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Workshop on Partial Differential Equations and Applications 

VIASM, October 4, 2017 

On the occasion of Professor Nguyen Manh Hung’s 60
th
 birthday 

SCIENTIFIC PROGRAM 

Morning Session 

8h30-9h00: Registration in the 7
th

 floor of Ta Quang Buu library 

9h00-9h05: Opening 

Chair: Trần Đình Kế 

9h05-9h35:    Đinh Nho Hào 

Inverse problems with nonnegative and sparse solutions: Algorithms and 

application to the  phase retrieve problem 

9h35-10h05:   Ngô Quốc Anh 

   Bất đẳng thức Hardy-Littlewood-Sobolev ngược trên nR

10h05-10h30: Coffee Break 

Chair: Lê Văn Hiện 

10h30-11h00: Vũ Trọng Lưỡng 

     Nonlinear hyperbolic partial differential equations on nonsmooth domains 

11h00-11h30: Phan Quốc Hưng 

     A Liouville-type theorem for a cooperative parabolic system 

11h45-14h00: Lunch 
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Afternoon Session 

Chair:  Đinh Nho Hào 

14h00-14h30: Nguyễn Xuân Thảo 

     Discrete-time Fourier sine integral transforms 

14h30-15h00: Cung Thế Anh 

     Local exact controllability to trajectories of the magneto-micropolar fluid 

equations 

15h00-15h30: Coffee Break 

Chair: Cung Thế Anh 

15h30-16h00: Trần Đình Kế 

     A brief on Professor Nguyen Manh Hung’s scientific life 

16h00-16h30: 

Celebration of Professor Nguyen Manh Hung’s 60
th
 birthday 

16h30-16h35: Closing 

16h45-19h00: Workshop Banquet 
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A brief of Professor Nguyễn Mạnh Hùng 

VÀI NÉT VỀ GIÁO SƯ NGUYỄN MẠNH HÙNG 

NGƯT.GS.TSKH.  Nguyễn Mạnh Hùng sinh ngày 

6 tháng 10 năm 1957 tại Đan Phượng, Hà Nội. 

Năm 1978, ông tốt nghiệp loại giỏi Khoa Toán 

(nay là Khoa Toán-Tin), Trường Đại học Sư phạm 

Hà Nội, và được giữ lại Trường làm cán bộ giảng 

dạy. Năm 1980, ông tốt nghiệp Hệ sau đại học (nay 

là hệ Thạc sĩ) của Khoa. Từ năm 1978 đến năm 

1990, ông giảng dạy tại Khoa Toán, trường Đại 

học Sư phạm Hà Nội. 

Trong giai đoạn 1990-1999, ông là nghiên cứu sinh 

và sau đó là thực tập sinh sau tiến sĩ tại Khoa Toán 

Cơ, Đại học Tổng hợp Quốc gia Moskva mang tên 

Lomonosov (MGU) dưới sự hướng dẫn của GS nổi 

tiếng V.A. Kondratiev. Ông bảo vệ luận án TS năm 1994 và TSKH năm 1999 tại 

trường đại học danh tiếng này. Ông được phong PGS năm 2002 và GS năm 2011. 

Sau khi về nước năm 1999, ông tiếp tục công tác tại Khoa Toán-Tin, Trường Đại 

học Sư phạm Hà Nội. Ông đã trải qua nhiều vị trí khác nhau. Từ 1999 đến 2004 là 

giảng viên, từ 2004 đến 2011 là Trưởng Bộ môn Giải tích, năm học 2006-2007 là 

Trưởng Ban thanh tra nhân dân Trường ĐHSP Hà Nội, từ năm 2007 đến 2012 là 

Trưởng phòng Tạp chí và Thông tin khoa học công nghệ, Trường ĐHSP Hà Nội. 

Trong giai đoạn là Trưởng Bộ môn, ông đã có công lớn trong việc xây dựng Bộ 

môn Giải tích trở thành một bộ môn mạnh của Trường, được tặng Giấy chứng nhận 

của Bộ Giáo dục và Đào tạo về điển hình tiên tiến giai đoạn 2006-2010 và Giải tập 

thể tiêu biểu về Khoa học Công nghệ của Trường ĐHSP Hà Nội năm 2012. Dưới 

sự lãnh đạo của ông, Bộ môn Giải tích gồm nhiều cán bộ trẻ có năng lực đã trở 

thành một trung tâm mạnh về nghiên cứu và đào tạo sau đại học chuyên ngành 

Phương trình vi phân và tích phân ở Việt Nam. Trong giai đoạn làm Trưởng  

phòng Tạp chí và Thông tin Khoa học công nghệ, ông là người có công lớn trong 

việc từng bước xây dựng Phòng theo hướng chuẩn hóa và đưa Tạp chí khoa học 

của Trường ĐHSP Hà Nội trở thành một trong bốn tạp chí khoa học hàng đầu của 
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các trường đại học và đã được Bộ Giáo dục và Đào tạo chọn để đầu tư nâng cấp 

theo chuẩn tạp chí khoa học ISI. 

Từ tháng 10/2012 đến nay,  ông chuyển sang làm công tác quản lí tại Học viện 

Quản lí Giáo dục.  Từ tháng 10/2012 đến tháng 12/2013 ông làm Phó Giám đốc 

Học viện, sau đó là Phó Giám đốc phụ trách Học viện từ tháng 1/2014 đến tháng 

11/2016, và từ tháng 11/2016 đến nay, ông là Phó Giám đốc Học viện. Ông cũng là 

Bí thư Đảng ủy Học viện Quản lí Giáo dục từ tháng 1/2014 đến nay. 

Về chuyên môn, GS.TSKH Nguyễn Mạnh Hùng là một chuyên gia có uy tín của 

Việt Nam về Phương trình đạo hàm riêng. Hướng nghiên cứu chính của Giáo sư là 

nghiên cứu một cách hệ thống các bài toán biên ban đầu đối với các hệ phương 

trình đạo hàm riêng tuyến tính không dừng, bao gồm hệ parabolic, hệ hyperbolic 

và hệ Schrodinger, trong các trụ hữu hạn hoặc vô hạn có đáy là miền không trơn. 

Các nghiên cứu tập trung vào sự tồn tại duy nhất nghiệm, tính trơn của nghiệm và 

công thức biểu diễn tiệm cận nghiệm trong lân cận các điểm kì dị.  

Theo hướng nghiên cứu này, GS Nguyễn Mạnh Hùng đã công bố hơn 50 bài báo 

khoa học trên các tạp chí chuyên ngành quốc tế được tờ Mathematical Reviews  

của Hội Toán học Mỹ điểm danh, với hơn 30 bài báo trên các tạp chí trong danh 

mục ISI, trong đó có những tạp chí uy tín cao như J. Differential Equations, 

Nonlinear Anal., Sbornik Math., Russian Math. Surveys, Dokl. Akad. Nauk, 

Differential Equations,… 

Giáo sư cũng là chủ nhiệm của 02 đề tài nghiên cứu cấp Nhà nước và 02 đề tài 

nghiên cứu cơ bản do Quỹ NAFOSTED tài trợ. Các đề tài này đều được hoàn 

thành đúng hạn với chất lượng tốt.  

GS Nguyễn Mạnh Hùng là người có công lớn trong việc gây dựng và phát triển 

nhóm nghiên cứu về Phương trình đạo hàm riêng tại Khoa Toán-Tin, trường Đại 

học Sư phạm Hà Nội. Ngày nay, đây là một trong những trung tâm nghiên cứu và 

đào tạo sau đại học uy tín của Việt Nam về lĩnh vực này. Trong những năm gần 

đây, trung bình mỗi năm các thành viên của Bộ môn Giải tích, Khoa Toán-Tin,  

Trường ĐHSP Hà Nội, hướng dẫn 04 NCS bảo vệ thành công luận án tiến sĩ, hơn 

20 học viên cao học bảo vệ thành công luận văn thạc sĩ, và công bố khoảng 20 bài 

báo khoa học trên các tạp chí quốc tế uy tín trong danh mục ISI. 

GS Nguyễn Mạnh Hùng đã được mời tham gia Ban Chương trình và làm báo cáo 

mời tại nhiều hội nghị và hội thảo khoa học trong nước và quốc tế. Giáo sư cũng 

tham gia phản biện bài cho một số tạp chí chuyên ngành quốc tế. 
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Giáo sư cũng đã thiết lập được quan hệ quốc tế và hợp tác khoa học với một số   

giáo sư ở ĐHQG Sun Yet-sen (Đài Loan), ĐHQG Pusan (Hàn Quốc), ĐHTHQG  

Moskva mang tên Lomonosov, ĐHQG Voronezh (Nga), ĐH West Georgia (Mĩ); 

ĐH Bharathiar Bang Coimbatore (Ấn Độ), ĐHTH Gottingen (Đức). 

