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Abstract

The rotor-router model is a popular deterministic analogue of random
walk. In this paper we prove that all orbits of the rotor-router operation
have the same size on a strongly connected directed graph (digraph) and
give a formula for the size. By using this formula we address the follow-
ing open question about orbits of the rotor-router operation: Is there an
infinite family of non-Eulerian strongly connected digraphs such that the
rotor-router operation on each digraph has a single orbit?

It turns out that on a strongly connected digraph the stationary dis-
tribution of the random walk coincides with the frequency of vertices in a
rotor walk. In this sense a rotor walk can simulate a random walk. This
gives a first similarity between two models on (finite) digraphs. We also
study the random walk on the set of single-chip-and-rotor states which is
induced by the random walk on a strongly connected digraph. We show
that its stationary distribution is unique and uniform on the set of recur-
rent states. This means that recurrent states occur at the same almost
sure frequency when the chip performs a random walk.

1 Introduction

The rotor-router model is a popular deterministic analogue of random walk
that was discovered firstly by Priezzhev, D. Dhar et al. as a model of self
organized criticality under the name “Eulerian walkers” [9]. The model has
become popular recently because it shows many surprising properties which are
similar to those of random walk [1, 2, 3, 5]. The model was studied mostly on
Zd with the problems similar to those of the random walk. Although the model
was defined firstly on (finite) graphs, there are not many known results on this
class of graphs, in particular a similarity between the two models on digraphs
is still unknown.

∗This paper was partially sponsored by Vietnam Institute for Advanced Study in Math-
ematics (VIASM) and the Vietnamese National Foundation for Science and Technology De-
velopment (NAFOSTED)
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(a) A grid graph (b) A single-chip-and-
rotor state (the plane
edges for rotor configura-
tion, and the black ver-
tex indicates the location
of the chip)

(c) Resulting single-chip-
and-rotor state

Fig. 1

Let G = (V, E) be a connected digraph. For each vertex v the set of the edges
emanating from v is equipped with a cyclic ordering. We denote by e+ the next
edge of edge e in this order. A vertex s of G is called sink if its outdegree is 0.
A rotor configuration ρ is a map from the set of non-sink vertices of G to E such
that for each non-sink vertex v of G ρ(v) is an edge emanating from v. We start
with a rotor configuration and a chip placed on some vertex of G. When a chip
is at a non-sink vertex v, routing chip at v with respect to a rotor configuration
ρ means the process of updating ρ(v) to ρ(v)+ , and then the chip moves along
the updated edge ρ(v) to the head. The chip is now at the head of the edge ρ(v).
We define a single-chip-and-rotor state (often briefly state) to be a pair (v, ρ) of
a vertex and a rotor configuration ρ of G. The vertex v in (v, ρ) indicates the
location of the chip in G. When v is not a sink, by routing the chip at v we obtain
a new state (v′, ρ′). This procedure is called rotor-router operation. Look at
Figure 1 for an illustration of the rotor-router operation. In this example the
acyclic ordering at each vertex is adapted to the counter-clockwise rotation.
When the chip is at a sink, it stays at the sink forever, and therefore the rotor-
router operation fixes such states. A sequence of vertices of G indicating the
consecutive locations of the chip is called a rotor walk.

If G has no sink, a state (v, ρ) is recurrent if starting from (v, ρ) and after
some steps (positive number of steps) of iterating the rotor-router operation we
obtain (v, ρ) again. The orbit of a recurrent state is the set of all states which
are reachable from the recurrent state by iterating the rotor-router operation.
Holroyd et al. gave a characterization for recurrent states [4]. By investigating
orbits of recurrent states on an Eulerian digraph the authors observed that
sizes of orbits are extremely short while number of recurrent states is typically
exponential in number of vertices. They asked whether there is an infinite family
of non-Eulerian strongly connected digraphs such that all recurrent states of
each digraph in the family are in a single orbit. An immediate fact from the
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results in [4, 9] is that all orbits have the same size on an Eulerian digraph,
namely |E|. So it is natural and important to ask whether this fact also holds
for general digraphs. For this problem we have the following main result.

Theorem 1. Let G = (V, E) be a strongly connected digraph, and c be a recur-

rent state of G. Then the size of the orbit of c is 1
M

∑

v∈V

deg+
G(v)TG(v), where

TG(v) denotes the number of oriented spanning trees of G rooted at v and M
denotes the greatest common divisor of the numbers in {TG(v) : v ∈ V }. As a
corollary, the number of orbits is M .

