ON THE PETERSON HIT PROBLEM

NGUYEN SUM

ABSTRACT. Let Py := Fa[z1,22,...,2%] be the polynomial algebra over the
prime field of two elements, Fg, in k variables z1,x2,...,zk, each of degree
1. We study the hit problem, set up by F. Peterson, of finding a minimal set
of generators for Py as a module over the mod-2 Steenrod algebra, A. In this
paper, we study a minimal set of generators for .A-module Py in some so-call
generic degrees and apply these results to explicitly determine the hit problem
for k = 4.

Dedicated to Prof. N. H. V. Hung on the occasion of his siztieth birthday

1. INTRODUCTION AND STATEMENT OF RESULTS

Let Vi be an elementary abelian 2-group of rank k. Denote by BV}, the classifying
space of Vj. It may be thought of as the product of k copies of the real projective
space RP*°. Then

Pk = H*(ka) = FQ[(El,.’Eg, N 71'k],
a polynomial algebra in k variables x1, xs, ..., x, each of degree 1. Here the coho-
mology is taken with coefficients in the prime field Fy of two elements.

Being the cohomology of a space, P is a module over the mod 2 Steenrod algebra
A. The action of A on P} can explicitly be given by the formula

Zj, 1= O7
Sq'(x;) = a3, =1,
0, otherwise,

and subject to the Cartan formula

Sq"(fg) =>_Sq'(f)Sqa" ' (g),
i=0

for f,g € Py (see Steenrod and Epstein [29]).

A polynomial f in Py is called hit if it can be written as a finite sum f =
> is0 54" (fi) for some polynomials f;. That means f belongs to A* Py, where A*
denotes the augmentation ideal in A. We are interested in the hit problem, set up
by F. Peterson, of finding a minimal set of generators for the polynomial algebra
Py, as a module over the Steenrod algebra. In other words, we want to find a basis
of the Fa-vector space QP := P,/ AT. P, = Fo @4 Py

The hit problem was first studied by Peterson [21],22], Wood [36], Singer [27], and
Priddy [23], who showed its relationship to several classical problems respectively
in cobordism theory, modular representation theory, Adams spectral sequence for
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the stable homotopy of spheres, and stable homotopy type of classifying spaces of
finite groups. The vector space QPy was explicitly calculated by Peterson [21] for
k = 1,2, by Kameko [I4] for k = 3. The case k = 4 has been treated by Kameko [16]
and by us [30].

Several aspects of the hit problem were then investigated by many authors. (See
Boardman [I], Bruner, Ha and Hung [2], Carlisle and Wood [3], Crabb and Hub-
buck [4], Giambalvo and Peterson [5], Ha [6], Hung [7], Hung and Nam [8] 9], Hung
and Peterson [10, [I1], Janfada and Wood [12], 13], Kameko [I4] [15], Minami [I7],
Mothebe [I8], Nam [I9, 20], Repka and Selick [24], Singer [28], Silverman [25],
Walker and Wood [33], 4] 5], Wood [37, [38] and others.)

The p-function is one of the numerical functions that have much been used in
the context of the hit problem. For a positive integer n, by p(n) one means the
smallest number r for which it is possible to write n = Z1<i<r(2di — 1), where
d; > 0. A routine computation shows that u(n) = s if and only if there exists
uniquely a sequence of integers dy > do > ... > ds_1 = ds > 0 such that

n=2M42% | 42de-1 4 od g (1.1)

From this it implies n — s is even and p("5*) < s.
Denote by (QPy), the subspace of QP consisting of all the classes represented
by homogeneous polynomials of degree n in Pj.

Peterson [21I] made the following conjecture, which was subsequently proved by
Wood [36].

Theorem 1.1 (Wood [36]). If u(n) > k, then (QFPy), = 0.
One of the main tools in the study of the hit problem is Kameko’s homomorphism
—~—0
Sq, : QPy — QP;. This homomorphism is induced by the Fs-linear map, also
—~0
denoted by Sq, : P, — Py, given by

—~0 y, ifx=x129...21Y°%,
Sq,(x) =
4. (@) {O, otherwise,

—~0
for any monomial x € P. Note that Sq, is not an A-homomorphism. However,

0 ot ta 0 G0 2t+1 s
Sq.5q¢*" = Sq*'Sq,, and Sq,Sq = 0 for any non-negative integer t.

Theorem 1.2 (Kameko [14]). Let m be a positive integer. If u(2m + k) = k, then
—~0
Sq, 1 (QPx)am+k — (QPk)m is an isomorphism of G Li-modules.

Based on Theorems [I.1] and the hit problem is reduced to the case of degree
n with p(n) = s < k.

The hit problem in the case of degree n of the form (1.1) with s = k — 1,
di—1 —d; >1for 2 <i<kand dg_; > 1 was studied by Crabb and Hubbuck [4],
Nam [19] and Repka and Selick [24].

In this paper, we explicitly determine the hit problem for the case k = 4. First,
we study the hit problem for the cases of degree n of the form ([1.1)) for s = k — 1.
The following theorem gives an inductive formula for the dimension of (QPx), in
this case.
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Theorem 1.3. Letn = Z1gigk—1(2di — 1) with d; positive integers such that dy >
dy>...>dp_o >dp_1, and let m = Zlgigkﬁ@di—dm —1). Ifdp_1 =2 k—12>1,
then

dim(QPy), = (2F — 1) dim(QPi—1)m.

For dj_1 > k, the theorem follows from the results in Nam [19] and the present
author [32]. However, for d_; = k — 1, the theorem is new.

Based on Theorem [1.3] we explicitly compute QP;.

Theorem 1.4. Let n be an arbitrary positive integer with p(n) < 4. The dimension
of the Fy-vector space (QPy)y, is given by the following table:

n s=1 s=2 s=3 s=4 s=>=5
25+l _ 3 4 15 35 45 45
25t _ 9 6 24 50 70 80
25l _ 1 14 35 75 89 85
252 425+l 3 46 94 105 105 105
2513 4 25+l _ 3 87 135 150 150 150
254 4 o5+l 3 136 180 195 195 195
sttt L ostl 3 ¢ >4 150 195 210 210 210
25+l 125 2 21 70 116 164 175
252 1 25 2 55 126 192 240 255
253 125 2 73 165 241 285 300
254 95 92 95 179 255 300 315
255 4 95 _ 9 115 175 255 300 315
25t L 25 2 ¢t >6 125 175 255 300 315
252 o5+l 4 95 3 64 120 120 120 120
253 1 2542 4 95 _ 3 155 210 210 210 210
25ttt L ostt L 95 3 ¢+>3 140 210 210 210 210
25t3 pgstl L 95 _ 3 140 225 225 225 225
gstutl 4 gstl L 95 3 4 >3 120 210 210 210 210
2stut2 L 952 4 95 3 4> 2 225 315 315 315 315
gstttu L gstt L 9s 34, >2.¢t>3 |210 315 315 315  315.

The space QP4 was also computed in Kameko [I6] by using computer calculation.
However the manuscript is unpublished at the time of the writing.

Carlisle and Wood showed in [3] that the dimension of the vector space (QPx)m
is uniformly bounded by a number depended only on k. In 1990, Kameko made
the following conjecture in his Johns Hopkins University PhD thesis [14].

Conjecture 1.5 (Kameko [14]). For every nonnegative integer m,
dim(QPy)m < [ 2 -1).
1<i<k

The conjecture was shown by Kameko himself for & < 3 in [I4]. From Theorem
[1.4] we see that the conjecture is also true for k = 4.
By induction on k, using Theorem [1.3] we obtain the following.
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Corollary 1.6. Let n = Zlgigk—1(2di — 1) with d; positive integers. If di — dy >
2,di_1 —di Zi— 1,3 < ) S k‘—l,dk_l 2 k — 1, then

dim(@P). = [ @ -1).

1<i<k

For the case d;_1 —d; > 4,2 <7 < k—1, and dx_1 = k, this result is due to
Nam [I9]. This corollary also shows that Kameko’s conjecture is true for the degree
n as given in the corollary.

By induction on k, using Theorems and the fact that the dual of the
Kameko squaring is an epimorphism, one gets the following.

Corollary 1.7. Letn = 21@@@72(2@ —1) with d; positive integers and let di—1 =
Lone =3 ciqpo(2U =) =1 withr = 5,6,.... k. Ifdi—dy >4, di_a—d;
i, ford <i < k and k > 5, then

am(@Py)n = [T @ -1+ 3 ([ @-1)dmKer(Sq)n,,

1<i<k 5<r<k r+1<i<k

WV

—~0 —~0
where (S¢)n, @ (QP)2n,+r — (QP,)n, denotes the squaring operation Sq, in
degree 2n, + r. Here, by convention, HT+1<i<k(2i 1) =1 forr=k.

This corollary has been proved in [32] for the case d;—o — d;—1 > i + 1 with
3<i<k.

Obviously 2n,+7r =3, ;. (2% —1), wheree; = d;—d, 1 +1for 1 <i <r-2.

. . . e1 _ ez _ er—_2 _
So, in degree 2n, 4 r of P,, there is a so-called spike z = 2 1563 b xf:Q L

i.e. a monomial whose exponents are all of the form 2° — 1 for some e. Since
—~0
the class [z] in (QPx)2n,+r represented by the spike z is nonzero and Sq,([z]) =

—0
0, we have Ker(Sq,)n, # 0, for any 5 < r < k. Therefore, by Corollary
Kameko’s conjecture is not true in degree n = 2nj; + k for any & > 5, where
np=20"1 g od=l 4y odial oy 1,

This paper is organized as follows. In Section [2| we recall some needed informa-
tion on the admissible monomials in Py and Singer’s criterion on the hit monomials.
We prove Theorem [I.3]in Section [3| by describing a basis of (QPy),, in terms of a
given basis of (QPy—1)m. In Section we recall the results on the hit problem for
k < 3. Theorem will be proved in Section [5 by explicitly determining all of the
admissible monomials in Pj.

The first formulation of this paper was given in a 240-page preprint in 2007 [30],
which was then publicized to a remarkable number of colleagues. One year latter,
we found the negative answer to Kameko’s conjecture on the hit problem [31] [32].
Being led by the insight of this new study, we have remarkably reduced the length
of the paper.

2. PRELIMINARIES

In this section, we recall some results in Kameko [I4] and Singer [28] which will
be used in the next sections.
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Notation 2.1. Throughout the paper, we use the following notations.
N, ={1,2,...,k},

X[ = Xil,ig,..‘,ir =X ‘%21 :f:zr Xk
= H X, I:{’il,i27...,1‘ir}CNk,
1ENR\ I

In particular, we have
XN, = 1,

k
Xq) =T1T2...Tk,
Let a;(a) denote the i-th coefficient in dyadic expansion of a nonnegative integer
a. That means a = ag(a)2° + a;(a)2! + az(a)2? +. .., for a;(a) =0 or 1 and i > 0.
Denote by a(a) the number of one in dyadic expansion of a.

ay .,a2

Let = 2{"25* ... 2}F € P,. Denote by v;(z) =a;,1 < j < k. Set
Ii(z) = {j € Ny, : oy (v;(z)) = 0},

T = H XIQJ(Z).

i>0
For a polynomial f in Py, we denote by [f] the class in QP represented by f.
For a subset S C Py, we denote

[S]=A{[f]: f €S} CQP:.

Definition 2.2. For a monomial x, define two sequences associated with x by

for i > 0. Then we have

w(z) = (w1(x),ws(x),...,wi(x),...),
o(z) = (a1,a2,...,a),

where w; () = Z1<g‘<k a;—1(vj(r)) = deg X7, (2, 1 > 1.

The sequence w(x) is called the weight vector of = (see Wood [37]). The weight
vectors and the sigma vectors can be ordered by the left lexicographical order.

Let w = (wy,wa,...,w;,...) be a sequence of nonnegative integers such that
w; = 0 for i > 0. Define degw = >,_ ;2" 'w;. Denote by Py(w) the subspace of
Py, spanned by all monomials y such that degy = degw, w(y) < w and P, (w) the
subspace of Py spanned by all monomials y € Py(w) such that w(y) < w. Denote
by AF the subspace of A spanned by all S¢/ with 1 < j < 2°.

Definition 2.3. Let w be a sequence of nonnegative integers and f, g two homo-
geneous polynomials of the same degree in Pj.

i) f=gifand only if f — g€ ATP,.

ii) f ~(sw) g ifand only if f —g e AF P, + P (w).

Since Af P, =0, f ~(0w) 9 if and only if f —g € P (w). If z is a monomial in
Py and w = w(x), then we denote x ~; g if and only if  ~(; 4,)) 9.

Obviously, the relations = and ~(, ) are equivalence relations.

We recall some relations on the action of the Steenrod squares on P.

Proposition 2.4. Let f be a homogeneous polynomial in Py.
i) If i > deg f, then Sq*(f) = 0. If i = deg f, then Sq'(f) = f>.
it) If i is not divisible by 2°, then Sq*(f*") = 0 while Sq"* (f*") = (Sq"(f))?".
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Proposition 2.5. Let x,y be monomials and f,g homogeneous polynomials in Py
such that degx = deg f, degy = degg.

i) If wi(x) < 1 fori>s and x ~, f, then zy* ~, fy* .

it) If wi(z) =0 fori>s, x>~ f and y ~, g, then zy*> ~,\, fg* .

Proof. Suppose that
s+ f+ Y. Sq'(z)=heP; (w(z))
1<i<2s

where z; € P;. From this and Proposition 2.4, we have S¢'(z)y* = Sq*(zy>).
Observe that w;(zy? ) = w;(x) for i = 1,2,...,s. If z is a monomial and z €
P_ (w(z)), then there exists an index ¢ > 1 such that w;(z) = wj(z), j =1,2,...,i—
1 and w;(z) < w;(x). If i > s, then w;(z) = 1,w;(z) = 0. Then we have

i—1
a;-1 | degx — Z Y wi(x) | =i [ 27+ ZQj_le(x)) =1
=1

j>i
On the other hand, since degz = degz, wi(z) = 0 and w;(z) = w,(x), j =
1,2,...,7—1, one gets

i—1 i—1
;-1 | dega — Z 207 () | = iy | degz — Z 297w, (2)
j=1 j=1

= 0_1 Zijle(z) =0.

J>i
This is a contradiction. Hence 1 <7 < s.
From these about equalities and the fact that h € P, (w(x)), one gets

ay® + fy* + Z Sq'(zy® ) = hy* € Pl:(w(nyS))'
1<i<28

The first part of the proposition is pr_oved.
Suppose that y + g+ > ;o S¢? (u;) = h1 € P (w(y)), where u; € Py. Then
wy® =xg” +ahl + > aSP (u)).
1<g<2r
Since w;(z) = 0 for i > s and hy € Py (w(y)), we get zh? € P (w(zy?")). Using
the Cartan formula and Proposition we obtain
eS¢ (uf) =S¢ (@ui ) + Y S (@)(Se’ P (uy))*.
0<b<j
Since w;(z) = 0 for i > s, we have z = [[,_, X%;i(w). Using the Cartan formula
and Proposition we see that Sq%?"(z) is a sum of polynomials of the form
IT (Sa" (X1,
0<i<s

where Zogi<s b;2" = b2° and 0 < b; < deg X7, (z)- Let ¢ be the smallest index such
that by > 0 with 0 < £ < s. Suppose that a monomial z appears as a term of the

polynomial ( TTye;cy(S0” (Xr,))? ) (S~ ()", Then w(2) = deg X,_, (x) =
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wi(z) = wy(zy?") for t < ¢, and wpyq(z) = deg Xio(@) —be < deg X1,(z) = weg1(z) =
wey1(zy?). Hence

( IT (54" (X1i<m>))21)(qu‘b(ug'))zs € Py (w(zy™)).
0<i<s
This implies S¢*?" (2)(S¢’~*(u;))*" € P, (w(zy*")) for 0 < b < j. So one gets
zy? +ag® + Z S¢’% (:cuf) € P (w(zy®)).
1<5<2r
Since h € Py (w(z)), we have hg®" € P, (w(zy*")). Using Proposition and
the Cartan formula, we get
zg® + fg* + Y Sq'(zig”) = hg® € Py (w(xy®)).
1<i<28
Note that 1 < j2% < 2"%¢ for 1 < j < 27. Combining the above equalities gives
ry® — fg* € ArysPy + P (w(xy?®)). This implies xy?" =~ 29> ~,4s fg* .
The proposition is proved. O

Definition 2.6. Let z,y be monomials of the same degree in P,. We say that
x < y if and only if one of the following holds

i) w(z) <w(y);

i) w(z) = w(y) and o(z) < o(y).

Definition 2.7. A monomial z is said to be inadmissible if there exist monomials

Y1,Y2, ...,y such that y; <z for j =1,2,...,t and = — Z;Zlyj € AT P
A monomial z is said to be admissible if it is not inadmissible.

Obviously, the set of all the admissible monomials of degree n in Py is a minimal
set of A-generators for Py in degree n.

Definition 2.8. A monomial z is said to be strictly inadmissible if and only if there
exist monomials y1,¥2, ...,y such that y; < z,for j =1,2,...,¢tand 95—2321 Y; €
At Py, with s = max{i ;w;(z) > 0}.

It is easy to see that if x is strictly inadmissible, then it is inadmissible. The
following theorem is a modification of a result in [I4].

Theorem 2.9 (Kameko [14], Sum [32]). Let z,y,w be monomials in Py such that
wi(z) =0 fori>r >0, ws(w) #0 and w;(w) =0 fori>s>0.

i) If w is inadmissible, then xw? is also inadmissible.

ii) If w is strictly inadmissible, then xwyyzr“ 1s inadmissible.

Proposition 2.10 ([32]). Let x be an admissible monomial in P,. Then we have
i) If there is an index iy such that w; (xz) =0, then w;(xz) =0 for all i > ig.
ii) If there is an index ig such that w;,(z) < k, then w;(x) < k for all i > iy.

Now, we recall a result of Singer [28] on the hit monomials in Pj.

Definition 2.11. A monomial z in Py is called a spike if v;(z) = 2% —1 for s; a
nonnegative integer and j = 1,2,...,k. If z is a spike with s1 > s0 > ... > 5,1 >
sp >0 and s; = 0 for j > r, then it is called a minimal spike.

The following is a criterion for the hit monomials in Pj.



8 NGUYEN SUM

Theorem 2.12 (Singer [28]). Suppose x € Py is a monomial of degree n, where
w(n) < k. Let z be the minimal spike of degree n. If w(x) < w(z), then x is hit.

From this theorem, we see that if z is a minimal spike, then Py(w(z)) C AT B;.
The following lemmas were proved in [32].

Lemma 2.13 ([32]). Letn = Z1<igk_1(2di — 1) with d; positive integers such that
dy >do > ... >dp_o = dr—1 >0, and x a monomial of degree n in Py. If [x] # 0,
then wi(z) =k —1 for 1 <i < dg_1.

Lemma 2.14 ([32]). Let n = Zlgigk—l(Zdi — 1) with d; positive integers such
that di > dy > ... > dp_o > dr_1 > 0, and x a monomial in Py such that
wilx)=k—1, fori=1,2,...,8 < dg—1 and w;(x) =0 for i > s. Suppose y, f and
g are polynomials in P, with deg f = degx and degy = degg = (n — degx)/2° =
2d1=s 4 4 2dk—2ms g odeoams oy 1,

i) If & ~ f, then zg*>" = fg*.

it) If y = g, then zy* = z¢*".

For latter use, we set
P) = {z=a{'2d* .. .2 ; araz...a; = 0}),
P]:‘ = ({z=al"25*. .. 23" ; araz...a; > 0}).

It is easy to see that P? and P, are the A-submodules of Pj. Furthermore, we
have the following.

Proposition 2.15. We have a direct summand decomposition of the Fy-vector
spaces

QP = QP ® QP
Here QP = PYJAY P and QP = P /AT.P}.

