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Abstract

Henning and Yeo [SIAM J. Discrete Math. 26 (2012) 687–694]
conjectured that a 3-regular digraph D contains two vertex disjoint
directed cycles of different length if either D is of sufficiently large
order or D is bipartite. In this paper, we disprove the first conjec-
ture. Further, we give support for the second conjecture by proving
that every bipartite 3-regular digraph, which either possesses a cy-
cle factor with at least two directed cycles or has a Hamilton cycle
C = v0, v1, . . . , vn−1, v0 and a spanning 1-circular subdigraph D(n, S)
where S = {s} with s > 1, does indeed have two vertex disjoint di-
rected cycles of different length.
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1 Introduction

In this paper, the term digraph always means a finite simple digraph, i.e., a

digraph that has a finite number of vertices, no loops and no multiple arcs.

Unless otherwise indicated, our graph-theoretic terminology will follow [3].

Let D be a digraph. Then the vertex set and the arc set of D are denoted

by V (D) and A(D) (or by V and A for short), respectively. A vertex v ∈ V
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is called an outneighbor of a vertex u ∈ V if (u, v) ∈ A. We denote the set of

all outneighbors of u by N+
D (u). The outdegree of u ∈ V , denoted by d+D(u),

is |N+
D (u)|. Similarly, a vertex w ∈ V is called an inneighbor of a vertex

u ∈ V if (w, u) ∈ A. We denote the set of all inneighbors of u by N−D (u).

The indegree of u ∈ V , denoted by d−D(u), is |N−D (u)|. If W ⊆ V , then the

subdigraph of D induced by W is denoted by D[W ].

By a cycle (resp., path) in a digraph D = (V,A) we always mean a directed

cycle (resp., directed path). By disjoint cycles in D we always mean vertex

disjoint cycles. A cycle factor in D is a spanning subdigraph F of D such

that every connected component of F is a cycle. Thus, a subdigraph F of D

is called a cycle factor in D with ` cycles if F = C1 ∪ C2 ∪ . . . ∪ C`, where

C1, C2, . . . , C` are cycles in D such that every vertex of D lies in exactly one

of these cycles.

An oriented graph is a digraph with no cycles of length 2.

A digraph D = (V,A) is called bipartite if the vertex set V has a bipar-

tition V = U ∪ W such that for every vertex v ∈ U (resp., v ∈ W ) both

N+
D (v) and N−D (v) are subsets of W (resp., U). The subsets U and W are

called parts of this bipartition for D. For a natural number k, a digraph

D = (V,A) is called k-regular if d+D(v) = d−D(v) = k for every vertex v ∈ V .

Let n ≥ 2 be an integer. Then all integers modulo n are 0, 1, 2, . . . , n−1.

Further, let S ⊆ {1, 2, . . . , n−1}. We define D(n, S) to be a digraph with the

vertex set V (D(n, S)) = {v0, v1, v2, . . . , vn−1} and the arc set A(D(n, S)) =

{(vi, vj) | (j − i) (mod n) ∈ S}. A digraph D = (V,A) is called d-circular if

there exists a subset S ⊆ {1, 2, . . . , n− 1} with |S| = d, where n = |V |, such

that D is isomorphic to the digraph D(n, S). For simplicity, we will identify

a d-circular digraph with its isomorphic digraph D(n, S). By definition, it is

clear that d−D(n,S)(vi) = d+D(n,S)(vi) = |S| for every vertex vi ∈ V , i.e., D(n, S)
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is |S|-regular. It is not difficult to show that a d-circular digraph D(n, S) is an

oriented graph if and only if S∩(−S) = ∅, where−S = {−x (mod n) | x ∈ S}.

In [4], Henning and Yeo have posed several conjectures about the existence

of two disjoint cycles of different length in digraphs. Among them, there are

the following conjectures.

Conjecture 1. A 3-regular digraph of sufficiently large order contains two

disjoint cycles of different length.

Conjecture 2. A bipartite 3-regular digraph contains two disjoint cycles of

different length.

We would like to mention that Conjecture 2 has a connection with 2-

colorings of hypergraphs (see [4]).

In Section 2 of this paper, for any natural number n ≥ 2 we will construct

a 3-regular digraph of order 2n, in which any two disjoint cycles have the

same length. By this, we will disprove Conjecture 1. In Section 3 we will give

support for Conjecture 2 by proving that every bipartite 3-regular digraph,

possessing a cycle factor with at least 2 cycles, contains two disjoint cycles

of different length. We note that by [5] every 3-regular digraph contains a

cycle factor. So, by the result obtained in Section 3, we don’t know whether

Conjecture 2 is true or not only for those bipartite 3-regular digraphs D

which are hamiltonian and only Hamilton cycles in which are their cycle

factors. Perhaps, this remaining case is the most challenging one for Conjec-

ture 2. In Section 4, we will investigate this case. We will prove there that

a hamiltonian bipartite 3-regular digraph D = (V,A) with a Hamilton cy-

cle C = v0, v1, . . . , vn−1, v0, having a spanning 1-circular subdigraph D(n, S)

where S = {s} with s > 1, contains two disjoint cycles of different length.

