r)

Q: How good are the bounds? A: Not sharp. In these figures N = d, dimension.

Upper bounds on M(p,r) with

Upper bounds on M(p,r) with
polynomial order r =p, N = 4 PP @)

10° . 10 polynomial order r =p, N =8
10 : ; ; ; ;
107 10° _A
_A 108 A//
. 10° o - A
s BTl s —
S 105 /’A/ /B/ E‘i 6 .7 /,A:(
3 A// 2" S 10 &
4 ~ / -
g 10 [t = 10° e
o 7z 3
g a2 = o4 PP
g 10 e’ g 10 /B//
s Q 3 i
10
A 102 VS S g/
. S 10 o
z, z,
10 10t} 2
100 3 L L L L L 100 L L L L L
1 2 3 4 5 6 0 1 2 3 4 5 6
p

Actual count of M(p,r)
Sum bound (used when 7 is fixed): > 7_;2min {Qj, (d+ E/Q])} (d;i?) (dﬂ)jﬁﬂ)

Bound by largest (used when error depends on r): 2min {2T, (dﬂg/ﬂ)} (“PY ()
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Complexity

SGFEM - bounds for M(p,r)

Q: How good are the bounds? A: Not sharp. In these figures N = d, dimension.

Upper bounds on M(p,r) with Upper bounds on M(p,r) with
g polynomial order r = p, N = 20 polynomial order r = p, N = 100
10 1012

[ = =
o o o
CERCERE

Bound on M(p,r)
=
o
S
Bound on M(p,r)

Actual count of M(p,r)
Sum bound (used when 7 is fixed): > 7_;2min {Qj, (d+ E/Q])} (d;i?) (dﬂ)jﬁﬂ)

Bound by largest (used when error depends on r): 2min {2T, (dﬂg/ﬂ)} (“PY ()
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Complexity

Complexity of the SGFEM ¥ OAK RIDGE

il 1

Bounding the error of the fully-discrete approximation

The error in SGFEM found using CG can be bounded by:

v = @hpll L2 @iy oy <M= ¥ 2@ oy + 10" = whll iz @ o)

SG(1) SG(In)

+ ||un — uz,pHLi’,(u;Hé(D)) + by — ﬂz*pHL?W?Hé(D” .

SG(I11) SG(IV)
We can estimate the complexity by finding the minimum and maximum values of the
following parameters to ensure the total error of each component is smaller than i
@ SG(I) error from approximating a(x,y): estimate the min. projection order rmyin
@ SG(Il) FE error: estimate the maximum mesh size Amax
@ SG(Il) SG error: estimate the minimum polynomial order pmin
(

@ SG(IV) CG error: estimate the minimum number of iterations needed by PCG

Substitute into the cost metric: WP¢ ~ O(Jy,) * (N, + M(p, 7)) * NP5

iter
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Complexity

Complexity of the SGFEM #,(

o p ~National 1
Depends on the coefficient a(z, y)

Asymptotically, as ¢ — 0, the complexity can be estimated as

O O Lgey) @

(5G.1) (5G.2) (5G.3)

d
q

where g(d) depends on the coefficient a(x, y) in the elliptic operator:

e g(d)=d if a(z,y) is a polynomial function of y of fixed order 7 < co

e g(d) =3d if a(z,y) is a transcendental function of y, requiring an orthogonal
expansion of order 7 > ruin depending on e

Here, we assume u" (y) € H3(D) N HY™ (D) Yy € U, and

@ (SG.1) corresponds to the work required by the finite element method

@ (SG.2) corresponds to the work required by the SG method, coming from the
estimates on the number of coupled finite element systems to solve

@ (SG.3) corresponds to the work required by the PCG method
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T

Complexity

Complexity comparisons between SGFEM and SCFEM

SGFEM Complexity (Polynomial):

d 1
1 S
o (2) [ ()] 7ty )
log (V47
(5G.1) (56.2) (5G.3)

d
q

SCFEM Complexity [Galindo, Jantsch, W., Zhang '16] :

o) I o) (22

log ( Y= _i )
N——
(sc.1) (sC.2)

QR

R

B

(sC.3)
Here, & is the supremum of the condition numbers of the SC systems, and

@ (SC.1) corresponds to the work required by the finite element method

@ (SC.2) corresponds to the work required by the SC method, coming from the
estimates on the number of decoupled finite element systems to solve

@ (SC.3) corresponds to the work required by the PCG method
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Complexity

Complexity comparisons between SGFEM and SCFEM

SGFEM Complexity (Transcendental):

o () ()] (12282

(G.1) (5G.2)

QR

(5G.3)

SCFEM Complexity [Galindo, Jantsch, W., Zhang '16] :

o) I o) (22

QR

tog (V)
N——
(sC.1) (5C.2) (5C.3)

Here, & is the supremum of the condition numbers of the SC systems, and
(SC.1) corresponds to the work required by the finite element method

(SC.2) corresponds to the work required by the SC method, coming from the
estimates on the number of decoupled finite element systems to solve

@ (SC.3) corresponds to the work required by the PCG method
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Numerical examples

Numerical illustrations of the complexity results ¥ OAK RIDGE

il Lab

We solve both systems with the iterative Preconditioned Conjugate Gradient (PCG):

@ For the SGFEM, we use block-diagonal mean-based preconditioner [Powell, Eiman '08]

@ For the SCFEM, we use the incomplete Cholesky factorization of A(yo) as
preconditioner for each A (yx) for {yr i1

We test convergence against a “highly enriched” approximation, obtained with
stochastic collocation based on Clenshaw-Curtis abscissas, and then approximate

o ||Elesc]|le ~ ||Efuex — usg)||e> the error of the stochastic Galerkin approximation

o ||E[esc]|leee & ||E[uex — usc]|lese the error of the stochastic collocation
approximation