Note that the value TG(v) can be computed efficiently by using the matrix-
tree theorem [10]. Thus one can compute the size of an orbit efficiently without
listing all states in an orbit. Although the orbits depend on the choice of cyclic
orderings, it is interesting that the size of orbits is independent of the choice of
cyclic orderings. All recurrent states are in a single orbit if and only if M = 1.
By doing computer simulations on random digraph G(n, p) with p ∈ (0, 1) fixed,
we observe that Mn,p = 1 occurs with a high frequency when n is sufficiently
large. This observation contrasts with the observation on Eulerian digraphs
when one sees the orbits are extremely short [4, 9].

Question. Let p ∈ (0, 1) be fixed. Is Pr{Mn,p = 1} → 1 as n → ∞?

By using Theorem 1 we give a positive answer for the open question of Holroyd
et al. in [4].

Theorem 2. There is an infinite family of non-Eulerian strongly connected
digraphs Gn such that for each n all recurrent states of Gn are in a single orbit.

For G being a connected digraph such that deg+
G(v) ≥ 1 for any v ∈ V the

random walk on G is a process of moving the chip on V for which the chip at a
vertex v chooses an edge e emanating from v at random, and then moves to the
head of e. This process is a Markov chain on V . A random sequence of vertices
of G indicating the consecutive locations of the chip in this process is called a
random walk. The stationary distribution π on V is an important characteristic
which can be thought of as almost sure frequency of vertices in a random walk.
If G is strongly connected, the stationary distribution π of G is given by π(v) =
TG(v)deg

+

G
(v)

∑

w∈V

TG(w)deg
+

G
(w)

for any v ∈ V [7]. Let (X0, X1, X2, . . . ) be a random walk. It

follows from the ergodic theorem that Pr






lim

t→∞

∑

0≤i≤t−1

1{Xi=v}

t
= π(v)






= 1 for

any v ∈ V , where 1A denotes the indicator function, for which 1A(x) = 1 if
x ∈ A, and 1A(x) = 0 otherwise [6].

For G being strongly connected let (vi)
∞
i=0 be a rotor walk. As we will show

in the proof of Theorem 1 the number of occurences of the chip at a vertex
v in an orbit is 1

M
TG(v)deg+

G(v). This implies that in a rotor walk the chip
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visits a vertex v with the frequency lim
t→∞

∑

0≤i≤t−1

1{vi=v}

t
=

TG(v)deg+

G
(v)

∑

w∈V

TG(w)deg+

G
(w)

. This

frequency concides with π(v). Therefore a rotor walk can be used to simulate
a random walk in this sense. It would be interesting to explore properties of
random walks by investigating properties of rotor walks.

We also consider a natural non-deterministic variant of the rotor-router
model on a strongly connected digraph G in which the cyclic orderings are
relaxed. This variant can be considered as an intermediate model between the
random walk and the rotor-router model. In the variant the chip chooses a
neighbor at random and move to this neighbor. Thus there are many possible
next states for each state. In other words we have a random walk on the digraph
S of states which is defined by: The set of vertices of S is the set of states of
G, and a pair ((v, ρ), (v′, ρ′)) of states is an edge of S if ρ(w) = ρ′(w) for any
w 6= v, and ρ′(v) = (v, v′). Typically, the digraph S has very large numbers of
vertices and edges. Studying the stationary distribution of S could be extremely
complicated. Nevertheless, we will show that the stationary distribution of S is
unique and uniform on the set of recurrent states of G. More precisely, we will
prove the following theorem.

Theorem 3. The digraph S has a unique stationary distribution π̄ which is
given by

π̄(v, ρ) =







1∑

v∈V

TG(v)deg
+

G
(v)

if (v, ρ) is a recurrent state of G

0 otherwise

The chip alsmost surely visits all vertices of G after a finite number of steps of
moving. After this point one only gets recurrent states when the chip continue
the walk. The above theorem implies an interesting fact that the recurrent
states of G occur at the same frequency when the chip performs a random walk
on G.