3. PROOF OF THEOREM [L3]
We denote
N =A@ 1 = (i, 00, 00p), 1 i <iy <...<ip <k, 0<r <k}
Let (i;1) € Ny and j € Ni. Denote by r = £(I) the length of I, and
U7 = {gl,...,z‘t_l,j,it,...,ir), E:fo;jm‘t, 1<t<r+1,

Here i9 =0 and 2,41 = k + 1.
For 2 < h < k, we set Nj—1 Uh ={(i;TUh); (4;1) € Nj—1}. Then we have

Ne=MU2)U...UWNp1 Uk)U{(1;0),...,(k;0)}. (3.1)

For 1 < i < k, define the homomorphism f; = fr,; : Py—1 — Pj of algebras by
substituting
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Definition 3.1. Let (i;I) € Ny, let r = ¢(I), and let u be an integer with 1 < u < 7.
A monomial z € P,_1 is said to be u-compatible with (i; ) if all of the following
hold:

1) Vil—l(x) = 1/7;2_1(.’,8) =...= Vi(u,l)—l(x) =2" — 1,

11) Viu—l(x) > 2" —1,

iil) ap_¢(vi,—1(z)) =1, Vt, 1 <t < u,

iv) ot (Vi,—1(z)) =1, Vt, u<t < r.

Clearly, a monomial z can be u-compatible with a given (i;I) € Ny, = £(I) > 0,
for at most one value of u. By convention, z is 1-compatible with (i; ().

Definition 3.2. Let (3;1) € Ni, (1,4 = x?jl*”ﬁriu | J x?:ft for 1 <u<
r={(I), (@) = 1. For a monomial = in P_1, we define the monomial ¢;,r)(z)
in Py, by setting
(xfr_lfi(a:))/z@u), if there exists u such that
b (x) = x is u-compatible with (¢, I),
0, otherwise.
Then we have an Fa-linear map ¢,y : Pr—1 — Px. In particular, ¢;.p) = fi.
Let © = X2'~142* with y a monomial in Py_; and X = z129..., 751 € Ps_1.
If r < d, then «x is 1-compatible with (i;I) and
d__ d r_ d__or—t__ d__ d
b (@) = dun(XF N fi(y)? =27 ! H o 7T W) (32)
1<t<r
Ifd=r,vj_1(y) =0,j =i1,i2,...,0u—1 and v;, _1(y) > 0, then z is u-compatible
with (z; 1) and
: = Geiniany (XX i) 3.3
d’(z;[)(z) = ¢(zu;Ju)( )fl(y) ) ( : )
where J, = (tyg1, ..., 0r)-
Let B be a finite subset of P,_; consisting of some homogeneous polynomials in
degree n. We set

®B)= |J ¢wn(B) = |J £f(B).

1<i<k 1<i<k
> (B) = U dan(B)\ Py
(4:1)ENR,0<L(I)<k—1
o(B) = °(B)| JoT(B).
It is easy to see that if By_1(n) is a minimal set of generators for P;_; in degree

n, then ®°(Bj_1(n)) is a minimal set of generators for A-module P in degree n
and ®F(By_1(n)) C P;f.
Proposition 3.3. Let n = Z1<i<k—1(2di — 1) with d; positive integers such that
dy >de>...>dp_o >dr—1 2 k—12>21. If B,_1(n) is a minimal set of generators

for A-module Py_1 in degree n, then Bi(n) = ®(Bg_1(n)) is also a minimal set of
generators for A-module Py in degree n.

For di_1 > k, this proposition is a modification of a result in Nam [I9]. For
di—2 = dip—1 > k, it has been proved in [32].

We prepare some lemmas for the proof of this proposition.



10 NGUYEN SUM

Lemma 3.4. Let jo,j1,.--,Ja—1 € Ng. Then there is (i;1) € Ny such that
t d_
r = H XJ% ~d—1 ¢(i;1)(X2 1),
0<t<d
where © = min{jo, j1, ..., Jd—1}-

Lemma 3.5. Letn = Zlgigk—l(Qdi — 1) with d; positive integers such that d; >

do > ...>dg_9 = di_1 >0, and let yo be a monomial in (Py)m—1, ¥i = Yox; for
1<i<k, and (3;1) € Ni.

i) If 0<r=4(I)<d=dk_1, then
d__ d d__ d d_ d
¢(i;1)(X2 1)%2 = Z ¢(j;1)(X2 1)%2 + Z qs(ij;fj)(X? 1)%2_ )
1<5<i i<j<k
where i; =min(j,I),I; =1 for j <minl, and I; = (I Uj)\ {i;} for j > minI.
ii) If r+1<d, then

d_ d d_ d d_ a4
¢(i;1)(X2 1)%2 = Z ¢(j;1uz')(X2 1)2/32 + Z ¢(i;IUj)(X2 1)%2

1<j5<i i<j<k
Denote by Iy = (t+ 1,t +2,...,k) for 1 <t < k. Set
k
Y= o) (X2 a2, d>k+ 1t
r=t

Lemma 3.6. For 1 <t <k,

d d
Yi ~kw) Z PG (XF DT,
(3:)
where the sum runs over some (j;J) € N with 1< j<t, JC L1, J # ;1 and
w= w(X%d_lx%d).
We assume that all elements of By_1(n) are monomials. Denote by B = By_1(n).
We set
C={zeB:v(z)>2F1 -1},
D={zeB:v(z) =21 —1,1n(z) > 2" — 1},
E={zeB:vi(z) =wa(z) =21 -1}
Since wg(z) = k—3 for all z € B, we have B = CUDUE. If d = d_1 > k—1, then
D=E=0.1fdy_y>dp_y =k—1, then & =0. We set B = {z; X2 152 € B}. If

cither d > k or I # I, then ¢i.p)(2) = dpuny (X2 N (22", T d = dj—y = k — 1,
then . )
¢(2;12)(X2 71)f1(2)2 , ifzeC,
d _\od .
d)(l;ll)(z) = ¢(3;13)(X2 71)f2(2)2 ) if z € D7 (34)
d _\od .
by (X7 N f(2)%, ifzek.
For any (i; 1) € Ny, we define the homomorphism P(isn) - Pr — Pr—1 of algebras
by substituting
xj, if 1 <j<i,
P(i;1) (Ij) = ZS’GI Ts—1, lf.j = iv
Tj—1, ifi<j<k.
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Then p;,7) is a homomorphism of A-modules. In particular, for I = (), we have
Pesn) (i) = 0.
Lemma 3.7. Let z € B, (;;1),(5;J) € Ny and £(J) < £(1).
i) If either d 2 k ord=k —1 and I # Iy, then
z, if (4;J) = (1),
p jsJ ((,ZS i1 (Z)) = . . .
RDAEED 0, if (i J) # (i51).

ii) Ifz€C and d=k — 1, then
z, if (1) = (1; 1),
p(i;I)(d’(l;Il)(z)) =<0 mod(D U g>7 if (1) = (2;]2)
0, otherwise .
iit) If z € D, then
: if (1) = (1; 1), (1; I2), (25 I2),
mod(€), if (i;1) = (3; Is),
, otherwise .

;0 (D) (2) =

O O X

iv) If z € &, then
z if I3 C 1,

0, otherwise.

Pen () (2) = {

The above lemmas will be proved in the end of the section.
We recall the following.

Lemma 3.8 (Nam [19]). Let x be a monomial in P,. Then x = &, where & are
monomials with 11(Z) = 2" — 1 and t = a(v1(x)).

Proof of Proposition[3.3. Denote by P(n) the subspace of (Py), spanned by all
elements of the set Bg(n).
Let = be a monomial of degree n in Py and [z] # 0. By Lemma we have

wi(x) =k —1for 1 < i < dp_1 = d. Hence we obtain x = (]_[OngX]?:)g?d7 for

suitable monomial y € (Pg)m, with m = Zlgz'g;ﬁz@di_d —1).
According to Lemmas and there is (i; 1) € Ny such that

t\ _od d_ 1. od
r= ( 11 Xi)?ﬁ = dan (X2 7, (3.5)
o<t<d

where r = ¢(I) < d.
Set hy = 247% 4 . 4 2%—2-u L 9dk1—u _ L4 1 for 0 < u < d. We have
ho=mn, hy=m, 2h, +k—1="hy_1 and p(2h, +k—1) =k —1for 1 < u < d.

—~0
By Theorem E the squaring operation (Sg¢,)n, : (QPk-1)n, , — (QPx—1)n, is
an isomorphism of Fo-vector spaces. So the iterated squaring operation

—~0 —~0 —~0
(8¢.)" = (Sq )y - (S@.)n,  (QPr—1)n = (QPe1)m
is also an isomorphism of Fy-vector spaces. Hence
_ —~0
Bi-1(m) = (S¢,)"(Bi-1(n)) = {2 € (Pu—1)m : X' 712% € Bya(n)}

is a minimal set of A-generators for P;_; in degree m.
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Now, we prove [z] € [P(n)]. The proof is divided into many cases.
Case 3.5.1. § = fi(y) with y € (Pr—1)m-

Since y € (Py_1)m, we have y = 21 + 2o +. ..+ Z, with Z; monomials in By_1(m).
Using Lemma we get

2= ¢un (X NEWY = Y dun (X2
1<t<s
Since i,y (X2 1) fi(2)%" = iy (X2 7122") and X2'~122" € By_1(n), we get
2] € [P(n)].
Case 3.5.2. d >k, y = a2 fi(y) with y € (Pi—1)m—a-

If i =1 and either I # I; or d > k, then d —r — 1 > 1. Applying Lemma ii)
with yo = 257" f1(y), we get

d_ a— d
T = Z ¢(1;1u;‘)(X2 1)(331 1f1($j—1y)>2-
2<y<k

From this and the inductive hypothesis, we obtain [z] € [P(n)].
If I =1, and d = k, then r = d — 1. Using Lemma i) with yo = 257 f1(y)
and Lemma we get

k
k_ k k
2= ) (X? ) (zm0)* = Yayp
=2

=Y b (X (@i fim)

J£I

Since J # Iy, one gets [z] € [P(n)].
Suppose i > 1. Then r+1 < k < d. Applying Lemmal3.5(ii) with yo = x?ilfi (y),
we obtain

d d d d
2= > duiron(XF TNy + ) by (X Nyt

1<j<i i<j<k

where y; = 290 = mfflfi(acj,ly) for j > 4. Using the inductive hypothesis, we get
[#] € [P(n)]. So the proposition is proved for d > k.

In the remaining part of the proof, we assume that d = k — 1.
Case 3.5.3. (i;1) = (2;1z) and y = f1(y) with y € (Px—1)m, v1(y) > 0.

Since y € (Px—1)m, we have y = z1 + Zo +. ..+ Z5s with Z; monomials in Bk,l(m).
Using Lemma we get

2= 0 (X2 NAMY = Y b (XN AGE)Y

If v1(Z) > 0, then ¢y (X2 f1(2) = druny (X2 7122, I 11 (z) = 0,
then f1(z;) = f2(2) and ¢(2;12)(X2d_1)f1(2t)2d = ¢(2;I2)(X2d_12t2d). Hence [z] €
[P(n)].

Case 3.5.4. (i;1) = (3;1I3) and y = fa(y) with y € (Py—1)m, v1(y) = 0,12(y) > 0.



ON THE PETERSON HIT PROBLEM 13

Since y € (Px—1)m and v4(y) = 0, we have y = 21 + 22 + ... + Z5 with z
polynomials in Bj,_1(m) and v1(z;) = 0. Using Lemma we get

T = ¢(3;I3)(X2d71)f2(2/)2d = Z ¢(3;I3)(X2d71)f2(5t)2d-

1<t<s

-

If v5(Z) > 0, then dg.ry) (X2 ") f2(2)% = duny (X2 122, If wa(z) = 0,
then fa(Z) = f3(2) and ¢,y (X 1) f2(20)%" = a1 (X2 7122"). Hence [z] €
[P(n)].

Case 3.5.5. (i;1) = (4;14) and y = f3(y) with y € (Px—1)m, v1(y) = v2(y) = 0.

Since y € (Pr—1)m and v1(y) = v2(y) =0, we have y = 21 + Z3 + ... + Z5 with z
polynomials in By_1(m) and v1(Z:) = v2(2;) = 0. Using Lemma [2.14] we get

&= by (XX DB = Y by (X2 (20

1<t<s

If v3(2) > 0, then ¢,y (X2 1) f3(2)%" = P (X2 122"). If 1s(3,) = 0,

then f3(%) = fa(Z) and e,y (X> 1) f3(2)%" = braury) (X2 122"). Hence [z] €
[P(n)].

Case 3.5.6. §j =7 fi(y) withy € (Po_1)m_2s, 1 =1 and £(I) < k — 2.

According to Lemma 22" fi(y)*" = 21f1(g), for some polynomial g. So we
assume s = 0. Using Lemma it) with yo = f1(y), we have

d

k
2= 3" dson (X2 (file—1w)>
r=2

Hence by Case [z] € [P(n)].
Case 3.5.7. § = 23 fo(y) withy € (Po_1)m_2s,v1(y) =0, i =2 and £(I) < k —3.
Using Lemma we need only to prove [z] € [P(n)] for s = 0. Using Lemma
[3-5ii) with yo = fa(y), one gets
k
d__ d d__ d
T = 1, u2)( X7 TN (@1 fa(y)? + Z¢(2;IUT)(X2 D(fa(zro1y))* .
r=3
Since v1(y) = 0, f2(y) = f1(y), from this equalities, Cases and we get
[z] € [P(n)].
Case 3.5.8. §j =23 f3(y), withy € (Ph_1)m—2s, v1(y) = v2(y) =0 and i = 3.

We need only to prove [z] € [P(n)] for s = 0. Note that since v1(y) = va(y) = 0,

we have fi(y) = fa(y) = f3(y). If I = I3, then by Case [3.5.4] [z] € [P(n)]. If
£(I) < k — 4, then using Lemma ii) with yo = f35(y), we get

T = ¢(1;1u3)(XQd_l)(951f1(y))2d + ¢(2;Iu3)(XZd_l)(fz(ﬂfly))2d

d

k
+ 3 bron (X2 (fs(zr-19))%
r=4

From this equalities and Cases [3.5.1] [3.5.6] [3.5.7 we get [z] € [P(n)].
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If diy—o > dk 1 and I # I3, then wy(x) = wi(y) +1 = k—2. Hence ag(v;(y)) =1

for j =3,...,k—1. Applying Lemma[3.5{i) with yo = f3(y) and Theorem [2.12] we
get
d

2= (XX N (@ fiy)? + b (X2 ) (22 f2(y))?

Hence by Cases and we get [z] € [P(n)].
Suppose di_2 = di—1 and {(I) =k —4. Then I = I3, =
4 < u < k. Since wi(x) = wi(y) + 1 =k — 3, we have w; (y)
exists uniquely 3 < ¢ < k such that ag(v(y)) = 0.
If t = u— 1, then using Lemma i) with yo = f3(y) and Theorem [2.12] we get

2= ¢ (X2 TN (@ L) + by (X2 ) (@2 faly))”
+ Sparny (X2 ) (fa(ay)?

By Cases [3.5.5] [3.5.6| and [3.5.7] we get [z] € [P(n)].
If u =4 < t+1, then using Lemma [3.5(i) with yo = f3(y) and Theorem [2.12]
we get

2= ¢ (X¥ (@ i) + b (X2 ) (@ fa(y)>

d_ d
+dsi1,) (X7 ) (fa(wy))?
Applying Lemma ) with yg = fg(mty/m4) and Theorem we have
d
¢(5;15)(X Y (f3(2ey)) Z G (i:15) X2 Y@ fi(zey/za))?
1<i<3

Since ¢(I5) = k — 5 < k — 4, using Cases and the above equalities, we
get [z] € [P(n)].
Suppose that 4 < u # ¢t 4+ 1. Using Lemma i) with yo = f3(y) and Theorem

[2.12] we obtain
d d d
2= ¢ (X2 (@1 f1(y)? + b (X? (22 fa(y))?
+ ¢(4;1\4)(X2d71)(f3 (zey))*
Applying Lemma [3.5i) with yo = f3(xty/x3) and Theorem we have
¢(4;1\4)(X Y (fs(zey)) Z Bisra) (X 2 (@ filway f3))

1<i<3
Since ¢(I'\4) =k —5 < k — 4, using Cases and the above equalities, we
get [z] € [P(n)].
Case 3.5.9. y = mgxflﬁl(y) fory € (Pr—1)m—b—c with vj(y) = 0,5 = 1,2,3 and
i =4.

Using Lemmas|[3.8|and we assume that b = 25 —1. We prove [z] € [P(n)] by
double induction on (€ﬁ7 ¢). If ¢ = 0, then by Case [z] € [P(n)]. If I # L4,

3.5

then applying Lemma ii) with yg = xgxflle(y), we have

( ooy dly ..., k) with
= k — 4. Hence there

d

d

2 = daron (X2 ) (@ fu(@h25 7 9) > + bearon (X2 ) (wa fo (bl y))*

d d
+ B3, rua) (X2 H(@E fa(25 Y 2 +Z¢(4IUT Y (52§ fa(,— 12/))
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From this equalities, Cases [3.5.6] [3.5.7} [3.5.8] and the inductive hypothesis, we
get [z] € [P(n)].
If I = I, then applying Lemma ( ) with yo = 2525 f4(y), we obtain
d d d_ c
2 = Sy (X2 ) (@ fi (25257 9)* + iy (X2 (wafo(abag ™ y))
d_ d d
+ Gaury (X7 (@3 fa(25'y)* + Yaug -

By Lemma [3.6| and Lemma [2.14]

d —
Ysys = Z¢ Gy (X X2 1)313 ,
where 1 < j < 5,J C I and J # I,. From the above equalities, Cases [3.5.6] [3.5.7}
3.5.8| and the inductive hypothesis, we get [z] € [P(n)].
Case 3.5.10. § = 25f3(y) for y € (Pe—1)m—p with v1(y) = v2(y) =0 and i = 3.

We prove [z] € [P(n)] by double induction on (¢(I),b). If b = 0, then by Case
3.5.1] [z] € [P(n)]. If I = I3, then by Case[3.5.4] [z] € [ﬁl)]

Suppose b > 0. If £(I) < k—4, then applying Lemma|3.5(ii) with yo = x3 “Lfa(y),
we obtain

T = ¢(1;1u3)(defl)(xlfl(xg_ly))zd + P(2;103) (X2 ) (o folzhty))>

d

k
+ Z P(3;10r) (XN (@b fa(ar1y)?
r=4

Using Cases and the inductive hypothesis, we obtain [z] € [P(n)].

Suppose that ¢(I) =k—4,and I =I5, = (4,...,4,..., k), 3<u < k. Ifdp_o >
dg—1, then wi(z) = w1(y) +1 = k — 2. Hence ap(v;(y)) =1for j=3,...,k— 1.
Applying Lemma i) with yo = 237 f3(y) and Theorem we get

T = ¢(1;1)(X2d_1)($1f1(952_ y))2 +¢(2;I)(X2d_1)(932f2( 5 ly))

Hence by Cases and [3.5.7, we get [z] € [P(n)].
Suppose di_o = dj_1. Since wi(z) =wi(y) + 1 =k — 3, we have wy(y) = k — 4.
Hence there exists uniquely 3 < ¢t < k — 1 such that ao(ut( )) =0.

If t = uw — 1, then using Lemma i) with yo = 373 ! f3(y) and Theorem ,

we get

2= ¢y (X2 (@ fulab ) + G (X2 (@ folab1y))>
+ by (X2 (@l fa(ey))*

From this equalities, Cases and [3.5.9] we get [z] € [P(n)].

If u =4 < t+1, then using Lemma [3.5(i) with yo = f3(y) and Theorem [2.12]
we get

d d
= ¢ (X* ) (@1 125797 + b (X2 ) (@2 folab )Y
+ P(5:15) (X2 (@b fa ()
Applying Lemma i) with yo = 1'3 ! f3(z4y/x4) and Theorem | we have

¢(5;15)(X2d71)( ' fa(zey)) Z Bisrs) X2 (gt fl?if3(95ty/x4))

1<i<3

d
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Since ¢(I5) = k — 5 < k — 4, using the above equalities, Cases and the
inductive hypothesis, we get [z] € [P(n)].
Suppose that 4 < u # ¢t 4+ 1. Using Lemma i) with yo = f3(y) and Theorem

[2:12] we obtain
# = (X @A)+ o@n (X e )"
+¢5(4 nay(X* ) (a3 s (ey))?
From the above equalities, Cases [3.5.6} [3.5.7] and [3.5.9] we get [x] € [P(n)].
Case 3.5.11. §j = 22 fo(y) for y € (Pi_1)m_2- with v1(y) =0 and i = 2.

