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Abstract In this paper we study some novel parallel and sequential hybrid meth-
ods for finding a common fixed point of a finite family of asymptotically quasi φ-
nonexpansive mappings. The results presented here modify and extend some previous
results obtained by several authors.
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1 Introduction

Let C be a nonempty closed convex subset of a Banach space E . A mapping T : C →
C is said to be nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖ , ∀x, y ∈ C.

In 2005, Matsushita and Takahashi [21] proposed the following hybrid method, com-
bining Mann iterations with projections onto closed convex subsets, for finding a fixed
point of a relatively nonexpansive mapping T :
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x0 ∈ C,

yn = J−1(αn J xn + (1 − αn)J T xn),

Cn = {v ∈ C : φ(v, yn) ≤ φ(v, xn)} ,

Qn = {v ∈ C : 〈J x0 − J xn, xn − v〉 ≥ 0} ,

xn+1 = ΠCn
⋂

Qn x0, n ≥ 0.

This algorithm has been modified and generalized for finding a common fixed point
of a finite or infinite family of relatively nonexpansive mappings by several authors,
such as Takahashi et al. [29], Takahashi and Zembayashi [30], Wang and Xuan [32],
Reich and Sabach [24,25], Kang et al. [13], Plubtieng and Ungchittrakool [22], etc...

In 2011, Liu [20] introduced the following cyclic method for a finite family of
relatively nonexpansive mappings:

x0 ∈ C,

yn = J−1(αn J x0 + (1 − αn)J Tn(mod)N xn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn)} ,

Qn = {v ∈ C : 〈J x0 − J xn, xn − v〉 ≥ 0} ,

xn+1 = ΠCn
⋂

Qn x0, n ≥ 0.

Very recently, Anh and Chung [3] considered the following parallel method for a finite
family of relatively nonexpansive mappings:

x0 ∈ C,

yi
n = J−1(αn J xn + (1 − αn)J Ti xn), i = 1, . . . , N ,

in = arg max
1≤i≤N

{∥
∥yi

n − xn
∥
∥
}
, ȳn :=yin

n ,

Cn = {v ∈ C : φ(v, ȳn) ≤ φ(v, xn)} ,

Qn = {v ∈ C : 〈J x0 − J xn, xn − v〉 ≥ 0} ,

xn+1 = ΠCn
⋂

Qn x0, n ≥ 0.

According to this algorithm, the intermediate approximations yi
n can be found in

parallel. Then among all yi
n, i = 1, . . . , N , the farest element from xn , denoted by

ȳn , is chosen. After that, two convex closed subsets Cn and Qn containing the set of
common fixed points are constructed. The next approximation xn+1 is defined as the
generalized projection of x0 onto the intersection Cn

⋂
Qn .

Further, some generalized hybrid projection methods have been introduced for fam-
ilies of hemi-relatively or weak relatively nonexpansive mappings (see, [13,27,31]).

On the other hand, there has been an increasing interest in the class of asymptot-
ically quasi φ-nonexpansive mappings (c.f., [5,7,9–12,14,18,19,28,33]), which is a
generalization of the class of quasi φ- nonexpansive mappings. The last one contains
the class of relatively nonexpansive mappings as a proper subclass.

Unfortunately, many hybrid algorithms for (relatively) nonexpansive mappings can-
not be directly extended to asymptotically quasi φ-nonexpansive mappings.
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The aim of this paper is to combine a parallel splitting-up technique proposed
in [3] with a monotone hybrid iteration method (see, [26]) for finding a common
fixed point of a finite family of asymptotically quasi φ -nonexpansive mappings. The
organization of the paper is as follows: In Sect. 2 we collect some definitions and
results which are used in this paper. Section 3 deals with the convergence analysis of
the proposed parallel and sequential hybrid algorithms. Finally, a numerical example
shows that even in the sequential mode, our parallel hybrid method is faster than the
corresponding sequential one [20].

2 Preliminaries

In this section we recall some definitions and results needed for further investigation.
We refer the interested reader to [2,8] for more details.

Definition 1 A Banach space X is called

(1) strictly convex if the unit sphere S1(0) = {x ∈ X : ||x || = 1} is strictly convex,
i.e., the inequality ||x + y|| < 2 holds for all x, y ∈ S1(0), x 
= y;

(2) uniformly convex if for any given ε > 0 there exists δ = δ(ε) > 0 such that for all
x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ = ε the inequality ‖x + y‖ ≤ 2(1−δ)

holds;
(3) smooth if the limit

lim
t→0

‖x + t y‖ − ‖x‖
t

(1)

exists for all x, y ∈ S1(0);
(4) uniformly smooth if the limit (1) exists uniformly for all x, y ∈ S1(0).

Let E be a real Banach space with the dual E∗ and J : E → 2E∗
is the normalized

duality mapping defined by

J (x) =
{

f ∈ E∗ : 〈 f, x〉 = ‖x‖2 = ‖ f ‖2
}

.

The following basic properties of the geometry of E and its normalized duality map-
ping J can be found in [4]:

(i) If E is a reflexive and strictly convex Banach space, then J−1 is norm to weak ∗
continuous;

(ii) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized
duality mapping J : E → 2E∗

is single-valued, one-to-one, and onto;
(iii) If E is a uniformly smooth Banach space, then J is uniformly continuous on

each bounded subset of E ;
(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex;
(v) Each uniformly convex Banach space E has the Kadec–Klee property, i.e., for

any sequence {xn} ⊂ E , if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x .

Next we assume that C is a nonempty closed convex subset of a smooth, strictly convex,
and reflexive Banach space E . Consider the Lyapunov functional φ : E × E → R+
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defined by

φ(x, y) = ‖x‖2 − 2 〈x, J y〉 + ‖y‖2 , ∀x, y ∈ E .

From the definition of φ, we have

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2 . (2)

The generalized projection ΠC : E → C is defined by

ΠC (x) = arg min
y∈C

φ(x, y).

Lemma 1 [1] Let E be a smooth, strictly convex, and reflexive Banach space and C
be a nonempty closed convex subset of E. Then the following conclusions hold:

(i) φ(x,ΠC (y)) + φ(ΠC (y), y) ≤ φ(x, y),∀x ∈ C, y ∈ E;
(ii) if x ∈ E, z ∈ C, then z = ΠC (x) iff 〈z − y, J x − J z〉 ≥ 0,∀y ∈ C;

(iii) φ(x, y) = 0 iff x = y.

Lemma 2 [1] Let E be a uniformly convex and uniformly smooth real Banach space,
{xn} and {yn} be two sequences in E. If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then ‖xn − yn‖ → 0 as n → ∞.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, T : C → C be a mapping, and F(T ) be the set of fixed points
of T . A point p ∈ C is said to be an asymptotic fixed point of T if there exists a
sequence {xn} ⊂ C such that xn ⇀ p and ‖xn − T xn‖ → 0 as n → +∞. The set of
all asymptotic fixed points of T will be denoted by F̃(T ).