The structure of this paper is as follows. In Section 2 we will give some
background on the rotor-router model and the random walk. The definitions and
the results on the rotor-router model we present in this section are mainly from
[4]. We also give an equivalent condition for the uniqueness of the stationary
distribution on digraphs, which is more intuitive than the one presented in [6].
In Section 3 we will give a proof for Theorem 1 and use this result to give a
proof for Theorem 2. In the last section we study the stationary distribution of
the random walk on the digraph of states of a strongly connected digraph. This
section is devoted to a proof for Theorem 3.
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2 Background on rotor-router model and ran-

dom walk

In this paper all digraphs are assumed to be loopless, and the multi-edges are
allowed. For a digraph G we denote by V (G) and E(G) the set of vertices
and the set of edges of G, respectively. In this section we work with a digraph
G = (V, E). The outdegree (resp. indegree) of a vertex v is denoted by deg+

G(v)
(resp. deg−G(v)). For two distinct vertices v and v′ we denote by aG(v, v′) the
number of edges connecting v to v′. A walk in G is an alternating sequence of
vertices and edges v0, e0, v1, e1, . . . , vk−1, ek−1, vk such that for each i ≤ k−1 we
have vi and vi+1 are the tail and the head of ei, respectively. A path is a walk
in which all vertices are distinct. For simplicity we often represent a walk (or
path) by e0, e1, . . . , ek−1, or v0, v1, v2, . . . , vk if there is no danger of confusion.
A subgraph T of G is called oriented spanning tree of G rooted at a vertex s of
G if s has outdegree 0 in T for every vertex v of G there is unique path from v to
s in T . If G has no sink, a single-chip-and-rotor state (w, ρ) is called a unicycle
if the subgraph of G induced by the edges in {ρ(v) : v ∈ V } contains a unicycle
and w lies on this cycle. Observe that the rotor-router operation takes unicycles
to unicycles. Look at Figure 2 for examples of unicycles and non-unicycles. For

(a) A unicycle (b) A non-unicycle (c) A non-unicycle

Fig. 2

a characterization of recurrent states we have the following lemma.

Lemma 1. [4] Let G = (V, E) be a strongly connected digraph. A state (w, ρ)
is recurrent if and only if (w, ρ) is a unicycle.

Fix a linear order v1 < v2 < · · · < vn on V , where n = |V |. The n × n
matrix given by

∆i,j =

{

−aG(vi, vj) if i 6= j

deg+
G(vi) if i = j,

is called the Laplacian matrix of G. Let j ∈ {1, 2, . . . , n} be an arbitrary and
∆′ be the matrix which is obtained from ∆ by deleting the jth row and the jth

column. We define the equivalence relation ∼ on Zn−1 by c1 ∼ c2 iff there is
z ∈ Zn−1 such that c1 − c2 = z∆′. We recall the matrix-tree theorem.
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s

(a) A digraph with a global
sink s

s

v

(b) A rotor configuration ρ

with a chip at vertex v

s

v

(c) When the chip arrives at
the sink: Evρ (plane edges)

Fig. 3

Theorem 4. [10] The number of oriented spanning trees of G rooted at vj is
equal to the number of equivalence classes of ∼, and therefore equal to Det(∆′).

It follows from the theorem that the value TG(v) can be computed efficiently by
using the Laplacian matrix.

A vertex s of G is called a global sink of G if s has outdegree 0 and for every
vertex v of G there is a path from v to s. If G has a global sink s, a rotor
configuration ρ on G is called acyclic if the subgraph of G induced by the edges
in {ρ(v) : v 6= s} is acyclic. Observe that if ρ is acyclic then {ρ(v) : v 6= s}
is an oriented spanning tree of G rooted at s. The chip-addition operator Ev

is the procedure of adding one chip to a vertex v of G and routing this chip
until it arrives at the sink. This procedure results the rotor configuration ρ′,
and we write Evρ = ρ′. Look at Figure 3 for an illustration of the chip-addition
operator.

Lemma 2. [4] Let G = (V, E) be a digraph with a global sink s. Then the
chip-addition operator is commutative. Moreover, for each v ∈ V the operator
Ev is a permutation on the set of acyclic rotor configurations of G.

If G has a global sink s, a chip configuration on G is a map from V \{s} to
N. The commutative property of the chip-addition operator allows us to define
the action of the set of chip configurations c on the set of rotor configurations

of G by c(ρ) :=
∏

v∈V \{s}

E
c(v)
v ρ. The following implies a bijective proof for the

matrix-tree theorem.