Thus, the result of Section 4 also supports Conjecture 2 for the remaining

case.
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Figure 1: The digraph D8

Notation. Let D = (V,A) be a digraph. Then for short, we will write

uv for an arc (u, v) ∈ A. If C = v0, v1, . . . , vm−1, v0 is a cycle of length m in

D and vi, vj ∈ V (C), then viCvj denotes the sequence vi, vi+1, vi+2, . . . , vj,

where all indices are taken modulo m. We will consider viCvj both as a path

and as a vertex set. If w ∈ V (C), then w−C and w+
C denote the predecessor

and the successor of w on C, respectively.

2 Disproving Conjecture 1

Let n ≥ 2 be an integer and D2n = (V2n, A2n) be a digraph with the vertex

set V2n = {ui, vi | i = 0, 1, . . . , n−1} and the arc set A2n = {uivi, viui, uiui+1,

uivi+1, viui+1, vivi+1 | i = 0, 1, . . . , n−1}, where i+1 is always taken modulo n.

The digraph D4 is the complete digraph on 4 vertices. The digraph D8

is illustrated on Figure 1.

Now we prove the following result.

Theorem 1. For any integer n ≥ 2, the digraph D2n is a 3-regular digraph

of order 2n, in which any two disjoint cycles have the same length.

Proof. It is clear that D2n is a 3-regular digraph of order 2n. We prove now
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that any two disjoint cycles in D2n have the same length.

For i = 0, 1, . . . , n− 1, let Si = {ui, vi}, ūi = vi and v̄i = ui. We have the

following remarks.

(i) If a cycle C in D2n contains an arc from Si to Si+1, where i ∈

{0, 1, . . . , n − 1} and i + 1 is always taken modulo n, then for every j ∈

{0, 1, . . . , n− 1} the cycle C contains at least one vertex of Sj.

In fact, the remark is trivial if n = 2. So, we assume further that n > 2.

Let C = x0, x1, x2, x3, . . . , xm−1, x0 be a cycle with x0x1 an arc from Si to

Si+1. Then by the construction of D2n, the vertex x2 which is the successor

of x1 on C must be either x̄1 or a vertex in Si+2. Moreover, if x2 is x̄1 then

again by the construction of D2n, x3 must be a vertex in Si+2 because x̄2 = x1

already is a vertex in C. By continuing this process we can see that Remark

(i) is true.

(ii) If a cycle C in D2n contains an arc from Si to Si+1 and both vertices

of Sk, where i, k ∈ {0, 1, . . . , n− 1}, then for every cycle C ′ in D2n, V (C) ∩

V (C ′) 6= ∅.

In fact, if C ′ contains an arc from Si to Si+1 for some i ∈ {0, 1, . . . , n−1},

then for every j ∈ {0, 1, . . . , n − 1}, by Remark (i), C ′ contains at least

one vertex of Sj. Therefore, C and C ′ contain a common vertex in Sk.

If C ′ contains no arcs from Si to Si+1 for any i ∈ {0, 1, . . . , n − 1}, then

C ′ = ur, vr, ur for some r ∈ {0, 1, . . . , n− 1}. Therefore, since C contains at

least one vertex of Sj for every j ∈ {0, 1, . . . , n − 1} by Remark (i), C and

C ′ contain a common vertex in Sr.

We continue to prove Theorem 1. Let C and C ′ be two disjoint cycles

in D2n.

First, assume that C contains an arc from Si to Si+1 for some i ∈

{0, 1, . . . , n − 1}. Then by Remark (ii), C cannot contain both vertices of
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Sk for any k ∈ {0, 1, . . . , n − 1}. Together with Remark (i), this implies

that for every j ∈ {0, 1, . . . , n − 1}, C contains exactly one vertex of Sj.

So, C = x0, x1, x2, . . . , xn−1, x0, where xi ∈ Si for i = 0, 1, . . . , n − 1. Now,

if C ′ contains no arcs from Si to Si+1 for any i ∈ {0, 1, . . . , n − 1}, then

C ′ = ur, vr, ur for some r ∈ {0, 1, . . . , n − 1}. Thus, C and C ′ have a com-

mon vertex in Sr, a contradiction. It follows that C ′ contains an arc from Si

to Si+1 for some i ∈ {0, 1, . . . , n−1}. By Remark (i), C ′ contains at least one

vertex of every Sj, j ∈ {0, 1, . . . , n−1}. Since C and C ′ are disjoint, C ′ must

contain exactly one vertex of every Sj, j ∈ {0, 1, . . . , n − 1} and therefore

C ′ = x̄0, x̄1, x̄2, . . . , x̄n−1, x̄0. Thus, C and C ′ have the same length n.