Definition 2 A mapping T : C → C is called

(i) relatively nonexpansive mapping if F(T ) 
= Ø, F(T ) = F̃(T ), and

φ(p, T x) ≤ φ(p, x), ∀p ∈ F(T ), ∀x ∈ C;

(ii) closed if for any sequence {xn} ⊂ C, xn → x and T xn → y, then T x = y;
(iii) quasi φ-nonexpansive mapping (or hemi-relatively nonexpansive mapping) if

F(T ) 
= Ø and

φ(p, T x) ≤ φ(p, x), ∀p ∈ F(T ), ∀x ∈ C;

(iv) asymptotically quasi φ-nonexpansive if F(T ) 
= Ø and there exists a sequence
{kn} ⊂ [1,+∞) with kn → 1 as n → +∞ such that

φ(p, T n x) ≤ knφ(p, x), ∀n ≥ 1, ∀p ∈ F(T ), ∀x ∈ C;

(v) uniformly L-Lipschitz continuous, if there exists a constant L > 0 such that

∥
∥T n x − T n y

∥
∥ ≤ L ‖x − y‖ , ∀n ≥ 1, ∀x, y ∈ C.
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Lemma 3 [5] Let E be a real uniformly smooth and strictly convex Banach space
with Kadec–Klee property, and C be a nonempty closed convex subset of E. Let
T : C → C be a closed and asymptotically quasi φ-nonexpansive mapping with a
sequence {kn} ⊂ [1,+∞), kn → 1. Then F(T ) is a closed convex subset of C.

Lemma 4 [5,15,21] Let E be a strictly convex reflexive smooth Banach space, A be
a maximal monotone operator of E into E∗, and Jr = (J + r A)−1 J : E → D(A) be
the resolvent of A with r > 0. Then,

(i) F(Jr ) = A−10;
(ii) φ(u, Jr x) ≤ φ(u, x) for all u ∈ A−10 and x ∈ E.

Lemma 5 [26] Let E be a uniformly convex and uniformly smooth Banach space, A
be a maximal monotone operator from E to E∗, and Jr be a resolvent of A. Then Jr

is closed hemi-relatively nonexpansive mapping.

3 Main results

3.1 Parallel hybrid methods

Assume that Ti , i = 1, 2, . . . , N , are asymptotically quasi φ-nonexpansive mappings
with a sequence

{
ki

n

} ⊂ [1,+∞), ki
n → 1, i.e., F(Ti ) 
= Ø, and

φ(p, T n
i x) ≤ ki

nφ(p, x), ∀n ≥ 1, ∀p ∈ F(Ti ), ∀x ∈ C.

Throughout this paper we suppose that the set F = ⋂N
i=1 F(Ti ) is nonempty.

Then, putting kn := max{ki
n : i = 1, . . . , N }, we have kn ⊂ [1,+∞), kn → 1, and

φ(p, T n
i x) ≤ knφ(p, x), ∀i = 1, . . . , N , ∀n ≥ 1, ∀p ∈ F, ∀x ∈ C.

In the following theorems we will assume that the set F = ⋂N
i=1 F(Ti ) is nonempty

and bounded in C , i.e., there exists a positive number ω such that F ⊂ 	:={u ∈ C :
||u|| ≤ ω}.
Theorem 1 Let E be a real uniformly smooth and uniformly convex Banach space
and C be a nonempty closed convex subset of E. Let {Ti }N

i=1 : C → C be a finite
family of asymptotically quasi φ-nonexpansive mappings with a sequence {kn} ⊂
[1,+∞), kn → 1. Moreover, suppose for each i ≥ 1, the mapping Ti is uniformly Li

- Lipschitz continuous and the set F = ⋂N
i=1 F(Ti ) is nonempty and bounded in C.

Let {xn} be the sequence generated by

x0 ∈ C, C0:=C,

yi
n = J−1

(
αn J xn + (1 − αn)J T n

i xn
)
, i = 1, 2, . . . , N ,

in = arg max
1≤i≤N

{∥
∥yi

n − xn
∥
∥
}
, ȳn :=yin

n ,

Cn+1:= {v ∈ Cn : φ(v, ȳn) ≤ φ(v, xn) + εn} ,

xn+1 = ΠCn+1 x0, n ≥ 0,
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where εn :=(kn − 1)(ω + ||xn||)2, and {αn} is a sequence in [0, 1] such that
limn→∞ αn = 0. Then {xn} converges strongly to x†:=ΠF x0.

Proof The proof of Theorem 1 is divided into five steps.

Step 1. Claim that F and Cn are closed and convex subsets of C .
Indeed, from the uniform Li -Lipschitz continuity of Ti , Ti is Li -Lipschitz conti-

nuity. Hence Ti is continuous. This implies that Ti is closed. By Lemma 3, F(Ti ) is
closed and convex subset of C for all i = 1, 2, . . . , N . Hence, F = ⋂N

i=1 F(Ti ) is
closed and convex. Further, C0 = C is closed and convex by the assumption. Suppose
that Cn is a closed and convex subset of C for some n ≥ 0. From the inequality
φ(v, ȳn) ≤ φ(v, xn) + εn , we obtain

〈v, J xn − J ȳn〉 ≤ 1

2

(
‖xn‖2 − ‖ȳn‖2 + εn

)
.

Therefore,

Cn+1 =
{

v ∈ Cn : 〈v, J xn − J ȳn〉 ≤ 1

2

(
‖xn‖2 − ‖ȳn‖2 + εn

)}

,

which implies that Cn+1 is closed and convex. Thus, Cn is closed and convex subset
of C for all n ≥ 0, and ΠC x0 and ΠCn x0 are well-defined.

Step 2. Claim that F ⊂ Cn for all n ≥ 0.
Observe first that F ⊂ C0 = C . Now suppose F ⊂ Cn for some n ≥ 0. For each
u ∈ F , by the convexity of ‖.‖2, we have

φ(u, ȳn) = ‖u‖2 − 2 〈u, J ȳn〉 + ‖ȳn‖2

= ‖u‖2 − 2αn 〈u, J xn〉 − 2(1 − αn)
〈
u, J T n

in
xn

〉

+ ∥
∥αn J xn + (1 − αn)J T n

in
xn

∥
∥2

≤ ‖u‖2 − 2αn 〈u, J xn〉 − 2(1 − αn)
〈
u, J T n

in
xn

〉

+αn ‖xn‖2 + (1 − αn)
∥
∥T n

in
xn

∥
∥2

= αnφ(u, xn) + (1 − αn)φ(u, T n
in

xn)

≤ αnφ(u, xn) + kn(1 − αn)φ(u, xn)

≤ φ(u, xn) + (kn − 1)(1 − αn)φ(u, xn)

≤ φ(u, xn) + (kn − 1)(ω + ||xn||)2

= φ(u, xn) + εn .

This implies that u ∈ Cn+1. Hence F ⊂ Cn+1. By induction, we obtain F ⊂ Cn for
all n ≥ 0. For each u ∈ F ⊂ Cn , by xn = ΠCn x0 and Lemma 1, we have

φ(xn, x0) ≤ φ(u, x0) − φ(u, xn) ≤ φ(u, x0).
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Therefore, the sequence {φ(xn, x0)} is bounded. The boundedness of the sequence
{xn} is followed from relation (2).

Step 3. Claim that the sequence {xn} converges strongly to some point p ∈ C as
n → ∞.
By the construction of Cn , we have Cn+1 ⊂ Cn and xn+1 = ΠCn+1 x0 ∈ Cn+1 Now
taking into account xn = ΠCn x0, xn+1 ∈ Cn and using Lemma 1, we get

φ(xn, x0) ≤ φ(xn+1, x0) − φ(xn+1, xn) ≤ φ(xn+1, x0).