Lemma 3. [4] Let G be a digraph with a global sink s, ρ be an acyclic rotor
configuration on G, and σ1, σ2 be two chip configurations of G. Then σ1(ρ) =
σ2(ρ) if and only if σ1 and σ2 are in the same equivalence class.

If deg+
G(v) ≥ 1 for any v ∈ V , the n × n matrix P given by

Pi,j =

{
aG(vi,vj)

deg+

G
(vi)

i 6= j

0 otherwise
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is called transition matrix of G. A probability distribution π on V is called
stationary distribution if πP = P , where π is considered as a row vector whose
entries are adapted to the linear order. The condition for the uniqueness of
stationary distribution is given in [6]. We present a more intuitive equivalent
condition for the uniqueness of the stationary distribution.

Lemma 4. Let G = (V, E) be a digraph such that deg+
G(v) ≥ 1 for any v ∈ V .

The stationary distribution of G is unique if and only if there exists a vertex v
such that for any vertex w there is a path in G from w to v, or, equivalently
TG(v) ≥ 1.

Proof. An essential communicating class of G is a strongly connected compo-
nent C of G such that for any edge e of G if the tail of e is in C then its head
is also in C. It follows from [6] that the stationary distribution is unique if and
only if G has a unique essential communicating class.

Let H be the digraph defined as follows. The vertices of H is the set of
strongly connected components of G. Two distinct strongly connected compo-
nents C1, C2 are connected by an edge in H if there is an edge in G connecting
a vertex in C1 to a vertex in C2.

We have the graph H is acyclic, and every strongly connected component
of G whose outdegree 0 in H is an essential communicating class. This implies
that G has a unique stationary distribution if and only if the graph H has a
unique vertex of outdegree 0.

If H has a unique vertex of outdegree 0, let C denote this vertex. Then for
any vertex D of H there is a path from D to C in H. Let v be a vertex of G in
C. It follows that for any vertex w of G there is a path in G from w to v.

If H has two vertices of outdegree 0, say C1, C2. Let v be an arbitrary vertex
of G. Then there exists Ci, i ∈ {1, 2} such that v 6∈ Ci. Let w ∈ Ci. There is
no path from w to v in G since there is no edge in G from Ci to the outside of
Ci. This concludes the proof.

3 Orbits of rotor-router operation

In this section we work with a connected digraph G = (V, E). For simplicity we
use the notations deg+(v), deg−(v) and a(v, v′) to stand for deg+

G(v), deg−G(v)
and aG(v, v′), respectively. Fix a linear order v1 < v2 < · · · < vn on V , where
n = |V |, and let ∆ denote the Laplacian matrix of G with respect to this order.
For each vertex v let T (v) denote the number of oriented spanning trees of
G rooted at v. Let M denote the greatest common divisor of the numbers in
{T (v) : v ∈ V }. The following will be important in the proof Theorem 1. 1

Lemma 5. (T (v1), T (v2), . . . , T (vn))∆ = 0, where 0 denotes the row vector in
Zn whose entries are 0.

1This result was mentioned in [8] with a reference to a work which was in progress. However
we could not find the result in that work. So we decide to give a proof for this fact.
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Proof. Let Di,j denote the matrix that is obtained from ∆ by deleting the ith

row and jth column. We claim that det(Di,j) = (−1)i+jT (vi). Clearly, by the
matrix-tree theorem the claim holds for i = j. So we assume that i 6= j. If
suffices to show that det(D2,1) = −T (v2) since otherwise we can repeatedly
switch between rows and between columns so that we obtain a new Laplacian
matrix with respect to an linear order on V in which vj and vi are the first
and second elements in this order, respectively. Then we continue the proof
with this matrix. Let ∆′ denote the matrix obtained from ∆ by deleting the
second row and the second column. Since the sum of all columns of ∆

′

is equal
to minus the first column of D2,1, and the other columns of D2,1 are the same

as those of ∆
′

, we have det(∆
′

) = −det(D2,1). By the matrix-tree theorem we

have det(∆
′

) = T (v2), therefore det(D2,1) = −T (v2).
Since det(∆) = 0, for any j ∈ {1, 2, . . . , n} we have

0 = det(∆) =
∑

1≤i≤n

(−1)i+j∆i,jdet(Di,j)

=
∑

1≤i≤n

T (vi)∆i,j = (T (v1), T (v2), . . . , T (vn))(∆1,j, ∆2,j, . . . , ∆n,j)
>

This implies that (T (v1), T (v2), . . . , T (vn))∆ = 0.