Next, assume that C contains no arcs from Si to Si+1 for any i ∈ {0, 1, . . . ,

n − 1}. Then C = ur, vr, ur for some r ∈ {0, 1, . . . , n − 1}. Since C and C ′

are disjoint, by Remark (i), C ′ also contains no arcs from Si to Si+1 for any

i ∈ {0, 1, . . . , n − 1}. So, C ′ = us, vs, us for some s ∈ {0, 1, . . . , n − 1} with

s 6= r. Thus, C and C ′ have the same length 2.

The proof of Theorem 1 is complete.

Theorem 1 shows that Conjecture 1 is false.

3 Bipartite 3-regular digraphs possessing a

cycle factor with at least 2 cycles

In the two remaining sections of this paper, we will consider Conjecture 2.

The results obtained in these sections will give support for this conjecture.

First, we prove the following result.

Theorem 2. Let D = (V,A) be a bipartite 3-regular digraph which possesses

a cycle factor with at least two cycles. Then D contains two disjoint cycles

of different length.
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We note that by [5] every 3-regular digraph contains a cycle factor. So, by

Theorem 2 we don’t know whether Conjecture 2 is true or not only for those

bipartite 3-regular digraphs D which are hamiltonian and only Hamilton

cycles in which are their cycle factors. This remaining case for Conjecture 2

will be considered in Section 4.

Proof. Suppose, on the contrary, that Theorem 2 is false and let D = (V,A)

be a bipartite 3-regular digraph such that D possesses a cycle factor with

at least two cycles, but any two disjoint cycles in D have the same length.

Then we have the following claim.

Claim 1. D must be an oriented graph.

Proof. Suppose, on the contrary, that D is not an oriented graph. Then

D contains a cycle C of length 2, say C = u, v, u, where u, v ∈ V . Let

D′ = D[V \ {u, v}] = (V ′, A′). Since D is bipartite, each vertex of V ′ is

adjacent in D to at most one of u and v. So, each vertex of D′ has at

least two outneighbors in D′ because D is 3-regular. Therefore, it is not

difficult to see that D′ has a cycle C ′ of length at least 3. It is clear that

V (C)∩V (C ′) = ∅. So, C and C ′ are two disjoint cycles of different length in

D. This contradicts our assumption about D. Thus, D must be an oriented

graph.

By Claim 1, if uv ∈ A then vu /∈ A. The reader should remember this

because further we will use it without mention.

Let F = C0 ∪ C1 ∪ . . . ∪ C`−1 with ` ≥ 2 be a cycle factor of D with at

least two cycles. By our assumption about D, |V (C0)| = |V (C1)| = · · · =

|V (C`−1)| = k. Moreover, since D is bipartite, k must be an even number.

Further, since ` ≥ 2, each of the cycles C0, C1, . . . , C`−1 must be chordless and
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therefore each vertex of Ci, i = 0, 1, . . . , `− 1, has exactly two outneighbors

and exactly two inneighbors not in V (Ci). For i = 0, 1, . . . , `− 1, let

V (Ci) = {vi0, vi1, . . . , vik−1},

Ci = vi0, v
i
1, . . . , v

i
k−1, v

i
0.

Claim 2. For i = 0, 1, 2, . . . , ` − 1, we may assume without loss of general-

ity that in D all arcs out of Ci go to Ci+1, where indices are always taken

modulo `.

Proof. The claim is trivial for ` = 2. So, we assume from now on that ` ≥ 3.

Since D is 3-regular and C0, . . . , C`−1 are chordless, every vertex of Ci, i ∈

{0, 1, . . . , `− 1}, has two outneighbors not in V (Ci). By renaming the cycles

C1, . . . , C`−1 and their vertices, if necessary, without loss of generality, we may

assume that v00v
1
1 ∈ A. If v10, the predecessor of v11 on C1, has an outneighbor

in V (C0), say v0j , then C ′ = v00, v
1
1C1v

1
0, v

0
jC0v

0
0 has |V (C ′)| > |V (C`−1)|, and

therefore C ′ and C`−1 are two disjoint cycles of different lengths in D, a

contradiction. Thus, v10 has no outneighbors in V (C0). It follows that it has

an outneighbor not in V (C0)∪V (C1). Again, by renaming cycles C2, . . . , C`−1

and their vertices, if necessary, without loss of generality, we may assume that

v10v
2
1 ∈ A. If ` > 3, then as before we can show that v20, the predecessor of v21

on C2, has no outneighbors in V (C0)∪V (C1). In fact, if v20 has an outneighbor

v0j in V (C0), then C ′ = v00, v
1
1C1v

1
0, v

2
1C2v

2
0, v

0
jC0v

0
0 and C`−1 are two disjoint

cycles of different length in D; and if v20 has an outneighbor v1j in V (C1), then

C ′′ = v10, v
2
1C2v

2
0, v

1
jC1v

1
0 and C`−1 are two disjoint cycles of different length

in D, a contradiction. Thus, if ` > 3, then v20 has no outneighbors in V (C0)∪

V (C1) and therefore it has an outneighbor not in V (C0) ∪ V (C1) ∪ V (C2).