It suffices to prove [z] € [P(n)] for s = 0. If (I) < k — 3, then [z] € [P(n)] by
Case[3.5.7 If I = I, then by Case[3.5.3] [z] € [P(n)].

Suppose {I)=k—3. Then I = Ig,u =(3,...,q,...,k). If u= 3, then using
Lemma [3.5[1) with yo = f2(y), we get

2= 1) (X )@ i)Y + ¢<3;13><X2“)(f2(x2y>>2
+ Z Sty (X2 ) (falar1y)®

d

Using Cases [3.5.4] [3.5.6] [3.5.9 and the above equahtles, we obtain [z] € [P(n)].
If w > 3, then using Lemma i) with yo = fa(y), we get

d__ d d__ d
z = da.n(X? (@ i) + b (X2 T (fo(um1y))?
d_ d
+ Y bEny X T (flee1y)’
4<r<k,r#u
Using Cases|3.5.4} [3.5.6 [3.5.10] and the above equalities, we obtain [z] € [P(n)].
Case 3.5.12. § = 2325f3(y) for y € (Po—1)m—a—b with v1(y) = va(y) = 0 and
i =3.
According to Lemma 3.8 we assume a = 2° —1. We prove [z] € [P(n)] by double
induction on (£(1),b).
Ifb= O then by Case (2] € P[n]. If I # I3, then using Lemma [3.5(ii) with
Yo = 28251 f3(y), we get

2 = drarus (X2 ) (@ (@525 )2 + darusy (X2 ) (@3 (falzh1y))>"

+2(725(3 IUr) )(932333 f3($r 1y))

From this, Cases [3.5.6] [3.5.7 and the 1nduct1ve hypothems we obtain [z] € [P(n)].
If I = I3, then using Lemma i) with yo = x2m3 Lfa3(y), we get

T = by (X2 ) (@ fi(afal~1y)?
d_ _ d d
+¢213)(X2 D@3 (falzsy)* + Yays -
By Lemma [3.6] and Lemma [2.14] we have

d_
Y4yo = Z by (X3 1)2/] ,
(457)
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where 1 < j < 4 and J C I3 and J # I5. Using Cases [3.5.6] [3.5.11] the above
equahtles and the induction hypothesis, we obtain [z] € [P(n)].

Case 3.5.13. y = 25 f2(y) for y € (Px—1)m—a with v1(y) =0 and i = 2.

We prove [z] € [P(n)] by double induction on (¢(I),a). If a = 0, then by Case
3.5.1] [z] € [P(n)]. If I = I, then by Case[3.5.3 [z] € [P(n)]. Suppose a > 0 and
£(I) < k — 3. Applying Lemma ii) with yo = 25" fa(y), we get

d

= ¢(1;1u2)(X2d Y (@ fr(2d ) + Zfbm o (X2 Y (@5 fa(zeo1y))?

Using Case and the inductive hypothesis, we get [z] € [P(n)].
Suppose that [ =1, =(3,...,4,..., k), 3<u<k.
If u = 3, then I = I3. Applying Lemma i) with yo = 25 ' f2(y), we get
d _ d d_ a—
o = O;1) (X2 T (@1 fr(2§ 7)) + Gy (X T (@57 fa(w2y)?

d

d

k
+ 3 by (XF ) (@2 faly))?
r=4

Applying Lemma [3.6] and Lemma [2.14] one gets
k
d d
D by (X (@5 faly )2 = Yagd
r=4

= b (X ) (@ws faly D
(4;)
where the last sum runs over some (j;J) with 1 < j <4, J C I5 and J # I5. Since
0(J) < U(I3) = k — 3, from the above equalities, Cases [3.5.4} [3.5.6] [3.5.12] and the

inductive hypothesis, we get [z] € [P(n)].
If u > 3, applying Lemma [3.5(1) with yo = 23 * fa(y), we get

k
2= oan (X2 (@ fi@d )+ daun (X (@8 fa(zr-1y))

r=3
From the last equalities, Cases [3.5.6] and 3.5.12] we have [z] € [P(n)].
Case 3.5.14. §j = 27 fi(y) with y € (Py_1)m_2s and i = 1.

By Lemma [3.8] we need only to prove [z] € [P(n)] for s = 0. If ¢(I) < k—2, then

[z] € [P(n)] by Case[3.5.6] Suppose {(I) =k —2and [ =11, = (2,...,4,...,k).
If u =2, then I = I>. Applylng Lemma i) with yo = f1(y), one gets

T = Py (XT N (fa(a1y)® +Z¢><313 X7 (fa(ay))*

From the last equalities and Cases [3 ﬂ, we have [z] € [P(n)].
If u > 2, then applying Lemma i) with yo = f1(y), one obtain

2= b (XX (A1) + Y b (XX Y (file1y)

2<r<k,r#u
From the above equalities and Cases 3.5.13] we have [z] € [P(n)].



18 NGUYEN SUM

Case 3.5.15. § = 2%z fo(y) for y € (Pi—1)m—a—b with v1(y) =0 and i = 2.

We prove [z] € [P(n)] by double induction on (¢(I),b). By Lemma we
assume that a = 2° — 1.

If b =0, then [z] € [P(n)] by Case|3.5.1] Suppose that b>0.
If I # I, then applying Lemma (11) with yo = x1x2 L fa(y), we get
d_
$E¢(1;Iu2)(X2 1)(951 $2 1f2( ))
+ Z B2:10r ( X 1)(9319'72 f2(xr 1))
3<r<k

From the last equalities, Case [3.5.14] and the inductive hypothesis, we have [z] €

[P(n)].
If I = I, then applying Lemma [3.5{i) with yo = xle Lfa(y), we get

2= Gy (X2 )@ L)+ D b (X ) (@il fa(y)
3<r<k
By Lemma [3.6] and Lemma | we have
d d d
Y S (X (@il fo(y)* = Yayg

3<r<k

d

=3 bun (X ) (@t oy D
(457)

where the last sum runs over some (j;J) with j = 1,2, J C Iy and J # Is.
From the above equalities, Case [3.5.14] and the inductive hypothesis, we have
[z] € [P(n)].

Case 3.5.16. y = 27 f1(y) for y € (Px—1)m—a and i = 1.
If a = 0, then by Case [x] € [P(n)]. Suppose that a > 0. If £(I) < k — 2,
3.5(ii)

then applying Lemma i) with yo = :C‘fa?gilfg (y), we get

k
2= 3" daron (X2 )@ fu(z1y)?
r=2

Hence by the inductive hypothesis, we have [z] € [P(n)].
Suppose that ¢(I) = k—2. Then I = I, = (2,...,4,...,k). If u =2, then
applying Lemma ( ) with yo = 297 f1(y ) and Lemma we get

= Gy (X2 ) (@8 fi(1y)> +Z<z><313 Y (wai T fr(y)>

By Lemma [3.6) and Lemma [2.14] we have
b d d d
> b (X ) (a2t i) = Yayd
r=3
d
= Z O (X ) (et Aiw),

(4;7)
where the last sum runs over some (j;J) with j = 1,2, J C Iy and J # I>.
From the above equalities, Case [3.5.15] and the inductive hypothesis, we have
[z] € [P(n)].
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If u > 2, then applying Lemma i) with yo = 297 f1(y), we get
d_ _ d
T = o) (X2 (i1 fi(21y))?
d_ a— d
+ > bena(XTTY @ e w)”
3<uk,r#u
From the above equalities, Case [3.5.15] and the inductive hypothesis, we have
[z] € [P(n)].
Case 3.5.17. § = z¢fi(y) for y € (Pi—1)m—a-
If a = 0, then by Case [z] € [P(n)]. If @ > 0 and i = 1,2, then by Cases

[3.5.15| and [3.5.16} [z] € [P(n)]. If @ > 0 and ¢ > 2, then applying Lemma ii)
with yo = x?ilfi(y), we get

d__ d d__ d
T = Z PGaun (X2 T HyE + Z Py (X2 T Hy?

1<j<i i<j<k

where y; = 2% ! f;(x;_1y) for j > i. Hence using the inductive hypothesis, we get
[z] € [P(n)]. So we have proved [z] € [P(n)] for all € (Py),, .

Now we prove that [Bg(n)] is linearly independent in QPy. Suppose that there
is a linear relation

S= Z ’Y(i;I),zd)(i;I)(Z) = 03 (36)
((4;1),2)ENk X Br—1(n)
where v(;.1),. € Fa.

If d > k, then by induction on £(I), we can show that v¢;p),. = 0, for all
(1;1) € Nj; and z € Bg_1(n) (see [32] for the case d > k).

Suppose that d = k — 1. By Lemma the homomorphism p; = p;,p) sends
the relation to ZzeBk,l(n) YGi0),2% = 0. This relation implies 7(;.9),, = 0 for
any 1 < j <k and z € By_1(n).

Suppose 0 < £(J) < k — 3 and ;). = 0 for all (i;1) € Ny with £(I) < £(J),
1<i< kand z € Bg_1(n). Then using Lemma and the relation , we see
that the homomorphism p(; ;) sends the relation to ZzeBk,l(n) Yisa),2% = 0.
Hence we get 7(j,7),. = 0 for all z € By_1(n).

Now, let (j;J) € Ny with £(J) = k — 3. If J # I3, then using Lemma [3.7, we
have p(j,7) (¢ (z)) = 0 for all z € By_1(n) and (i;1) € Nj with (i;1) # (j;J).
So we get

PGS = D Wiz =0.
zEBj_1(n)
Hence 7(j,7),. = 0, for all z € By_1(n).

According to Lemma P(jis1s) (P(151,)(2)) = 0 for z € C and p(j;1,) (P1:1,)(2)) €

(&) for z € DUE. Hence we obtain

PGi)(S) = D> Ytz =0 mod (€).
z€CUD

So we get 7(j:1,),. = 0 forall z € CUD.
Now, let (j;J) € Ny with ¢(J) = k — 2. Suppose that I3 ¢ J. Then using
Lemma we have p;.7)(¢(1;1,)(2)) = 0 for all z € B. Hence we get

PG (S) = Z’y(‘j;‘]))zz =0.
z€B
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From this, we obtain 7, 7),. = 0 for all z € B.
Suppose that I3 C J. Then either J = I5,j = 1,2 or J = I3U2,j = 1. According

to Lemma Pits) (@) (2)) € (DUE) for all z € B, p(j;r,u2)(¢1:1,)(2)) = 0 for
z € CUD and p1;1,02)(0(1;1,)(2)) € (€) for z € £. Hence we obtain

P(ji12)(8) = Y Vjir).22 =0 mod (DUE),
zeC

P1502) (S) = Z V(151502),22 = 0 mod (£).
z€CUD

S0 Y(j;12),- = 0 for 2z € C and 7(1;7,u2),. = 0 for 2 € CUD. Since 7). = 0, for all
z € C and I # I, applying Lemma we have

p(l;jl)(S) = 27(1;11)722 =0 mod <D U 5>
z€C

Hence 7(1;1,),- = 0 for all z € C. So the relation (3.6) becomes

S= Z V(isIs),=Plis1s) (2) + 27(1;I3u2),z¢(1;13u2)(2)

1<i<3,2€€ 2€€

Y Var e (2) T D> Y26 (2) =0, (3.7)

1<i<2,2EDUE 2EDUE

Using the relation (3.7) and Lemma
p(i;12)(8) = Z(’Y(i;lz),z + 7(1;11),z)z =0 mod <g>7 i=1,2.
z€D

This relation implies v(1,7,),- = Y(2:1.),- = Y(1;1,),> for all z € D. On the other hand,
using the relation (3.7) and Lemma one gets

p(l;h)(s) = Z(’Y(l;[g),z + Y(2;12),2 + 7(1;[1),z)z =0 mod <8>
z€D
S0 Y(1:1),2 H V(@:L).: T V(1) = 0. Hence y1.1,).: = V2i1).: = Y.n),- = 0, for all
ﬂ

z € D. Now, the relation (3.7) becomes

S = Z V(isTs),= Pists) (2) + 27(1;13u2),z¢(1;13u2)(2)

1<i<3,2€€ 2€€

+ Z W(i;IQ),qu(i;Iz)(fi(Z)) + Z ’7(1;11)’2(]5(1;[1)(2) =0. (38)

1<i<2,2€€ zeU&

Using the relation (3.8)) and Lemma one gets
p(i§IS)(S) = Z(V(Z,Ig),z + 7(1;[1),2)2” = 07 7/ = 17 2; 37

zeE€
p(1;[3ug)(8) = Z(W(l;]g),z + V(2;13),z + V(1;1502),2 + ’7(1;]1)72)2’ =0,
ze€
P(1:1)(S) = Z(W(ug),z +Y3i0s),2 T V(i),2 T Y 0),2)2 =0,
ze€

(1) (S) = 2(7(2;13),z +Y3:1),: T V21, T V(10),2)2 =0,
z€E
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p(l;h)(s) = Z(’Y(l;[g),z + 7(2;[3),2’ + 7(3;[3),2’
ze€&

FVWh)z T V@h).: T VWI02),: T Y1n),2)2 = 0.
From the above relations, we get
V(isIs),z = V(Gila),z = V(1:1502),2 = V(1;1),2 = 0
forall z€ &, i =1,2,3, 7 =1,2. The proposition is proved. O
Proof of Theorem[1.3 Denote by |S| the cardinal of a set S. It is easy to check that
INi| = 2% — 1. Let (i;1), (j; J) € Ny, with £(J) < £(I) and y, z € By_1(n). Suppose

that ¢(;,1)(y) = ¢ (2). Using Lemma we have y = pj, 1) (e (2)) #Z 0. This
implies (4; 1) = (j;J) and y = z. Hence

¢(is1) (Be-1(1)) N oy (Br—1(n)) = 0.
for (4;I) # (j;J) and |¢i;1y (Br-1(n))| = |Br—1(n)|. From Proposition we have
dim(QFy)n = [Bi(n)| = Y |Bi-1(n)|

(i:1)ENY
= |Ni| dim(QPy—1)n
= (2F = 1) dim(QPy_1)n.
—~—0
The iterated squaring operation (Sq,)? : (QPy—1)n — (QPr_1)m is an isomorphism

of Fa-vector spaces. So we get dim(QPy—1)n = dim(QPx—1)m. The theorem is
proved. U

Remark 3.9. Let n = Z1<i<k—1(2di — 1) with d; positive integers such that
di > do > ... > dp_o > dp_1 > 0, and let m = Elgigk,g(ﬂi_d’“*l —1). Set
g = min{k,di_1} and Ny ¢ = {(is1) € Ny : £(I) < ¢q}. Then we have [Ny 4| =
Y i<i<a (’;) From the proof of Theorem [1.3| we see that the set

U ¢unBian)

(i51)ENg 4
is linearly independent in QPy. So, one gets the following formula in Mothebe [1§]:

dim(QPy)n > Y (j) dim(QPy_1)m.

1<i<q

In the remaining part of the section, we prove Lemmas ‘We need the
following for the proof of Lemma [3.4]

Lemma 3.10. Let i,j be positive integers such that 0 < i < j < k, and a,b > 0
witha +b=2%—1. Then

d_ d_
XPXD g X2 72X = iy (X771,
Proof. We prove the lemma by induction on b. If b =1, then
a d—
XiXh=X7 %X
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So the lemma holds. Suppose that b > 1. Note that X{LX;? = xi-’x?Xﬁj_l. If
ap(b) =0, then

3

T~ Sq ( b—1 aX2 —1)+xtg—1x?+1Xi27j—1 ~ Xf“X;"l oy ng_sz_
If ap(b) = 1, a1(b) = 0, then

d
OSq ( b 2 a+1X2 71)_~_Sq ( b 2 aX2 71)+x§)71x?+1Xi27j71

~y xb 1 a+1X2 —1 Xia+1XJl? L, Xiz _2Xj.
If ag(b) = a1 (b) = 1, then
T~ Sql( b q—ngff—l)Jqu (2} b—1,.a- 1X2d_1)+17?_11:?+1XZ;_1
~y xb 1 a+1X2d 1 Xa+1Xb 1 de 2X
The lemma is proved. O

Proof of Lemma . We prove the lemma by induction on d. Suppose d = 2. If
jo =71 =1, then x = zj)(i,@)(X?’). If j = jo > j1 =1, then z = XEX]- = ¢(i7j)(X3).
Ifi = jo < j1 = j, then x = XiXJZ ~q Sql(X@XiQ,j) + X2X; ~ X2X; = ¢ ) (XP).
So the lemma holds for d = 2.

Suppose d > 2. By the inductive hypothesis, there is (i1;I') € N} such that
[ocica X2 a2 G((in1) (X271, where iy = min{jo, j1,. -, ja—2}. If ja_1 =
i1, then the lemma holds w1th (4; 1) = (i1; I'). Suppose that jz_1 # i1.

If I’ = (), then using Lemma [3.10} we have

d—1 a_
vegs X2 UKD e da (X7,
where ¢ = min{é1, jq—1} = min{jo, j1,...,Ja—1}. The lemma holds. Suppose I’ =
(#h,35,...,4), 0<r<d—1and I, = (i,...,4.), then
d—1 r d—1_ g7
Gy (X7 TN = by (XT XS T

1

If i1 < j4—1 and r = d—2, then XilXJZ ~4 X X Hence using Proposition

Jd—1"
R-|ii), one gets
2d72

T g9 ¢(i’1;I*)(X2d7271)(X X5

Jd—1

d—2_
~d-1 ¢(z/1,1*)(X2 1)(X2 de—l)
_ ¢(i,1;1*)(X2T71)X2T XQd_2'7‘+1 '

Jd—1

2d72

If i1 < jq—1 and r < d—2, then using Lemma we have X2 o —1x2 ~y

Jd—1
Xizld " ~2X;,_,. Hence by Proposition ii)7
r d—r—1_ d—r—1_or
T Xq—2 ¢(i§;1*)(X2 1)(Xi21 IXJZd—l )2

r_ d—r
~rgo Sy (X2 (XX, )Y
>t by (XTTHXE X2 (since v+ 2 < d).

Jd—1

By the inductive hypothesis, there is (j;I) € N such that

. 1 _
¢(i'1;1*)(X2 1)XJ2d L ¢(j;1)(X2 1)7
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for 0 < r < d—2. So, from the above equalities and Proposition i), we get
2 ~g-0 ¢ (X2 X = 60 (X271, The lemma holds.
If i1 > jg—1 and r = d — 2, then

d—2_ d_
T~ (X2 (XL XS, ) = GG v1uin (X7,

If i1 > jq—1 and r < d—2, then using Lemma we have X2d RS ¢ ~y

Jd—1

2d—2

ijdd :_2X Hence by Proposition (ii),

2~y s ¢(i/1;[* (X2 _1)<X2d r— 1_1X2d r— 1)2r

Jd—1
r_ d—r d__
o Ssry (X2 TS TP XG)T = GG siuin (X,
Since r 4+ 2 < d, the lemma is proved. O
From the proof of Lemma |3.4] we easily obtain the following.

Corollary 3.11. Let (i;1) € Ni, j € Ng and a polynomial y in (Py)pm. If j > i
and d > 1+ 1, then

i) ¢(i;1)(X2T+1_1)XJ2d ~ao1 Girug) (X2,
it) X7 (0 (XTI xan fanun (XY,
Proof of Lemma[3.5. Applying the Cartan formula, we have
Sq( X212 Z X2C—1 20

1<j<k

_gr+l

where ¢ is a positive integer. From this, we obtain
X Y XN Y X
1< <i i<j<k
If d > r, then ¢ (X ~1)y?" = b, (X2 1)(X71y2)?, with ¢ = d —r and
I™ = (ig,i3,...,i,). Hence using Lemma [2.14] we get

d_ d _ ¢ 1 e or
(b( )(X2 1 2 Z (bh ]+) 1)(Xj2 ly? )2

1<j<i
+ Y baan (XX )
i<j<k
Applying Corollary [3.11] and Lemma [2.14] we have
c__ c\9r d__ d . .
¢(i1;1+)(X2 )(X2 ! 2 ) = ¢(j;[)(X2 1)y]2 , for j <,
c r d__ d . .
¢(i1;1+)(X2 B )(X2 1yj )2 = ¢(ij;fj)(X2 1)3/]2 ) fOI‘j > 1.
j
Hence the first part of the lemma follows.