From now until the end of this section we assume G to be strongly connected.
This assumption implies that T (v) ≥ 1 for any v ∈ V .

Corollary 1. The vector 1
M

(T (v1), T (v2), . . . , T (vn)) is a generator of the ker-
nel of the operator z 7→ z∆ in (Zn, +).

Proof. We consider the operator z 7→ z∆ in the vector space Qn over the field
Q. Since ∆ has rank n− 1, the kernel has dimension 1 in Qn. By Lemma 5 the
vector (T (v1), T (v2), . . . , T (vn)) is in the kernel. Thus for any vector z ∈ Zn

such that z∆ = 0 there exists q ∈ Q such that z = q(T (v1), T (v2), . . . , T (vn)).
Since M is the greatest common divisor of the numbers T (v1), T (v2), . . . , T (vn),
we have qM ∈ Z. This implies that 1

M
(T (v1), T (v2), . . . , T (vn)) is a generator

of the kernel of z 7→ z∆ in (Zn, +).

Lemma 6. For i ∈ {1, 2, . . . , n} let ∆
′

denote the matrix obtained from ∆ by
deleting the ith column. Then the order of ∆

′

i in the quotient group (Zn−1, +)/ <

{∆
′

j : j 6= i} > is T (vi)
M

.

Proof. Clearly, the order of ∆
′

i in (Zn−1, +)/ < {∆
′

j : j 6= i} > is the smallest
positive integer pi such that there exist integers p1, p2, . . . , pi−1, pi+1, . . . , pn

such that pi∆
′

i =
∑

j 6=i

pj∆
′

j , equivalently

(−p1,−p2, . . . ,−pi−1, pi,−pi+1, . . . ,−pn)∆ = 0

It follows from Corollary 1 that pi = T (vi)
M
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w1

(a) (w1, ρij
) = (wij

, ρij
)

w1

(b) (wij+1, ρij+1)

w1

(c) (wij+2, ρij+2)

w1

(d) (wij+3, ρij+3)

w1

(e) (wij+4, ρij+4) = (w1, ρij+1
)

w1

(f) ρij

w1

(g) ρij+1

Fig. 4
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Proof of Theorem 1. Let (w1, ρ1) be an arbitrary unicycle of G. Let (w1, ρ1),
(w2, ρ2), (w3, ρ3), . . . be the infinite sequence of states such that for any i ≥ 1
the state (wi+1, ρi+1) is obtained from the state (wi, ρi) by applying the rotor-
router operation. By collecting all states (wi, ρi) with wi = w1 we obtain the
subsequence (w1, ρi1), (w1, ρi2), (w1, ρi3), . . . . Note that 1 = i1. For each ρij

let uj denote the head of ρij
(w1). Let e1, e2, . . . , ek, where k = deg+(w1), be

an enumeration of the edges emanating from w1 such that e1 = ρ1(w1) and
ei+1 = e+

i for any i < k, and e1 = e+
k .

Let G denote the graph obtained from G by deleting all edges emanating
from w1, and for each ρij

let ρij
denote the restriction of ρij

on G. Note that

ρij
is an acyclic rotor configuration of G (See Figure 4). It follows from the

definition of the chip addition operator that ρij+1
= Euj+1

ρij
. For each q > 1

we define the chip configuration cq : V \{w1} → N by for any v ∈ V \{w1} cq(v)
is the number of occurrences of v in the sequence u2, u3, . . . , uq. The above

identity implies that ρiq
= cq(ρi1). Let ∆

′

be the matrix that is obtained from
∆ by deleting the column corresponding to w1. We have ρiq

= ρi1 if and only
if the following conditions hold

- the configuration cq is in the same equivalence class as 0 in G. This fact
follows from Lemma 3.

- cq = −p∆′w1
for some p, where ∆′w1

denotes the row of ∆′ corresponding
to the vertex w1. This follows the fact that the sequence ρi1 (w1), ρi2(w1),
, ρi3(w1) . . . is exactly the periodic sequence e1, e2, . . . , ek, e1, e2, . . . , ek, . . .
Note that ρi2(w1), ρi3(w1), . . . , ρiq

(w1) is a periodic sequence of length pk,
namely e2, e3, . . . , ek, e1, . . . , e2, e3 . . . , ek, e1

︸ ︷︷ ︸

length pk

.