GS Nguyễn Mạnh Hùng cũng là người rất thành công trong công tác đào tạo sau 

đại học. Giáo sư hướng dẫn và đồng hướng dẫn 10 NCS, trong đó 09 NCS đã bảo 

vệ thành công luận án tiến sĩ, và đã hướng dẫn hơn 30 học viên cao học bảo vệ 

thành công luận văn thạc sĩ. Các nghiên cứu sinh đã bảo vệ bao gồm: Cung Thế 

Anh (2006), Phạm Triều Dương (2006), Nguyễn Thành Anh (2010), Nguyễn Thị 

Kim Sơn (2010), Vũ Trọng Lưỡng (2011), Đỗ Văn Lợi (2011), Phùng Kim Chức 

(2012), Nguyễn Thị Liên (2016) và Nguyễn Thanh Tùng (2017). Giáo sư cũng là 

Chủ tịch hoặc Phản biện của nhiều Hội đồng đánh giá luận án tiến sĩ. 

Giáo sư cũng rất tích cực trong việc viết sách phục vụ đào tạo. Giáo sư là tác giả 

của một số sách chuyên khảo, giáo trình đại học và giáo trình sau đại học về 

Phương trình đạo hàm riêng. Cuốn giáo trình Phương trình đạo hàm riêng của Giáo 

sư đã được sử dụng rộng rãi trong các trường đại học sư phạm.  

Do những đóng góp nổi bật trong công tác quản lí, nghiên cứu khoa học, giảng dạy 

và đào tạo, GS.TSKH Nguyễn Mạnh Hùng đã được Nhà nước tặng thưởng nhiều 

danh hiệu và chức danh cao quý: Huân chương Lao động hạng Ba (2016), Nhà 

giáo ưu tú (2010), Giáo sư (2011). 

Nhân dịp GS Nguyễn Mạnh Hùng tròn 60 tuổi, những người học trò cũ chúng tôi 

xin kính chúc Giáo sư mạnh khỏe và tiếp tục có những đóng góp trong sự nghiệp 

giáo dục và đào tạo. 

 

                                                            Cung Thế Anh – Trần Đình Kế 

                                                             Khoa Toán-Tin, Trường ĐHSP Hà Nội 
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ABSTRACTS 

 

Local exact controllability to trajectories of the magneto-micropolar 

fluid equations 

Cung The Anh 

Department of Mathematics, Hanoi National University of Education 

Email: anhctmath@hnue.edu.vn 

 

We prove the exact controllability to trajectories of the magneto-micropolar fluid 

equations with distributed controls. We  first establish new Carleman inequalities for the 

associated linearized system which lead to its null controllability. Then, combining the 

null controllability of the linearized system with an inverse mapping theorem, we deduce 

the local exact controllability to trajactories of the nonlinear problem. 

This is joint work with Vu Manh Toi. 
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Bất đẳng thức Hardy-Littlewood-Sobolev ngược trên    

Ngô Quốc Anh 

Khoa Toán-Cơ-Tin học, Trường Đại học Khoa học Tự nhiên, Hà Nội 

Email: ngoquocanh@gmail.com 

 

Bất đẳng thức Hardy-Littewood-Sobolev (HLS) trên    có lịch sử lâu đời bắt nguồn từ 

các kết quả về tích phân Riemann-Liouville của Hardy và Littewood những năm 20 thế 

kỷ trước. Năm 1938, để chứng minh kết quả về phép nhúng mà sau này mang tên ông, 

bằng cách sử dụng các kết quả nội suy Marcinckiewicz, Sobolev đã tổng quát kết quả của 

Hardy và Littewood cho trường hợp    và thu được bất đẳng thức tích chập với nhân kỳ 

dị dạng 

                   , 

trong đó    , q>1, và p>1 là các hằng số thích hợp. 

Tuy nhiên phải mất gần 50 năm thì bài toán tìm hằng số tốt nhất và việc phân loại các 

hàm tối ưu để bất đẳng thức HLS xảy ra dấu bằng mới được giải quyết trong một công 

trình của E. Lieb năm 1983. Kể từ công trình của Lieb, bất đẳng thức HLS trở thành chủ 

đề nghiên cứu nóng bỏng thu hút rất nhiều nhà toán học bởi mối liên hệ giữa nó với các 

bất đẳng thức Sobolev, Moser-Trudinger-Onofri, v.v. 

Năm 2015, khi nghiên cứu trường hợp kỳ dị của bài toán xác định metric bảo giác với độ 

cong vô hướng cho trước (prescribed scalar curvature problem), J. Dou và M. Zhu lần 

đầu tiên giới thiệu dạng ngược của bất đẳng thức HLS trên    

                  , 

trong đó    , q>1, và p>1. Để chứng minh bất đẳng thức và chỉ ra sự tồn tại của hàm 

tối ưu, Dou và Zhu đã đề xuất và sử dụng các kết quả nội suy Marcinckiewicz ngược.  

Trong báo cáo này, tôi sẽ giới thiệu một cách tiếp cận mới sử dụng biểu diễn tích phân 

dưới dạng lớp (layer cake representation) để chứng minh bất đẳng thức HLS ngược. Việc 

chứng minh sự tồn tại của hàm tối ưu cũng như phân loại chúng cũng sẽ được đề cập 

trong báo cáo. Đây là kết quả cộng tác với Nguyễn Văn Hoàng (Đại học Paul Sabatier, 

Toulouse, CH Pháp). 
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Inverse problems with nonnegative and sparse solutions: 

Algorithms and application to the phase retrieve problem 

Dinh Nho Hao 

Institute of Mathematics, VAST 

Email: hao@math.ac.vn 

 

We study a gradient-type method and a semismooth Newton method for minimization 

problems in regularizing inverse problems with nonnegative and sparse solutions. We 

propose a special penalty functional forcing the minimizers of regularized minimization 

problems to be nonnegative and sparse and then apply the suggested algorithms for 

finding the solution to the problem. The strong convergence of the gradient-type method 

and the local superlinear convergence of the semismooth Newton method are proved. 

Then, we use these algorithms for the phase retrieval problem and illustrate their 

efficiency in numerical examples, particularly in the practical problem of optical imaging 

through scattering media where all the noises from experiment are presented. 

This is joint work with Pham Quy Muoi and Dang Cuong. 
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A Liouville-type theorem for a cooperative parabolic system 

Phan Quoc Hung 

Institute of Research and Development, Duy Tan University, Da Nang 

Email: hungpqmath@gmail.com 

 

We prove the nonexistence of entire positive solutions to a cooperative parabolic system. 

By nontrivial modifications of the techniques of Gidas and Spruck and of Bidaut-Véron, 

we partially improve the results of Quittner in space dimensions    . In particular, our 

result solves the important case of the parabolic Gross-Pitaevskii system in space 

dimension    . We also give the results on universal singularity estimates, universal 

bounds for global solutions, and blow-up rate estimates for the corresponding initial 

value problem. 
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Nonlinear hyperbolic partial differential equations on nonsmooth 

domains 

Vu Trong Luong 

Department of Mathematics, Tay Bac University 

Email: vutrongluong@gmail.com 

 

In this report, we give a discussion on our results related to nonlinear hyperbolic partial 

differential equations on nonsmooth domains. The concrete results are local existence and 

regularity of solutions of certain semilinear hyperbolic partial differential equation on 

domains with an edge or cone with edges. 

This is joint work with Nguyen Thanh Tung. 
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Discrete-time Fourier sine integral transforms 

Nguyen Xuan Thao 

School of Applied Mathematics and Informatics, Hanoi University of Science and 

Technology 

Email: thaonxbmai@yahoo.com 

 

Some integral transforms have attracted  the attention of many mathematicians such as 

Fourier transform, fractional Fourier transform, discrete Fourier transform, Fourier 

transform on time scale and discrete-time Fourier transform. In this talk, we will 

construct and study the discrete-time Fourier sine transform 

                                 

 

   

 

and its inverse 

         
             

 

 
                

 

 

 

where       is a periodic function with period   . 

We also study its operator properties, Parseval's identity, discrete-time Fourier cosine 

transform, Fourier sine generalized convolution theorems, and the Titchmarsh theorem. 

They are useful for solving infinite systems of linear algebraic equations.  

This is joint work with Nguyen Anh Dai. 
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Abstract. In this paper we prove the exact controllability to trajectories of
the magneto-micropolar fluid equations with distributed controls. We first
establish new Carleman inequalities for the associated linearized system which
lead to its null controllability. Then, combining the null controllability of the
linearized system with an inverse mapping theorem, we deduce the local exact
controllability to trajactories of the nonlinear problem.

1. Introduction and statement of main results. Let Ω be a bounded con-
nected domain in Rd, d ∈ {2, 3}, whose boundary ∂Ω is regular enough. Let T > 0
and we will use the notations Q = Ω × (0, T ),Σ = ∂Ω × (0, T ), and we denote by
n(x) the outward unit normal to ∂Ω at the point x ∈ ∂Ω.