Without loss of generality, we may assume that v20v
3
1 ∈ A. By continuing

this process, we get v30v
4
1, . . . , v

`−2
0 v`−11 are arcs in D. Further, if v`−10 , the
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predecessor of v`−11 on C`−1, has an outneighbor vij in V (Ci) with 1 ≤ i < `−1,

then C ′ = vi0, v
i+1
1 Ci+1v

i+1
0 , vi+2

1 Ci+2v
i+2
0 , . . . , v`−11 C`−1v

`−1
0 , vijCiv

i
0 and C0 are

two disjoint cycles of different length in D, a contradiction again. So, both

two outneighbors of v`−10 , that are not in V (C`−1), are in V (C0), say v0j1

and v0j2 .

Now let u be a vertex in V (C0). If u has an outneighbor v not in V (C0)∪

V (C1), say v ∈ V (Ci) with i ∈ {2, . . . , `− 1}, then

C ′ = u, vCiv
i
0, v

i+1
1 Ci+1v

i+1
0 , . . . , v`−11 C`−1v

`−1
0 , v0j1C0u and

C ′′ = u, vCiv
i
0, v

i+1
1 Ci+1v

i+1
0 , . . . , v`−11 C`−1v

`−1
0 , v0j2C0u

are two cycles of different length because one of v0j1C0u and v0j2C0u is a proper

subpath of the other. Since both C ′ and C ′′ are disjoint from C2, either C ′

and C2 or C ′′ and C2 are two disjoint cycles of different length in D, a

contradiction. Thus, all arcs out of C0 go to C1. Now if Ci plays the role

of Ci−1 for i = 0, . . . , ` − 1, where i − 1 is taken modulo `, then the above

argument shows that all arcs out of C1 go to C2. By continuing this process,

we can see that Claim 2 is true.

Claim 3. D has no cycle factors with two cycles.

Proof. Suppose, on the contrary, that D has a cycle factor F with two cycles

C0 and C1. Let D′ = (V,A′) be the subdigraph of D obtained from D

by deleting all arcs of both C0 and C1. Then D′ is a bipartite 2-regular

oriented graph. Let U ∪ W be a bipartition for D and for i = 0, 1 let

Ui = U ∩ V (Ci),Wi = W ∩ V (Ci). Then in D′ every vertex of U0 (resp. W0)

has its outneighbors and inneighbors in W1 (resp., U1) and vice versa every

vertex of W1 (resp., U1) has its outneighbors and inneighbors in U0 (resp.,

W0). Therefore, D′ has at least two connected components.

Let H be a connected component of D′. We show now that H has two

cycles of different length. Here these cycles are not required to be disjoint.
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Since D′ is a 2-regular digraph, H is also 2-regular. So, by [5] H has a

cycle factor FH = X0∪X1∪ . . .∪Xm−1. If m = 1, then FH = X0. Therefore,

X0 is a Hamilton cycle for H. Since H is 2-regular, X0 must possess a chord

uv. Then X ′0 = u, vX0u is a cycle in H with |V (X ′0)| 6= |V (X0)|, i.e., X0 and

X ′0 are two cycles of different length in H. So, we assume further that m ≥ 2.

If there are two cycles Xi and Xj of different length in FH or there is a cycle

Xi with a chord in FH , then it is clear that H has two cycles of different

length. So, we may assume further that all cycles Xi, i = 0, 1, . . . ,m− 1, in

FH have the same length t and are chordless. Let V (Xi) = {xi
0, x

i
1, . . . , x

i
t−1}

and Xi = xi
0, x

i
1, . . . , x

i
t−1, x

i
0 for i = 0, 1, . . . ,m− 1.

We continue to prove our claim by applying the arguments which are

already used in the proof of Claim 2. Since H is 2-regular and X0, . . . , Xm−1

are chordless, every vertex xi
j, i ∈ {0, . . . ,m − 1}, j ∈ {0, . . . , t − 1} of H

has an outneighbor not in V (Xi). By renaming the cycles X1, . . . , Xm−1 and

their vertices, if necessary, we may assume that x1
1 is an outneighbor of x0

0.

If x1
0, the predecessor of x1

1 on X1, has an outneighbor in V (X0), say x0
j ,

then X ′ = x0
0, x

1
1X1x

1
0, x

0
jX0x

0
0 has |V (X ′)| > |V (X0)|. Therefore, X0 and

X ′ are two cycles of different length in H. So, we may assume further that

m ≥ 3 and x1
0 has an outneighbor not in V (X0) ∪ V (X1). By renaming

the cycles X2, . . . , Xm−1 and their vertices, if necessary, we may assume that

x1
0x

2
1 ∈ A(H). Now if x2

0, the predecessor of x2
1 on X2, has an outneighbor in

V (X0), say x0
j , then X ′′ = x0

0, x
1
1X1x

1
0, x

2
1X2x

2
0, x

0
jX0x

0
0 and X0 are two cycles

of different length in H; and if x2
0 has an outneighbor in V (X1), say x1

j , then

X ′′′ = x1
0, x

2
1X2x

2
0, x

1
jX1x

1
0 and X0 are two cycles of different length in H. So,

we again may assume further that x2
0 has an outneighbor not in V (X0) ∪

V (X1)∪ V (X2). By continuing similar arguments, we can see that either we

already find two cycles of different length for H or by renaming cycles of FH
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and their vertices, if necessary, we can get x2
0x

3
1, x

3
0x

4
1, . . . , x

m−2
0 xm−1

1 ∈ A(H).