This implies that {φ(xn, x0)} is nondecreasing. Therefore, the limit of {φ(xn, x0)}
exists. We also have xm ∈ Cm ⊂ Cn for all m ≥ n. From Lemma 1 and xn = ΠCn x0,
we obtain

φ(xm, xn) ≤ φ(xm, x0) − φ(xn, x0) → 0,

as m, n → ∞. This together with Lemma 2 implies that ||xm − xn|| → 0. Hence, {xn}
is a Cauchy sequence. Since E is complete and C is closed, we get

lim
n→∞ xn = p ∈ C. (3)

Step 4. Claim that p ∈ F .
Indeed, observing that

φ(xn+1, xn) ≤ φ(xn+1, x0) − φ(xn, x0) → 0, (4)

and

‖xn+1 − xn‖ → 0. (5)

In view of xn+1 ∈ Cn+1 and by the construction of Cn+1, we obtain

φ(xn+1, ȳn) ≤ φ(xn+1, xn) + εn . (6)

Recalling that the set F and the sequence {xn} are bounded, and putting M =
sup {‖xn‖ : n = 1, 2, . . .}, we get

εn = (kn − 1) (ω + ||xn||)2 ≤ (kn − 1) (ω + M)2 → 0. (7)

From (4), (6), (7), we obtain φ(xn+1, ȳn) → 0 as n → ∞. This together with Lemma
2 implies that ‖xn+1 − ȳn‖ → 0. Therefore, from (5), ||xn − ȳn|| → 0. Further,
by the definition of in , we have

∥
∥xn − yi

n

∥
∥ ≤ ||xn − ȳn|| → 0 as n → ∞ for all

i = 1, 2, . . . , N , hence, from (3) we obtain

lim
n→∞ yi

n = p, i = 1, 2, . . . , N . (8)
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From the relation yi
n = J−1

(
αn J xn + (1 − αn)J T n

i xn
)

we obtain

∥
∥
∥J yi

n − J T n
i xn

∥
∥
∥ = αn

∥
∥J xn − J T n

i xn
∥
∥ . (9)

Observing that {xn} is bounded, Ti is uniformly Li -Lipschitz continuous, and the
solution set F is not empty, we have ||J xn − J T n

i xn|| ≤ ||J xn|| + ||J T n
i xn|| =

||xn|| + ||T n
i xn|| ≤ ||xn|| + ||T n

i xn − T n
i ξ || + ||ξ || ≤ ||xn|| + Li ||xn − ξ || + |ξ ||,

where ξ ∈ F is an arbitrary fixed element. The last inequality proves the boundedness
of the sequence

{∥
∥J xn − J T n

i xn
∥
∥
}
. Using limn→∞ αn = 0, from (9), we find

lim
n→∞

∥
∥
∥J yi

n − J T n
i xn

∥
∥
∥ = 0.

Since J−1 : E∗ → E is uniformly continuous on each bounded subset of E∗, the last
relation implies limn→∞

∥
∥yi

n − T n
i xn

∥
∥ = 0. Hence, from (8) we obtain

lim
n→∞ T n

i xn = p, i = 1, . . . , N . (10)

By (3), (10) and the uniform Li -Lipschitz continuity of Ti , we have

∥
∥
∥T n+1

i xn − T n
i xn

∥
∥
∥ ≤

∥
∥
∥T n+1

i xn − T n+1
i xn+1

∥
∥
∥ +

∥
∥
∥T n+1

i xn+1 − xn+1

∥
∥
∥

+ ‖xn+1 − xn‖ + ∥
∥xn − T n

i xn
∥
∥

≤ (Li + 1) ‖xn+1 − xn‖ +
∥
∥
∥T n+1

i xn+1 − xn+1

∥
∥
∥

+ ∥
∥xn − T n

i xn
∥
∥ → 0.

Hence, limn→∞ T n+1
i xn = p, i.e., T n+1

i xn = Ti T n
i xn → p as n → ∞. In view of the

continuity of Ti and (10), it follows that Ti p = p for all i = 1, 2, . . . , N . Therefore
p ∈ F .

Step 5. Claim that p = x†:=ΠF (x0).
Indeed, since x† = ΠF (x0) ∈ F ⊂ Cn and xn = ΠCn (x0), from Lemma 1, we have

φ(xn, x0) ≤ φ(x†, x0) − φ(x†, xn) ≤ φ(x†, x0). (11)

Therefore,

φ(x†, x0) ≥ lim
n→∞ φ(xn, x0) = lim

n→∞
{
‖xn‖2 − 2 〈xn, J x0〉 + ‖x0‖2

}

= ‖p‖2 − 2 〈p, J x0〉 + ‖x0‖2

= φ(p, x0).

From the definition of x†, it follows that p = x†. The proof of Theorem 1 is
complete. ��
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Remark 1 If in Theorem 1 instead of the uniform Lipschitz continuity of the operators
Ti , i = 1, . . . , N , we require their closedness and asymptotical regularity [6], i.e., for
any bounded subset K of C ,

lim
n→∞ sup

{∥
∥
∥T n+1

i x − T n
i x

∥
∥
∥ : x ∈ K

}
, i = 1, . . . , N ,

then we obtain the strong convergence of a simplier method than the corresponding
ones in Cho et al. [6] and Chang et al. [5].

For the case N = 1, Theorem 1 gives the following monotone hybrid method, which
modifies the corresponding algorithms in Kim and Xu [17], as well as Kim and Taka-
hashi (Theorems 3.1, 3.7, 4.1 [16]).

Corollary 1 Let E be a real uniformly smooth and uniformly convex Banach space
and C be a nonempty closed convex subset of E. Let T : C → C be an asymptotically
quasi φ-nonexpansive mapping with a sequence {kn} ⊂ [1,+∞), kn → 1. Moreover,
suppose that the mapping T is uniformly L-Lipschitz continuous and the set F(T ) is
nonempty and bounded in C. Let {xn} be the sequence generated by

x0 ∈ C, C0:=C,

yn = J−1 (αn J xn + (1 − αn)J T n xn) ,

Cn+1:= {v ∈ Cn : φ(v, yn) ≤ φ(v, xn) + εn} ,

xn+1 = ΠCn+1 x0, n ≥ 0,

where εn = (kn − 1)(ω + ||xn||)2 and {αn} is a sequence in [0, 1] such that
limn→∞ αn = 0. Then {xn} converges strongly to x†:=ΠF(T )x0.

Next, we consider a modified version of the algorithm proposed in Theorem 1.

Theorem 2 Let E be a real uniformly smooth and uniformly convex Banach space
and C be a nonempty closed convex subset of E. Let {Ti }N

i=1 : C → C be a finite
family of asymptotically quasi φ-nonexpansive mappings with a sequence {kn} ⊂
[1,+∞), kn → 1. Moreover, suppose for each i ≥ 1, the mapping Ti is uniformly Li

- Lipschitz continuous and the set F = ⋂N
i=1 F(Ti ) is nonempty and bounded in C.