Thus 1 + pk is the smallest q satisfying ρi1 = ρiq
, where p is the order of ∆′w1

in Zn−1/ < {∆′v : v ∈ V \{w1}} >. By Lemma 6 we have p = 1
M
T (w1). It

follows that in the orbit {(wi, ρi) : 1 ≤ i ≤ i1+pk − 1} the number of times the
chip passes through w1 is 1

M
deg+(w1)T (w1). Since this fact also holds for other

vertices, the size of orbit is 1
M

∑

v∈V

deg+(v)T (v).

Since the number of unicycles is
∑

v∈V

deg+(v)T (v), it follows that the number

of orbits of the rotor-router operation is M .

If G is an Eulerian digraph then the numbers of oriented spanning trees
T (v), v ∈ V are the same since T (v) is equal to the order of the sandpile group
of G with sink v and the sandpile group is independent of the choice of sink
[4]. Thus M = T (v1) = T (v2) = · · · = T (vn). By Theorem 1 each orbit of

the rotor-router operation has size
∑

v∈V

deg+(v) = |E|. We recover the result in

[4, 9].
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Proposition 1. [4, 9] Let G be an Eulerian digraph with m edges. Starting
from a unicycle (w, ρ) the chip traverses each edge exactly once before returning
to (w, ρ) for the first time.

Proof of Theorem 2. For each n ≥ 3 let Gn be the strongly connected digraph
given by V (Gn) := {1, 2, . . . , n} and E(Gn) := {(i, i+1) : 1 ≤ i ≤ n−1}∪{(i, 1) :
2 ≤ i ≤ n}. Since deg+

Gn
(1) = 1 and deg−Gn

(1) = n−1, Gn is not Eulerian. Since
Gn has exactly one oriented spanning tree rooted at n, namely the subgraph
induced by the edges in {(i, i+1) : 1 ≤ i ≤ n−1}, we have TGn

(n) = 1, therefore
MGn

= 1. By Theorem 1 all unicycles are in a single orbit.

The formula in Theorem 1 is very useful because one can use it to compute
size of an orbit effeciently without listing all unicycles in an orbit. As we saw
above, size of orbits on a strongly connected digraph is often large while it is
extremely short on an Eulerian digraph. If orbit size is too large (resp. too
small) then number of orbits is too small (resp. too large). Thus one would
expect to see an infinite family of strongly connected digraphs Gn on which
the rotor-router operation behaves moderately, i.e. both the orbit size and the
number of orbits grow exponentially in the number of vertices and in the number
of edges. By using Theorem 1 we construct easily such a family of digraphs as
follows. For n ≥ 1 the graph Gn has the vertex set {1, 2, . . . , n + 1}, and for
each i ∈ {1, 2, . . . , n} there are two edges connecting i to i + 1 and four edges
connecting i + 1 to i in Gn. It is easy to see that TGn

(i) = 4n+1−i × 2i−1 =
22n+1−i for any i ∈ {1, 2, . . . , n + 1}. Therefore we have MGn

= 2n. It follows
from Theorem 1 that the number of orbits is 2n and the size of orbits is greater

than
TGn (1)

2n = 2n. Thus the family of digraphs Gn has the desired property.

4 Random walks on set of single-chip-and-rotor

states

In this section we work with a strongly connected digraph G = (V, E). We
consider a natural non-deterministic variant of the rotor-router model in which
the cyclic orderings are relaxed. When the chip is at the state (v, ρ), it chooses
an edge e emanating from v at random and moves along this edge to the head.
We arrive at the new state (v′, ρ′), where v′ is the head of e, ρ′(v) = e and
ρ′(w) = ρ(w) for any vertex w 6= v (See Figure 5). This means that when the
chip performs a random walk on G with an initial state, it induces a random
walk on the digraph S of states of G, and vice-versa. The graph S is defined
as follows. The vertex set of V (S) is the set of all states of G and the edge set
E(S) is the set of all pairs ((v, ρ), (v′, ρ′)) of states of G such that ρ(w) = ρ′(w)
for any w 6= v, and ρ′(v) is an edge of G whose head v′. We observe that if (v, ρ)
is a unicycle then (v′, ρ′) is also a unicycle. The following means that when the
chip visits all vertices of G, we arrive at unicycles.

Proposition 2. Let ((vi, ρi))
k
i=1 be a walk in S for some k. If V ⊆ {v1, v2, . . . , vk}

then (vk, ρk) is a unicycle.