We consider the controllability of the following magneto-micropolar fluid equa-
tions:

yt −∆y + (y · ∇)y − (B · ∇)B +∇p+∇
( |B|2

2

)
= curlω + u1O in Q,

ωt −∆ω − (d− 2)∇(∇ · ω) + (y · ∇)ω + ω = curly + w1O in Q,

Bt −∆B + (y · ∇)B − (B · ∇)y = P (v1O) in Q,

∇ · y = ∇ ·B = 0 in Q,

y = 0, ω = 0, B = 0 on Σ,

y(0) = y0, ω(0) = ω0, B(0) = B0 in Ω,

(1)

where y and B respectively describe the flow velocity vector and the magnetic field
vector,

ω =

{
scalar angular velocity if d = 2,

(ω1(x, t), ω2(x, t), ω3(x, t)) angular velocity vector if d = 3,

2000 Mathematics Subject Classification. 93B05, 35Q35, 93C20.
Key words and phrases. Magneto-micropolar fluid, local controllability to trajectories, Carle-

man inequality, inverse mapping theorem.
∗ Corresponding author: anhctmath@hnue.edu.vn.
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p is a scalar pressure, while y0, ω0 and B0 are the given initial velocity, initial
angular velocity and initial magnetic field, and (u,w, v) stands for control functions
acting on a small nonempty open subset O of Ω.

Here we have used the following notations:
In the case d = 2, we denote curla = ∂x1

a2 − ∂x2
a1 for a vector function a =

(a1, a2), and curlb = (∂x2
b,−∂x1

b) for a scalar function b.
In the case d = 3, we denote

curla = (∂x2
a3 − ∂x3

a2, ∂x3
a1 − ∂x1

a3, ∂x1
a2 − ∂x2

a1)

for a vector function a = (a1, a2, a3).
In this work, the control function acting on the equations satisfied by the mag-

netic B is assumed to have the form

P (v1O) = v1O +∇χ, for some χ ∈ L2(0, T ;H1(Ω)). (2)

This form of the control v has been also considered in recent works on the local exact
controllability of the MHD system [4, 5, 18, 19]. There is only a recent result on the
controllability of MHD system [3] in which the control acting on the magnetic field
has support in an arbitrarily small open subset of the spatial domain, i.e., the control
has the form 1OPO(v1O), where PO is the classical Helmholtz projector related to
O (i.e., the orthogonal projection operator from L2(O)d onto the completion of the
set {v ∈ C∞0 (O)d | ∇ · v = 0 in O} in the norm of L2(O)d. However, since the
boundary conditions on the magnetic field in our system is different from that in
[3], so here we cannot use ideas in [3] to establish our Carleman estimate for the
component C of the adjoint system respectively to the magnetic field. Hence, we
are not able to get an estimate of the right-hand side of the component C having
the form

∫∫
O e
−2sαξ3|POC|2dxdt as in [3]. So we only obtain the controllability of

(1) with the control function acting on the magneto field has the form (2). The
controllability of (1) with the control function acting on the magneto field has the
form 1OPO(v1O) remains an open question.

The magneto-micropolar fluid is a model of fluids in which micro-structures of the
fluid and its electronic-magnetic properties are taken into account. In the past years,
there have been a number of works devoted to studying mathematical questions
related to the magneto-micropolar fluid equations. The existence and uniqueness of
weak/strong solutions to (1) were studied in [8, 14, 25, 27, 28]. The regularity and
blow-up criterion of solutions were studied in [13, 23, 33, 35]. Besides, the long-time
behavior of solutions was investigated in [1, 6, 21, 22, 24, 29]. However, to the best
of our knowledge, there is no work on the controllability of the magneto-micropolar
fluid equations. This is the motivation of the present paper. Because here we focus
on the controllability, we have omitted some physical constants in this model.

It is noticed that the magneto-micropolar fluid equations contain the micropolar
equations (when B = 0), the MHD equations (when ω = 0), the Navier-Stokes equa-
tions (when B = 0 and ω = 0) as particular cases. The local exact controllability
of the Navier-Stokes equations has been studied extensively in many works, see e.g.
[10, 12, 26] and references therein. In recent years, the local exact controllability of
the MHD system was also studied by a number of authors in [3, 4, 5, 18, 19], and
that of the micropolar fluid equation was studied in [9, 17].

To study system (1), we use the following function spaces

H =
{
y ∈ L2(Ω)d | ∇ · y = 0 and y · n = 0 on ∂Ω

}
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with the norm

‖y‖H =
( d∑
i=1

∫
Ω

|yj |2dx
)1/2

,

and

V =
{
y ∈ H1

0 (Ω)d | ∇ · y = 0 in Ω
}

with the norm

‖y‖V =
( d∑
i=1

∫
Ω

|∇yj |2dx
)1/2

.

The main question considered in this paper is that whether (1) is locally exactly
controllable to the trajectories.

Let us fix a regular trajectory (y, p, ω,B) of the non-controlled system corre-
sponding to (1), i.e.,

yt −∆y + (y · ∇)y − (B · ∇)B +∇p+∇
( |B|2

2

)
= curlω in Q,

ωt −∆ω − (d− 2)∇(∇ · ω) + (y · ∇)ω + ω = curly in Q,

Bt −∆B + (y · ∇)B − (B · ∇)y = 0 in Q,

∇ · y = ∇ ·B = 0 in Q,

y = 0, ω = 0, B = 0 on Σ,

y(0) = y0, ω(0) = ω0, B(0) = B
0

in Ω,

(3)

for some initial data (y0, ω0, B
0
).

We will assume that (y, p, ω,B) satisfies

(y, ω,B) ∈ L∞(Q)5 if d = 2, (4)

and

(y, ω,B) ∈ L∞(Q)9 if d = 3. (5)

As long as the initial conditions are concerned, we will assume that

(y0, ω0, B0) ∈ E0 :=

{
H × L2(Ω)×H if d = 2,

(H ∩ L4(Ω)3)× L4(Ω)3 × (H ∩ L4(Ω)3) if d = 3.
(6)

We are now ready to formulate the main results in the present paper. First, the
result in the case of two dimensions is given in the following theorem.

Theorem 1.1. Let d = 2. Assume that (y, p, ω,B) satisfies (4). Then (1) is locally
exactly controllable to (y, p, ω,B) at any time T > 0, that is, there exists ε > 0 such
that, for any initial data (y0, ω0, B0) satisfying (6) and

‖y0 − y0‖H + ‖ω0 − ω0‖L2(Ω) + ‖B0 −B0‖H < ε,

there exist controls (u,w, v) ∈ L2(O × (0, T ))5 such that the solution (y, p, ω,B) of
(1) satisfying

y(·, T ) = y(·, T ), ω(·, T ) = ω(·, T ) and B(·, T ) = B(·, T ) in Ω.

The following theorem is the result in the case of three dimensions.
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Theorem 1.2. Let d = 3. Assume that (y, p, ω,B) satisfies (5). Then (1) is locally
exactly controllable to (y, p, ω,B) at any time T > 0, that is, there exists ε > 0 such
that, for any initial data (y0, ω0, B0) satisfying (6) and

‖y0 − y0‖H∩L4(Ω)3 + ‖ω0 − ω0‖L4(Ω)3 + ‖B0 −B0‖H∩L4(Ω)3 < ε,

there exist controls (u,w, v) ∈ L2(O × (0, T ))9 such that the solution (y, p, ω,B) of
(1) satisfying

y(·, T ) = y(·, T ), ω(·, T ) = ω(·, T ) and B(·, T ) = B(·, T ) in Ω.

Remark 1. From the above theorems, by taking ω = 0 and B = 0 we recover the
local exact controllability result in [26] for Navier-Stokes equations, which improved
the previous results in [10] and references therein. Moreover, by taking B = 0 only,
we improved the previous result on local exact controllability to trajectories of the
micropolar fluids in [9] in the sense that a weaker regularity of the given trajectory
and initial data is required.

Our strategy is as follows: Let the trajectory (y, p, ω,B) be given in (3) satisfying
(4) or (5). Firstly, let us introduce the auxiliary nonlinear system:

ỹt −∆ỹ + ((ỹ + y) · ∇)ỹ + (ỹ · ∇)y − ((B̃ +B) · ∇)B̃

−(B̃ · ∇)B +∇p̃+
1

2
∇((B̃ +B) · B̃) +

1

2
∇(B · B̃) = curlω̃ + u1O in Q,

ω̃t −∆ω̃ − (d− 2)∇(∇ · ω̃) + ((ỹ + y) · ∇)ω̃

+(ỹ · ∇)ω + ω̃ = curlỹ + w1O in Q,

B̃t −∆B̃ + ((ỹ + y) · ∇)B̃ + (ỹ · ∇)B

−((B̃ +B) · ∇)ỹ − (B̃ · ∇)y = P (v1O) in Q,

∇ · ỹ = ∇ · B̃ = 0 in Q,

ỹ = 0, ω̃ = 0, B̃ = 0 on Σ,

ỹ(0) = ỹ0, ω̃(0) = ω̃0, B̃(0) = B̃0 in Ω.