If d > r+ 1, then ¢ (X2 1)y2" = puy (X2 1)(X2142)2™" | with ¢ =
d —r — 1. Hence using Lemma we get

d__ r+1_ c_ c or+l
Sun (X7 Ny = Y un(XPT X Ty )?

1<j<4

r4+1_ c_ c or+1
+ > ban(XFT NG
i<j<k
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According to Corollary and Lemma [2.14]

r1_ c_ ey ortl d_ d . .
¢(i;])(X2 1)(X2 1y2' )2 = ¢(j;1ui)(X2 l)yJZ ) fOI‘] <z,

J J

r4+1_ c__ c
b (X2 TYXT Ty

r41 d_ d . .
2 = (b(i;IUj) (X2 l)y? , for J >

So the second part of the lemma is proved. O

We need the following lemmas for the proof of Lemma [3.6
Lemma 3.12. For any integer 0 < £ < k,
£ £ k 14 £ k £ 14
X S b (X e+ 30 X
r=¢{ (i;])e/\f(_l r=0+1

Proof. We prove the lemma by induction on ¢. For ¢ = 1, the lemma is trivial.
Suppose that ¢ > 1 and the lemma is true for . Using the Cartan formula we have

14 k
of+1_q ot+1 9f+1l_q ot+1 9+l _1 of+1 1 9t+1_1
X€+1 Loy1 = E Xr Ly + E Xr Ty +Sq (X@ )
r=1 r=0+2

‘ k
L4+1—7r _ r L+1—7r £4+1 241
o~y ZX? Y2 22 + Z X2 g2
r=1
Using the inductive hypothesis and Proposition we have

k
9lH1=r 1, or ] grigltlor of+1l-r_1 or_1 o7
Xr (Xr € ) —{+1 Xr E Xm Tm

T
m=r+1

k
Y Y b )

m=r (i:1)EN, 1

4+1—r

According to Corollary

olt1—r ot+1

41
=+1 (b(r;m) (X2 1)xm ’
41 41
AN ¢(i;[u{r,m})(X2 1)‘7’%1

XETT X )

L41—r_ r_ r
X7 (i romy (X2 7,

24+1—r

From the above equalities, we get

C+1—1r r_ T olt+l—r 1 et
X2 HXZE g )? ~1 Y b (X T
(51)eEN—1
k
o+1_ £+1 £+1_ £+1
+ Z ( Z ¢(i;]u{r,m})(X2 1)!.6%,1 +¢(T§m)(X2 1),@%1 )

m=r+1  (i;1)EN,_1
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By a direct computation from the above equalities using the relation (3.1]), we have

2l+1 r 2T 1 2r 2[+1 r 2€+1_1 2(+1
E X X =41 E E ¢(z IU’I"( )T,

r=1(4;1)EN,_1

14
£4+1 441 £41 241
(Y thom (X2 4 g (X )

m=2 r=1  (4;I)eEN_1Ur

k
+ Z Z( Z ¢(i;IUm)(X2Z+1_1)‘T%i+1 + (b(r;m) (X2£+1_1)xii+l)

m=0+1r=1 (i;1)EN,_1Ur

¢
=> Giistun (X2 D22 4 Z Yo brom (X

r=1 (i;I)ENT‘—l m= 2(7' I)eNm 1

k
041 o041
Y Saum (X e,

m=L+1 (i:1)EN -1

= Z Z ¢(z‘;IUm)(X2H171)933s+1-

m=L+1 (i;1)EN,

Combining the above equalities we get

k

of+1_q ot+l £+1_1 ol+1 of+1_q ot+1

Xi Tl ~en E § Bisrum ( JEEE S E X; 2.
r=0+1 (i;1)EN, r=~0+2

The lemma is proved. g
From the proof of this lemma, we obtain

Corollary 3.13. For 2 < d < k, we have

St Y (X ),

r=d (i;1)ENg—1
Lemma 3.14. For any integer d >k, 0<r<d—k and0<m < h <k,
d—r_ d__od—r d__
Z = ¢, (X3 DNXP TP gt G (X2,

Proof. We prove the lemma by double induction on (m,r). If m = k — 1, then
h = k. By Lemma |3.10, we have

29-7 1\ y2¢ 24" 20— 9,24 _2d=T 4 291
i1 (X )X =Xpo1 O Xp T = o (X,
So, the lemma holds. Suppose that 0 < m < k — 1. If h = m + 1, we have
gk—m—1_1 gd—k+m—r4+1_o _od—ktm+l_gd—k+m—r+1l_ | gk—m—1

Z = ¢(m+2;lm+2)(X )(Xm Xm+1 * )

According to Lemma [3.10],
d—k4+m—r4+1_ d—k+m+1_gd—k+m—r+1 d—k4m+1_
X72n 2 72n+1 2 1 =2 szn 2Xm+1-

Hence using Proposition we obtain

2lc—m—1 2k7m—1

_ d—k+m-+1
1)(X2 2X7n+1)

m

Z 41 ¢(m+2;1m+2)(X
d
= Dmit) (X* 7).
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The lemma holds. Suppose that h > m + 1 and r = 1. We have

2d7k+m71

k—m
Z = ¢(m+1§1m+1)(X2 _1)(Xm

—k+m— —k+m— —k+m— d—k+m—
Since Xﬁj " 1*1X,?Lal et Xﬁj o ng B applying Proposition
2.5 and the inductive hypothesis, we have

k—m _ d—k+m—1 d—ktm—1_
Z il Dm0 s0) (X7 H(x, X b

2k—m71 2d—1_2k77n 2d—1
= Qlmt151m01) (X )X X

2d7 1

d—1
k—m ¢(m+1;1m+1)(X2 _1)Xm

kE—m—1_ d—k+m __ d—k+m
= Plmt 2L p0) (X DXz XD )

According to Lemma [3.10]

2d*k+m71

' X; )

2k77n

2k—m

2k,—m—1

2d—k+7n71

gd—ktm gd—k+m+1_g
m-+1 Xm —2 Xm Xm+1'

X

Hence using Proposition [2.5] one gets
k—m—1_ d—k+m+1_
Z ~g—m1 ¢(m+2;1m+2)(X2 1)(X'r2n 2Xm+1)

a_
= (b(m;[m) (X2 1)'

Now, suppose that ~ > m + 1 and r > 1. Applying Proposition and the
inductive hypothesis, one gets

d—r_ d—r d_od—r+1
Z = Gmia,)(X* THXE X7
d—r+1_ d_od—r+1
Ek—m+1 ¢(m;lm)(X2 1)X}3 ?
d
~k—m+1 ¢(m;]m,)(X2 71)'

The lemma is proved. O

2k7'rn71

Lemma 3.15. For any integer d > k,
d_ d d_ d
X7y Z Pis1on) (X* N .
(5 1)eENK -1
Proof. By Lemma we have
k

k_ k k_
Xp 7 e > uron (X g
(5 1)ENK -1

Hence using Proposition we get
d_ d k. k d_ok k_ d_ok od
Xp el = Xp TR XPT e Y daun (X DX T ey
(1) ENK—1
Let (i;1) € Ng—1. If I =0, then using Lemma we have
k_ d_ok od k_ d_ok od
Plastumy (XF XL "2 a2 = ¢y (X2 THXE P ai
= X2 2yt
oy X2 2 X2

d d
= ¢y (X% " Haj .
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IfI=(i1,...,4),7r>0,then s =k —¢(IUk) > 0. Hence
k d_ok od
Y o= uon (X2 THXE TP 2}
k—s__ s_ d—k+s_os k—s d
= duyrron (X TH(XE TIX 2R
where It = (ia,...,4,). By Lemma
X-2571X2d—k+5725 ~ X.Qd_k+572Xk.

?

If (i; 1 U k) # (1; 1), then s > 2. Using Proposition [2.5|and Lemma [3.4] one gets
d—k+s k—s od
Y >~ 10 Gyirtur) (X2 “D(XRX? H2

k—s_ k—s __od_ok—s+2 od
= Glyrrun (X7 (X XD)T X2 3
k78+2_ d_ogk—s+2 d
~p diror (X2 Hxz 2 z}
da_ da
= Pliruny (X7 " H)aj

Suppose that (i;7 Uk) = (1; ;). Then using Lemma and Proposition we

have
d

K d_ok od a
by (X? THXF 7P 2 = ¢y (XP

The lemma is proved. (|

Lemma 3.16. Y] ~; ) 0 with w = (,u(X2 71x1 ). More precisely,
vi= Y 8¢ "(yi) + b,
0<i<k
with y; polynomials in Py, and h € P (w).

Proof. First we prove the following by induction on m

k
d d
Y1 24w Y + Z Z baistun,(X* Hal (3.9)

r=m (i;1)ENm_1
Note that
d_ d k—m _ m_ m d—k+m _om
¢(m;lm)(X2 Ya?, = ¢(m+1;]m+1)(X2 D(X2" 12 Xg 27
Applying Lemma and Proposition we have

2k7m

k
om_q 2m gd—k+m _gm gd—k+m _q gd—k+m
X2 X3 Y X2 22

r=m-+1

k
m_ d—k+m _om od—k+m
+ Z Z (b(i;IUr) (X2 1)X3 2 ‘rg .
r=m (i;I1)ENm_1
Using Lemma and Proposition we have

k—m _ d_ok—m od
¢(m+1;1m+1)(X2 I)XrQ* 2 'T72" Zk—m ¢(m+1;1m,+1)(X

From the above equalities, Proposition [2.5] and Lemma one gets

zd—1)$2d
..

d d k d
D1,y (X3 _1)9672,1 ~p Y1 + Z Z D10t ur) (X _1)X3 2l
r=m (i;1)ENm—_1
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If either r > m or I # (2,...,m — 1), then (4,1 U I, Ur) # (1;11). From the
proof of Lemma |3.14] we have

k_ d_ok od d_ d
Plis1or, o) (X2 THXT 72l > drun,un (X2 T

Ifr=mandI=(2,...,m—1), then (;;7U I, Um) = (1;I;). By Lemma|3.14] we
have

d d
d)(l 11)(X2 _1)X2 -2 ‘Tm =k (b(l sI1) ( 2 _1)‘7"7277,'

Combining the above equalities, we get

d d
Gmstn) (X2 D22, g Vs + Z S bprun.on (X T2

r=m (3;I1)ENm_1

Using the above equalities and the inductive hypothesis, we get

k
d_ d
Y1 ~kw) Ymer + Z ( Z P(i:1U1,, ) (X7 )2} )

r=m  (1)ENm-1

k k
d d d d
+ Z ¢(m;1,,L)(X2 a2 + Z ( Z ¢(i;IUI,,LUr)(X2 “a} )

r=m+1 r=m  ($;1)ENp_1

k
= m+1+ Z ( Z ¢(i;IUIm)(X2d_1)x$d)

r=m+1 (4;1)EN;—1Um

k k
+ Z ( Z d)(i;IUIm)(XTl_l)mgd)"i_ Z ¢(m;1m)(X2d_1)xzd

r=m+1  (i;1)ENm_1 r=m-+1

(since mU I, = I,—q and I, Ur = I,, for r > m)

k
=Y+ Z ( Z ¢(i;1u1,,,L)(X2d71)mgd)

r=m+1  (i;1)EN,

(since Ny, = Npp—1 U (Nop—1 Um) U {(m; 0)}).

The relation is proved

Since Y = X2 xk , using the relation with m = k and Lemma one
gets

_ d d
Y1 ~(kw) X212 Z ¢(i;1uk)(X “Nah ~kw) 0.
(i:1)ENK -1

The lemma is proved. g

Proof of Lemma[3.6. We have Y,,, = sz_lYl(xm, o ap) with Z = 2120 0 1
By Lemma m Y., is a sum of polynomials of the form f = 7% ’1(Sq (y) +
h) with 0 < ¢ < kK — m, y a monomial in Pk mal = Pk mt+1 (@, - .., x) and
heP_ erl( w*),w* = (Tt ... 25)2 "122)). Then Z2'~1h € P (w) with w =
d
w(Xxi 1 2 ). Using the Cartan formula, we have

f 0w S (Z¥ )+ Y 5¢1 (2% S ().

1<t<28



ON THE PETERSON HIT PROBLEM 29

By a direct computation using the Cartan formula, we can show that if 0 <t < 20
then w, (Sq' (22 ~1)S¢2 ~t(y)) < k — 1 for some u < d. Hence one gets

I3 d 7
F ey S (27 Ny =y Y. 27y,

0<j<m

Since (,uu(ZTj’1 ?l) m—2fori<u<k, if 2% 71z21y ¢ P, (w), then w,(y) =
k—m for i < u < k. According to Lemma u there is (j;J) € Nj such that
72 _133]2 Y~ ¢j;J)(X2 _1)x§d. Here J C I, 1. Since 0 < 4(J) =i < k—m <
l(Iy—1) =k —m+1, we have J # I,,,_1. The lemma is proved. O

The following will be used in the proof of Lemma
Lemma 3.17. Let (5;J), (4;I) € Ny, with £(I) < d. Then
X2 (i) € (s D),
0, (i:1) & (45 J)-
Proof. Suppose that (i;1) ¢ (5;J). If @ ¢ (j;J), then from (3.2]), we see that
p(j;J)(qS(i;I)(XQd_l)) is a sum of monomials of the form

=27 " o1 (2),

for suitable monomial z in Py_5. Here ¢’ =4 if j > ¢ and ' =4 — 1 if j < . In this
case, we have (2" — 1) = 0 and w,41(w) < k — 1. Hence w € P,;l(w(d)), where
w(@ = w(XQd_l). Suppose that i € (j;J). Since (i;1) ¢ (j;J), thereis 1 <t < r
such that i; ¢ (j;J), then from 1) we see that p(j;J)(gb(i;I)(XZd*l)) is a sum of
monomials of the form

d
P(j;J)¢(i;I)(X2 T {

r_or—t
w=a} P T e (2),
for some monomial z in Py_s. It is easy to see that a,_¢(2" — 2r—t — 1) =0 and
wy—p+1(w) < k — 1. Hence w € P, (w¥).
Suppose that (i;I) C (j;J). If i = j, then from (3.2)), we see that the polynomial
241y ; ;
D) (D (X )) is a sum of monomials of the form

( H 1712: 12T ¢ 1+bt>( H a:?‘twcj)( H x?d_l)’
1<t<r j+1ea\I J+1¢J

where b1+b2+"'+bT+Zj+1eJ\]Cj =2"—1.1If ¢; > 0, then ozuj(2d—1—|-cj) =0
with u; the smallest index such that a,(c;) = 1. Hence w € P (D). If by =0
for suitable 1 < ¢t < 7, then a,_(2" —2"" — 1) = 0 and w,_441(w) < k — 1.
Hence w € Pk__l(w(d)). Suppose that b, > 0 for any ¢t. Let v; be the smallest
index such that a, (b;) = 1. If vy # r — ¢, then a,, (2" — 2" —1+b;) = 0 and
we P (W), Sowu =r—tand b = 2" + b, with b, > 0. If b, > 0, then
(27 =277 = 14 by) = @y (27 — 1+ b)) = 0 with v the smallest index such that
vy (b) = 1. Hence w € P, (w@). This implies b, = 0 for 1 < ¢ <7 and w = g.

If i € J, then from , we see that the polynomial p(j;J)(ng(i;I)( *1)) is a
sum of monomials of the form

2" —1+4bg 272"t _14b, 2d 1+¢; 2d_q
wea (I o2 Il I )

SN JH1eJ\(T) j+il¢J
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where by + b1 + b2 + ...+ b+ 35 e n ¢ = 2% — 1. By a same argument
as above, we see that w € P, (w®) if either ¢; > 0 or b, # 2! for some
j,t with ¢ > 0. Suppose ¢; = 0 and by = 2"" with all j and ¢ > 0. Then
20 =1 =bo+bi+bat... b+ G =bo+2" 1 and w = X2°~1. The
lemma is proved. O

The following is easily be proved by a direct computation.

Lemma 3.18. The following diagram is commutative:

fi
Pk—l Pk
P(is1;) P(i+1;31541)
fi
P P

Proof of Lemma[3.7. i) Suppose that either d > k or d = k — 1 and I # I, then
b (z) = (i)(i;l)(XQd*l)fi(E)Qd. Hence the first part of the lemma follows from
Lemma

ii) According to , b1:1,)(2) = ¢(2;12)(X2d_1)f1 (2)2(1. Hence from Lemmas
and we have

e (3111 (2)) = Peisny (b (X2 " Nppin (f1(2)2)

z if (1) = (1; 1),
= X2 fipaay (B2 € (DUE), if (i3 1) = (2 1),
0, otherwise.

iii) Let z € D. Using the relation (3.4), Lemma and Lemma [3.18] one has
d_ L od
PGy (81:1)(2)) = Pany (Dsea,) (X)) (f2(2)*)

z if Iy C I,
= X2 foprary)(2)2" € (6), if (1) = (3; 1),
0, otherwise.

iv) Let z € £. Using the relation (3.4)), Lemma and Lemma one gets
d_ Y
P (P10 () = Pasa) (S (X2 7 1))peasrny (F3(2)*)
d o od
= X" 7 fapan) (9)7)

If a monomial y is a term of fgp(g;jg)((E)Qd)7 then wy(y) < k — 3. According to

Theorem y = 0. Hence XQd’lfgp(g;IS)(E)zd = 0. So using Lemma one
gets

e (D (2)) = pan (bt (X2 Dpean (F:(2)2) =

z ifI3Cl,
0, otherwise .

The lemma is completely proved. O



ON THE PETERSON HIT PROBLEM 31

4. THE CASES k£ <3

In this section and the next sections, we denote by By (n) the set of all admissible
monomials of degree n in Py, BY(n) = Bi(n) N PY, B (n) = By(n) N P. For
an w-vector w = (wi,ws,...,ws,) of degree n, we set Bi(w) = Bi(n) N Py(w),
B} (w) = B;f (n) N Py(w). Then [By(w)] and [B;f (w)], respectively are the basses of
the Fo-vector spaces QP (w) and QP;f (w).

If there is ig = 0,41,%2,...,% > 0 such that i1 +4is + ... + 4. = m and

a(lil) (i2) ] agir)).

Wiy b die 4+t = Gs, 1 <t < dg,1 < s < 7, then we denote w = ( ,A5

If i, = 1, then we denote a&l) = .

Using Lemma i) in Subsection and Theorem we easily obtain the
following.

Proposition 4.1. For any s > 1,
Bp(11¥)) = {z;,27 ...«
It is well known that if n # 2* — 1 then By(n) = 0. If n = 2% — 1 for u > 0,

then Bj(n) = B;(1W) = {22"~1}. Tt is easy to see that ®(B;(0)) = {1} = By(0),
®(B1(1)) = {x1, 22} = Ba(1). According to Proposition [3.3] for v > 1, we have

By(2" —1) = (B (2" — 1)) = {a} 23 " mad 7Y,

By Theorem Bsy(n) = 0 if n # 2% 4 28 — 2 for all nonnegative integers
t,u. We define the Fo-linear map ¢ : (Pi)m — (Pr)2mix by ¥(y) = Xpy? for any
monomial y € (Pg)y,. From Theorem [1.2 and Theorem we have

2771,72 25_2711,71

; 1<y < ... <im <k, 1 <m < min{s, k}}.

tm—1"tm

Theorem 4.2 (Peterson [21]). Ifn = 2%+ 2! — 2 with t,u positive integers, then

Bsy(n) = 4" (®(B1(2" — 1))
{($1x2)2t71}7 u=0,
t+1_ t_ t_ t+1_
= Tty Tt e el T, u=1,
t4u_ t_ t_ tu_ t+1_ thu ot
oy Tley Tha? ey el el T w1

By Theorems [T.1]and [T.2] for k£ = 3, we need only to consider the cases of degree
n=2"—-2 n=2%—1andn=2%"" 4+ 2% — 2 with s,¢ positive integers. A direct
computation using Theorem [I.3] we have

Theorem 4.3 (Kameko [14]).
i) If n = 25 — 2, then B3(2° — 2) = ®(B2(2° — 2)).
ii) If n = 2% — 1, then B3(2° — 1) = B3(1(9)) U(®(By(2571 — 2))).
iii) If n =25t 425 — 2 then

ST ®(By (257 +2° — 2)),  otherwise.