Now xm−1
0 , the predecessor of xm−1

1 on Xm−1, must have an outneighbor

not in V (Xm−1), say xi
j ∈ V (Xi) with i ∈ {0, . . . ,m − 2}. Then X∗ =

xi
0, x

i+1
1 Xi+1x

i+1
0 , xi+2

1 Xi+2x
i+2
0 , . . . , xm−1

1 Xm−1x
m−1
0 , xi

jXix
i
0 and X0 are two

cycles of different length in H. Thus, in any situation, we can find two cycles

of different length in H, say Y1 and Y2.

We have noted before that D′ has at least two connected components. So,

besides H, D′ possesses another connected component K 6= H. It is clear

that K has at least one cycle, say Z. Then either Y1 and Z or Y2 and Z are

two disjoint cycles of different length in D′. Since D′ is a subdigraph of D,

these two cycles are also two disjoint cycles of different length in D. This

final contradiction shows that Claim 3 must be true.

Claim 4. D has no cycle factors with three cycles.

Proof. Suppose, on the contrary, that D has a cycle factor F with three

cycles C0, C1 and C2. In this proof, we always have i ∈ {0, 1, 2} and indices

i + 1 and i + 2 are always taken modulo 3. By Claim 2, all arcs out of Ci go

to Ci+1. We consider cycles in D of the following form:

C = x1, y, z, x2Cix1, (1)

where x1, x2 are vertices in V (Ci), y is an outneighbor of x1 in V (Ci+1), z is

an outneighbor of y in V (Ci+2) and x2 is an outneighbor of z in V (Ci). We

note that since D is bipartite, the length of a cycle C of the form (1) must be

even. So, x1 6= x2. Further we consider separately the following two cases.

Case 1. There exists a cycle C of the form (1) such that z−Ci+2
, the

predecessor of z on Ci+2, has an outneighbor, say x3, in V (Ci) \ x2Cix1.

Consider the predecessor y−Ci+1
of y on Ci+1. Since both y−Ci+1

and z

are adjacent to y, they are in the same part of the bipartition for D. So,
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they are not adjacent in D because D is bipartite. It follows that both two

outneighbors of y−Ci+1
in V (Ci+2), say z1 and z2, are different from z.

Further, since x3 has two outneighbors in V (Ci+1), at least one of these

outneighbors, say y1, is different from y. Now we construct two cycles C ′ and

C ′′ in D as follows:

C ′ = z−Ci+2
, x3, y1Ci+1y

−
Ci+1

, z1Ci+2z
−
Ci+2

,

C ′′ = z−Ci+2
, x3, y1Ci+1y

−
Ci+1

, z2Ci+2z
−
Ci+2

.

It is clear that |V (C ′)| 6= |V (C ′′)| and both C ′ and C ′′ are disjoint from C.

So, either C ′ and C or C ′′ and C are two vertex disjoint cycles of different

lengths in D, a contradiction. Thus, this case cannot occur.

Case 2. For every cycle C = x1, y, z, x2Cix1 of the form (1), the prede-

cessor z−Ci+2
of z on Ci+2 has no outneighbors in V (Ci) \ x2Cix1.

In this case, both two outneighbors of z−Ci+2
in V (Ci) are in x2Cix1. Let

C∗ = x∗1, y
∗, z∗, x∗2Cix

∗
1 be a cycle of the form (1) with the number of vertices

in x∗2Cix
∗
1 minimum. Further, let x∗3 be the inneighbor in V (Ci) of y∗ which

is different from x∗1. If x∗3 ∈ x∗2Cix
∗
1, then the cycle C ′ = x∗3, y

∗, z∗, x∗2Cix
∗
3 has

the number of vertices in x∗2Cix
∗
3 less than the number of vertices in x∗2Cix

∗
1.

This contradicts the choice of C∗. Thus, x∗3 is in V (Ci) \ x∗2Cix
∗
1.

Let z∗1 be an inneighbor in V (Ci+2) of x∗3. Since both x∗3 and z∗ are

adjacent to y∗, they are in the same part of the bipartition for D. It follows

that z∗1 and z∗ are in different parts of this bipartition. In particular, z∗1 6= z∗.

Consider the cycle C ′′ = z∗1 , x
∗
3, y
∗, z∗Ci+2z

∗
1 . Then C ′′ is a cycle of the form

(1). By the assumption of this case, the predecessor (y∗)−Ci+1
of y∗ on Ci+1,

has no outneighbors in V (Ci+2)\z∗Ci+2z
∗
1 . Let z∗2 and z∗3 be two outneighbors

of (y∗)−Ci+1
in V (Ci+2). Then both z∗2 and z∗3 are in z∗Ci+2z

∗
1 . Further, since

both (y∗)−Ci+1
and z∗ are adjacent to y∗, they are in the same part of the
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bipartition for D. So, (y∗)−Ci+1
and z∗ are not adjacent in D. It follows that

both z∗2 and z∗3 are different from z∗.