(7)

Setting (y, p, ω,B) = (ỹ + y, p̃+ p, ω̃ + ω, B̃ +B), it is seen that to prove the main
results, what we have to do is to prove the local null controllability of (7). In other
words, we have to show that, for some ε > 0, whenever the initial datum in (7)
satisfies

‖(ỹ0, ω̃0, B̃0)‖E0 < ε,

we can find controls u,w and v such that the associated solution (ỹ, p̃, ω̃, B̃) of (7)
satisfies

ỹ(·, T ) = 0, ω̃(·, T ) = 0 and B̃(·, T ) = 0 in Ω.

To do this, we will follow the strategy introduced by Fursikov and Imanuvilov [12]
in the context of Navier-Stokes equations. Let us consider the linearized system
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around (y, ω,B):

ỹt −∆ỹ + (y · ∇)ỹ + (ỹ · ∇)y − (B · ∇)B̃

−(B̃ · ∇)B +∇p̃+∇(B · B̃) = f1 + curlω̃ + u1O in Q,

ω̃t −∆ω̃ − (d− 2)∇(∇ · ω̂) + (y · ∇)ω̃

+(ỹ · ∇)ω + ω̃ = f2 + curlỹ + w1O in Q,

B̃t −∆B̃ + (y · ∇)B̃ + (ỹ · ∇)B − (B · ∇)ỹ − (B̃ · ∇)y

= f3 + P (v1O) in Q,

∇ · ỹ = ∇ · B̃ = 0 in Q,

ỹ = 0, ω̃ = 0, B̃ = 0 on Σ,

ỹ(0) = ỹ0, ω̃(0) = ω̃0, B̃(0) = B̃0 in Ω,

(8)

where f1, f2 and f3 are functions that decay exponentially to zero as t→ T−.
We will prove that, under appropriate assumptions for f1, f2 and f3, these above

linear system (8) is null controllable. After that, combining the null controllabil-
ity of (8) with an inverse mapping theorem, it will lead to the local null exact
controllability of (7).

A basic tool for proving the null controllability of (8) is a global Carleman in-
equality for solutions to the following associated adjoint system

−ϕt −∆ϕ− (Dsϕ)y + (DaC)B +∇π = curlψ + (t∇ψ)ω + g1 in Q,

−ψt −∆ψ − (d− 2)∇(∇ · ψ) + (y · ∇)ψ + ψ = curlϕ+ g2 in Q,

−Ct −∆C + (Dsϕ)B − (DaC)y +∇r = g3 in Q,

∇ · ϕ = ∇ · C = 0 in Q,

ϕ = 0, ψ = 0, C = 0 on Σ,

ϕ(T ) = ϕT , ψ(T ) = ψT , C(T ) = CT in Ω.

(9)
Here we have used the notations Ds := ∇ + t∇ and Da := ∇ − t∇. In (9), the
pressure functions are π, r.

To obtain the above main results, which particularly improve some recent related
results, we have to establish new necessary Carleman inequalities. This is in fact
the main contribution of our paper.

Let us explain the method used to construct our Carleman inequality. Firstly,
using the Carleman estimate in [20, Theorem 4.1] (see also in [26, Theorem 3.4])
for the Stokes system with suitable f , we get the global integral estimates for the
component ϕ in both cases d = 2 and d = 3. Since the magneto field has the
homogeneous Dirichlet condition and the equation satisfying the magneto field has
an addition pressure, then the global integral estimates for the component C can
be established as same as the estimates for the component ϕ. The global integral
estimate for the component ψ is obtained separately in two cases d = 2 and d = 3.
In the case d = 2, we can use the Carleman inequality directly for the heat equation
to the component ψ to get the estimate for ψ. However, in the case d = 3, we cannot
use the Carleman inequality directly for the heat equations to the component ψ since
the equation satisfying by ψ has the term ∇(∇ ·ψ). To overcome this difficulty, we
exploit some ideas in [17] by using the Carleman inequality [20, Theorem 2.2] for the
nonhomogeneous heat equations with suitable powers of the weight functions. Then,
we can establish our new Carleman estimates with slightly weaker requirement of
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the regularity of the trajectory as that in the case of micropolar fluid equations [9,
Propositon 4].

The paper is organized as follows. In Section 2, we establish new Carleman
inequalities for the solutions to the adjoint linearized system. Section 3 is devoted
to proving Theorem 1.1 and Theorem 1.2. We first use the new Carleman inequality
to prove the null controllability of the linearized system, then the conclusion of the
proof of the main results is obtained by combining the null controllability of the
linearized system and an inverse mapping theorem. In the Appendix we recall some
well-known Carleman inequalities which are used in the proof.

2. Carleman inequalities.

2.1. Statement of Carleman inequalities. In this subsection, we will formulate
a suitable Carleman estimate for the adjoint system (9). To do this, we introduce

some weight functions. Let Õ ⊂⊂ O and η0 ∈ C2(Ω) satisfy

η0 > 0 in Ω, η0 ≡ 0 on ∂Ω and |∇η0| > 0 in Ω \ Õ. (10)

The existence of such a function η0 was given in [11, Lemma 1.1]. Let ` ∈ C∞([0, T ])
be a function such that

`(t) > 0 for all t ∈ [0, T ],

`(t) = t for all t ∈ [0, T/4],

`(t) = T − t for all t ∈ [3T/4, T ].

We now consider the following weight functions

α(x, t) =
eλ(‖η0‖∞+m2) − eλ(η0(x)+m1)

`(t)4
, ξ(x, t) =

eλ(η0(x)+m1)

`(t)4
,

α∗(t) = max
x∈Ω

α(x, t) = α|∂Ω(t) =
eλ(‖ψ‖∞+m2) − eλm1

`(t)4
,

ξ∗(t) = min
x∈Ω

ξ(x, t) = ξ|∂Ω(t) =
eλm1

`(t)4
,

(11)

where λ ≥ 1 and m1,m2 are two constants chosen for the moment such that m1 ≤
m2 and ∃C > 0 (independent of λ) such that ∀λ ≥ 1,

|∂tα| ≤ Cξ5/4, and |∂2
ttα| ≤ Cξ3/2.

For example, we can choose with m0 ≥ 0,

m1 = (4 +m0)‖η0‖∞, m2 = (4 +m0 +
m0

4
)‖η0‖∞.

Theorem 2.1. Let d = 2. Assume that the trajectory (y, p, ω,B) satisfies (4),

(g1, g2, g3) ∈ L2(Q)5. Then there exist some positive constants Ĉ, ŝ0 and λ̂0, only
depending on Ω and O, such that the solution (ϕ,ψ,C) of (9) satisfies

s−1

∫∫
Q

e−2sαξ−1
(
|ψt|2 + |∆ψ|2

)
dxdt+ s3λ4

∫∫
Q

e−2sαξ3|ψ|2dxdt

+ sλ2

∫∫
Q

e−2sαξ|∇ψ|2dxdt+ s−1

∫∫
Q

e−2sαξ−1(|∇curlϕ|2 + |∇curlC|2)dxdt
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+ sλ2

∫∫
Q

e−2sαξ(|curlϕ|+ |curlC|2)dxdt+ λ2

∫∫
Q

e−2sα(|∇ϕ|2 + |∇C|2)dxdt

+ s2λ4

∫∫
Q

e−2sαξ2(|ϕ|2 + |C|2)dxdt

≤ C
(
s3λ4

∫∫
O×(0,T )

e−2sαξ3(|ϕ|2 + |ψ|2 + |C|2)dxdt

+

∫∫
Q

e−2sα(|g1|2 + |g2|2 + |g3|2)dxdt
)
, (12)

for s ≥ ŝ0(T 3 + T 4) and λ ≥ λ̂0(1 + ‖y‖∞ + ‖B‖∞ + ‖ω‖∞).

Theorem 2.2. Let d = 3. Assume that the trajectory (y, p, ω,B) satisfies (5),

(g1, g2, g3) ∈ L2(Q)9. Then there exist some positive constants Ĉ, ŝ0 and λ̂0, only
depending on Ω and O, such that the solution (ϕ,ψ,C) of (9) satisfies

s−1

∫∫
Q

e−2sαξ−1
(
|ψt|2 + |∆ψ|2

)
dxdt+ s3λ4

∫∫
Q

e−2sαξ3|ψ|2dxdt

+ sλ2

∫∫
Q

e−2sαξ|∇ψ|2dxdt+

∫∫
Q

e−2sα|∇(∇ · ψ)|2dxdt

+ s2λ2

∫∫
Q

e−2sαξ2|∇ · ψ|2dxdt+ s−1

∫∫
Q

e−2sαξ−1
(
|∇curlϕ|2 + |∇curlC|2

)
dxdt

+ sλ2

∫∫
Q

e−2sαξ
(
|curlϕ|2 + |curlC|2

)
dxdt

+ λ2

∫∫
Q

e−2sα(|∇ϕ|2 + |∇C|2)dxdt+ s2λ4

∫∫
Q

e−2sαξ2(|ϕ|2 + |C|2)dxdt

≤ C
(
s3λ4

∫∫
O×(0,T )

e−2sαξ3(|ϕ|2 + |ψ|2 + |C|2)dxdt

+

∫∫
Q

e−2sα(|g1|2 + sξ|g2|2 + |g3|2)dxdt
)

(13)

for s ≥ ŝ0(T 3 + T 4) and λ ≥ λ̂0(1 + ‖y‖∞ + ‖B‖∞ + ‖ω‖∞).