Let {xn} be the sequence generated by

x0 ∈ C, C0:=C,

yi
n = J−1

(
αn J x0 + (1 − αn)J T n

i xn
)
, i = 1, 2, . . . , N ,

in = arg max
1≤i≤N

{∥
∥yi

n − xn
∥
∥
}
, ȳn :=yin

n ,

Cn+1:= {v ∈ Cn : φ(v, ȳn) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn) + εn} ,

xn+1 = ΠCn+1 x0, n ≥ 0,

where εn = (kn − 1)(ω + ||xn||)2 and {αn} is a sequence in [0, 1] such that
limn→∞ αn = 0. Then {xn} converges strongly to x†:=ΠF x0.
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Proof Following five steps in the proof of Theorem 1, we can show that:

(i) Cn and F are closed and convex subset of C for all n ≥ 0. Therefore, ΠCn x0, n ≥
0 and ΠF x0 are well-defined.

(ii) F ⊂ Cn for all n ≥ 0.
Suppose F ⊂ Cn for some n ≥ 0 (F ⊂ C0 = C). For each u ∈ F , using the
convexity of ‖.‖2, we get

φ(u, ȳn) = ‖u‖2 − 2 〈u, J ȳn〉 + ‖ȳn‖2

≤ αnφ(u, x0) + kn(1 − αn)φ(u, xn)

≤ αnφ(u, x0) + (1 − αn)φ(u, xn) + (kn − 1)(1 − αn)φ(u, xn)

≤ αnφ(u, x0) + (1 − αn)φ(u, xn) + (kn − 1)(ω + ||xn||2)
= αnφ(u, x0) + (1 − αn)φ(u, xn) + εn .

This implies that u ∈ Cn+1. Hence F ⊂ Cn+1. By induction, we obtain F ⊂ Cn

for all n ≥ 0.
(iii) The sequence {xn} converges strongly to some point p ∈ C as n → ∞. For each

u ∈ F ⊂ Cn , using Lemma 1 and taking into account that xn = ΠCn x0, we have

φ(xn, x0) ≤ φ(u, x0) − φ(u, xn) ≤ φ(u, x0).

Therefore, the sequence {φ(xn, x0)} is bounded. From (2), {xn} is also bounded.
Since Cn+1 ⊂ Cn and xn+1 = ΠCn+1x0 ∈ Cn for all n ≥ 0, by Lemma 1 we
have

φ(xn, x0) ≤ φ(xn+1, x0) − φ(xn+1, xn) ≤ φ(xn+1, x0).

Thus, the sequence {φ(xn, x0)} is nondecreasing, hence it has a finite limit as
n → ∞. Moreover, for all m ≥ n, we also have xm = ΠCm x0 ∈ Cm ⊂ Cn .

From xn = ΠCn x0 and Lemma 1, we obtain

φ(xm, xn) ≤ φ(xm, x0) − φ(xn, x0) → 0 (12)

as m, n → ∞. Lemma 2 yields ‖xm − xn‖ → 0 as m, n → ∞. Therefore, {xn}
is a Cauchy sequence in C . Since E is Banach space and C is closed, xn → p ∈ C
as n → ∞.

(iv) p ∈ F .

In view of xn+1 ∈ Cn+1 and by the construction of Cn+1, we get

φ(xn+1, ȳn) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, xn) + εn . (13)

Using limn→∞ αn = 0, relations (12), (13), and noting that εn → 0, we
find φ(xn+1, ȳn) → 0 as n → ∞. This together with Lemma 2 implies that
‖xn+1 − ȳn‖ → 0. Therefore, ȳn → p and ||xn − ȳn|| → 0. Further, by the definition
of in , we have

∥
∥xn − yi

n

∥
∥ ≤ ||xn − ȳn|| → 0 as n → ∞ for all i = 1, 2, . . . , N ,

hence, from xn → p, we obtain
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lim
n→∞ yi

n = p, i = 1, 2, . . . , N . (14)

Taking into account the relation yi
n = J−1

(
αn J x0 + (1 − αn)J T n

i xn
)
, we obtain

∥
∥
∥J yi

n − J T n
i xn

∥
∥
∥ = αn

∥
∥J x0 − J T n

i xn
∥
∥ . (15)

Observing that {xn} is bounded, Ti is uniformly Li -Lipschitz continuous, and the
solution set F is not empty, we have ||J x0 − J T n

i xn|| ≤ ||J x0|| + ||J T n
i xn|| =

||x0|| + ||T n
i xn|| ≤ ||x0|| + ||T n

i xn − T n
i ξ || + ||ξ || ≤ ||x0|| + Li ||xn − ξ || + |ξ ||,

where ξ ∈ F is an arbitrary fixed element. The last inequality proves the boundedness
of the sequence

{∥
∥J x0 − J T n

i xn
∥
∥
}
. Using limn→∞ αn = 0 from (15), we find

lim
n→∞

∥
∥
∥J yi

n − J T n
i xn

∥
∥
∥ = 0.

Since J−1 : E∗ → E is uniformly continuous on each bounded subset of E∗, the last
relation implies limn→∞

∥
∥yi

n − T n
i xn

∥
∥ = 0. Hence, from (14) we obtain

lim
n→∞ T n

i xn = p, i = 1, . . . , N .

Finally, a similar argument as in Step 5 of Theorem 1 leads to the conclusion that
p ∈ F and p = x† = ΠF x0. The proof of Theorem 2 is complete. ��
Remark 2 Theorem 2 is an extended version of Theorem 3.1 in [6] and Corollary 2.5
in [7] for a family of asympotically quasi-φ-nonexpansive mappings. It also simplifies
some previous results of Chang and Yan (Theorem 2.1 [7]) and Cho, Qin, and Kang
(Theorem 3.5 [6]). In the case N = 1, our method modifies the algorithm of Kim and
Takahashi [16].

In the next theorem, we show that for quasi φ-nonexpansive mappings {Ti }N
i=1, the

assumptions on their uniform Lipschitz continuity, as well as the boundedness of the
set of common fixed points F = ⋂N

i=1 F(Ti ) are redundant.

Theorem 3 Let E be a real uniformly smooth and uniformly convex Banach space,
C be a nonempty closed convex subset of E, and {Ti }N

i=1 : C → C be a finite family

of closed and quasi φ-nonexpansive mappings. Suppose that F = ⋂N
i=1 F(Ti ) 
= Ø.

Let {xn} be the sequence generated by

x0 ∈ C, C0:=C,

yi
n = J−1 (αn J xn + (1 − αn)J Ti xn) , i = 1, 2, . . . , N ,

in = arg max
1≤i≤N

{∥
∥yi

n − xn
∥
∥
}
, ȳn :=yin

n ,

Cn+1:= {v ∈ Cn : φ(v, ȳn) ≤ φ(v, xn)} ,

xn+1 = ΠCn+1 x0, n ≥ 0,
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where {αn} is a sequence in [0, 1] such that limn→∞ αn = 0. Then {xn} converges
strongly to x†:=ΠF x0.

Proof Since {Ti }N
i=1 : C → C are quasi φ - nonexpansive mappings, for each i =

1, . . . , N , we have

φ(p, Ti x) ≤ φ(p, x), ∀p ∈ F(Ti ), x ∈ C.