11
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(a) A state of G (plane edges and the
chip in black)

e

(b) The new state if the chip chooses
the edge e to move

Fig. 5

Proof. We say that two functions f, f ′ : X → Y agree on a subset X′ of X
if f(x) = f ′(x) for any x ∈ X′. Let ((vi, ρi))

k
i=1 be an arbitrary walk in S

and j ∈ {1, 2, . . . , k} be arbitrary. We claim that there is a path with edges in
{ρ(vi) : 1 ≤ i ≤ k} from vj to vk.

We prove the claim by induction on k. Clearly, the claim holds if k = 1. We
consider the case k ≥ 2. The claim is trivial if j = k. So we assume otherwise
j ≤ k − 1. By the inductive assumption there is a path P in {ρk−1(vi) :
1 ≤ i ≤ k − 1} from vj to vk−1. Note that this path may pass through vk if
vk ∈ {v1, v2, . . . , vk−2}. Since ρk−1 and ρk agree on V \{vk−1}, P is also a path
in {ρk(vi) : 1 ≤ i ≤ k−1}. Clearly, (P, ρk(vk−1)) is a walk in {ρk(vi) : 1 ≤ i ≤ k}
from vj to vk. Therefore there is a path in {ρk(vi) : 1 ≤ i ≤ k} from vj to vk.

If V ⊆ {v1, v2, . . . , vk}, the claim implies that for any vertex w ∈ V there is
a path in {ρk(vi) : 1 ≤ i ≤ k} from w to vk. Therefore (vk, ρk) is a unicycle.

Typically, the digraph S has very large numbers of vertices and edges. How-
ever we will show that the stationary distribution is unique and uniform on the
unicycles of G. The following lemma implies that the set of unicycles is a unique
essential communicating class of S.

Lemma 7. Let (w, ρ) be a unicycle and (u, σ) be a state. Then there is a path
in S from (u, σ) to (w, ρ).

Proof. We prove the lemma by induction on |V |. The assertion is trivial if
|V | = 1. We consider the case |V | ≥ 2. Since G is strongly connected digraph,
the chip can move to any vertex by a path in G. So we can assume that u = w.
Let C denote the cycle in (V, {ρ(v) : v ∈ V }). Starting from (u, σ) and letting
the chip traverse the cycle C in one round, we arrive at the state (u, σ′) such
that σ′ and ρ agree on the vertices in the cycle. So we can assume that ρ and
σ agree on the vertices of the cycle. Let C denote the set of vertices of C. For
two vertices v, v′ ∈ C let P (v, v′) denote the sequence (e1, e2, . . . , ek) of edges
in the cycle C such that the chip traverses the edges e1, e2, . . . , ek in this order
to move from v to v′ (See Figure 6).
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e3

v

v'

Fig. 6 - P (v, v′) = (e1, e2, e3)

Let H be the digraph which is obtained from G by removing all edges of G
connecting between the vertices in C and then gluing all vertices in C. Let z
be the vertex resulting from the gluing. An edge e of G not connecting between
vertices in C is an edge of H . Note that for an edge e of H if head (resp. tail)
of e is in C in G then head (resp. tail) of e is z in H . Gluing vertices does not
make a graph lose the strong connectivity. The digraph G is strongly connected,
so is H . If H has exactly one vertex then we are done since ρ and σ agree on
C. We assume otherwise that H has at least two vertices.

Since H is strongly connected, there is an edge e′ in H whose tail z. The
states (w, ρ) and (u, σ) have two corresponding states (z, ρ′) and (z, σ′) in H
which are defined as follows. ρ′(z) = σ′(z) = e′, ρ′(v) = ρ(v) and σ′(v) = σ(v)
for any v ∈ V \C. Note that ρ′ is a unicycle of H . By the inductive assumption
there is a walk (f1, f2, . . . , fk) in H , where fi ∈ E(H), such that starting from
(z, σ′) we arrive at the state (z, ρ′) when the chip traverses this walk. By using
this walk we will construct a walk in G so that starting from (u, σ) we arrive at
(w, ρ) when the chip traverses this walk.