Let y∗1 be the outneighbor of x∗3 in V (Ci+1) different from y∗. Consider

the following cycles C∗∗ and C∗∗∗ in D:

C∗∗ = z∗1 , x
∗
3, y
∗
1Ci+1(y

∗)−Ci+1
, z∗2Ci+2z

∗
1 ,

C∗∗∗ = z∗1 , x
∗
3, y
∗
1Ci+1(y

∗)−Ci+1
, z∗3Ci+2z

∗
1 .

Then it is clear that |V (C∗∗)| 6= |V (C∗∗∗)| and both C∗∗ and C∗∗∗ are disjoint

from C∗. So, either C∗ and C∗∗ or C∗ and C∗∗∗ are two disjoint cycles of

different length in D, a contradiction again. This final contradiction shows

that Claim 4 must be true.

Claim 5. If D possesses a cycle factor with at least 4 cycles, then for any

vertex sets of size two {v0t1 , v
0
t2
} ⊆ V (C0) and {v3m1

, v3m2
} ⊆ V (C3), there exist

two disjoint paths P1 and P2 from {v3m1
, v3m2
} to {v0t1 , v

0
t2
} in D[V \ (V (C1)∪

V (C2))].

Proof. The proofs of this claim and Claim III in [4] are just the same. So, we

omit the proof of Claim 5 here. The readers who are interested in its details

can see the proof of Claim III in [4].

Now we complete the proof of Theorem 2. By our assumption about D

and by Claims 3 and 4, we may assume further that D possesses a cycle

factor with at least 4 cycles. Let v1w ∈ V (C1) be arbitrary, v0t1 and v0t2 be

two inneighbors of v1w in V (C0) and v2y1 and v2y2 be two outneighbors of v1w

in V (C2). Further, let (v1w)−C1
be the predecessor of v1w on C1 and v2y3 be

any outneighbor of (v1w)−C1
in V (C2). Since D is bipartite and both v1w and

v2y3 are adjacent to (v1w)−C1
in D, v1w and v2y3 belong to the same part of the

bipartition for D. Therefore, v1w and v2y3 are not adjacent in D. This implies
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that v2y3 6= v2y1 and v2y3 6= v2y2 . Without loss of generality, we may assume that

by going along C2 from v2y3 in the direction specified by the direction of arcs

on C2 we first encounter v2y2 . Let v3m1
be an outneighbor of v2y1 and v3m2

be an

outneighbor of v2y3 in V (C3). Then since v2y1 and v2y3 belong to different parts

of bipartition for D, we have v3m1
6= v3m2

. By Claim 5, there exist two disjoint

paths P1 and P2 from {v3m1
, v3m2
} to {v0t1 , v

0
t2
} in D[V \ (V (C1) ∪ V (C2))].

First assume that P1 is a path from v3m1
to v0t1 and P2 is a path from v3m2

to v0t2 . Let v1z be the outneighbor of v0t2 in V (C1) different from v1w. Further,

let Q1, Q2 and Q3 be the following paths in D:

Q1 = v0t1 , v
1
w, v

2
y1
, v3m1

,

Q2 = v0t1 , v
1
w, v

2
y2
C2v

2
y1
, v3m1

, and

Q3 = v0t2 , v
1
zC1(v

1
w)−C1

, v2y3 , v
3
m2

.

We set C ′ = Q1 ∪ P1, C ′′ = Q2 ∪ P1 and C ′′′ = Q3 ∪ P2. Then by

construction, |V (C ′)| 6= |V (C ′′)| and both C ′ and C ′′ are disjoint from C ′′′.

So, either C ′ and C ′′′ or C ′′ and C ′′′ are two disjoint cycles of different length

in D. This contradicts our assumption about D.

Next assume that P1 is a path from v3m1
to v0t2 and P2 is a path from

v3m2
to v0t1 . Then by analogous arguments we can get two disjoint cycles of

different length in D. This again contradicts our assumption about D.

Thus, Theorem 2 must be true.

4 Hamiltonian bipartite 3-regular digraphs

Following [1, 2] a hamiltonian digraph, in which every cycle factor is a Hamil-

ton cycle, is called 2-factor hamiltonian. By [5] every 3-regular digraph con-

tains a cycle factor. Therefore, by Theorem 2, Conjecture 2 is true if we can

show that every 2-factor hamiltonian bipartite 3-regular digraph contains two

disjoint cycles of different length. On the other hand, we don’t know whether
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2-factor hamiltonian bipartite 3-regular digraphs exist or not. In [1], an infi-

nite family of 2-factor hamiltonian 3-regular digraphs has been constructed.