5. PROOF OF THEOREM [L.4]

For 1 < i < k, define ¢; : QPy — QPy, the homomorphism induced by the 4-
homomorphism @; : P, — Py, which is determined by @, (z1) = z1+22, %, (2;) = z;
for j > 1, and @,(z;) = xi—1, B;(wi1) = @4, By(xj) = x; for j #4,i—1, 1 <i < k.
Note that the general linear group GLj is generated by ©,, 0 < ¢ < k and the
symmetric group Y is generated by ©,, 1 < < k.
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Let B be a finite subset of P consisting of some monomials of degree n. To
prove the set [B] is linearly independent in @ Py, we order the set B by the order
as in Definition and denote the elements of B by d; = d,, 4,0 < i < b= |B] in
such away that d,,; < d, ; if and only if i < j. Suppose there is a linear relation

S= > vdn; =0,

1<y<h

with v; € Fa. For (i;I) € Ny, we explicitly compute p(;,)(S) in terms of a minimal
set of A-generators in P,_;. Computing from some relations p(;p)(S) = 0 with
(i;1) € Ny, and %,;(S) = 0, we will obtain ~; = 0 for all j.

5.1. The case of degree n = 257! — 3.

In this subsection we prove the following.

Proposition 5.1.1. For any s > 1, ®(Bs(n)) is a minimal set of generators for
A-module Py in degree n = 251 — 3,

We need the following lemma for the proof of the proposition.

Lemma 5.1.2. If x is an admissible monomial of degree 271 — 3 in Py, then
w(z) = (3671, 1).

Proof. 1t is easy to see that the lemma holds for s = 1. Suppose s > 2. Obviously,
z=a¥ 12 ' “lp2 "~1 i the minimal spike of degree 2°*1 — 3 in P; and w(z) =
(36=1) 1), Since 251! —3 is odd, we get either wy () = 1 or wy(z) = 3. Ifwi(z) =1,
then w(z) < w(z). By Theorem x is hit. This contradicts the fact that x is
admissible. Hence we have wi(x) = 3. Using Proposition and Theorem

we obtain w;(z) =3, i =1,2,...,s — 1. From this, it implies
27t 3 =degz =) 2 wi(a) =321 — 1)+ D 2 Lw(
i1 izs

The last equality implies ws(z) = 1 and w;(z) = 0 for ¢ > s. The lemma is
proved. O

From Lemma [3.10} we have the following.
Lemma 5.1.3. The following monomials are strictly inadmissible:
X123, X, X <i1<j<4

Proof of Proposition[5.1.1. We have n = 2571 —3 =25 42571 4 2571 — 3 Hence
the proposition follows from Theorem [1.3] - 3| for s > 4. According to Kameko [14],

g(n) :{Ul _ 25 171x§‘s 17/02:X25 lilx%‘s 1,U3:X2S lilxis 1}’

where X = x1x213.
It is easy to see that ®(Bs(1)) = {x1,22,x3,24}. Hence the proposition holds
for s = 1. For s = 2, using Lemma we see that

O (B3(5)) = {z1200377, 21200574, 212530374}

is a minimal set of generators for (P4Jr )5. A direct computation using Lemmas m
and shows that for s = 3, ®*(B3(13)) is the set of 23 following monomials:

XPXjah 1<i<j<4, m#i, X} X2}, 2<i<j<4, X33, Xix].
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Using Lemmas and Theorem we see that if x is an admissible
monomial of degree 13 in P;', then x € ®+(B3(13)). Hence (QP; )13 is generated
by [®T(Bs5(13))]. Now we prove that the set [®+(B3(13))] is linearly independent.

Suppose there is a linear relation

23
> y5d; =0, (5.1.3.1)
j=1

where v; € Fp,1 < j < 23.
Consider the homomorphisms p;.;) : Py — P3,i = 2,3,4. By a direct computa-

tion from ([5.1.3.1)), we have
P(1;2)(S) = Mv1 + Y2v2 + y7v3 = 0,
P(1;3)(S) = v3v1 + (75 + 716)v2 + Y803 = 0,
P(1;4)(S) = (74 + 715)v1 + Y6v2 + Yovs = 0.

From the above equalities it implies

v =0,7=123,6,7,8,9, (5.1.3.2)
Y5 = Y16, V4 = V16-
Substituting (5.1.3.2)) into the relation (5.1.3.1)), we have
S=mdi+ysds + Y d; =0. (5.1.3.3)

10<5<23
Applying the homomorphisms p(a.3), P(2;4), P(334) : P4 — P3 to , we get
P(2;3)(S) = v10v1 + (12 + Y16 + 718)V2 + Y2103 = 0,
P(2:4)(S) = (711 + 715 + 710)v1 + Y13V2 + Y2203 = 0,
P(3:4)(S) = (714 + 715 + 716 + Y17) V1 + Y20v2 + Y2303 = 0.
Hence we get
v, =0, j = 10,13,20,21,22,23,
T2 + 716 + 718 = Y11 + 715 + 719 =0, (5.1.3.4)
Y14 + 715 + 716 + 717 = 0.

Substituting (5.1.3.4)) into the relation ([5.1.3.3) we get
S = v4dy + ¥5ds +y11d11 + Y12d12 + Z vid; = 0. (5.1.3.5)
14<5<19
The homomorphisms p(1;(2,3)), P(1;(2,4))> P(1;(3,4)) : a4 — P3, send (5.1.3.5) re-
spectively to
P(1:(2,3)) (S) = (75 + 712 + 71602 + Y1803 = 0,
P(152,4)(S) = (74 + 711 +715)v1 + 71903 =0
P(1;3,4)(S) = (va + 714 +715)v1 + (v5 + 716 + M17)v2 = 0.

From this we obtain

(5.1.3.6)

Y18 = Y19 =5 + Y12 + 716 = 0,
Y4+ 711 + 715 = Y4 + Y14 + Y15 = V5 + Y16 + 717 = 0.
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Combining (5.1.3.2), (5.1.3.4) and (5.1.3.6), we obtain v; =0, j =1,2,...,23.
The proposition is proved. O

5.2. The case of degree n = 2571 — 2.
It is well-known that, Kameko’s homomorphism
—~0
8¢, (QPk)2mrr — (QPx)m
is an epimorphism. Hence we have
—~0
(QPy)2m+k = (QPk)m ® (QPY)2m+k & (KerSq, N (QP )2m+k),

and (QFg)m = ([ (Br(m))]) € (QPr)2m+k-
For k = 4, from Theorem it is easy to see that

®(B3(2)) = ®°(B3(2)) = {wx; | 1 <i < j <4}
For m = 2% — 3, s > 2, we have
|®°(B3(6))] = 18, |®"(B3(25T* — 2))| = 22, for s > 3,
6(Ba(1))| = 4, KerSq, 1 (B} (6)] = {[z123w323), [1z20323]).
Hence dim(QPy)2 = 6, dim(QPy)s = 24.
The main result of this subsection is:

—~0
Proposition 5.2.1. For any s > 3, (QPI)QSH_Z NKerSq, is an Fy-vector space
of dimension 13 with a basis consisting of all the classes represented by the following
admissible monomials:

dy = mwox 202 72 dy = mada T4a¥ Y, dy = ayada? 322

dy = madad 2?7t ds = made T2 dg = wyada? 220

dr = $1x35_2x3x13_2, dg = x1x35—1x§x25—4’ do = x?xgxgs_‘lxis_Q,

dig = x?xgzgs_2mis_4, diy = 23x3zdxt, s =3, di = x‘i’x%x%s_ﬁxis_‘l, 5> 3,
dip = a3z} Bada? 71, dig = a7 tagadal Y,

The proof of this theorem is based on some lemmas.

Lemma 5.2.2. If x is an admissible monomial of degree 2571 —2 in Py and [z] €
—~0
KerSq,, then w(z) = (209)).

Proof. We prove the lemma by induction on s. Obviously, the lemma holds for
s = 1. Observe that z = (m1x2)25_1 is the minimal spike of degree 251! — 2 in P,
and w(z) = (2(*)). Since 2°*! — 2 is even, using Theorem and the fact that

[z] € KerSq,, we obtain wy(z) = 2. Hence z = z;x;y?, where y is a monomial of
degree 2° —2 and 1 < i < j < 4. Since z is admissible, by Theorem y is also
admissible. Now, the lemma follows from the inductive hypothesis. O

The following lemma is proved by a direct computation.

Lemma 5.2.3. The following monomials are strictly inadmissible:
i) 2?z;23, x?x?xz, i< gk #£4,7, ¥3xdwsny, viveriny, vivowsi, vixiaia,.
i) zyaSaiad, vriasal, viadadad.
iii) z12lai02i?, alrewiOnl? adadad?al? adadalalt pdadaltal, 2 aladaf.
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Proof of Proposition[5.2.1 Let x be an admissible monomial in P, and [z] € Keré?;g.
By Lemma [5.2.2) w;(x) = 2, for 1 <4 < s. By induction on s, we see that if 2 # d;,

for i = 1,2,...,13, then there is a monomial w, which is given in Lemma [5.2.3

such that # = wy?" for some monomial y and positive integer u. By Theorem

x is inadmissible. Hence Kerg&i N (QP;) is spanned by the classes [d;] with

i=1,2,...,13. Now, we prove that the classes [d;] withi = 1,2,...,13, are linearly

independent.

Suppose there is a linear relation

> ydi =0, (5.2.3.1)
1<i<13

with v; € Fs.
According to Kameko [I4], for s > 3, Bs(n) N (P; ), is the set consisting of 4
monomials:

2°—-2_2°-1 2°—-1,2%-2

W1 = T1T9 T3 , W2 = T1Ty T3 5
_ ..3,2°-3,2°-2 21 2°—2
w3 = Ty T3 , W4 =T Lol .

Apply the homomorphisms p(1.2), p(3;4) : P+ — P3 to the relation (5.2.3.1)) and
we obtain

Yowy + Yaws + y3ws + yrwa = 0.
Yrw1 + yswa + Y12ws + y13wyq = 0.

From these relations, we get v, = 0, ¢ = 2,3,4,7,8,12,13. Then the relation
E2.31] becomes

Y1d1 + v5ds + Yeds + Yodo + Y10d10 + Y11d11 = 0. (5.2.3.2)

Apply the homomorphisms p(1,4), p2;3) : P4+ — P3 to the relation (5.2.3.2) and we
get

(71 + 95 + 710 + Y11)w1 + Yews =0,
(71 + 5 + 710 + Y11)Ww2 + Yows = 0.
These equalities imply v¢ = 79 = 71 + V5 + 710 + 711 = 0. Hence we obtain
Y1d1 + ¥5ds + y10d10 + y11d11 = 0. (5.2.3.3)
For s > 3, apply the homomorphisms p(1.3), p(2;4) : Pa — P3 to , we get
nwz + yswsz = 0,
mwi + yows = 0.
From the above equalities, we get v; = 0,7 =1,2,...,13.
For s = 3, apply the homomorphisms p1.3), p(2;4) : P+ — P3 to , we get
(71 + v11)wz2 +ysw3 =0,
(71 +711)wi + yrows = 0.
From the above equalities, we get v, = 0,7 =2,...,10,12,13 and ; = 711. So the
relation (5.2.3.3)) becomes
v1(dy 4+ d11) =0.
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Now, we prove that [d1 + d11] # 0. Suppose the contrary, that the polynomial

di+di = x1x2x3a:4 +xi{’z§x§x4 is hit. Then by the unstable property of the action

of A on the polynomial algebra, we have
ryworses + plrdvia] = Sq'(A) + S¢*(B) + Sq¢*(C),

for some polynomials A € (P;)13, B € (P} )12,C € (P} )10. Let (Sq¢?)? acts on the
both sides of the above equality. Since (S¢?)3Sq* = 0 and (S¢?)3S¢® = 0, we get

(Sq?)* (wrw0a5a] + afasasay) = (S¢°)*Sq*(C).
On the other hand, by a direct computation, it is not difficult to check that
(S4°)* (z12925a + aiadasal) # (S¢4°)°Sq(O),

for all C € (P}")19. This is a contradiction. Hence [dy +d11] # 0 and v, = 11 = 0.
The proposition is proved. g

5.3. The case of degree n = 257! — 1.

First, we determine the w-vector of an admissible monomial of degree 2°+1 — 1
in P4.

Lemma 5.3.1. If x is an admissible monomial of degree 2°T1 —1 in Py then either
w(z) = (16D or w(z) = (3,267D) or w(x) = (1,3) for s = 2.

Proof. Obviously, the lemma holds for s = 1. Suppose s > 2. By a direct
computation we see that if w is a monomial in P, such that w(w) = (1,3,2) or
w(w) = (1,1, 3), then w is strictly inadmissible.

Since 2°*! — 1 is odd, we have either wi(z) = 1 or wy(z) = 3. If wi(z) = 1,
then z = x;y°, where y is a monomial of degree 2° — 1. Hence either w;(y) = 1 or
w1(y) = 3. So the lemma holds for s = 2. Suppose that s > 3. If w;(y) = 3, then
y = X,y?, where y; is a monomial of degree 2°~! — 2. Since y; is admissible, using
Proposition one gets wy(y1) = 2. Hence x is inadmissible. If wy(y) = 1, then
Y= xjy%, where y; is an admissible monomial of degree 2°~! — 1. By the inductive
hypothesis w(y;) = (1571). So we get w(x) = (1¢+D).

Suppose that wy(x) = 3. Then z = X;y?, where y is an admissible monomial of
degree 2° — 2. Since x is admissible, by Lemma w(y) = (26=Y). The lemma
is proved. O

For s = 1, we have (QP;); = (QP{)3. Hence B4(3) = ®°(B3(3)). Using
Proposition [£.1] and Theorem [£.3] we have

|<I>0<Bg(3)>\ =14, [9°(B3(7))| =26, |®°(Bs(15))| = 38,
|®%(B3(25T! — 1))| = 42, for s > 4.

For s = 2, B4(7) = B4(1®)) U B4(1,3) U B4(3,2). By a direct computation, we
have B4(1, 3) = {J}leQ}, B4(3, 2) (33(7))
Recall that

By(2°! — 1) = By(10+)) U (@(Ba(2" — 2))),

where B(2° — 2) = {z2 ~'22" ~'}. Hence B3(3,2671) = 1(®(B5(2° — 2))).
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Proposition 5.3.2. For any s > 3, B4(3,267D) = (®(Bs(3,2V))UA(s), where
A(s) is determined as follows:

A(3) = {a3wswsal, tasaley, aialairy, wlrdriey, 2iviadad},
A4) = {afzdas' e’ afefafe®, aladaie)®, afalala], alajasad, },
A(s) = {z1x2x§ 5273 s> 5.
Combining Lemma and Propositions we have
By(2°71 — 1) = B4(16FY) U ®(Bs5(3,267V)) U A(s).
The following can easily be proved by a direct computation.

Lemma 5.3.3. The following monomials are strictly inadmissible:

i) xfmj,x?m;*, 1<i<j<4.
il) Xoa?z3, Xqzia?, i=2,3,4.

S 30120 15 34 3.5 8 15 : L
i) zjx TRx”, T;T xkxz,:z:xxkxg,z<]<k 67&1 7, k

711,12 3 3,13 88,6 7,11 4.8
iv) zi{zdtei?ey, dei?aia®, X; x1x2x3x4x it ziada;,
3,.3,.12,.8,.4 303224294 _
TywHT3T TG T, viTSwy g Ty, 1 =1,2, j =3,4.

Proof of Proposition|5.3.4 By a direct computation using Lemma Lemma
m and Theorem we see that if 2 is a monomial of degree 25Tt — 1 in P, and

x ¢ ®(B3(3,2>1)) U A(s), then there is a monomial w which is given in Lemma
ﬁ such that z = wy?" for some monomial y and integer v > 1. Hence z is
inadmissible.

Now we prove that the set [By(3,2(*"1))] is linearly independent in QP;". For
s =3, we have |B4(3,2,2)| = 36. Suppose there is a linear relation

S= Y wd;=0, (5.3.3.1)

1<i<36

with vi € Fy and d; = d15’i.
A simple computation, we see that B3(3;2,2) = (P®(Bz(6))) is the set consisting
of 6 monomials:

7,7 3,.5,.7 3,.7,.5 7o 7 7,.3,.5 7,7
U] = T1ToT3, V2 = T|ToT3,V3 = T{THx3, Vs = T T2x3, Us = T Loy, Vg = T1ToT3.

By a direct computation, we have

P1;2)(S) = Y302 + 7403 + (Y9 + Y22)va + (Y10 + 723) 5 + (Y11 + Y24)V6 = 0,
P(1:3)(S) = (71 +716)v1 + Y5v2 + (Y7 + Y20)v3 + Y13V + (Y15 + Y30) V6 = 0,
P1:4)(S) = (72 + 719)v1 + (96 + 21 + Y27)v2 + 83 + (V12 + Y20) V4 + Y1405 = 0,
P2;3)(S) = (71 + 3 + 75 +Y0)v1 + (Y16 + V22)v2

+ (718 + 720 + Y23 + Y26)v3 + V3205 + (V34 + V36)v6 = 0,
(v2 + 74+ 8 +711)01
+ (717 +v21)v2 + (719 + Y24v3 + Y31 + V35)va + Y3305 = 0,
P3:4)(S) = (712 + 713 + 714 + 715)v1 + (V25 + Y26 + Y27 + Y28)V2
+ (720 +730)v3 + (731 + V32 + Y33 + V34)v4 + (35 + Y36)v5 = 0.

P(2:4)(S)
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From these equalities, we obtain
=0, j=3,4,5,8,13,14,32, 33,
Y1 =79 = Y16 = Y22, V2 = V11 = Y19 = V24, V7 = 720,
V1= Y9 = V16 = Y22, Y10 = 723, Y17 = V21, (5.3.3.2)
Y12 = Y15 = Y29 = Y30, Y31 = V34 = V35 = 736,
Y6 + Y21 + Y27 = Y7 + Y10 + Y18 + Y26 = Y25 + Y26 + Y27 + Y25 = 0.
A direct computation using and Theorem we get
P(15(2,3)) (S) = 118W3 + Yosws + Yaswe = 0,
P(1502,4)) (S) = (V6 + 710 + Y2r)wa + Y25ws + Yorws = 0,
P(1:3,4))(S) = (17 + 718)wi
+ (96 + 97 + 717 + Y25 + Y26 + Y2r)wa + (Y17 + Y2s)w3 = 0.
Combining the above equalities and , one gets v; =0 for j #1,2,9, 11,
12, 15, 16, 19, 22, 24 , 29, 30, 31 and 71 = 79 = Y16 = V22, V2 = Y11 = Y19 = V24,
Y12 = V15 = Y20 = Y30, V31 = Y34 = Y35 = Y36. Hence the relation (5.3.3.1) becomes
Y101 4 Y202 4 y1283 4 73164 = 0, (5.3.3.3)
where
01 = di +dg + dig + daz, 02 = da+di1 + dig + day,
O3 = di2 + di5 + d2g + d3o, 04 = d31 + d3q + d3s5 + d36-

Now, we prove that v; = v = 712 = 31 = 0.
The proof is divided into 4 steps.
Step 1. Under the homomorphism 1, the image of (5.3.3.3) is

Y161 + 7202 + 71203 + 31 (02 + 03) = 0. (5.3.3.4)
Combining (5.3.3.3) and (5.3.3.4]), we get
Y3103 = 0. (5.3.3.5)

If the polynomial 63 is hit, then we have
03 = Sq'(A) + S¢*(B) + S¢*(0),

for some polynomials A € (P} )14, B € (P;")13,C € (P} )11. Let (Sq?)? act on the
both sides of this equality. We get

(Sq°)*(65) = (S¢*)*Sq*(C),
By a direct calculation, we see that the monomial * = x$zlriz? is a term of
(S¢?)3(63). If this monomial is a term of (Sq?)3S¢*(y) for a monomial y € (P;)11,
then y = 27 fo(2) with 2 € P; and degz = 4. Using the Cartan formula, we see
that z is a term of x3(Sq¢?)3S¢*(2) = 27(S¢*)?(2?) = 0. Hence

(Sq*)*(65) # (S4*)*Sq*(C),
for all C' € (P;");; and we have a contradiction. So [f3] # 0 and ~3; = 0.