This implies that {Ti }N
i=1 are asymptotically quasi φ-nonexpansive mappings with

kn = 1, n ≥ 1. Putting εn = 0 and arguing similarly as in the proof of Theorem 1,
we get F ⊂ Cn . Using Lemma 1 and the fact that xn = ΠCn x0, we have φ(xn, x0) ≤
φ(p, x0) for each p ∈ F . Hence, the set {φ(xn, x0)} is bounded. This together with
inequality (2) implies that {xn} is bounded. Repeating the proof of the relations (3),
(8), we obtain

lim
n→∞ xn = p, (16)

lim
n→∞ yi

n = p, i = 1, 2, . . . , N . (17)

From the equality yi
n = J−1 (αn J xn + (1 − αn)J Ti xn) we have

∥
∥
∥J yi

n − J Ti xn

∥
∥
∥ = αn ‖J xn − J Ti xn‖ .

Observing that {xn} ⊂ C is bounded, from the definition of quasi φ-nonexpansive
mapping Ti , we get φ(p, Ti xn) ≤ φ(p, xn) for each p ∈ F . Estimate (2) ensures
that {Ti xn} is bounded for each i = 1, . . . , N . Therefore, ‖J xn − J Ti xn‖ ≤ ‖xn‖ +
‖Ti xn‖. The last inequality implies that the sequence {‖J xn − J Ti xn‖} is bounded.
Using limn→∞ αn = 0 we obtain

lim
n→∞

∥
∥
∥J yi

n − J Ti xn

∥
∥
∥ = 0. (18)

From (17), (18), by the same way as in the proof of (10), we get

lim
n→∞ Ti xn = p, i = 1, 2, . . . , N . (19)

By (16), (19) and the closedness of Ti , we obtain p ∈ F = ⋂N
i=1 F(Ti ). Finally,

arguing as in Step 5 of the proof of Theorem 1, we can show that p = x†. Thus, the
proof of Theorem 3 is complete. ��

By the same method we can prove the following result.

Theorem 4 Let E be a real uniformly smooth and uniformly convex Banach space,
C be a nonempty closed convex subset of E, and {Ti }N

i=1 : C → C be a finite family

of closed and quasi φ-nonexpansive mappings. Suppose that F = ⋂N
i=1 F(Ti ) 
= Ø.

Let {xn} be the sequence generated by
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x0 ∈ C, C0:=C,

yi
n = J−1 (αn J x0 + (1 − αn)J Ti xn) , i = 1, 2, . . . , N ,

in = arg max
1≤i≤N

{∥
∥yi

n − xn
∥
∥
}
, ȳn :=yin

n ,

Cn+1:= {v ∈ Cn : φ(v, ȳn) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn)} ,

xn+1 = ΠCn+1 x0, n ≥ 0,

where {αn} is a sequence in [0, 1] such that limn→∞ αn = 0. Then {xn} converges
strongly to x†:=ΠF x0.

Remark 3 Theorem 3 modifies Theorem 3.1 [27], Theorem 3.1 [34] and the algorithm
in Theorem 3.2 [15]. On the other hand, the method in Theorem 4 simplifies the
corresponding one in Theorem 3.3 [27]. It generalizes and improves Theorem 3.2
[26], Theorem 3.3 [5], and Theorem 3.1 in [23].

The following result can be obtained from Theorem 3 immediately.

Corollary 2 Let E be a real uniformly smooth and uniformly convex Banach space,
and C be a nonempty closed convex subset of E. Let {Ti }N

i=1 : C → C be a finite family

of closed relatively nonexpansive mappings. Suppose that F = ⋂N
i=1 F(Ti ) 
= Ø. Let

{xn} be the sequence generated by

x0 ∈ C, C0 = C,

yi
n = J−1 (αn J xn + (1 − αn)J Ti xn) , i = 1, 2, . . . , N ,

in = arg max
1≤i≤N

{∥
∥yi

n − xn
∥
∥
}
, ȳn :=yin

n ,

Cn+1 = {v ∈ Cn : φ(v, ȳn) ≤ φ(v, xn)} ,

xn+1 = ΠCn+1 x0, n ≥ 0,

where {αn} is a sequence in [0, 1] such that limn→∞ αn = 0. Then {xn} converges
strongly to x†:=ΠF x0.

Corollary 3 Let E be a real uniformly smooth and uniformly convex Banach space. Let
{Ai }N

i=1 : E → E∗ be a finite family of maximal monotone mappings with D(Ai ) = E
for all i = 1, . . . , N. Suppose that the solution set S of the system of operator equations
Ai (x) = 0, i = 1, . . . , N is nonempty. Let {xn} be the sequence generated by

x0 ∈ E, C0 = E,

yi
n = J−1

(
αn J xn + (1 − αn)J (J + ri Ai )

−1 J xn
)
, i = 1, 2, . . . , N ,

in = arg max
1≤i≤N

{∥
∥yi

n − xn
∥
∥
}
, ȳn :=yin

n ,

Cn+1 = {v ∈ Cn : φ(v, ȳn) ≤ φ(v, xn)} ,

xn+1 = ΠCn+1 x0, n ≥ 0,

123

Author's personal copy



P. K. Anh, D. Van Hieu

where {ri }N
i=1 are given positive numbers and {αn} is a sequence in [0, 1] such that

limn→∞ αn = 0. Then {xn} converges strongly to x†:=ΠS x0.

Proof Let C = D(Ai ) = E and Ti = (J + ri Ai )
−1 J : C → C . By Lemmas 5 and

4, the mappings Ti , i = 1, . . . , N , are closed and quasi φ-nonexpansive. Moreover,
F = ⋂N

i=1 F(Ti ) = ⋂N
i=1 A−1

i (0) = S 
= Ø. Thus, Theorem 3 ensures the conclusion
of Corollary 3.10. ��

3.2 Sequential hybrid methods

Now, we consider a sequential method for finding a common fixed point of a finite
family of asymptotically quasi φ-nonexpansive mappings.

Theorem 5 Let C be a nonempty closed convex subset of a real uniformly smooth
and uniformly convex Banach space E, and {Ti }N

i=1 : C → C be a finite family
of asymptotically quasi φ-nonexpansive mappings with {kn} ⊂ [1,+∞), kn → 1.
Suppose {Ti }N

i=1 are uniformly L-Lipschitz continuous and the set F = ⋂N
i=1 F(Ti )

is unempty and bounded in C, i.e., F ⊂ 	:={u ∈ C : ||u|| ≤ ω} for some positive ω.
Let {xn} be the sequence generated by

x1 ∈ C1 = Q1:=C,

yn = J−1
(
αn J x1 + (1 − αn)J T pn

jn
xn

)
,

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x1) + (1 − αn)φ(v, xn) + εn} ,

Qn = {v ∈ Qn−1 : 〈J x1 − J xn; xn − v〉 ≥ 0} ,

xn+1 = ΠCn
⋂

Qn x1, n ≥ 1,

where n = (pn −1)N + jn, jn ∈ {1, 2, . . . , N }, pn ∈ {1, 2, . . .} , εn = (kpn −1)(ω+
||xn||)2 and {αn} is a sequence in [0, 1] such that limn→∞ αn = 0. Then the sequence
{xn} converges strongly to x†:=ΠF x1.

For the proof of Theorem 5 we need the following result.

Lemma 6 Assume that all conditions of Theorem 5 holds. Moreover,

lim
n→∞

∥
∥
∥xn − T pn

jn
xn

∥
∥
∥ = 0, lim

n→∞ ‖xn − xn+l‖ = 0

for all l ∈ {1, 2, . . . , N }. Then

lim
n→∞ ‖xn − Tl xn‖ = 0, l = 1, . . . , N .