Remark 2. By taking C = 0 and ψ = 0, we recover the improved versions of
Carleman estimates for the Navier-Stokes equations, which were recently obtained
in [26] (see also in [20]).

2.2. Proof of Carleman inequalities. We will prove Theorem 2.1 and Theorem
2.2 in several steps.

Step 1. Estimation of global terms ϕ and C: Notice that the system for
the components ϕ (and C) in the adjoint system (9) can be viewed as the Stokes
system (43) in the Appendix with t replaced by T − t and f = (Dsϕ)y− (DaC)B+
curlψ+ (t∇ψ)ω+ g1 (and f = −(Dsϕ)B + (DaC)y+ g3). So, applying Lemma 4.3
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in the Appendix to components ϕ (and C) in (9) we get some positive constants
s0 ≥ 1, λ0 ≥ 1 and C > 0 such that

s−1

∫∫
Q

e−2sαξ−1(|∇curlϕ|2 + |∇curlC|2)dxdt

+ sλ2

∫∫
Q

e−2sαξ(|curlϕ|2 + |curlC|2)dxdt

+ λ2

∫∫
Q

e−2sα(|∇ϕ|2 + |∇C|2)dxdt+ s2λ4

∫∫
Q

e−2sαξ2(|ϕ|2 + |C|2)dxdt

≤ C
(

(‖y‖2∞ + ‖B‖2∞)

∫∫
Q

e−2sα(|∇ϕ|2 + |∇C|2)dxdt

+ (1 + ‖ω‖2∞)

∫∫
Q

e−2sα|∇ψ|2dxdt

+

∫∫
Q

e−2sα(|g1|2 + |g3|2)dxdt+ s3λ4

∫∫
O×(0,T )

e−2sαξ3(|ϕ|2 + |C|2)dxdt
)

(14)

for any s ≥ s0 and λ ≥ λ0, where we have used the fact that |curlϕ|2 ≤ C|∇ϕ|2 and
|curlψ|2 ≤ C|∇ψ|2.

Therefore, taking λ ≥ max{λ0, C(‖y‖∞ + ‖B‖∞)}, we have from (14) that

s−1

∫∫
Q

e−2sαξ−1(|∇curlϕ|2 + |∇curlC|2)dxdt

+ sλ2

∫∫
Q

e−2sαξ(|curlϕ|2 + |curlC|2)dxdt

+ λ2

∫∫
Q

e−2sα(|∇ϕ|2 + |∇C|2)dxdt+ s2λ4

∫∫
Q

e−2sαξ2(|ϕ|2 + |C|2)dxdt

≤ C
(

(1 + ‖ω‖2∞)

∫∫
Q

e−2sα|∇ψ|2dxdt

+

∫∫
Q

e−2sα(|g1|2 + |g3|2)dxdt+ s3λ4

∫∫
O×(0,T )

e−2sαξ3(|ϕ|2 + |C|2)dxdt
)
. (15)

Step 2. Estimation of global term ψ: We will consider two cases:

Case d = 2. Using the Carleman estimate (40) in the Appendix for ψ in (9) with
d = 2, we deduce that

s−1

∫∫
Q

e−2sαξ−1
(
|ψt|2 + |∆ψ|2

)
dxdt+ s3λ4

∫∫
Q

e−2sαξ3|ψ|2dxdt

+ sλ2

∫∫
Q

e−2sαξ|∇ψ|2dxdt ≤ C
(
s3λ4

∫∫
O×(0,T )

e−2sαξ3|ψ|2
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+

∫∫
Q

e−2sα(|ψ|2 + |curlϕ|2 + |g2|2)dxdt+ ‖y‖2∞
∫∫
Q

e−2sα|∇ψ|2dxdt
)
, (16)

for s ≥ C(T 3 + T 4) and λ ≥ C.
Case d = 3. We apply the divergence operator to the equation satisfied by ψ in
(9) with d = 3 to deduce that

− ∂t(∇ · ψ)− 2∆(∇ · ψ) = ∇ · (ψ + (y · ∇)ψ + g2). (17)

Thus, we apply the Carleman estimate (42) in the Appendix for the equation (17)
with different powers of ξ. More precisely, we apply that Carleman inequality to
s1/2ξ1/2∇ · ψ and we get that∫∫

Q

e−2sα|∇(∇ · ψ)|2dxdt+ s2λ2

∫∫
Q

e−2sαξ2|∇ · ψ|2dxdt

≤ C
(
s2λ2

∫∫
Ô×(0,T )

e−2sαξ2|∇ · ψ|2dxdt+ s1/2
∥∥∥e−sαξ1/4∇ · ψ

∥∥∥2

H
1
2
, 1
4 (Σ)

+ s

∫∫
Q

e−2sαξ|ψ|2dxdt+ s‖y‖2∞
∫∫
Q

e−2sαξ|∇ψ|2dxdt+ s

∫∫
Q

e−2sαξ|g2|2dxdt
)

(18)

for s ≥ s0 and λ ≥ λ0, where Õ ⊂⊂ Ô ⊂⊂ O.
On the other hand, since ψ satisfies the system{−ψt −∆ψ = ∇(∇ · ψ)− (y · ∇)ψ − ψ + curlϕ+ g2 in Q,

ψ = 0 on Σ,
(19)

then using the Carleman (40) in the Appendix for ψ in (19), we deduce that

s−1

∫∫
Q

e−2sαξ−1
(
|ψt|2 + |∆ψ|2

)
dxdt

+ s3λ4

∫∫
Q

e−2sαξ3|ψ|2dxdt+ sλ2

∫∫
Q

e−2sαξ|∇ψ|2dxdt

≤ C
(
s3λ4

∫∫
Ô×(0,T )

e−2sαξ3|ψ|2 +

∫∫
Q

e−2sα|∇(∇ · ψ)|2dxdt

+

∫∫
Q

e−2sα(|ψ|2 + |curlϕ|2 + |g2|2)dxdt+ ‖y‖2∞
∫∫
Q

e−2sα|∇ψ|2dxdt
)
, (20)

for s ≥ C(T 3 + T 4) and λ ≥ C. Combining (18) and (20) yields the estimate

s−1

∫∫
Q

e−2sαξ−1
(
|ψt|2 + |∆ψ|2

)
dxdt

+ s3λ4

∫∫
Q

e−2sαξ3|ψ|2dxdt+ sλ2

∫∫
Q

e−2sαξ|∇ψ|2dxdt



366 CUNG THE ANH AND VU MANH TOI

+

∫∫
Q

e−2sα|∇(∇ · ψ)|2dxdt+ s2λ2

∫∫
Q

e−2sαξ2|∇ · ψ|2dxdt

≤ C
(
s3λ4

∫∫
Ô×(0,T )

e−2sαξ3|ψ|2dxdt+ s2λ2

∫∫
Ô×(0,T )

e−2sαξ2|∇ · ψ|2dxdt

+ s1/2
∥∥∥e−sαξ1/4∇ · ψ

∥∥∥2

H
1
2
, 1
4 (Σ)

+ s

∫∫
Q

e−2sαξ|g2|2dxdt+

∫∫
Q

e−2sα|curlϕ|2dxdt
)
, (21)

for s ≥ max{s0, C(T 3 + T 4)} and λ ≥ max{λ0, C(1 + ‖y‖∞)}.
Furthermore, integrating by parts and using the Cauchy inequality, we get

s2λ2

∫∫
Ô×(0,T )

e−2sαξ2|∇ · ψ|2dxdt ≤ ε
∫∫
Q

e−2sα|∇(∇ · ψ)|2dxdt

+ Cε−1s2λ2

∫∫
O×(0,T )

e−2sαξ2|ψ|2dxdt

for any ε > 0. Hence, choosing ε sufficiently small, one infers from (21) that

s−1

∫∫
Q

e−2sαξ−1
(
|ψt|2 + |∆ψ|2

)
dxdt

+ s3λ4

∫∫
Q

e−2sαξ3|ψ|2dxdt+ sλ2

∫∫
Q

e−2sαξ|∇ψ|2dxdt

+

∫∫
Q

e−2sα|∇(∇ · ψ)|2dxdt+ s2λ2

∫∫
Q

e−2sαξ2|∇ · ψ|2dxdt

≤ C
(
s3λ4

∫∫
O×(0,T )

e−2sαξ3|ψ|2dxdt+ s1/2
∥∥∥e−sαξ1/4∇ · ψ

∥∥∥2

H
1
2
, 1
4 (Σ)

+ s

∫∫
Q

e−2sαξ|g2|2dxdt+

∫∫
Q

e−2sα|curlϕ|2dxdt
)
. (22)

We now estimate the trace terms. From the definition of ‖ · ‖
H

1
2
, 1
4 (Σ)

, we have

s1/2
∥∥∥e−sαξ1/4∇ · ψ

∥∥∥2

H
1
2
, 1
4 (Σ)

≤ C
(
‖σ1∇ · ψ‖2L2(0,T ;H1(Ω)) + ‖σ1ψ‖2H1(0,T ;L2(Ω)3)

)
,

(23)
where σ1 := s1/4(ξ∗)1/4e−sα

∗
.