Step 2. Since 731 = 0, the homomorphism 5 sends (5.3.3.3)) to
7101 + 7202 + 71204 = 0. (5.3.3.6)

Using the relation (5.3.3.6) and by the same argument as given in Step 1, we get
12 = 0.
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Step 3. Since y31 = 12 = 0, the homomorphism (3 sends (|5.3.3.3) to
71[61] +72[03] = 0. (5.3.3.7)

Using the relation ([5.3.3.7) and by the same argument as given in Step 2, we obtain
Y3 = 0.
Step 4. Since y31 = 12 = 2 = 0, the homomorphism ¢4 sends (5.3.3.3)) to
7102 = 0.
Using this relation and by the same argument as given in Step 3, we obtain ~; = 0.
For s > 4, B3(3,20571)) = ¢(®(B2(2°~! — 2))) is the set consisting of 7 mono-
mials:

2°—1,_2°-1 3,2°-3 _2°-1 3,2°-1,_2°-3 7,2°=5_2°-3
V1 = T1To fI:3 , U2 = XXy 1'3 , U3 =TTy $3 y, Vg =TTy .'1:3 5
s _ s_ s _ s_ s_ S
Vs = .T2 1x2x2 1, Vg = CC? 1$g$§ 3, V7 = l’? 11’% 1253.

Suppose that s = 4. Then we have |B,((3,2()))| = 46. Suppose there is a linear
relation

S= Y yd; =0, (5.3.3.8)

1< <46
with v; € Fp and d; = d31 ;.
By a direct computation using Theorem we have
P(1;2)(S) = 3wz + vaws + (Y9 + Yy25)wa + Y12ws + Y13We + Y1awr = 0,
P(1;3)(S) = (71 + y19)wi + ysw2 + (y7 + 23 + 37 + Y30 W3
+ (710 + Y28) w4 + Y16we + Y18W7 = 0,
P(1,4)(S) = (72 + Y22)wr + (V6 + Yoa + Y27 + Y20 + Y32 + Ya0) W2
+ 8wz + y11wa + (715 + Y34)ws + Y17we = 0.
From these equalities, we get
~v; =0, j=3,4,5,8,11,12,13,14, 16,17, 18,
Yo =25, 71 =Y19, V7 + Y23 + V37 + 739 = 0, Y10 = V28, (5.3.3.9)
Y2 =722, Y6 + Y24 + Y27 + Y209 + Y32 + Ya0 = 0, Y15 + 734 = 0.
Using the relations , and Theorem we obtain
P(2:3)(S) = M1w1 + 1wz + (Y9 + 710 + Y21 + Y23 + Va6 + V31 + V30)W3
+ (35 + Y37)wa + Ya3we = 0,
P(2:4)(S) = 2w + yaswr + (Y20 + Y24 + Y38 + Ya0)w2 + Y2ws + V36w
+ (42 + va6)ws + yaawe = 0,
P(3:4)(S) = viswi + (v30 + ¥31 + Y32 + V33) W2
+715w3 + Ya1wa + (Va2 + Va3 + Vaa + Ya5)ws + Yaewe = 0.
From these equalities, we get
v =0, j=1,2,15,36,41,42, 43,44, 45, 46,
Y10 + Vo1 + Y23 + Y26 + Y31 + Y39 = 0, (5.3.3.10)
V35 = Y37, Y20 + V24 + Y38 + Y40 = 0,
Y30 + Y31 + Y32 + 733 = 0.
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By a direct computation using (5.3.3.9)), (5.3.3.10) and Theorem [2.12] we have

P(15(2,3))(S) = (77 + Y21 + Y23 + Y30) w3 + Yaswa + Y31We + Y33W7 = 0,

P(152,4)(S) = (Y6 + Y9 + 720 + Y24 + Y27 + Y20 + V32 + Y38 + Ya0) w2
+ Y27w4 + Y30ws + Y32we = 0,

P(1:(3,4)) (S) = (V6 + 710 + Y23 + You + Y26 + Yor + Y20 + Y30 + Y31 + Y32) W2
+ (¥7 + Y23 + Y24 + V33 + V35 + V38 + V39 + Va0)ws
+ (720 + Y21 + 735)w1 + Y20ws = 0,

P(2:(3,4)) (S) = (710 4 Y20 + Y23 + Y24 + Y20 + Y30 + 35 + Y38 + V30 + Ya0)wo
+ (Yo + 10 + Y21 + Y23 + Y24 + Y26 + Y27 + Y20 + V31 + V32)W3
+ (Y6 + v7 + 79 + y10)w1 + Y38ws = 0.

Combining the above equalities, [5.3.3.9] and [5.3.3.10}, we get

~v; =0, j #7,10,21,23,24, 28,35, 37,39, 40,
Y7 = Y10 = Y28, V21 = V35 = V37, (5.3.3.11)
Y7 + Y21 + Y23 + 39 = 0.

Hence we obtain
~v701 4 Y2102 + Y3903 + Y2404 = 0, (5.3.3.12)
where
01 = d7 + dio + da3 + das,
02 = do1 + da3 + d35 + dar,
03 = dag + d3g, 04 = das + dao.

Now, we prove ;7 = 21 = Y24 = 739 = 0. The proof is divided into 4 steps.
Step 1. The homomorphism ¢, sends (5.3.3.12) to

Y701 + Yo1 (02 + 01) + Y2403 + 3964 = 0. (5.3.3.13)
Combining (5.3.3.12)) and (5.3.3.13)) gives
Y2501 = 0. (5.3.3.14)

By an analogous argument as given in the proof of the proposition for the case
s =3, [61] #0. So we get 21 = 0.
Step 2. Applying the homomorphism @5 to (5.3.3.8)), we obtain

Y702 + Y2403 + Y3904 = 0. (5.3.3.15)

Using ((5.3.3.15)) and by a same argument as given in Step 1, we get v; = 0.
Step 8. Under the homomorphism ¢3, the image of (5.3.3.8) is

v24[02] + Y39[04] = 0. (5.3.3.16)

Using (5.3.3.16)) and by a same argument as given in Step 3, we obtain y54 = 0.
Step 4. Since y7 = 22 = 724 = 0, the homomorphism ¢3 sends ([5.3.3.8)) to

Y39[63] = 0.

From this equality and by a same argument as given in Step 3, we get y3g = 0.
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For s > 5, |B4(3,20=1)| = 43. Suppose that there is a linear relation

S= Y yd; =0, (5.3.3.17)
1<j<43
with Y€ .
Using the relations p;, 5 (S) = 0, for (j;.J) € Ny and the admissible monomials
v, % =1,2,...,7, we obtain v; = 0 for any j. The proposition is proved. O

5.4. The case of degree 25+t+1 4 25+1 _ 3,

First of all, we determine the w-vector of an admissible monomial of degree
n = 25t L 25+l _ 3 for any positive integers s, t.

Lemma 5.4.1. Let x be a monomial of degree 25Tt + 25t1 — 3 in Py with st
are the positive integers. If x is admissible, then either w(z) = (3(5),1¢+1)) o
w(z) = (36+D) 201,

. st s . . .
Proof. Observe that the monomial z = z? a2 130% is the minimal spike

of degree 257+ 4-25+1 — 3 in Py and w(z) = (3),1¢+D). Since x is admissible
and 251+ 4 251 _ 3 s odd, using Theorem we obtain wy(z) = 3. Using
Theorem and Proposition we get w;(xz) =3 fori=1,2,...,s

Let o' = [];5, XQZ (@) Then wi(z') = wits(2),i > 1 and deg(a’) = 2" — L.
Since z is adm1551ble using Theorem we see that z’ is also admissible. By

Lemmas [5.3.1] either w(z’) = (1¢tD) or w( ) = (3,21 or w(z') = (1,3) for
t = 2. By a direct computation we see that if w(z’) = (1, 3), then z is inadmissible.
So, the lemma is proved. O

Using Theorem we easily obtain the following.

Proposition 5.4.2. For any positive integers s,t with s > 3, ®(Bs(n)) is a mini-
mal set of generators for A-module Py in degree n = 2”"5“‘1 25+ 3,

Hence it suffices to consider the cases s = 1 and s = 2.

5.4.1. The subcase s = 1.

Fors=1,n=2"24+1=(2"2 - 1)+ (2—1)+ (2 —1). Hence u(2t*2 +1) =3
and Kameko’s homomorphism

0
Sq, : (QPs)gt+241 — (QP3)ar+1 1

is an isomorphism. So, we get
By(n) = $(B3(27" = 1) = (Bs (1)) U(Bs(3,217V)).

Proposition 5.4.3. For any positive integer t, ®(Bs(n)) U B(t) is the set of all
the admissible monomials for A-module Py in degree n = 22 4+ 1, where the set
B(t) is determined as follows:

3,4 3,58
B(1) = {zizpw3ra}, B(2) = {z1752524},
_y.3.7.11.12 7.3 11,12 .7, 113 12 7,78 11 .7.7.11.8
B(3) = {w12ow3 wy", 212503 4", 1Ty T3T,°, T1ToT3T, , T1THT3 Ty ),
3,7 2t s ottty 7 3 ottl_g5 ottl_y
B(t) = {zjzy23 4 » L1ToT3 4 )

7.2t 5 23 ottl_y 7 7 2ttl_g 2'*—5
x5 T3xy , L1 To Ty }, fort > 3.
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The following lemma is proved by a direct computation.

Lemma 5.4.4. The following monomials are strictly inadmissible:

i) Xox2wl?, Xg’a:%x? i=1,2, X; xlmQx X2x2x j=3,4.
i) Xsaeizsaez!, XsafegalelS,j=3,4.
111) X3X2x112374 , Xy X3xtadrl? Xy X3aixl?2§, Xy X22122328
iv) X2alaSael?, 1<i<j<4, m#i,j.
v) X; X3xtaja8ad, j = 3,4, X32x‘11x§x§x4, j=24.
vi) X3zladadta?t, Xialajal xix%ﬁx}f, X4X2$1x§x§x2x§6x}16, 1=1,2,

3,.12,.12,.16,.16 2,.12,.12,.16,.16
Xiwy*wy g ey, j = 3,4, XyXgui wy"wg ay .

According to Lemma z = X;y? with y a monomial of degree 2t*! — 1. Since
z is admissible, by Theorem y is admissible. By a direct computation, we see
that if y € B4(2!*! — 1) and X;y? ¢ ®(B3(n)) U B(t), then there is a monomial
w which is given in one of Lemma [5.1.3] [5.3.3] [5.4.4] such that X;y? = wz?" with
some positive integer u and monomial z. By Theorem x is inadmissible.

For t = 1, we have |C (9)| = 18. Suppose there is a linear relation

Proof of Proposition Let = be an admissible monomial of degree n = 2¢7241.

S=Y ~di =0, (5.4.4.1)

with 7; € Fa. A direct computation from the relations p(,.;)(S) =0, for 1 <r < j <

4, we obtain v; = 0 for ¢ # 1,4,9,10,11,12 and v1 = 72 = 3 = Y10 = Y11 = Y12-

Hence the relation becomes 10 = 0 where 6 = dy +ds+dg+dig+di1+dio.
We prove v; = 0. Suppose 6 is hit. Then we get

0 = Sq'(A) + S¢*(B) + Sq*(C),
for some polynomials A € (P )s, B € (P )7,C € (P;")s. Let (S¢?)% act on the
both sides of this equality. It is easy to check that (S¢?)2Sq*(C) = 0 for all

C € (P} )s. Since (S¢?)® annihilates Sq' and Sq¢?, the right hand side is sent to
zero. On the other hand, a direct computation shows

(S¢*)3(0) = (1,2,4,8) + symmetries # 0.

Hence we have a contradiction. So we obtain ; = 0.
For t = 2, |BJ (17)| = 47. Suppose there is a linear relation

= ydi =0, (5.4.4.2)

with v; € Fo and d; = dy7;. A direct computation from the relations p(;,7)(S) = 0,
for (7;J) € Ny, we obtain v; = 0 for 7 # 1,4,8,9,10,11,17,18 and y; = v2 = vg =
Yo = Y10 = Y11 = Y17 = 7Y18- Hence the relation becomes 7,0 = 0 where
0=di+ds+ds+dii +diz+ dig + dir + dis.

By a same argument as given in the proof of the proposition for ¢ = 1, we see
that [6] # 0. Hence v, = 0.

For t = 3, we have |Bf (33)| = 84, and |Bf (2!72 + 1)| = 94 for t > 4. Suppose

there is a linear relation

S=Y ~idi =0, (5.4.4.3)
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with v; € Fo and d; = d33;. A direct computation from the relations p(;,7)(S) = 0,
for (j;J) € Ny, we obtain v; = 0 for all ¢ ¢ E with £ = {1, 3, 8,9, 13, 14, 17, 24,
25, 42, 43, 59, 60, 65, 66, 67} and ; = 1 for all ¢ € E. Hence the relation
become 10 =0 with 6 =), d;.

By a same argument as given in the proof of the proposition for ¢ = 1, we see
that [6] # 0. Therefore v, = 0.

Now, we prove the set Bj(n) is linearly independent for ¢ > 3. Suppose there is
a linear relation

94
=Y ~di =0, (5.4.4.4)
=1

with ; € Fy and d; = d,, ;. A direct computation from the relations p;,7)(S) = 0,
for (j;J) € Ny, we obtain ; = 0 for all 4.

5.4.2. The subcase s = 2.

For s = 2, we have n = 2/73 +5. According to Theorem the iterated Kameko
homomorphism

—~0
(54.)% : (QPs)gersy5 = (QPs)arrr 1
is an isomorphism. So we get

B3(n) = ¢2(33(2t+1 - 1)) = ¢2(Bg(1(t+1))) U 1/22((13(B3(37 2(t—1))).

Proposition 5.4.5.

i) By(n) = ®(B3(21)) U {a]292323, xTxdx322, xdalabad, xlxdafad} is the set
of all the admissible monomials for A-module Py in degree 21.

ii) For any integer t > 1, ®(Bs(n)) is the set of all the admissible monomials
for A-module Py in degree n = 213 + 5.

The following lemma is proved by a direct computation.

Lemma 5.4.6. The following monomials are strictly inadmissible:

i) Xdaz, X}!X?, 1<i<j<4, X3zias.

i) Xgzta3t, X3xtalal® XPalabal® XTa82%,i=1,2.

iii) a{ztadiTa?, X;’xgx;ﬁ, X}x%xij =3,4

iv) alPalfelfadt, o aliadals, e el e,

Proof of Proposition[5.7.5. Let x be an admissible monomial of degree n = 24345,
According to Lemma x = X;y? with y a monomial of degree 22 + 1. Since
x is admissible, by Theorem y is admissible.

By a direct computation, we see that if y € B4(2!72 + 1) and X;y? is not in the
set given in Proposition [5.4.5] then there is a monomial w which is given in one of
Lemmas|5.1.3] [5.3.3] [5.4.6/ such that X,;y? = wz?" with some positive integer v and
monomial z.

By Theorem x is inadmissible. Hence QPy(n) is generated by the set given
in the proposition.

For t = 1, we have | B (21)| = 66. Suppose there is a linear relation

66
S=Y ~d;i =0, (5.4.6.1)
=1

with Yi € ]F2 and dl = dglyi.
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By a simple computation, we see that Bs(21) is the set consisting of 7 monomials:

3,..3,.15 3,.7..11 3,..15..3 7,..3,.11
U1 :xlexg , U2 2331.%‘21‘3 , U3 :xlmz Jj37 Vg =x1£2$3 5

vs = xlaytay, ve = xiPasay, vr = xlwhrl.
A direct computation, we have
p(1;2)(3) = Y1v1 + Y202 + Y303 + Y10V4 + V11U5 + Y16V + Y5707 = 0,
P(1:3)(S) = Yav1 + Y6 + Yarv2 + (V8 + Y30 + Va9)v3 + Y1204
+ (714 + Y3805 + 117)v6 + Y5807 = 0,
P(1;4)(S) = (95 + 26 + 748)v1 + (V7 + Y20v2 + Y9)v3 4 (713 + 37)v4
+ 71505 + 7186 + Y5907 = 0,
P(2:3)(S) = v19v1 + (Y21 + Y27 + Y32 + Y60)v2 + (Y23 + Y30 + Y34 + V38 + Ya0) V3
+ Y4304 + (a5 + Va9 + V51) s + V5406 + Y6307 = 0,
P(2;4)(S) = (720 + Y26 + 733 + V37 + Ya1)v1 + Y22 + Y29 + V35 + V61)v2
+ Y2403 + (a4 + Yas + V52)v4 + Ya6Vs + V5506 + Yeav7 = 0,
P(3;4)(S) = (725 + Y26 + Yor + Yos + Y20 + Y30 + Y31)V1
+ (736 + 737 + 738 + 739 + Y62)V2 + V4203
+ (a7 + 7as + a9 + Y50 + Y65)V4 + V535 + Y56V6 + Vo607 = 0.

From the above equalities, we get 7; =0, for ¢ = 1, 2, 3, 4, 9, 10, 11, 12, 15, 16,
17, 18, 19, 24, 42, 43, 46, 53, 54, 55, 56, 57, 58, 59, 63, 64, 66 and g = Yo7 7 +730 +
Y49 =0, Y14 = 738, V5 + Y26 + 748 = 0, ¥7 = Y20, V13 = V37, V6 + Y21 + V32 + Vo0 =
0, 714 + 723 + 730 + V34 + V40Y45 + Va0 + 51 = 0, Y20 + Y26 + V33 + V37 + Y41 =
0, y7+v22+735+71 = 0, Yaa+7va8+752 = 0, 6 +77+725 +726 + 728 +7¥30 + 731 =
0, v14 + 736 + ¥37 + 739 + Y62 = 0, Va7 + Va8 + Va9 + V50 + Y65 = 0.

With the aid of the above equalities have
P(1:(2,3)) (S) = 2102 + (98 + V23 + Y30 + Va5 + Ya0)V3 + Y3204
+ (734 + 745 + 749 +751)v5 + (Va0 + ¥51)V6 + Yeov7 = 0,
P(1:(2,4) (S) = (75 + 720 + Y26 + Yaa + Vag)v1 + Vo202
+ (733 + a4 + a8 + Y52)va + 3505 + (Y41 + Y52)v6 + Y6107 = 0.
From this, we obtain ~; = 0, for ¢ = 21, 22, 32, 35, 60, 61 and ~g + Y23 + 30 +
Yas +va0 = 0, Y34 + Va5 + a9 + 51 = 0, Y40 = V51, V5 + Y20 + V26 + Va4 + Vag =
0, V33 + Va4 + 748 + 52 = 0, Y41 = ¥52. By a direct computation using the above
equalities, one gets
P(153,4)(S) = (75 + Y25 + Y26 + Va7 + Yas)v1 + (Yas + a7 + Yas + a9 + V50)v2
+ (78 + Y30 + Y31 + Va9 + ¥50)v3 + Y364 + Y39U5 + Y6207 = 0,
P(2:(3,4))(S) = (713 + Y20 + V25 + Y26 + 33 + 736 + Va0 + Ya1)v1 + (V6 + V7
+ Y13 + 714 + Y28 + 733 + V34 + Y36 + V30)v2 + (V14 + Y23 + Y30 + V31
+ Y34 4 Y39 + Va0 + Va1)v3 + (Yaa + Va7 4 Yag + V51 + V52)v4
+ (745 + a9 + 750 + Y51 + V52)U5 + Y6507 = 0.

So we obtain v3s = Y39 = Y62 = Y65 = 0, V5 + Y25 + Y26 + Y47 + Y18 = 0, Y28 +747 +
Yag+Y19+750 = 0, Y8 +v30+¥31+749+750 = 0, Y13 +Y20+725+726 733+ Va0 V41 =
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0, 76 +77+713+ 714 + 728 + 733+ 734 = 0, 714 +723 + 730 + 731 + V34 + Y40 + 741 =
0, vaa + va7 + 748 + 51 + ¥52 = 0, Y45 + Y49 + Y50 + V51 + Y52 = 0.

Combining the above equalities, one gets v; = 0 for ¢ # 5, 8, 13, 14, 20, 23, 25,
926, 30, 31, 37, 38, 40, 41, 44, 45, 47, 48, 49, 50, 51, v; = 5 for i = 8,13, 14, 37, 38,
v; = 790 for ¢ = 23,44,45, v; = 95 for i = 40,47,51, ~; = 31 for i = 41,50,52,
Y20+7v25+719 = 0, Y5+720+726+731 = 0, Y20+731+748 = 0, y5+7v20+725+730 = 0.