We observe that if the head of fi is different from the tail of fi+1 in G then
both the head of fi and the tail of fi+1 are in C. Based on this observation we
construct a walk of chip in G as follows. It is possible that u is not the tail of
e′ in G. If this case happens, we firstly let the chip move from u to the tail of
e′ by a path in C. The chip then traverses the edges f1, f2, . . . , fk in this order
in G normally. However it is not always possible for the chip to move in this
way since the head of fi may not be equal to the tail of fi+1. Whenever this
case happens, we let the chip traverse the path P (v, v′) from the head of fi to
the tail of fi+1 , and then continue the process normally, where v and v′ are the
head of fi and the tail of fi+1, respectively, (See Figure 7).

Let (f ′1, f
′
2, . . . , f

′
p) denote the walk in the above construction, where f ′i is

an edge of G, and let (u′′, σ′′) denote the resulting state. Clearly, we have
σ′′(v) = ρ′(v) for any v ∈ V \C, therefore σ′′(v) = ρ(v) for any v ∈ V \C. Since
starting from (z, σ′) the chip arrives at the vertex z when it traverses the edges
f1, f2, . . . , fk in this order in H , it follows that the chip arrives at a vertex in
C if the chip traverses the edges f ′1, f

′
2, . . . , f

′
p in this order in G. This implies

13



fi

fi+1 fi+2

fi+3

z

(a) a walk in H

fi
fi+1

e1

e2
e3

fi+2

fi+3

(b) the corresponding walk in G

Fig. 7

that u′′ is in C. By letting the chip traverse the cycle C in at least one round
we arrive at the state (u′′′, σ′′′) such that u′′′ = w, σ′′′ and ρ agree on C. Thus
(u′′′, σ′′′) = (w, ρ).

Proof of Theorem 3. It follows from Lemma 7 that the set of unicycles of G is
a unique essential communicating class of S. By Lemma 4 the digraph S has a
unique stationary distribution.

Let (w, ρ) be an arbitrary unicycle of G. Let
←↩
w be the vertex of G such that

ρ(
←↩
w ) = w and both w and

←↩
w lie on the cycle in the digraph (V, {ρ(v) : v ∈ V })

(See Figure 8). Let (w′, ρ′) be a state such that ((w′, ρ′), (w, ρ)) ∈ E(S). We

claim that if (w′, ρ′) is a unicycle of G then w′ =
←↩
w . We assume otherwise that

w′ 6=
←↩
w . Let C denote the cycle in (V, {ρ(v) : v ∈ V }). We distinguish the

following cases.

• w′ lies on the cycle C.
Since (w, ρ) is obtained from (w′, ρ′) by one step of the chip moving, we

have w = ρ(w′). Since both w′ and
←↩
w lie on the cycle C, it follows that

w′ =
←↩
w . This contradicts the assumption.

• w′ does not lie on the cycle C.
This implies that ρ′ and ρ agree on the vertices in the cycle C, therefore
C is a cycle in (V, {ρ′(v) : v ∈ V }). Thus (w′, ρ′) is not a unicycle, a
contradiction.

Let (
←↩
w, ρ′) be a state of G. Clearly, (

←↩
w, ρ′) is connected to (w, ρ) by an edge

in S if and only if ρ and ρ′ agree on every vertex of G distinct from
←↩
w . Moreover

if ρ and ρ′ agree on every vertex distinct from
←↩
w then (

←↩
w, ρ′) is a unicycle since

(
←↩
w, ρ) is a unicycle. It follows from the claim that the set of all unicycles of G

connecting to (w, ρ) in S is the {(
←↩
w, ρ′) : ρ′ and ρ agree on V \{

←↩
w}}. Note that

this set has deg+
G(
←↩
w) elements.
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Fig. 8 - A unicycle (w, ρ)

We observe that the outdegree of each state (w, ρ) in S is deg+
G(w). Let U

denote the set of unicycles of G and let H denote the subgraph of S induced by
U . It suffices to show that π̄|U is the stationary distribution of H. The digraph

H has the following property. If (X, Y ) ∈ E(S) then deg+
H(X) = deg−H(Y ).

Let Y be an arbitrary vertex of H. We have
∑

X∈U,(X,Y )∈E(H)

1
deg+

H(X)
π̄(X) =

1
deg

−
H(Y )

∑

X∈U,(X,Y )∈E(H)

π̄(X) = 1
deg

−
H(Y )

deg−H(Y )π̄(Y ) = π̄(Y ). This implies that

π̄|U is the stationary distribution of H, therefore π̄ is the stationary distribution
of S.
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