Proof For each n > N , we have n = (pn − 1)N + jn . Hence n − N = ((pn − 1) −
1)N + jn = (pn−N − 1)N + jn−N . So

pn − 1 = pn−N , jn = jn−N .
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We have

∥
∥xn − Tjn xn

∥
∥ ≤

∥
∥
∥xn − T pn

jn
xn

∥
∥
∥ +

∥
∥
∥T pn

jn
xn − Tjn xn

∥
∥
∥

≤
∥
∥
∥xn − T pn

jn
xn

∥
∥
∥ + L

∥
∥
∥T pn−1

jn
xn − xn

∥
∥
∥

≤
∥
∥
∥xn − T pn

jn
xn

∥
∥
∥ + L

∥
∥
∥T pn−1

jn
xn − T pn−1

jn−N
xn−N

∥
∥
∥

+ L
∥
∥
∥T pn−1

jn−N
xn−N − xn−N

∥
∥
∥ + L ‖xn−N − xn‖

=
∥
∥
∥xn − T pn

jn
xn

∥
∥
∥ + L

∥
∥
∥T pn−N

jn−N
xn−N − xn−N

∥
∥
∥

+ (L2 + L) ‖xn−N − xn‖ .

This together with the hypotheses of Lemma 6 implies

lim
n→∞

∥
∥xn − Tjn xn

∥
∥ = 0.

For each l ∈ {1, 2, . . . , N } we have

∥
∥xn − Tjn+l xn

∥
∥ ≤ ‖xn − xn+l‖ + ∥

∥xn+l − Tjn+l xn+l
∥
∥ + ∥

∥Tjn+l xn+l − Tjn+l xn
∥
∥

≤ ‖xn − xn+l‖ + ∥
∥xn+l − Tjn+l xn+l

∥
∥ + L ‖xn+l − xn‖

= (1 + L) ‖xn − xn+l‖ + ∥
∥xn+l − Tjn+l xn+l

∥
∥ .

Hence, limn→∞
∥
∥xn − Tjn+l xn

∥
∥ = 0 for all l ∈ {1, 2, . . . , N }; therefore,

∀ε > 0, ∃n0 : ∀n ≥ n0 ∀l = 1, . . . , N , ||xn − Tjn+l xn|| < ε.

On the other hand, for any fixed n ≥ 0 and i = 1, . . . , N , we can find l ∈ {1, . . . , N },
such that i = jn+l . Thus, ||xn − Ti xn|| ≤ supl∈{1,...,N } ||xn − Tjn+l xn|| < ε for all
n ≥ n0, which means that limn→∞ ‖xn − Ti xn‖ = 0, i = 1, . . . , N . The proof of
Lemma 6 is complete. ��
Proof of Theorem 5 The proof will be divided into five steps.

Step 1. The sets F, Cn, Qn are closed and convex for all n ≥ 1.
Indeed, from the uniform L-Lipschitz continuity of Ti , we see that Ti is closed. By
Lemma 3, F(Ti ) is closed and convex subset of C for all i = 1, . . . , N . Hence,
F = ⋂N

i=1 F(Ti ) is closed and convex. Further, Cn and Qn are closed for all n ≥ 1 by
the definition. From the inequality φ(v, yn) ≤ αnφ(v, x1) + (1 − αn)φ(v, xn) + εn ,
we obtain

2 〈v, J xn〉 + 2αn 〈v, J x1− J yn − J xn〉 ≤ αn ‖x1‖2 + (1−αn) ‖xn‖2−‖yn‖2 + εn,

which implies the convexity of Cn for all n ≥ 1. Further, Q1 = C is convex. If Qn is
convex for some n ≥ 1, then Qn+1 is also convex by the definition. So, Qn is convex
for all n ≥ 1.
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Step 2. F ⊂ Cn
⋂

Qn for all n ≥ 1.
For each u ∈ F , we have

φ(u, yn) = ‖u‖2 − 2 〈u, J yn〉 + ‖yn‖2

= ‖u‖2 − 2αn 〈u, J x1〉 − 2(1 − αn)
〈
u, J T pn

jn
xn

〉

+
∥
∥
∥αn J x1 + (1 − αn)J T pn

jn
xn

∥
∥
∥

2

≤ ‖u‖2 − 2αn 〈u, J x1〉 − 2(1 − αn)
〈
u, J T pn

jn
xn

〉

+αn ‖x1‖2 + (1 − αn)

∥
∥
∥T pn

jn
xn

∥
∥
∥

2

= αnφ(u, x1) + (1 − αn)φ(u, T pn
jn

xn)

≤ αnφ(u, x1) + kpn (1 − αn)φ(u, xn)

≤ αnφ(u, x1) + (1 − αn)φ(u, xn) + (kpn − 1)(1 − αn)φ(u, xn)

≤ αnφ(u, x1) + (1 − αn)φ(u, xn) + (kpn − 1)(ω + ||xn||2)
= αnφ(u, x1) + (1 − αn)φ(u, xn) + εn .

This implies that u ∈ Cn . Hence F ⊂ Cn for all n ≥ 1. We also have F ⊂ Q1 = C .
Suppose that F ⊂ Qn for some n ≥ 1. From xn+1 = ΠCn

⋂
Qn x1 and Lemma 1, it

follows that 〈J x1 − J xn+1, xn+1 − z〉 ≥ 0 for all z ∈ Cn
⋂

Qn . Since F ⊂ Cn
⋂

Qn ,
we have

〈J x1 − J xn+1, xn+1 − z〉 ≥ 0

for all z ∈ F . Hence, from the definition of Qn+1, we obtain F ⊂ Qn+1. By the
induction, F ⊂ Qn for all n ≥ 1.

Step 3. limn→∞ ‖xn − Tl xn‖ = 0 for all l = 1, . . . , N .
Since xn = ΠQn x1, F ⊂ Qn , by Lemma 1, we have φ(xn, x1) ≤ φ(p, x1) −
φ(xn, p) ≤ φ(p, x1) for each p ∈ F . Hence, the sequence {φ(xn, x1)} and {xn}
are bounded. Moreover, from xn+1 = ΠCn

⋂
Qn x1 ∈ Qn , xn = ΠQn x1 and Lemma

1, it follows that φ(xn, x1) ≤ φ(xn+1, x1). Thus, the sequence {φ(xn, x1)} is non-
decreasing and the limit of the sequence {φ(xn, x1)} exists. This together with
φ(xn+1, xn) ≤ φ(xn, x1) + φ(xn+1, x1), implies that

lim
n→∞ φ(xn+1, xn) = 0. (20)

Since {xn} is bounded, there exists M > 0 such that ‖xn‖ ≤ M for all n ≥ 1. Using
the boundedness of F and estimate (2), we get

εn = (kpn − 1) (ω + ‖xn‖)2 ≤ (kpn − 1) (ω + M)2 → 0 (n → ∞). (21)

Taking into account xn+1 = ΠCn
⋂

Qn x1 ∈ Cn , and using the relations (20), (21), and
limn→∞ αn = 0, from the definition of Cn we find
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φ(xn+1, yn) ≤ αnφ(xn+1, x1) + (1 − αn)φ(xn+1, xn) + εn → 0 (n → ∞).