Substituting the above equalities into the relation (5.4.6.1f), we have
Y25[01] 4 ¥31[02] + 75[03] + 720[04] = 0, (5.4.6.2)

where

1 = das + d3o + dao + da7 + dag + ds1,
o = dog + d31 + da1 + dag + dso + ds2,
03 = ds + dg + di3 + d14 + dag + d3o + d37 + d3s,
04 = dao + da3 + dag + d3o + daa + das + das + dag.
We need to show that v5 = 729 = 725 = v31 = 0. The proof is divided into 4

steps.
Step 1. The homomorphism ¢, sends ([5.4.6.2)) to

Y25[01] + v31[02] + (75 + Y20)[03] + Y20[04] = O. (5.4.6.3)
Combining ([5.4.6.2) and (5.4.6.3)) gives
’)/20[93] = 0

We prove [03] # 0. We have p2p3([01]) = [03]. So we need only to prove that
[01] # 0. Suppose [01] = 0. Then the polynomial 6, is hit and we have

0y = Sq*(A) + S¢*(B) + Sq*(C) + S¢*(D),

for some polynomials A € (P; )0, B € (P )19,C € (Pj )17, D € (P} )13.
Let (Sq¢?)® act on the both sides of this equality. Since (S¢?)3Sq¢' = 0 and
(S¢%)3Sq* = 0, we get

(Sa®)*(05) = (Sa*)*Sq*(C) + (S¢°)*S¢® (D).

By a direct computation, we see that the monomial z = z{xi?222§ is a term of

(Sq?)3(61). If this monomial is a term of (S¢?)3S¢®(y), then y = 27 f1(2) with 2z
a monomial of degree 6 in P3 and x is a term of z7(Sq¢?)35¢%(f1(2)) = 0. So the
monomial z is not a term of (S¢?)3S¢®(D) for all D € (P}")13.

If this monomial is a term of (Sq?)3Sq*(y), where the monomial y is a term
of C, then y = 27 f;(z) with 2z a monomial of degree 10 in P; and z is a term of
27(S¢?)3Sq*(f1(2)) = 0. By a direct computation, we see that either z]x$z323 or
xTz3x3ad is a term of C.

If 7282323 is a term of C then

(S¢*)*(01 + Sq* (2725w323)) = (S¢*)*(Sq*(C") + S¢*(D)),

where C' = C + x72§z323. The monomial 2’/ = 216252323 is a term of the polyno-

mial (S¢%)3(01 + Sq* (z]xSx323)). If 2/ is a term of the polynomial (Sq?)3S¢®(y'),
with ¢ a monomial in (P} )13. Then 3/ = 2¢abxSa? with a > 7,b > 3,¢ > 0. This
contradicts with the fact that degy’ = 13. So 2’ is not a term of (S¢?)3S¢®(D) for
all D € (P}")13. Hence 2’ is a term of (S¢?)%(S¢*(C"). By a direct computation,
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6 3 7.5 3 7.,.6 3

we see that either x{z8x323 or z]x3z323 is a term of C”. Since z{xSz323 is not a
2.3

term of C’, the monomial z]x3x2z3 is a term of C’. Then we have
(S¢*)°(01 + Sq* (w{wfusai + wladaiad)) = (S¢*)*(Sq"(C") + Sq° (D)),
where C” = C' + z{x32223 = C + 27282323 + {32323, Now the monomial
r = z]xd?222§ is a term of
(S¢%)°(01 + Sq* (w]a5ws] + wiz3232])).

Hence either 27282323 or 2{adx323 is a term of C' is a term of C”. On the other

hand, the two monomials z{2$z323 and aTz322x3 are not the terms of C”. We

have a contradiction. Hence one gets 20 = 0.
Step 2. Since 799 = 0, the homomorphism ¢, sends (5.4.6.3)) to

’)/25[91] + ’}/31[92] + 75 [93] =0. (5464)

Using ((5.4.6.4) and the result in Step 1, we get v5 = 0.
Step 3. The homomorphism 3 sends ([5.4.6.3)) to

Y25[04] + 31[62] = 0. (5.4.6.5)

Using the relation (5.4.6.5)) and the result in Step 2, we obtain 5 = 0.
Step 4. Since p4([f2]) = [01], we have

v31[61] = 0.
Using this equality and by a same argument as given in Step 3, we get y3; = 0.
For t > 1, we have |Bf (n)| = m(t) with m(2) = 95, m(3) = 128 and m(t) = 139
for t > 4. Suppose there is a linear relation
m(t)

S=> ydi=0, (5.4.6.6)
i=1
with ; € Fy and d; = d,, ;. A direct computation from the relations p;,7)(S) = 0,
for (7;J) € Ny, we obtain ~; = 0 for all 7. The proposition is proved. U
5.5. The case of degree 25t 4 25 — 2,

For s > 1 and ¢ > 2, the space (QPy), was determined in [32]. Hence, in this
subsection we need only to compute (QFP,), for n = 25%1 4 2% — 2 with s > 1.
Recall that, the homomorphism

—~0
Sq, 1 (QPy)as+142s 2 = (QPy)2s 195-1 3
is an epimorphism. Hence we have
—~0
(QP1)2m+4 = (QPy)m @ (QPY)2mia @ (KerSq, N (QP; )2ma),

—~—0
where m = 2% 4+ 2571 — 3. So it suffices to compute KerSq, N (QP;"),, for s > 1.
For s > 1, denote by C(s) the set of all the following monomials:

wlxgxgs”acf“*z, xlxgcvg'g“*zxisfz, xlxzsfzxgxi”l*{
x1x35+1_2z3xis_2, xlsc%xgs_4xis+l_l, x1x§x§S+l_lwiS_4,
x1m35+1_1x§xis_4, x%s+1_1x2x§xis_4, x1x5m35+1_3xis_2,
xlx%x§)s+174xitz, x?xzxgwlﬂxitz.

For s > 2, denote by D(s) the set of all the following monomials:
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le%:rgs_gzisﬂ_z’ $1$%I§§_1x25+1_4, I1I%m§S+l_4:pi5_l7
$1x35_1x§xis+1_4’ $25_1$2$§xis+1_4, $1x§’xgs_4xis+l_27
T S A T 0 e M T P Sl
xlxgacgs_?xisﬂ_‘l, $?$2$§s_2xis+l_4’ m?x§s+1_3x§mis_47

Set E(2) = C(2) U {z$zizszs}, E(3) = C(3) U D(3) U {zfx32525} and E(s) =
C(s)UD(s)uU {x{’xgzgs_6zis+l_4}, for s > 3.

Proposition 5.5.1. For any integer s > 1, E(s) U ®°(Bs(n)) U (Bs(m)) is the
set of all the admissible monomials for A-module Py in degree n = 2m + 4 with
m=2°+42°"1-3.

Lemma 5.5.2. Let x be an admissible monomial of degree n = 25Tt 425 — 2 in
~0
Py. If [2] € KerSq,, then either w(x) = (2),1).

Proof. We prove the lemma by induction on s. Since n = 25T1 + 25 — 2 is even,
we get either wy(z) = 0 or wy(z) = 2 or wy(x) = 4. If wi(x) = 0, then z = Sq'(y)
for some monomial y. If wi(z) = 4, then * = Xpy? for some monomial y. Since

x is admissible, y also is admissible. This implies Ker%i([m}) = [y] # 0 and we
have a contradiction. So w;(z) =2 and = = z;z;y* with 1 < i< j <4, and y a
monomial of degree 2° + 25~ — 2 in P;. Using Proposition we get w;(x) = 2
for 1 <i < s. Then z = /22" with &/, z monomials in P, and degz = 2! — 1. By a
direct computation we see that if w is a monomial such that either w(w) = (2,1, 3)
or w(w) = (2,2,3) or w(w) = (2,3,2,2) then w is strictly inadmissible. Now, the
lemma, follows from this fact, Lemma and Theorem O

The following is proved by a direct computation.

Lemma 5.5.3. The following monomials are strictly inadmissible:
i) 2iwjay,, wjejel, olalal, 1<i<j<m<A4

G 7,104 7. 10,4 6..7,.8 76,8 7. 6.8 ,.3.3.4.12 ,3.3.12 4
ii) madas’ ey, rixexs’ay, Trxdaliay, rixiahay, v{rexhay, vl virors Ty,

7,.9,.2.4 7,834 ,3.5.8 6
T{THTEL Y, T{TSTZL,, TITILILY.

Proof of Proposition[5.5.1 Let x be an admissible monomial of degree n = 2511 +
—0

25 — 2 in Py and [x] € KerSq,. By Lemma M wi(x) = 2, for 1 < i < s,
wst1(z) = 1 and w;(z) = 0 for i > s+ 1. By induction on s, we see that if = ¢
E(5)U®%(Bs(n)) then there is a monomial w which is given in one of Lemmas
5.5.3|such that = wy?" for some monomial y and positive integer . By Theorem
‘ —~—0

2.9, x is inadmissible. Hence KerSq, is spanned by the set [E(s) U ®°(Bs(n))] in
degree n = 25! + 25 — 2. Now, we prove that set [E(s) U ®°(Bs(n))] is linearly
independent.

It suffices to prove that the set [E(s)] is linearly independent. For s = 2, |E(2)| =
12. Suppose there is a linear relation

12
S= Z%di =0, (5.1)
i=1

with v; € Fo and d; = dyo;. A direct computation from the relations p(1,;)(S) = 0,
for j =1,2,3, we obtain «; = 0 for all 1.
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For s > 2,|E(s)| = 26. Suppose there is a linear relation

26
S=> vdi =0, (5.2)
=1

with v; € Fy and d; = d,, ;. A direct computation from the relations p(r;j)(S) =0,
for 1 <r < j <4, we obtain ; = 0 for all 4. The proposition is proved.

5.6. The case of degree 2°Tt+% - 25+t 1 25 _ 3,

First, we determine the w-vector of an admissible monomial of degree n =
25tttu 4 95t 95 — 3.

Lemma 5.6.1. If x is an admissible monomial of degree 251t+% 425+t 1. 25 3 in
Py then w(z) = (3(2),21) 1(w),

gstttu_q ostt_q os_q . L. .
Proof. Observe that z = ] x x5 is the minimal spike of degree

2
2stttu 4 9stt 4 95 3 and w(z) = (309,20, 1(W), Since 25THH¥ 4 25F 125 — 3 is
odd and z is admissible, using Proposition and Theorem we get w;(r) =3
for 1 < <s. Set o' =[] ¢;¢, Xf:ll(x). Then z = 2'y?" for some monomial 3. We
have w;(y) = wjts(x) for all j > 1 and
gstitu 4 gstt L 95 3 = dega = Z 201, ()
i>1
=3(2"—1)+2°> 2w (x)
j>1

=3.2° —3+ 2°degy.
This equality implies degy = 2t+% + 2% — 2. Since x is admissible, using Theorem
we see that y is also admissible. By a direct computation we see that if w is a
monomial such that w(w) = (3,2, 3) then w is strictly inadmissible. Combining this

i

fact, Lemma Proposition [2.10and Theorem we obtain w(y) = (21, 1(W),
The lemma is proved. g

Applying Theorem we get the following.

Proposition 5.6.2. Let s,t,u be positive integers. If s > 3, then ®(Bs(n)) is a
minimal set of generators for A-module Py in degree n = 25Tt+w 4 25+t 4 95 3

So, we need only to consider the cases s =1 and s = 2.
5.6.1. The subcase s=1t=1.
For s = 1,t = 1, we have n = 2%*2 + 3. According to Theorem we have

Bs(n) = P(2(B2(241))), if u# 2,
P@(BE) U falaed), if w2

Proposition 5.6.3.

i) ®(Bs(11)) U {atwsasad, afaxsadzy} is the set of all the admissible monomials
for A-module Py in degree 11.

i) ®(B3(19)) U {zlad22zy, xiwilesal, 2deiladzy, adzdrszll, adzizilay,
w3xlaSry, wlaedaley, 2aSrsad, 2 abadzy, pixdadal), xlxiadad} is the set of all the
admissible monomials for A-module Py in degree 19.
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iii) ®(Bs(n)) U {x%x%x3x2u+2_5,x§x§r§u“ 5x4,x‘fz%x§x4 _7} is the set of all
the admissible monomials for A-module Py in degree n = 2%+2 43, with any positive
integer u = 3.

By a direct computation, we can easy obtain the following lemma.

Lemma 5.6.4. The following monomz’als are strictly inadmissible:

N 34 s v 3 3,55 ;
1) $1x2x3x4xzx], 1,7 > 17 i # j, wladziain;, x1x2m3x4xj, Jj =34

2,.2,.28 4,24 2,.2,.4.8,16 18 2,.4,.10,.16
) Xgazlx 138, X alxtagadt, Xowjxjrozsay, X jetrdafei®, XaladzllalS

X;ziz3a] mgm}f;, Xzx?zdatadt, Xoxdajadadt, i=1,2, j =3,4.
Proof of Theorem[5.6.3. Let = be an admissible monomial of degree n = 242 43
in P;. By Lemma/5.6.1} wi(x) = 3. So z = X;3? with y a monomial of degree 2¢*1.
Since x is admissible, by Theorem y € B4(2“T1). By a direct computation,
we see that if x = X,;y? with y € B4(2**!) and z not belongs to the set Cy(n)
as given in the proposition, then there is a monomial w which is given in one of
Lemmas |5.3.3 [5.6.4] such that x = wy?  for some monomial y and integer r > 1.
By Theorem [2.9] z is inadmissible. Hence (QP,), is spanned by the set [Cy(n)].
Set [C4(2F2 + 3) N P}7| = m(u), where m(1) = 32, m(2) = 80, m(u) = 64 for
all u > 2. Suppose that there is a linear relation

S=> wd; =0, (5.6.1)

with v; € Fy and d; = d,, ;. By a direct computation from the relations p;, 5(S) = 0
with (j;J) € N, we obtain ~; = 0 for all 4 if u # 2.

Foru =2, v; =0 for j =1, 3, 4, 6, 7, 8,9, 10, 11, 12, 14, 16, 17, 18, 19, 21,
23, 26, 27, 28, 29, 30, 31, 32, 35, 36, 38, 40, 43, 45, 51, 54, 55, 60, 61, 62, 68, 71,
79, 80, and 7o = 7i,i = 5,24,25,41,42,52,53, 13 = i, = 13,33,20, 56,48, 58,
Vs = i = 22,34,49,57,59, v37 = ~i,i = 67,70,75, yus = vi,i = 69,72,76,
Yes = 7Virt = 66,73,74,77,78, va6 = Y30 + V2, YVaa = V37 + V2, V65 = Va7 + V13,
Y65 = V50 + Y22, V63 = V37 T V13, V64 = Va6 + V22.

Substituting the above equalities into the relation , we have

v37[01] + a6 [02] + 113[03] + Y22[04] + Y65[05) + Y2[0s] = O, (5.6.2)

where

01 = d37 + da + de3 + de7 + d70 + d7s,
o = d3g + dye + dea + deg + dr2 + d7s,
03 = di3 + dao + d33 + da7 + das + dse + dss + de3,
04 = dis5 + daz + d34 + dag + ds0 + ds7 + dsg + dea,
05 = da7 + dso + des + des + d73 + dra + d77 + drs,
06 = do + ds + dag + das + dzg + da1 + dao + dag + ds2 + ds3.
We need to prove vo = 113 = Y22 = Y37 = Y46 = Y65 = 0. The proof is divided
into 4 steps.
Step 1. First we prove vg5 = 0 by showing the polynomial [8] = [$161 + [202 +

B303 + B0 + 05 + Bebs] # 0 for all By, B2, fs, B4, s € Fa. Suppose the contrary
that this polynomial is hit. Then we have

0 = Sq*(A) + S¢?(B) + Sq¢*(C) + S¢®(D),
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for some polynomials A, B,C, D in P;'. Let (Sq?)? act on the both sides of this
equality. Using the relations (S¢?)3Sq* = 0, (S¢?)35¢*> = 0, we get

(Sq*)3(0) = (S¢*)>Sq*(C) + (S¢*)*Sq®(D).

The monomial z]z32z322 is a term of (S¢?)%(0). If z7xi22322 is a term of the poly-
nomial (S¢?)2Sq®(y) with y a monomial of degree 11 in Py, then y = z7 f1(2) with z
a monomial of degree 4 in P3. Then z{xi?2322 is a term of 27(5¢*)3S¢%(f1(z)) = 0.

This is a contradiction. So x7zi%xiz? is not a term of (S¢?)2S¢®(D) for all D.

Hence z]z32x322 is a term of (Sq?)3S¢*(C), then either z]x3x322 or 2xjzizy or

x{z8w37y is a term of C.

Suppose z{z3z3x, is a term of C. Then

(8¢)*(0 + Sq* (z123a3x4)) = (S¢°)°(Sq*(C") + S¢°(D)),

where C' = C + z{x523x4. We see that the monomial 21%2822x4 is a term of

(S¢*)3(0 + Sq*(x7x52%24)). This monomial is not a term of (Sq?)3Sq®(D) for all
D. So it is a term of (Sq?)35¢*(C"). Then either z]{x3z2z4 or 2{x§z374 is a term
of C. Since z]x372z4 is a term of C’, x7a8x32, is s term of C’. Hence we obtain

213 40,7 5 2 76 (. 2\3( QA 8
(547)(0 + Sq” (z1x32374 + T1732374)) = (S¢7)°(S¢°(C”) + Sq°(D)),
where C" = C + z]x323x4 + 27252324, Now 2lxi22522 is a term of
23 40,75 2 76
(5¢7)°(0 + Sq” (z1732304 + 21 752374))

So either z{z3z323 or xTz523z, or z]aSxszy is a term of C”. Since zlxjzizy +
xTa823wy is a summand of C”, z{xdw32% is s term of C”. Then z1¢x523x, is a
term of (Sq?)3(0 + Sq* (2232324 + 2 252323 + 2{2Sw324)). So either x{xdw323 or
x{zdx3xy or x]xSw37y is a term of C” + z]x37322 and we have a contradiction.

By a same argument, if either z]x32322 or 2]xS2324 is a term of C' then we have
also a contradiction. Hence [f] # 0 and 765 = 0.

Step 2. By a direct computation, we see that the homomorphism ¢3 sends ([5.6.2))

to
v37101] + ¥2[03] + Y22[04] + Yas[05] + 113[06] = 0.

By Step 1, we obtain 46 = 0.
Step 3. The homomorphism ¢s sends (5.6.2)) to

Y13[01] + v22[02] + v37[03] + 12[0s] = 0.

By Step 2, we obtain 92 = 0.

Step 4. Now the homomorphism 3 sends to Y37[02] +713[04] +72[06] = 0.
Combining Step 2 and Step 3, we obtain 13 = 37 = 0.

Since 2 ([03]) = [0s], we get v2 = 0. So we obtain v; = 0 for all j. The proposition
follows. Il

5.6.2. The subcase s =1, t = 2.

For s = 1,t = 2, we have n = 2%%3 47 = 2m + 3 with m = 2%%2 4 2. Combining
Theorem [1.3|and Theorem [4.3] we have Bs(n) = ¢(®(Bz(m))). where

3,7 7.3 T
{{xlxz,xlmQ}, if uw=1,

u+2 u+2 u+2 .
{2323 Loa? Ya3, alas it u> 1.

BQ (m) =
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Denote by F(u) the set of all the following monomials:

3.4 gutd_1 3 4 out3_g 3 2ut3_1 4 2ut3_1 3 4
TITHT3TY , TITHTS Ty, TITH T3T4, T THT3%4,

3.7, 2"T3 4 7.3,2"T3 4 7.2ut3_5 4 7.7,2%T3_8
TITHT3 Tq, T1THT3 Ty, T1T5 T3T4, T1ToT3 T4,

3,4, 3 2ut3_3 3 4 outd_5 5 3 4 7 2utd_7 3 7 4 outd_7
L1 T3y y L1TaT3 Tyy T1ToT3Ty y L1ToT3Ty )

7.3.4 2ut3_7 3 7 8 outd_11 7 3 8 2vt3_11
T1THT3Ty , TIToT3Ty , T1THT3Ty .