The 3-circular digraph D(7, S) with S = {1, 2, 4} is one of digraphs in the

family. But all digraphs in this constructed family are not bipartite because

all they have odd orders. Until now we don’t know any examples of 2-factor

hamiltonian bipartite 3-regular digraphs. So, one way to prove Conjecture 2

for the remaining case is to prove that the set of 2-factor hamiltonian bipar-

tite 3-regular digraphs is empty, i.e., every hamiltonian bipartite 3-regular

digraph possesses a cycle factor with at least 2 cycles. It seems to us that this

is not easier than proving that every hamiltonian bipartite 3-regular digraph

contains two disjoint cycles of different length, which is another way to prove

Conjecture 2 for the remaining case. In this section, we will follow the last

approach to tackle the remaining case for Conjecture 2.

It is clear that a hamiltonian digraph D = (V,A) with a Hamilton cycle

C = v0, v1, . . . , vn−1, v0 always can be considered to contain the 1-circular

digraph D′ = D(n, S ′) with S ′ = {1} as its spanning subdigraph. In this

section, we will show that if besides D′ a hamiltonian bipartite 3-regular

digraph D = (V,A) with a Hamilton cycle C = v0, v1, . . . , vn−1, v0 contains

another 1-circular digraph D(n, S), where S = {s} with s > 1, as its spanning

subdigraph, then D contains two disjoint cycles of different length. This

again supports Conjecture 2 for the remaining case considered in this section.

Theorem 3. Let D = (V,A) be a hamiltonian bipartite 3-regular digraph

with a Hamilton cycle C = v0, v1, v2, . . . , vn−1, v0. Further, let D contain a

1-circular subdigraph D(n, S), where S = {s} with s > 1. Then D contains

two disjoint cycles of different length.

Proof. Let D = (V,A) be a hamiltonian bipartite 3-regular digraph with

a Hamilton cycle C = v0, v1, v2, . . . , vn−1, v0. Further, let D(n, S) where
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S = {s} with s > 1 be a subdigraph of D. If a = (vi, vj) is an arc of D, then

the value (j − i)(mod n) is called the length of the arc a. Thus, every arc of

the Hamilton cycle C has length 1 and every arc of the 1-circular subdigraph

D(n, S) with S = {s} has length s.

If D has a cycle C ′ of length 2, then as in Claim 1 of Section 3 we can

show that D contains a cycle C ′′ of length at least 3, which is disjoint from

C ′, i.e., D contains two disjoint cycles of different length and Theorem 3 is

true for this case.

Thus, from now on we may assume that D is an oriented graph. We

continue to consider separately the following two cases.

Case 1. There exists an arc in D with its length greater than s.

Let m be the maximum of lengths of arcs in D. Then m > s in this case.

Without loss of generality, we may assume that v0vm is an arc of maximum

length m. Now we construct a cycle C1 in D as follows. Let i0 be the

greatest among all non-negative integers i such that m + is ≤ n. Then we

have n− (m + i0s) ≤ s− 1. We again divide this case into two subcases.

Subcase 1.1. n− (m + i0s) ≤ s− 2.

In this subcase, vm+i0s−1+s is a vertex in {v1, v2, . . . , vm−1}. Therefore,

C1 = v0, vm, vm+s, vm+2s, . . . , vm+(i0−1)s, vm+i0sCv0, and

C2 = vm−1, vm+s−1, vm+2s−1, . . . , vm+i0s−1, vm+i0s−1+sCvm−1

are two disjoint cycles in D. Further, we have |V (C1)| = (1 + i0) + [n− (m+

i0s)] = (1+i0)+(n−i0s−m) and |V (C2)| = (i0+1)+[(m−1)−(m+i0s−1+

s)(mod n) = (1 + i0) + (n− i0s− s). Since m > s, we get |V (C1)| < |V (C2)|

and therefore C1 and C2 are two disjoint cycles of different length in D in

this subcase.

Subcase 1.2. n− (m + i0s) = s− 1.
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In this subcase, vm+i0s+s = v1. Since D is hamiltonian bipartite with

a Hamilton cycle C = v0, v1, v2, . . . , vn−1, v0, n must be even and therefore

both m and s must be odd. It follows that i0 must be at least 1 in Subcase

1.2. Further, together with s > 1, we get s ≥ 3. Therefore,

C3 = v0, vm, vm+1, vm+s+1, vm+2s+1, . . . , vm+(i0−1)s+1, vm+i0s+1Cv0, and

C4 = vm−1, vm+s−1, vm+s, vm+2s, . . . , vm+i0s, v1Cvm−1

are two disjoint cycles in D. We have |V (C3)| = (2+i0)+[n−(m+i0s+1)] =

(2 + i0) + [n− (m+ i0s)]− 1 = (2 + i0) + (s− 1)− 1 = i0 + s. Here we use the

equality n−(m+i0s) = s−1 which holds in this subcase. On the other hand,

|V (C4)| = i0 + 2 + [(m− 1)− 1] = i0 + m. It follows that |V (C3)| < |V (C4)|

because m > s. So, C3 and C4 are two disjoint cycles of different length in

D in this subcase.

Case 2. There exist no arcs in D with their lengths greater than s.