We see that σ1ψ satisfies
−∂t(σ1ψ)−∆(σ1ψ)−∇(∇ · (σ1ψ)) = −σ1(y · ∇)ψ − σ1ψ

− σ′1ψ + σ1curlϕ+ σ1g2 in Q,

σ1ψ = 0 on Σ,

(σ1ψ)(T ) = 0 in Ω.

Hence, using a similar classical energy estimate for the heat equation, we get
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‖σ1ψ‖2L2(0,T ;H2(Ω)3) + ‖σ1ψ‖2H1(0,T ;L2(Ω)3) ≤ C
∫∫
Q

σ2
1(|curlϕ|2 + |g2|2)dxdt

+ ‖y‖2∞
∫∫
Q

σ2
1 |∇ψ|2dxdt+

∫∫
Q

((σ′1)2 + σ2
1)|ψ|2dxdt

)
. (24)

Since |σ′1| ≤ Cs5/4(ξ∗)11/8e−sα
∗
, one deduces from (24) and (23) that

s1/2
∥∥∥e−sαξ1/4∇ · ψ

∥∥∥2

H
1
2
, 1
4 (Σ)

≤ C
(
s1/2

∫∫
Q

e−2sαξ1/2|curlϕ|2dxdt+ s1/2

∫∫
Q

e−2sαξ1/2|g2|2dxdt

+ ‖y‖2∞s1/2

∫∫
Q

e−2sαξ1/2|∇ψ|2dxdt+ s5/2

∫∫
Q

e−2sαξ11/4|ψ|2dxdt
)
.

Combining (22) and (24), we get

s−1

∫∫
Q

e−2sαξ−1
(
|ψt|2 + |∆ψ|2

)
dxdt+ s3λ4

∫∫
Q

e−2sαξ3|ψ|2dxdt

+ sλ2

∫∫
Q

e−2sαξ|∇ψ|2dxdt+

∫∫
Q

e−2sα|∇(∇ · ψ)|2dxdt

+ s2λ2

∫∫
Q

e−2sαξ2|∇ · ψ|2dxdt ≤ C
(
s3λ4

∫∫
O×(0,T )

e−2sαξ3|ψ|2dxdt

+ s1/2

∫∫
Q

e−2sαξ1/2|curlϕ|2dxdt+ s

∫∫
Q

e−2sαξ|g2|2dxdt
)
, (25)

for s ≥ max{s0, C(T 3 + T 4)} and λ ≥ max{λ0, C(1 + ‖y‖∞)}. Here we have used
the fact that s1/2ξ1/2 ≥ C for s ≥ CT 4.

Step 3. Conclusion.

Conclusion of Theorem 2.1. Combining (15) and (16) with note that |curlϕ|2 ≤
C|∇ϕ|2, we get (12) for s ≥ ŝ0(T 3 + T 4) and λ ≥ λ̂0(1 + ‖y‖∞ + ‖B‖∞ + ‖ω‖∞),

where λ̂0 = max{λ0, C} and ŝ0 = max{s0, C}. This completes the proof of Theorem
2.1.

Conclusion of Theorem 2.2. Combining (15) and (25), we get (13) for λ ≥
λ̂0(1 + ‖y‖∞ + ‖B‖∞ + ‖ω‖∞) and for any s ≥ ŝ0(T 3 + T 4). This completes the
proof of Theorem 2.2.

3. Proof of the main results. In this section, we will give the proof of Theorem
1.2, i.e. the result in the case of three dimensions. The proof of Theorem 1.1 (the
result in the case d = 2) is very similar to that in the case d = 3, so it is omitted
here.

3.1. Null controllability for the linear system (8). We now prove the null
controllability for the system (8) and this will be crucial when proving the local
controllability of (1) in the next subsection.
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We can rewrite problem (8) as follows
L(ỹ, ω̃, B̃) + (∇p, 0, 0) = (f1 + u1O, f2 + w1O, f3 + P (v1O)) in Q,

∇ · ỹ = ∇ · B̃ = 0 in Q,

ỹ = 0, ω̃ = 0, B̃ = 0 on Σ,

ỹ(0) = ỹ0, ω̃(0) = ω̃0, B̃(0) = B̃0 in Ω,

(26)

where

L(ỹ, ω̃, B̃) = (L1(ỹ, ω̃, B̃), L2(ỹ, ω̃), L3(ỹ, B̃))

with

L1(ỹ, ω̃, B̃) := ỹt −∆ỹ + (y · ∇)ỹ + (ỹ · ∇)y − (B · ∇)B̃ − (B̃ · ∇)B − curlω̃,

L2(ỹ, ω̃) := ω̃t −∆ω̃ −∇(∇ · ω̃) + (y · ∇)ω̃ + ω̃ + (ỹ · ∇)ω − curlỹ,

L3(ỹ, B̃) := B̃t −∆B̃ + (y · ∇)B̃ − (B̃ · ∇)y + (ỹ · ∇)B − (B · ∇)ỹ.

We would like to find the controls (u,w, v) such that the solution (ỹ, ω̃, B̃) to (26)
satisfies

ỹ(T ) = 0, ω̃(T ) = 0, B̃(T ) = 0 in Ω. (27)

We first deduce the Carleman inequality with weight functions that do not vanish
at t = 0. More precisely, let us consider the function

˜̀(t) =

{
`(T/2) if 0 ≤ t ≤ T/2,
`(t) if T/2 ≤ t ≤ T,

and we define new weight functions

β(x, t) =
eλ(‖η0‖∞+m2) − eλ(η0(x)+m1)

˜̀(t)4
,

γ(x, t) =
eλ(η0(x)+m1)

˜̀(t)4
,

β∗(t) = max
x∈Ω

β(x, t), γ∗(t) = min
x∈Ω

γ(x, t).

We will prove the following lemma.

Lemma 3.1. Let s and λ be like in Theorem 2.2. Then there exists a positive con-

stant Ĉ0 depending on T, s and λ, such that every solution (ϕ,ψ,C) of (9) satisfies

‖ϕ(0)‖2L2(Ω)3 + ‖ψ(0)‖2L2(Ω)3 + ‖C(0)‖2L2(Ω)3

+

∫∫
Q

e−2sβγ2(|ϕ|2 + |C|2)dxdt+

∫∫
Q

e−2sβγ3|ψ|2dxdt

+

∫∫
Q

e−2sβ∗γ∗(|∇ϕ|2 + |∇ψ|2 + |∇C|2)dxdt

≤ C
(∫∫
Q

e−2sβ(|g1|2 + |g3|2)dxdt+

∫∫
Q

e−2sβγ|g2|2dxdt

+

∫∫
O×(0,T )

e−2sβγ3(|ϕ|2 + |ψ|2 + |C|2)dxdt
)
. (28)
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Proof. The proof of this lemma is similar to those in some recent works on the
controllability of the fluid models (see for instance [16]). More precisely, this lemma
is a consequence of (13) and energy estimates satisfied by solutions of (9). In what
follows, we only give the sketch of the proof.

We introduce a function ϑ ∈ C1([0, T ]) such that

ϑ ≡ 1 in [0, T/2], ϑ ≡ 0 in [3T/4, T ].

Then (ϑϕ, ϑψ, ϑC) satisfies

−(ϑϕ)t −∆(ϑϕ)− (Dsϑϕ)y + (DaϑC)B +∇(ϑπ) = curl(ϑψ)

+(t∇(ϑψ))ω + ϑg1 − ϑ′ϕ in Q,

−(ϑψ)t −∆(ϑψ)−∇(∇ · (ϑψ))− (y · ∇)(ϑψ) + ϑψ = curl(ϑϕ) + ϑg2 in Q,

−(ϑC)t −∆(ϑC) + (Dsϑϕ)B − (DaϑC)y +∇(ϑr) = ϑg3 − ϑ′C in Q,

∇ · (ϑϕ) = ∇ · (ϑC) = 0 in Q,

ϑϕ = 0, ϑψ = 0, ϑC = 0 on Σ,

(ϑϕ)(T ) = 0, (ϑψ)(T ) = 0, (ϑC)(T ) = 0 in Ω.

(29)
Multiplying (29)1 by ϑϕ, (29)2 by ϑψ, (29)3 by ϑC, then integrating over Ω
and using the Cauchy inequality, there exists a positive constant C depending on
‖y‖∞, ‖ω‖∞, ‖B‖∞ such that

− d

dt

∫
Ω

(
|ϑϕ|2 + |ϑξ|2 + |ϑC|2

)
dx+

∫
Ω

(
|∇(ϑϕ)|2 + |∇(ϑψ)|2 + |∇(ϑC)|2

)
dx

≤ C
(∫

Ω

(
|ϑϕ|2 + |ϑψ|2 + |ϑC|2

)
dx+

∫
Ω

(
|ϑg1|2 + |ϑg2|2 + |ϑg3|2

)
dx

+

∫
Ω

|ϑ′|2(|ϕ|2 + |ψ|2 + |C|2)dx
)
.