Proposition 5.6.5.

i) ®(B3(23)) U F(1) U {a292325, xTadx321} is the set of all the admissible
monomials for A-module Py in degree 23.

ii) ®(Bs(n))UF(u)U {x{x%mgfciwg_m, xe%x%xiws_w, x‘i’x%wélxiw?’_ll} is the
set of of all the admissible monomials for A-module Py in degree n = 2413 + 7 with
any positive integer u > 1.

By a direct computation, we can easy obtain the following lemma.

Lemma 5.6.6. The following monomials are strictly inadmissible:

: 2,612 v 2,486 24,82, .4 24,86 . _ -
i) Xowjaley?, Xjoiwowsey, Xoxiajaswiey, Xovivoasay, i =1,2,j = 3,4.
G 2,.2..12,.20 224,20 .4 2,212 4,16 2,.4..14,.16

ii) Xgaiase2as’, Xsaxtasa;as ay, Xjriase ase,’, Xjeiese, *as°,

6,.10,.4..16 6,.10,.16,.4 6,.10,.20 2,.4,14..16 ; _ -
Xjxlay wvaxg”, Xjaiws vz vy, Xsairy x5, Xoxjasrs x,®,i=1,2,75 = 3,4.

Proof of Proposition[5.6.5. Let x be an admissible monomial of degree n = 24347
in P4.

By Lemma wi(z) = 3. So z = X,y? with y a monomial of degree 24+2 + 2.
Since z is admissible, by Theorem y € By(2412 4 2).

By a direct computation, we see that if z = X;y? with y € B4(2%*? +2) and z
not belongs to the set Cy(n) as given in the proposition, then there is a monomial w
which is given in one of Lemmas @ such that = wy?" for some monomial
y and integer r > 1.

By Theorem x is inadmissible. Hence (QPy),, is spanned by the set [Cy(n)].

For u = 1, we have, |C;(23) N P;| = 99. Suppose that there is a linear relation

99
=Y ~id;i =0, (5.6.1)
=1

with 7; € Fy and d; = da3;. By a direct computation from the relations p(j;J)(S) =
0 with (j;J) € Ny, we obtain v; = 0 for all i € F, with some F C Ngg and the
relation (5.6.2)) becomes

> clti] =0, (5.6.2)
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where ¢; = Y1,C2 = VY4,C3 = 7V33,C4 = Y94,C5 = 7V2,C6 = 722,C7 = VY74,C8 = 729,C9 =
Y81, €10 = Y68, C11 = Y10, C12 = Y43, C13 = V54, C14 = Y70, C15 = Y11 and

01 = d1 + d17 + d37 + dyo,
o = dg + doy + dyg + ds3,
03 = ds3 + d3e + d72 + d73,
04 = doa + do7 + dos + dog,
5 = da + dy1g + dao + ds1,
06 = da2 + das + dg2 + des,
07 = d7g + d77 + ds2 + dgs,
g = d12 + d14 + dag + d2g + des + de7,
o = dao + da2 + drs + dg1 + dge + dsr,
010 = d1o + di5 + dog + do7 + dye + da7 + deg + des,
011 = dsg + duz + dae + da7 + d7e + dr7g + dga + dss,
th2 = de2 + de7 + des + d71 + dss + dsg + do2 + dos,
013 = dar + dss + ds7 + de2 + deg + dsa + dss + dss + doo,
014 = di2 + di5 + dig + doo + dag + dar + ds1 + ds2 + dsg + de1
+ dgy + deg + de7 + dro + dga + dg7 + dgg + do1,
5 = di1 + d12 + dig + dao + dog + das + dag + da7 + d3g + dao + dus
+ dy7 + dyg + dso + ds2 + ds7 + de1 + de3 + dea + des + des
+ de7 + deg + d77 + drg + dg3 + dgs + dge + dg7 + dgg + dogo.
Now, we show that ¢; =0 for i = 1,2,...,15. The proof is divided into 6 steps.

Step 1. Set 0 = 0 + 21122 B8:0; for B; € Fa,i = 2,3,...,15. We prove that
[0] # 0. Suppose the contrary that 6 is hit. Then we have

0 = Sq'(A) + S¢*(B) + Sq*(C) + S¢*(D)

for some polynomials A, B,C, D € P; . Let (Sq¢?)? act to the both sides of the
above equality, we obtain

(Sa®)*(0) = (S¢*)>Sq*(C) + (S¢*)*Sq®(D).

By a similar computation as in the proof of Proposition [5.4.5] we see that the

monomial z§{z3r3zi® is a term of (S¢?)3(f). This monomial is not a term of

(S¢*)3(Sq*(C) + Sq®(D)) for all polynomials C, D and we have a contradiction.
So [6] # 0 and we get ¢; =1 = 0.

By an argument analogous to the previous one, we get co = c¢3 = ¢4 = 0. Now,
the relation (5.6.2)) becomes

Z cilfi] = 0. (5.6.3)

Step 2. The homomorphisms

P1, P1P3, P1P3P4, P1P3P2, P1P3P2P4, P1P3P4P2L3
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send (5.6.3) respectively to

c1o0l03] =0 mod([f5], [0s], - - -, [015]),
colf3] =0 mod([5], (6] - - -, [015]),
c7105) =0 mod([65],[bs],- - -, [015]),
cslf3] =0 mod([b5], (6], - -, [015]),
csll3] =0 mod([f5],[bs],- -, [015]),
cs5103] =0 mod([65], [0s], - - -, [015])-

Using the results in Step 1, we get ¢c5 = ¢ = ¢ = cg = ¢g = c19 = 0. So the
relation ([5.6.3) becomes

c11[011] + c12[012] + c13[013] + c14[014] + c15[015] = 0. (5.6.4)
Step 3. The homomorphism ¢; sends (5.6.4]) to
c13[0s] + (c1a + ¢15)[07] + (c11 + c12)[011]
+ c12[012] + c13[013] + c1a[014] + c15[015] = 0.
By Step 2, we get ¢13 = 0 and c¢14 = ¢15. So the relation ([5.6.4) becomes
c11[611] + c12[012] + c14[014) + c14]015] = 0. (5.6.5)
Step 4. The homomorphism ¢3 sends (5.6.5)) to
c11[011] + cra[012] + (c12 + c14)[013] + c14[014] + c14[015] = 0.
By Step 3, we get c12 = c14. Then the relation becomes
c11[011] + c12[012] + c12[014] + c12[615] = 0. (5.6.6)
Step 5. The homomorphism o sends to
(c11 + c12)[012] + c12[014] + c12[015] = 0.
From the result in Step 4, we get ¢;1 = 0. Then the relation becomes
c12([012] + [014] + [615]) = 0. (5.6.7)
Step 6. The homomorphism ¢, sends to
c12[011] + c12([012] + [014] + [015]) = 0.

By the result in Step 5, we have c¢;2 = 0. The case u = 1 of the proposition is
completely proved.
For u > 1, we have |C4(n) N P;"| = 141. Suppose that there is a linear relation

141
=Y ~id;i =0, (5.6.8)
=1

with 7, € Fp and d; = d,,; € ij(n). By a direct computation from the relations
p(j;)(S) = 0 with (j; J) € Ny, we obtain v; = 0 for all i ¢ E, with some E =C Ny
and the relation (5.6.8]) becomes

> elti] =0, (5.6.9)
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where ¢1 = 71,62 = 76,03 = V51,04 = 7136,C5 = V2,C6 = V31,C7 = V107,08 =
V405 C9 = Y116, €10 = Y101, C11 = Y14, C12 = V56, C13 = Y79, C14 = Y23, C15 = Y15 and
0y = dy + das + ds5 + dr3,
2 = dg + d3o + dge + drs,
O3 = ds1 + ds4 + d105 + d106,
04 = d7 + ds + da7 + das,
05 = dy + da7 + dsg + drs,
06 = d31 + d34 + dgg + dgo,
07 = +dio7 + d11o + di17 + di1s,
Os = dig + daz + d35 + dao + dos + dos,
o = dsg + des + d111 + di16 + di22 + di23,
1o = dgg + dgs + d101 + d1oa + d124 + di27 + d129 + di30,
011 = d14 + d1g + d33 + d3ze + deg + dgg + dg1 + dya,
tho = dse + de1 + des + deo + d1og + d112 + di19 + d120,
13 = de7 + deg + d79 + ds2 + dsg + doo + d117 + d118 + d124 + d125,
014 = dig + da3 + do7 + dog + d7o + d71 + drg + d7s + dor
+ dg3 + dgg + doy + dos + di22 + d123 + d126 + d127,
015 = dis + dig + dag + do7 + d33 + dsa + dss + dsg + dss
+ dg1 + dgg + dgo + drg + d74 + drs + dgo + dg3 + do1
+ dg2 + diog + di10 + di11 + di12 + di19 + di2o + di2s.
Now, we prove ¢; = 0 for i = 1,2,...,15. The proof is divided into 6 steps.

Step 1. First, we prove ¢; = 0. Set § = 61 + Z;iz c;0;. We show that [0] # 0
for all ¢; € Fo,j =2,3,...,15. Suppose the contrary that # is hit. Then we have

u+2

0= S¢" (An),
m=0

for some polynomials A,,,m = 0,1,...,u + 2. Let (S¢?)3 act on the both sides of
this equality. Since (S¢?)3Sq! =0, (S¢?)3Sq? = 0, we get

u+2
(5¢°)°(6) = D (54°)*Sq™" (Aum).

m=2

It is easy to see that the monomial z = x?x%m?&ﬁws*l is a term of (Sq¢?)3(6), hence

it is a term of (S¢?)3S¢>" (y) for some monomial y of degree 24+3 — 2™ 4 7 with
m > 2. Then y = x§u+3_1f2 () with z a monomial of degree 8 — 2™ < 4 in P3 and
z is a term of x%u”*l(S’qz)?’qum (2). If m > 2 then S¢*" (2) = 0. If m = 2 the
Sq% (z) = 22, hence (S¢?)3S¢*" (2) = (S¢*)*(2?) = 0. So z is not a term of

u+2

(Sa*)*(0) = > (5¢°)°Sa™" (Am),

m=2

for all polynomial A,,, with m > 1. This is a contradiction. So we get ¢; = 0.
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By an argument analogous to the previous one, we get co = c¢3 = ¢4 = 0. Then

the relation ((5.6.9)) becomes
> eilti] =o. (5.6.10)
Step 2. The homomorphisms

P1, P1P3, P1P3P4, P1P3P2, P1P3P2P4, P1P3P4P2P3

send (5.6.3) respectively to

c10lf3] =0 mod([0s], (6], - . ., [f15]),
colfs] =0 mod([8s], 0], ., [Brs]),
crl05]) =0 mod([f5], (6], - -, [015]),
csl0s] =0 mod([0s], [0, . [Ons)),
cs[03] =0 mod([05], [0c], ..., [01s]),
cslfs] =0 mod([6s], [0g], .., [Bus])-

By Step 1, we get c5 = cg = ¢7 = cg = ¢g = ¢19 = 0. So the relation (5.6.3)) becomes
c11[011] + c12[012] + c13[013] + c14[014] + c15[015] = 0. (5.6.11)

Step 3. Applying the homomorphism ¢; to , we get
c13(06] + c1a[0s] + (c11 + c12 + c15) [011] + c12[012] + c13]013] + c1a[014] + c15[015] = 0.

By the results in Step 2, we obtain ¢13 = ¢;4 = 0. Then the relation ((5.6.11))
becomes

011[911} + 612[912] + 014[915] =0. (5.6.12)
Step 4. Applying the homomorphism ¢3 to the relation (5.6.12f) we obtain

c11[011] + c12[013] + c15[015] = 0.
By the results in Step 3, we get c¢;2 = 0. So the relation becomes
c11[011] + ¢15]015] = 0. (5.6.13)
Step 5. Applying the homomorphism @5 to the relation one gets
c11[013] + c15[015] = 0.
By Step 4, we get c1g = 741 = 0. So the relation becomes
c15[015] = 0. (5.6.14)
Step 6. Applying the homomorphism ¢; to the relation we obtain
c15(011] + c15[015] = 0.

By Step 5, we get ¢15. The proposition is completely proved. O

5.6.3. The subcase s=1, t > 2.

For s = 1,t > 2, we have n = 2!+utl p 2t 1 — 9m 4 3 with m = 2/F% 4-2¢ — 2.
From Theorem [4.3] we have Bs(n) = ¢(®(Bz(m))).
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Proposition 5.6.7.

i) ®(B3(n)) U {xi’x%x%”lﬁmiwrz%, ririrs s 2t+ ~3Y is the set of of all the
admissible monomials for A-module Py in degree n = 2t¥2 + 241 _ 1 with any
positive integer t > 2.

ii) ®(Bs(n)) U A(t,u) is the set of of all the admissible monomials for A-module
P, in degree n = 2tTv 1l 4 9t _ 1 with any positive integers t > 2,u > 1, where
A(t,u) is the set consisting of 3 monomials:

ttutl_5 ot+1_g 3 4 ott2_5 ottutl_ot+l_ 3
X

3.4 20F1—5 offutl_g 3 4 2
172T3 T4 » L1ToT3 4

T T5T5 xy , T1THT
By a direct computation, we can easy obtain the following lemma.

Lemma 5.6.8. The following monomials are strictly inadmissible:

8

10,12 .16
Xsaxtriosaite

812 4
1 XgataZabel?al, i = 1,2, XyaSal02l22iC.

Proof of Proposition[5.6.7 Let x € Py be an admissible monomial of degree n =
2t+u+1 + 2t+1 —1.

By Lemma wi(z) = 3. So z = X;y? with y a monomial of degree 21+% +
2t — 2. Since z is admissible, by Theorem y € Bg(2tv 428 — 2).

By a direct computation, we see that if x = X,;y? with y € By(2+* +2! —2) and
2 not belongs to the set Cy(n) as given in the proposition, then there is a monomial
w which is given in one of Lemmas and such that z = wy? for some
monomial y and integer r > 1.

By Theorem x is inadmissible. Hence (QPy),, is spanned by the set [Cy(n)].

We set |Cy(n) N P;7| = m(t,u) with m(t,1) = 84 for u = 1 and m(t,u) = 126 for
u > 1. Suppose that there is a linear relation

m(t,u)

S= ) vdi=0,

i=1

with 7; € Fy and d; = d,, ;. By a direct computation from the relations p;; 5(S) = 0
with (j;J) € Ny, we obtain ; = 0 for all 4.

5.6.4. The subcase s =2, t =1.
For s = 2,t = 1, we have n = 2%*2 +9. According to Theorem we have

Bs(n) = {1/’2@(32(2““))), it w2,
V2 (B (Bs(8))) U {22027}, if u=2.

Denote by G(u) the set of 7 monomials:

3,7, 235 4 7.3 2ut3_5 4 7 2ut3_5 3 4
T1ToT3 Tyy T1Tox3 Tyy T1Tg T3y,

Al el aTaladed S, alalad S,
Proposition 5.6.9.
i) ®(B3(25)) UG(1) U {zlada32$} is the set of of all the admissible monomials
for A-module Py in degree 25.
ii) ®(Bs(n)) U G(u) U H(u) is the set of of all the admissible monomials for
A-module Py in degree n = 2%+3 + 9 with any positive integer u > 1, where H(u)
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is the set consisting of 5 monomials:

3,711, 24312 7,311, 24312 7.11.3 24t3_192
T1ToXg Ty y L1LoT3 Ty y L1Lo T3y )

m{x%x%xiws_l?’, J;Ix%xélxiws_w.
The following is proved by a direct computation.
Lemma 5.6.10. The following monomials are strictly inadmissible:

i) XsX3atabal, X; X3z 1082, X3xlafad, Xg’w‘llxgx?, 1=1,2, 5=3,4.

i) Xy X3a122302%, Xy X3atadtad, Xial22i00t, Xy X3222302, Xy Xgatadaball,
X;X2xP22302%, X;X32120i028, Xy X3aiala?0, X;’x%xéxfx}e’, X%a:?xéﬁa:?,
X;I’;E?x?m}lﬁ, Xfat?gch}f, Xé”x%gxéﬁxi, X;’x‘llxga:é‘smﬁ, X4X22x‘11:v§x§6x3

X3ataSaial®, i=1,2, j=3,4.

Proof of Proposition[5.6.9. Let  be an admissible monomial of degree n = 247349
in P4.

By Lemma wi(z) = wa(z) = 3. So x = X;X7y* with y a monomial of
degree 21, Since x is admissible, by Theorem y € Bg(2tFv 28 — 2).

By a direct computation, we see that if z = Xinzy4 with y € By(20T% + 2t — 2)
and x not belongs to the set Cy(n) given in the proposition, then there is a monomial

w which is given in one of Lemmas [5.6.10 such that * = wy? for some
monomial y and integer r > 1.

By Theorem x is inadmissible. Hence (QPy), is spanned by the set [Cy(n)].
We denote |Cy(n) N P | = m(u) with m(1) = 88, m(2) = 165 and m(u) = 154
for u > 3. Suppose that there is a linear relation

m(u)

§= Z vid; = 0,
i=1

with v; € Fo and d; = d,,;. By a direct computation from the relations D) (8§ =0
with (j;J) € Ny, we obtain 4; = 0 for all 4. O

5.6.5. The subcase s =2, t > 2.

For s = 2,t > 2, we have n = 2/74+2 1 2142 1 1 = 4m +9 with m = 2!+% 420 -2,
From Theorem (1.3 we have

Bs(n) = ¥*(®(B2(m))).
Denote by B(t,u) the set of 8 monomials:

3.7 225 ottut2_y 7 3 ott2_5 ottut2_y 7 ot+t2_5 3 ottut2_y
L1LoT3 Ly ) L1Lad3 Ly y L1dg L3y )

3 7 ottut2_g ot+2_4 7 3 ottut2_ g ot+2_4 7 ottut2_5 3 ot+2_4
T1To%3 Ty y L1LaT3 Ty y L1Lo T3y )

7.7, 2tF28 ottut2_5 g g ottut2_g ott2_g
T1ToTy Ty y L1dad3 Ly )

and by C(t,u) the set of 4 monomials:

23 7$2f+3—5 ottut2_ot+2 4 7 3 2tF3_5 ottut2_oi+2_4
1L2x3 4 y T1L2d3 4 )
72013 5 3 ottut2_ot+2_ 4 7 7 ott3_g ottut2 ot+2 g5

T1T5 T3Ty , T1ToTs Ty .
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Proposition 5.6.11.

i) ®(Bs3(n)) U B(t,1) is the set of all the admissible monomials for A-module Py
in degree n = 2113 4 2042 1 1,

ii) For any positive integer t,u > 1, ®(Bs(n)) U B(t,u) U C(t,u) is the set of all
the admissible monomials for A-module Py in degree n = 2t14+2 4 2t42 4 1,

By a direct computation, we get the following.

.6.12. e following monomials are strictly inadmissible:
Lemma 5.6.12. The foll l trictl d bl
X X3xi?xi?xib X}I’l‘12$3 x}f", Xi’xlgx%Qxiﬁ,X4m1x§x3x4x , Xy X22301228216

8 816 v3 8..16 8.8.16
Xy X2xiadafadal , X rizgaSadel® X3atadiaSalalS i =1,2, j=3,4.

Proof of Proposition[5.6.11] Let x € Py be an admissible monomial of degree n =
2itut2 4 92 4 1. By Lemma wi(z) =wa(z) =3. Sox = Xinzy4 with y a
monomial of degree 2t+% + 2¢ — 2,

Since x is admissible, by Theorem y € By(2!T* + 2t — 2). By a direct
computation, we see that if + = X;X7y* with y € By(2"t* 4 2" — 2) and = not
belongs to the set Cy(n) as given in the proposition, then there is a monomial w
which is given in one of Lemmas such that x = wy?" for some monomial
y and integer r > 1.

By Theorem x is inadmissible. Hence (QPy), is spanned by the set [Cy(n)].

We set |Cy(n) N Py | = m(t,u) with m(t,1) = 154 and m(t,u) = 231 for ¢t > 2.
Suppose that there is a linear relation

m(t,u)

Z Yid; = 0,
i=1

with v; € Fo and d; = d,,;. By a direct computation from the relations D) (§)=0
with (j; J) € Ny, we obtain v; = 0 for all 4.
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