Lemma 2 gives

lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = lim
n→∞ ‖xn − yn‖ = 0.

and

lim
n→∞ ‖xn+l − xn‖ = 0 (22)

for all l ∈ {1, 2, . . . , N }. Note that from yn = J−1
(
αn J x1 + (1 − αn)J T pn

jn
xn

)
, we

have
∥
∥
∥J yn − J T pn

jn
xn

∥
∥
∥ = αn

∥
∥
∥J x1 − J T pn

jn
xn

∥
∥
∥ . (23)

Observing that {xn} is bounded, Tjn is uniformly L-Lipschitz continuous and the
solution set F is not empty, we have ||J x1 − J T pn

jn
xn|| ≤ ||J x1|| + ||J T pn

jn
xn|| =

||x1|| + ||T pn
jn

xn|| ≤ ||x1|| + ||T pn
jn

xn − T pn
jn

ξ || + ||ξ || ≤ ||x1|| + L||xn − ξ || + |ξ ||,
where ξ ∈ F is an arbitrary fixed element. The last inequality proves the boundedness

of the sequence
{∥
∥
∥J x1 − J T pn

jn
xn

∥
∥
∥
}

. Using limn→∞ αn = 0, from (23), we find

lim
n→∞

∥
∥
∥J yn − J T pn

jn
xn

∥
∥
∥ = 0.

Since J−1 : E∗ → E is uniformly continuous on each bounded set, we get

lim
n→∞

∥
∥
∥yn − T pn

jn
xn

∥
∥
∥ = 0.

This together with limn→∞ ‖xn − yn‖ = 0 implies that

lim
n→∞

∥
∥
∥xn − T pn

jn
xn

∥
∥
∥ = 0. (24)

From (22), (24) and Lemma 6, we obtain

lim
n→∞ ‖xn − Tl xn‖ = 0 (25)

for all l ∈ {1, 2, . . . , N }.
Step 4. limn→∞ xn = p ∈ F .
Indeed, note that the limit of the sequence {φ(xn, x1)} exists. By the construction of
Qn , we have Qm ⊂ Qn for all m ≥ n. Moreover, xn = ΠQn x1 and xm ∈ Qm ⊂ Qn .
These together with Lemma 1 imply that φ(xm, xn) ≤ φ(xm, x1) − φ(xn, x1) → 0 as
m, n → ∞. By Lemma 2, we get limm,n→∞ ‖xm − xn‖ = 0. Hence, {xn} is a Cauchy
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sequence. Since C is a closed and convex subset of the Banach space E , the sequence
{xn} converges strongly to p ∈ C . Since Tl is L-Lipschitz continuous mapping, it is
continuous for all l ∈ {1, 2, . . . , N }. Hence

‖p − Tl p‖ = lim
n→∞ ‖xn − Tl xn‖ = 0, ∀l ∈ {1, 2, . . . , N } .

This implies that p ∈ F .

Step 5. p = ΠF x1.
From x†:=ΠF x1 ∈ F ⊂ Cn

⋂
Qn and xn+1 = ΠCn

⋂
Qn x1, we have φ (xn+1, x1) ≤

φ
(
x†, x1

)
. Hence

φ (p, x1) = lim
n→∞ φ (xn, x1) ≤ φ

(
x†, x1

)
.

Therefore, p = x†. The proof of Theorem 5 is complete. ��
For a finite family of closed and quasi φ-nonexpansive mappings, the assumption

on the boundedness of F = ⋂N
i=1 F(Ti ) is redundant.

Theorem 6 Let E be a real uniformly smooth and uniformly convex Banach space,
and C a nonempty closed convex subset of E. Let {Ti }N

i=1 : C → C be a finite
family of closed and quasi φ-nonexpansive mappings. Suppose {Ti }N

i=1 are L-Lipschitz

continuous and F = ⋂N
i=1 F(Ti ) 
= Ø. Let {xn} be the sequence generated by

x1 ∈ C1 = Q1:=C,

yn = J−1
(
αn J x1 + (1 − αn)J Tjn xn

)
,

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x1) + (1 − αn)φ(v, xn)} ,

Qn = {v ∈ Qn−1 : 〈J x1 − J xn; xn − v〉 ≥ 0} ,

xn+1 = ΠCn
⋂

Qn x1, n ≥ 1,

where n = (pn − 1)N + jn, jn ∈ {1, 2, . . . , N } and {αn} is a sequence in [0, 1] such
that limn→∞ αn = 0. Then the sequence {xn} converges strongly to x†:=ΠF x1.

Proof By our assumption, {Ti }N
i=1 is a finite family of closed and asymptotically quasi

φ-nonexpansive mappings with kn = 1 for all n ≥ 0. Putting εn = 0 and arguing simi-
larly as in the proofs of Theorem 5 and Lemma 6, we obtain limn→∞

∥
∥xn − Tjn xn

∥
∥ = 0

and limn→∞ ‖xn − Tl xn‖ = 0 for all l ∈ {1, 2, . . . , N }. Now repeating Steps 4 and 5
of the proof of Theorem 5, we come to the conclusion of Theorem 6. ��
Remark 4 One can establish the convergence of a monotone hybrid method as in
Theorem 5, which modifies Liu’s algorithm [20].

Corollary 4 Let C be a nonempty closed convex subset of a real uniformly smooth
and uniformly convex Banach space E. Let {Ti }N

i=1 : C → C be a finite family of
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closed relatively nonexpansive mappings. Suppose {Ti }N
i=1 are L-Lipschitz continuous

and F = ⋂N
i=1 F(Ti ) 
= Ø. Let {xn} be the sequence generated by

x1 ∈ C1 = Q1:=C,

yn = J−1
(
αn J x1 + (1 − αn)J Tjn xn

)
,

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x1) + (1 − αn)φ(v, xn)} ,

Qn = {v ∈ Qn−1 : 〈J x1 − J xn; xn − v〉 ≥ 0} ,

xn+1 = ΠCn
⋂

Qn x1, n ≥ 1,

where n = (pn − 1)N + jn, jn ∈ {1, 2, . . . , N } and {αn} is a sequence in [0, 1] such
that limn→∞ αn = 0. Then the sequence {xn} converges strongly to x†:=ΠF x1.

Corollary 5 Let E be a real uniformly smooth and smooth convex Banach space. Let
{Ai }N

i=1 : E → E∗ be a finite family of maximal monotone mappings with D(Ai ) = E
for all i = 1, . . . , N. Suppose that the solution set S of the system of operator equations
Ai (x) = 0, i = 1, . . . , N is nonempty. Let {xn} be the sequence generated by

x1 ∈ E, C1 = E,

yn = J−1
(
αn J x1 + (1 − αn)J (J + r jn A jn )

−1 J xn
)
, i = 1, 2, . . . , N ,

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x1) + (1 − αn)φ(v, xn)} ,

Qn = {v ∈ Qn−1 : 〈J x1 − J xn; xn − v〉 ≥ 0} ,

xn+1 = ΠCn
⋂

Qn x1, n ≥ 1,

where {ri }N
i=1 are given positive numbers and {αn} is a sequence in [0, 1] such that

limn→∞ αn = 0. Then {xn} converges strongly to x†:=ΠS x1.