To ensure that we do not “over-resolve” either approximation with PCG, we use a
tolerance of ||E[esc]|¢> /10 and ||E[esc]||¢e /10 for the stochastic Galerkin and
stochastic collocation methods, respectively, after solving with an initial tolerance of
1E — 12.
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Numerical examples

Numerical illustrations of the complexity results #,9

Affine piecewise constant coefficient

-V (a(z,y)Vu(z,y)) =100xr(z) inU X D,

Stochastic elliptic problem: { w(z,y) =0 on U x OD,

o a(z,y) =1+3"_  yuxn(r) and yn ~U(-0.99,—0.2)

@ Xn, XF are indicators of the circles and the square

Clayton G. Webster, c:
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Numerical examples

Numerical illustrations of the complexity results

Affine piecewise constant coefficient

s ) -V (a(z,y)Vu(z,y)) =100xr(xz) inU x D,
Stochastic elliptic problem: { w(z,y) =0 on U x OD,

o a(z,y) =1+3"_  yuxn(r) and yn ~U(-0.99,—0.2)
@ Xn, XF are indicators of the circles and the square

-e-SC-CC . --SC-CC

error
error
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Numerical examples

Numerical illustrations of the complexity results

Polynomial coefficient

-V (a(z,y)Vu(z,y)) =1 inUxD,

Stochastic elliptic problem: { w(z.y) =0 onlxdD,

sin (|r|mx1) cos (|r|mx2) |r| even,

cos (|r|wzy) sin (|r|rze)  |r| odd,

error

cost
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Numerical examples

Numerical illustrations of the complexity results

Polynomial coefficient

e . -V (a(z,y)Vu(z,y)) =1 inUxD,
Stochastic elliptic problem: { w(z.y) =0 onlxdD,

sin (|7|mz1) cos (|r|mz r| even,
(e, 9) = 5+ 5 e e Fanlaly” o) = { S0 rima)cos(lrinaa)
= cos (|r|wzy) sin (|r|rze)  |r| odd,

T = 3 10'4 r T T
10°
10
107
108
107

10-10

10-11

error
error

10»13 L

10° 10t 102 10° 10*
SDOF cost
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Numerical examples

Numerical illustrations of the complexity results

Polynomial coefficient

e . -V (a(z,y)Vu(z,y)) =1 inUxD,
Stochastic elliptic problem: { w(z.y) =0 onlxdD,

sin (|7|mz1) cos (|r|mz r| even,
(e, 9) = 5+ 5 e e Fanlaly” o) = { S0 rima)cos(lrinaa)
= cos (|r|wzy) sin (|r|rze)  |r| odd,

T=T 10% ; ; ; 10 !
10° 10°}F ©-SC-CC
A o +SC-GL
10 10 =SC-LJ
107 107} +SG-TD
108 108}
-9 -9
5 10 5 107}
€100 g 10710[
10 10t} Y
10»12 1042 b \\\@
101° 1073%
1074E 1074E P
10-15 10-15
10° 10t 102 10° 10* 10° 10' 10%2 10° 10* 10° 10° 107
SDOF cost
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Numerical examples

Numerical illustrations of the complexity results

Transcendental “log-transformed” coefficient

-V (a(z,y)Vu(z,y)) = f(z) inUxD,
u(z,y) = onU x 0D,

Stochastic elliptic problem: {

a(z,y) ~ 0.5 + exp(po + ZZ:1 VAroryk), {k, ok }i_q the largest eigenpairs of
the squared exponential covariance kernel Cov[a] with correlation length L. = 1/64,
f(z1,22) = 2cos(z1) sin(z2), and d = 9.

1072 1072
3 =8C-CC 3
107¢ ~+SC-GL 10
108 =SC-LJ 10
TR < SG-TD
10°}F - SG-SM 10®
105k 10
8 .7 g .7
2 107k 2 10
() ()
108¢ 108
10°F 107
1010} 1010
lo»ll lo-ll
-12 -12
10 10
10° 10° 10 102 10° 10* 10° 10® 107 108

cost
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Numerical examples

Numerical illustrations of the complexity results ¥ OAK RIDGE

g e nal
Transcendental “log-transformed” coefficient

-V (a(z,y)Vu(z,y)) = f(z) inUxD,
u(z,y) = onU x 0D,

Stochastic elliptic problem: {

a(z,y) ~ 0.5 + exp(po + ZZ:1 VAroryk), {k, ok }i_q the largest eigenpairs of
the squared exponential covariance kernel Cov[a] with correlation length L. = 1/64,
f(z1,22) = 2cos(z1) sin(z2), and d = 9.

SC-CC | SC-CC Mat-vec cost SG-TD SG-TD Mat-vec cost Ratio
Level Error of SC-CC Order Error of SG-TD | SG/SC
0 1.3626 x 10~ 2 2 0 1.3626 x 10~ % 4 2
1 2.8884 x 1076 218 1 3.9444 x 10~° 152 0.69
2 6.3652 x 1078 3,398 2 6.1427 x 1077 10,710 3.15
3 3.6021 x 10~° 28,638 3 2.8851 x 1078 213,010 7.43
4 1.4794 x 1010 178,894 4 4.9210 x 10710 4,579,575 25.59
5 2.2869 x 1012 944,220 5 8.9123 x 10712 49,089,051 51.98

@ Stochastic Galerkin method features optimal error w.r.t. degrees of freedom
@ Cost of the method is not optimal in every case

@ Ignored issues associated with forming/solving the stochastic Galerkin system

o High-dimensional integration problem in computing K,
o Poorly conditioned with respect to p and r
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