Then the length of any arc in A′ = A \ [A(C) ∪ A(D(n, S))] is greater

than 1 and less than s. Since D is 3-regular, A′ 6= ∅. It follows that s must

be at least 5. Let j0 be the greatest among all positive integers j such that

js ≤ n. Then n−j0s ≤ s−1. We again consider separately several subcases.

Subcase 2.1. j0 ≥ 2 and n− j0s ≤ s− 2.

In this subcase, vj0s−1+s is a vertex in {v1, v2, . . . , vs−1}. Further, since

D is 3-regular, there is an arc in A′ with the tail vs−1. As we have noted

before, the length t of this arc satisfies 1 < t < s. So, vs−1+t is a vertex in

{vs+1, vs+2, . . . , v2s−1}. Therefore,

C5 = v0, vs, v2s, . . . , v(j0−1)s, vj0sCv0, and

C6 = vj0s−1, vj0s−1+sCvs−1, vs−1+tCv2s−1, v3s−1, v4s−1, . . . , vj0s−1

are disjoint cycles in D. Further, |V (C5)| = j0 + (n − j0s) and |V (C6)| =

1 + [(s− 1)− (j0s− 1 + s)] + 1 + [(2s− 1)− (s− 1 + t)] + (j0− 2)(mod n) =
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j0+(n−j0s)+(s−t). Since t < s, this implies that |V (C5)| < |V (C6)|. Thus,

C5 and C6 are two disjoint cycles of different length in D for this subcase.

Subcase 2.2. j0 ≥ 2 and n− j0s = s− 1.

In this subcase, vj0s+s = v1. As in Subcase 2.1, let vs−1vs−1+t with

1 < t < s be the arc in A′ with the tail vs−1. Then vs−1+t is a vertex in

{vs+1, vs+2, . . . , v2s−1}. Further, since t must be odd and t > 1, we have

t ≥ 3. Therefore,

C7 = v0, vs, vs+1, v2s+1, . . . , v(j0−1)s+1, vj0s+1Cv0, and

C8 = v1Cvs−1, vs−1+tCv2s, v3s, v4s, . . . , vj0s, v1

are disjoint cycles in D. We have |V (C7)| = 1 + j0 + [n − (j0s + 1)] =

j0 + (n− j0s) = j0 + s− 1. Here we use the equality n− j0s = s− 1, which

holds in this subcase. On the other hand, |V (C8)| = [(s − 1) − 1] + 1 +

[2s − (s − 1 + t)] + (j0 − 1) = j0 + s − 1 + (s − t). Since t < s, we again

have |V (C7)| < |V (C8)|. Thus, C7 and C8 are two disjoint cycles of different

length in D for this subcase.

Subcase 2.3. j0 = 1.

Since D is hamiltonian bipartite with a Hamilton cycle C = v0, v1, v2, . . . ,

vn−1, v0, n must be even and lengths of arcs must be odd. In this subcase,

we have 2s > n. This implies that 2s (mod n) ≥ 2, i.e., the vertex v2s−1 is

a vertex in {v1, v2, . . . , vs−1}. Let t0 be the minimum of lengths of arcs in

A′ = A \ [A(C) ∪ A(D(n, S))]. Since D is 3-regular, for every vertex u ∈ V

there exists exactly one arc in A′ with the tail u. By renaming vertices of

V , if necessary, without loss of generality we may assume that the arc in A′

with the tail vs has length t0.

If s + t0 ≤ n, then in fact s + t0 < n because D is an oriented graph.
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Consider the cycles

C9 = v0, vs, vs+t0Cv0, and

C10 = vs−1, v2s−1Cvs−1.

Since v2s−1 is a vertex in {v1, v2, . . . , vs−1}, these cycles are disjoint from each

other. We have |V (C9)| = 2 + [n − (s + t0)] = (n − s + 1) − (t0 − 1) and

|V (C10)| = 1 + [(s− 1)− (2s− 1)](mod n) = n− s+ 1. Since t0 > 1, we have

t0− 1 > 0. So, |V (C9)| < |V (C10)| and therefore C9 and C10 are two disjoint

cycles of different length in this situation.

If s+ t0 > n, then s+ t0 ≥ n+ 2 because n is even and both s and t0 are

odd. If the arc in A′ with the tail vs−1 has length t, then t ≥ t0 because t0 is

the minimum of lengths of arcs in A′. Therefore, s + t ≥ s + t0 ≥ n + 2. It

follows that (s−1+t)(mod n) ≥ 1, i.e., vs−1+t is a vertex in {v1, v2, . . . , vs−1}.

Therefore,

C11 = v0, vsCv0, and

C12 = vs−1, vs−1+tCvs−1

are disjoint cycles in D. We have |V (C11)| = 1 + [n − s] and |V (C12| =

1 + [(s − 1) − (s − 1 + t)](mod n) = 1 + [n − t]. Since t < s, we have

|V (C11)| < |V (C12)| and therefore C11 and C12 are two disjoint cycles of

different length in this situation.

The proof of Theorem 3 is complete.
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