We end this paper by considering a numerical example. Suppose we are given two
sequences of positive numbers 0 < t1 < . . . < tN < 1 and si ∈ (1, 1

1−ti
]; i =

1, . . . , N . An example of such {si }N
i=1 are si = ∑mi

k=0 tk
i , where the integers mi ≥ 1

for all i = 1, . . . , N .
Let E = R1 be a Hilbert space with the standart inner product 〈x, y〉 :=xy and the

norm ||x ||:=|x | for all x, y ∈ E . In this case the normalized dual mapping J = I
and the Lyapunov functional φ(x, y) = |x − y|2. We define the mappings Ti : C →
C, i = 1, . . . , N , where C :=[0, 1], as follows:

Ti (x) = 0, for x ∈ [0, ti ], and Ti (x) = si (x − ti ), if x ∈ [ti , 1].
It is easy to verify that F(Ti ) = {0}, φ(Ti (x), 0) = |Ti (x)|2 ≤ |x |2 = φ(x, 0) for

every x ∈ C and |Ti (1) − Ti (ti )| = si (1 − ti ) > |1 − ti |. Hence, the mappings Ti are
quasi φ-nonexpansive but not nonexpansive.
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According to Theorem 3, the iteration sequence {xn} generated by

x0 ∈ C, C0:=C,

yi
n = αn xn + (1 − αn)Ti xn, i = 1, 2, . . . , N ,

in = arg max
1≤i≤N

{|yi
n − xn|} , ȳn :=yin

n ,

Cn+1:= {v ∈ Cn : |v − ȳn| ≤ |v − xn|} ,

xn+1 = ΠCn+1 x0, n ≥ 0,

strongly converges to x†:=0, provided the sequence {αn} is chosen such that αn ∈
[0, 1] and αn → 0 as n → ∞.

Starting from C0 = C = [0, 1] we have

C1 =
{

v ∈ C0 : 2(ȳ0 − x0)

(
x0 + ȳ0

2
− v

)

≤ 0

}

. (26)

Due to the proof of Theorem 3, F = {0} ⊂ C1, hence (ȳ0 − x0)(
x0+ȳ0

2 ) ≤ 0. Thus,
ȳ0 ≤ x0. If ȳ0 = x0 then from the definition of i0, we find yi

0 = x0 for all i = 1, ..., N .
Moreover, since yi

0 = α0x0 + (1 − α0)Ti x0, we get x0 = α0x0 + (1 − α0)Ti x0, i =
1, . . . , N , hence, x0 is a desired common fixed point and the algorithm finishes at
step n = 0. Now suppose that ȳ0 < x0. Then (26) implies that C1 = [0,

x0+ȳ0
2 ] and

x1 = ΠC1 x0 = x0+ȳ0
2 .

We assume by induction that at the n-th step (n ≥ 1), either xn−1 is a common
fixed point of Ti , i = 1, . . . , N , and the algorithm finishes at the (n − 1)-step, or
Cn = [0,

xn−1+ȳn−1
2 ] and xn = ΠCn x0 = xn−1+ȳn−1

2 . By the definition of Cn+1 we

have Cn+1 = {v ∈ Cn : 2(ȳn − xn)(
xn+ȳn

2 − v) ≤ 0}, or equivalently,

Cn+1 =
[

0,
xn−1 + ȳn−1

2

] ⋂{

v ∈ [0, 1] : 2(ȳn − xn)

(
xn + ȳn

2
− v

)

≤ 0

}

(27)

Since F = {0} ⊂ Cn+1, we find that (ȳn −xn)(
xn+ȳn

2 ) ≤ 0, hence ȳn ≤ xn . If ȳn = xn

then by the definition of in , we get yi
n = xn for all i = 1, ..., N . On the other hand,

yi
n = αn xn + (1 − αn)Ti xn , hence, xn = αn xn + (1 − αn)Ti xn . Thus, xn is a common

fixed point of the family {Ti }N
i−1 and the algorithm finishes at the n-th step. In the

remaining case ȳn < xn, relation (27) gives

Cn+1 =
[

0,
xn−1 + ȳn−1

2

] ⋂[

0,
xn + ȳn

2

]

. (28)

Noting that xn+ȳn
2 < xn = xn−1+ȳn−1

2 , and using (28) we come to the conclusion that

Cn+1 = [0,
xn+ȳn

2 ], and xn+1 = ΠCn+1 x0 = xn+ȳn
2 .

On the other hand, applying Liu’s sequential method [20], at the n − th iteration, we
need to compute yn :=αn x0 + (1 − αn)Tkn xn, where kn = n(modN ) + 1. Observing
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that 0 ≤ Tkn xn ≤ xn ≤ 1, we have if xn = Tkn xn then xn is a fixed point of Tkn , which
is also a common fixed point of the family {Ti }N

i=1. Otherwise, we get Tkn xn < xn ,
which leads to the formula

xn+1 = min

{

xn,
αn x2

0 + (1 − αn)x2
n − y2

n

2(αn x0 + (1 − αn)xn − yn)

}

.

The numerical experiment is performed on a LINUX cluster 1350 with 8 computing
nodes. Each node contains two Intel Xeon dual core 3.2 GHz, 2GBRam. All the
programs are written in C.

For given tolerances we compare execution time of the parallel hybrid method
(PHM) and Liu’s sequential method (LSM) [20]. From Tables 1, 2 and 3, we see
that within a given tolerance, the sequential method is more time consuming than the
parallel one, in both parallel and sequential mode. Further, whenever the tolerance is
small, the sequential method converges very slowly or practically diverges.

We use the following notations:

PHM The parallel hybrid method

LSM Liu’s sequential method [20]

N Number of quasi φ-nonexpansive mappings

T O L Tolerance ‖xk − x∗‖
very slow conv. Convergence is very slow or divergence

Tp Time for PHM’s execution in parallel mode (2CPUs—in seconds)

Ts Time for PHM’s execution in sequential mode (in seconds)

TL Time for LSM’s execution (in seconds).

We perform experiments with N = 5 × 106, ti = i
N+1 , si = 1 + ti , i = 1, . . . , N .

Within the tolerance T O L = 10−4, for αn = 1/n and αn = 10−n , the computing
times of Liu’s method are 30.89 sec. and 26.57 sec., respectively. Moreover, for αn =
1/(log n+2), after 287.25 sec., Liu’s method gives an approximate solution x̃ = 0.327,
which is very far from the exact solution x∗ = 0. When T O L = 10−k, k = 5, 6, 8,
Liu’s method is practically divergent.

Tables 1, 2 and 3 give the execution times of the parallel hybrid method in
parallel mode (Tp) and sequential mode (Ts) within the given tolerances TOL for
different choices of αn . The maximal speed up of the parallel hybrid method is

Table 1 Experiment with
αn = 1/n

TOL PHM LSM

Tp Ts TL

10−5 1.06 1.90 Very slow conv

10−6 1.26 2.10 Very slow conv

10−8 1.47 2.74 Very slow conv
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Table 2 Experiment with
αn = 1

log n+2
TOL PHM LSM

Tp Ts TL

10−5 1.27 2.52 Very slow conv

10−6 1.48 2.95 Very slow conv

10−8 1.89 3.58 Very slow conv

Table 3 Experiment with
αn = 10−n TOL PHM LSM

Tp Ts TL

10−5 0.84 1.68 Very slow conv

10−6 1.05 1.90 Very slow conv

10−8 1.26 2.31 Very slow conv

Sp:=Ts/Tp ≈ 2.0, hence, the efficency of the parallel computation by using two
processors is E p:=Sp/2 ≈ 1.0.
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