(30)
So, from inequality (30) we get the energy estimate

‖ϑϕ‖2L∞(0,T ;H) + ‖ϑϕ‖2L2(0,T ;V ) + ‖ϑψ‖2L∞(0,T ;L2(Ω)3) + ‖ϑψ‖2L2(0,T ;H1
0 (Ω)3)

+ ‖ϑC‖2L∞(0,T ;H) + ‖ϑC‖2L2(0,T ;V )

≤ C(T )
(
‖ϑ′ϕ‖2L2(Q)3 + ‖ϑ′ψ‖2L2(Q)3 + ‖ϑ′C‖2L2(Q)3 + ‖ϑ(g1, g2, g3)‖2L2(Q)9

)
.

This implies that

‖(ϕ(0), ψ(0), C(0)‖2L2(Ω)9 + ‖ϕ‖2L2(0,T/2;H) + ‖ψ‖2L2(0,T/2;L2(Ω)3) + ‖C‖2L2(0,T/2;H)

+ ‖ϕ‖2L2(0,T/2;V ) + ‖ψ‖2L2(0,T/2;H1
0 (Ω)3) + ‖C‖2L2(0,T/2;V )

≤ C(T )
(
‖(ϕ,ψ,C)‖2L2(T/2,3T/4;L2(Ω)9) + ‖(g1, g2, g3)‖2L2(0,3T/4;L2(Ω)9)

)
.

From the last inequality and the fact that

0 < e−2sβγ3, e−2sβγ2, e−2sβ∗γ∗ ≤ C,∀t ∈ [0, T/2]; e−2sβ ≥ C, ∀t ∈ [0, 3T/4],

we have

‖ϕ(0)‖2L2(Ω)3 + ‖ψ(0)‖2L2(Ω)3 + ‖C(0)‖2L2(Ω)3
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+

∫ T/2

0

∫
Ω

e−2sβγ2(|ϕ|2 + |C|2)dxdt+

∫ T/2

0

∫
Ω

e−2sβγ3|ψ|2dxdt

+

∫ T/2

0

∫
Ω

e−2sβ∗γ∗(|∇ϕ|2 + |∇ψ|2 + |∇C|2)dxdt

≤ C
(∫ 3T/4

T/2

∫
Ω

e−2sβγ2(|ϕ|2 + |C|2)dxdt+

∫ 3T/4

T/2

∫
Ω

e−2sβγ3|ψ|2dxdt

+

∫ 3T/4

0

∫
Ω

e−2sβ(|g1|2 + |g3|2)dxdt+

∫ 3T/4

0

∫
Ω

e−2sβγ|g2|2dxdt
)
. (31)

Note that, since β = α in Ω× (T/2, T ), we have∫ T

T/2

∫
Ω

e−2sβγ2(|ϕ|2 + |C|2)dxdt+

∫ T

T/2

∫
Ω

e−2sβγ3|ψ|2dxdt

+

∫ T

T/2

∫
Ω

e−2sβ∗γ∗(|∇ϕ|2 + |∇ψ|2 + |∇C|2)dxdt

≤
∫∫
Q

e−2sαξ2(|ϕ|2 + |C|2)dxdt+

∫∫
Q

e−2sαξ3|ψ|2dxdt

+

∫∫
Q

e−2sα∗ξ∗(|∇ϕ|2 + |∇ψ|2 + |∇C|2)dxdt

≤ C
(∫∫
Q

e−2sα(|g1|2 + |g3|2)dxdt+

∫∫
Q

e−2sαξ|g2|2dxdt

+

∫∫
O×(0,T )

e−2sαξ3(|ϕ|2 + |ψ|2 + |C|2)dxdt
)
, (32)

for some positive constant C depending on s0, λ0. Here, we have used the Carleman
inequality (13) with note that∫∫

Q

e−2sα∗ξ∗|∇ϕ|2dxdt ≤ C
∫∫
Q

e−2sα∗ξ∗|curlϕ|2dxdt

since ϕ = 0 on Σ and ∇ · ϕ = 0 in Ω.
Now, since

e−2sβ , e−2sβγ, e−2sβγ3 ≥ C > 0 ∀t ∈ [0, T/2],

we conclude from (32) that∫ T

T/2

∫
Ω

e−2sβγ2(|ϕ|2 + |C|2)dxdt+

∫ T

T/2

∫
Ω

e−2sβγ3|ψ|2dxdt

+

∫ T

T/2

∫
Ω

e−2sβ∗γ∗(|∇ϕ|2 + |∇ψ|2 + |∇C|2)dxdt

≤ C
(∫∫
Q

e−2sβ(|g1|2 + |g3|2)dxdt+

∫∫
Q

e−2sβγ|g2|2dxdt

+

∫∫
O×(0,T )

e−2sβγ3(|ϕ|2 + |ψ|2 + |C|2)dxdt
)
.

(33)



LOCAL CONTROLLABILITY TO TRAJECTORIES 371

Combining (33) and (31) we get (28).

Now, we proceed to define the spaces where (26)-(27) will be solved. The main
space will be

E =
{

(ỹ, p̃, ω̃, B̃, u, w, v) : esβ ỹ, esβγ−1/2ω̃, esβB̃ ∈ L2(Q)3,

esβγ−3/2(u1O, w1O, P (v1O)) ∈ L2(Q)9,

esβ
∗/2(γ∗)−1/4ỹ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ L4(0, T ;L12(Ω)3),

esβ
∗/2(γ∗)−1/4ω̃ ∈ L2(0, T ;H1(Ω)3) ∩ L∞(0, T ;L2(Ω)3) ∩ L4(0, T ;L12(Ω)3),

esβ
∗/2(γ∗)−1/4B̃ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ L4(0, T ;L12(Ω)3),

esβ
∗
(γ∗)−1/2

(
L1(ỹ, ω̃, B̃) +∇p̃− u1O

)
∈ L2(0, T ;W−1,6(Ω)3),

esβ
∗
(γ∗)−1/2

(
L2(ỹ, ω̃)− w1O

)
∈ L2(0, T ;W−1,6(Ω)3),

esβ
∗
(γ∗)−1/2

(
L3(ỹ, B̃)− P (v1O)

)
∈ L2(0, T ;W−1,6(Ω)3)

}
.

Observe that E is a Banach space with the norm

‖(ỹ, p̃, ω̃, B̃, u, w, v)‖2E
=‖(esβ ỹ, esβγ−1/2ω̃, esβB̃)‖2L2(Q)9 + ‖esβγ−3/2(u1O, w1O, P (v1O))‖2L2(Q)9

+ ‖esβ
∗/2(γ∗)−1/4ỹ‖2L2(0,T ;V )∩L∞(0,T ;H)∩L4(0,T ;L12(Ω)3)

+ ‖esβ
∗/2(γ∗)−1/4ω̃‖2L2(0,T ;H1(Ω)3)∩L∞(0,T ;L2(Ω)3)∩L4(0,T ;L12(Ω)3)

+ ‖esβ
∗/2(γ∗)−1/4B̃‖2L2(0,T ;V )∩L∞(0,T ;H)∩L4(0,T ;L12(Ω)3)

+ ‖esβ
∗
(γ∗)−1/2

(
L1(ỹ, ω̃, B̃) +∇p̃− u1O

)
‖2L2(0,T ;W−1,6(Ω)3)

+ ‖esβ
∗
(γ∗)−1/2

(
L2(ỹ, ω̃)− w1O

)
‖2L2(0,T ;W−1,6(Ω)3)

+ ‖esβ
∗
(γ∗)−1/2

(
L3(ỹ, B̃)− P (v1O)

)
‖2L2(0,T ;W−1,6(Ω)3).

Remark 3. We can see that if (ỹ, p̃, ω̃, B̃, u, w, v) ∈ E then ỹ(., T ) = 0, ω̃(., T ) =

0, B̃(., T ) = 0 in Ω, so (ỹ, p̃, ω̃, B̃, u, w, v) solves a null controllability problem for
system (26) with an appropriate right-hand side (f1, f2, f3).

We will prove the following result.

Proposition 1. Assume that (y, p, ω) satisfies (5) and (ỹ0, ω̃0, B̃0) ∈ (H∩L4(Ω)3)×
L4(Ω)3 × (H ∩ L4(Ω)3). Furthermore, assume that

esβ
∗
(γ∗)−1/2(f1, f2, f3) ∈

(
L2(0, T ;W−1,6(Ω)3)

)3
.

Then, there exist control functions u ∈ L2(O × (0, T ))3, w ∈ L2(O × (0, T ))3 and

v ∈ L2(O× (0, T ))3 such that if (ỹ, ω̃, B̃) is the associated solution to (26), one has

(ỹ, p̃, ω̃, B̃, u, w, v) ∈ E. In particular, ỹ(., T ) = 0, ω̃(., T ) = 0, B̃(., T ) = 0 in Ω.

Proof. The proof is similar to that of Proposition 2 in [16] (see also Proposition 3
in [10]), so in what follows we only give the sketch of the proof.

Let L∗ be defined by

L∗(χ, κ, ρ) = (L∗1(χ, κ, ρ), L∗2(χ, κ), L∗3(χ, ρ))
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with

L∗1(χ, κ, ρ) = −χt −∆χ− (Dsχ)y + (Daρ)B − curlκ− (t∇κ)ω,

L∗2(χ, κ) = −κt −∆κ−∇(∇ · κ)− (y · ∇)κ+ κ− curlχ,

L∗3(χ, ρ) = −ρt −∆ρ+ (Dsχ)B − (Daρ)y,

and let us introduce the space

X0 =
{

(χ, σ, κ, ρ, ζ) ∈ C2(Q)3 × C1(Q)× C2(Q)3 × C2(Q)3 × C1(Q)1 :

∇ · χ = ∇ · ρ = 0 in Q,χ = 0, κ = 0, ρ = 0 on Σ
}
.

Then, we consider the following variational problem: find (χ̂, σ̂, κ̂, ρ̂, ζ̂) such that

a((χ̂, σ̂, κ̂, ρ̂, ζ̂), (χ, σ, κ, ρ, ζ)) = 〈G, (χ, σ, κ, ρ, ζ)〉 , ∀(χ, σ, κ, ρ, ζ) ∈ X0, (34)

where
a((χ̂, σ̂, κ̂, ρ̂, ζ̂), (χ, σ, κ, ρ, ζ))

=

∫∫
Q

e−2sβ(L∗1(χ̂, κ̂, ρ̂) +∇σ̂) · (L∗1(χ, κ, ρ) +∇σ)dxdt

+

∫∫
Q

e−2sβγL∗2(χ̂, κ̂) · L∗2(χ, κ)dxdt

+

∫∫
Q

e−2sβ
(
L∗3(χ̂, ρ̂) +∇ζ̂

)
· (L∗3(χ, ρ) +∇ζ) dxdt

+

∫∫
Q

e−2sβγ3 (χ̂1O · χ1O + κ̂1O · κ1O + ρ̂1O · ρ1O) dxdt,

and

〈G, (χ, σ, κ, ρ, ζ)〉 =

∫ T

0

〈f1, χ〉H−1(Ω)3,H1
0 (Ω)3 dt+

∫ T

0

〈f2, κ〉H−1(Ω)3,H1
0 (Ω)3 dt

+

∫ T

0

〈f3, ρ〉H−1(Ω)3,H1
0 (Ω)3 dt

+

∫
Ω

(
ỹ0 · χ(0) + ω̃0 · κ(0) + B̃0 · ρ(0)

)
dx.

From the Carleman inequality (28) applied to functions of X0, which implies that
a(·, ·) is a scalar product on X0. Therefore, we can consider the space X, the
completion of X0 with respect to the norm associated to a(·, ·) (denoted by ‖ · ‖X).
Then X is a Hilbert space and a(·, ·) is well-defined, continuous and definite positive
on X. Furthermore, thanks to (28), we see that the linear form (χ, σ, κ, ρ, ζ) 7→
〈G, (χ, σ, κ, ρ, ζ)〉 is well-defined and bounded on X. Consequently, in view of Lax-

Milgram’s lemma, there exists a unique solution (χ̂, σ̂, κ̂, ρ̂, ζ̂) of (34).

Let (ŷ, ω̂, B̂) and (û, ŵ, v̂) be given by
ŷ = e−2sβ (L∗1(χ̂, κ̂, ρ̂) +∇σ̂) in Q,

ω̂ = e−2sβγL∗2(χ̂, κ̂) in Q,

B̂ = e−2sβ
(
L∗3(χ̂, ρ̂) +∇ζ̂

)
in Q,

(û, ŵ, v̂) = −e−2sβγ3 (χ̂1O, κ̂1O, ρ̂1O) in Q.

(35)
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Then, it is readily seen that they satisfy∫∫
Q

e2sβ
(
|ŷ|2 + γ−1|ω̂|2 + |B̂|2

)
dxdt

+

∫∫
Q

e2sβγ−3
(
|û1O|2 + |ŵ1O|2 + |v̂1O|2

)
dxdt

= a((χ̂, σ̂, κ̂, ρ̂), (χ̂, σ̂, κ̂, ρ̂)) < +∞.

(36)

Moreover, we can see from (36) that (ŷ, ω̂, B̂) ∈ L2(Q)9, û1O ∈ L2(Q)3, ŵ1O ∈
L2(Q)3, v̂1O ∈ L2(Q)3. On the other hand, from (34) and (35), we see that (ŷ, ω̂, B̂)
together with some pressure p̂ is the unique solution of (26) which is defined by the
transposition with u = û, w = ŵ, v = v̂.

Finally, we must check that (ŷ, p̂, ω̂, B̂, û, ŵ, v̂) belongs to E. We already know
that

esβ(ŷ, γ−1ω̂, B̂) ∈ L2(Q)9, e2sβγ−3(û1O, ŵ1O, P (v̂1O)) ∈ L2(Q)9,

esβ
∗
(γ∗)−1/2

(
L1(ŷ, ω̂, B̂) +∇p̂− û1O

)
∈ L2(0, T ;W−1,6(Ω)3),

esβ
∗
(γ∗)−1/2

(
L2(ŷ, ω̂)− ŵ1O

)
∈ L2(0, T ;W−1,6(Ω)3),

esβ
∗
(γ∗)−1/2

(
L3(ŷ, B̂)− P (v̂1O)

)
∈ L2(0, T ;W−1,6(Ω)3).

Therefore, it remains to check that

esβ
∗/2(γ∗)−1/4ŷ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ L4(0, T ;L12(Ω)3),

esβ
∗/2(γ∗)−1/4ω̂ ∈ L2(0, T ;H1(Ω)3) ∩ L∞(0, T ;L2(Ω)3) ∩ L4(0, T ;L12(Ω)3),

esβ
∗/2(γ∗)−1/4B̂ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ L4(0, T ;L12(Ω)3).

To this end, let us set

(y∗, ω∗, B∗) = esβ
∗/2(γ∗)−1/4(ŷ, ω̂, B̂), p∗ = esβ

∗/2p̂,

(f∗1 , f
∗
2 , f

∗
3 ) = esβ

∗/2(γ∗)−1/4(f1 + û1O, f2 + ŵ1O, f3 + P (v̂1O)).

Then they satisfy

y∗t −∆y∗ + (y · ∇)y∗ + (y∗ · ∇)y − (B · ∇)B∗ − (B∗ · ∇)B +∇p∗

+∇(B ·B∗)− curlω∗ = f∗
1 + (esβ

∗/2(γ∗)−1/4)tŷ in Q,

ω∗
t −∆ω∗ −∇(∇ · ω∗) + (y · ∇)ω∗ + (y∗ · ∇)ω

+ω∗ − curly∗ = f∗
2 + (esβ

∗/2(γ∗)−1/4)tω̂ in Q,

B∗
t −∆B∗ + (y · ∇)B∗ + (y∗ · ∇)B − (B · ∇)y∗ − (B∗ · ∇)y

= f∗
3 + (esβ

∗/2(γ∗)−1/4)tB̂ in Q,

∇ · y∗ = ∇ ·B∗ = 0 in Q,

y∗ = 0, ω∗ = 0, B∗ = 0 on Σ,

(y∗(0), ω∗(0), B∗(0)) = esβ
∗(0)/2(γ(0)∗)−1/4

(
ỹ0, ω̃0, B̃0

)
in Ω.

We can see that

f∗1 + (esβ
∗/2(γ∗)−1/4)tŷ ∈ L2(0, T ;H−1(Ω)3),

f∗2 + (esβ
∗/2(γ∗)−1/4)tω̂ ∈ L2(0, T ;H−1(Ω)3),

f∗2 + (esβ
∗/2(γ∗)−1/4)tB̂ ∈ L2(0, T ;H−1(Ω)3).
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Moreover, y∗(0) ∈ H,ω∗(0) ∈ L2(Ω)3 and B∗(0) ∈ H. Therefore, from the well-
known result in [28], we know that

y∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H)

ω∗ ∈ L2(0, T ;H1(Ω)3) ∩ L∞(0, T ;L2(Ω)3)

B∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

We now have to prove that (y∗, ω∗, B∗) ∈
(
L4(0, T ;L12(Ω)3)

)3
.

To prove y∗ ∈ L4(0, T ;L12(Ω)3), we follow the arguments in [10]. To do this, let

b ∈ L 4
3 (0, T ;L

12
11 (Ω)3) and we consider the following Stokes system

−zt −∆z +∇h = b in Q,

∇ · z = 0 in Q,

z = 0 on Σ,

z(T ) = 0 in Ω.

(37)

We know (see [10, Lemma 2], the proof uses regularity properties for the Stokes
system [15] and some fine interpolation results [30]) that the system (37) has a
unique solution (z, h) satisfying

z ∈ L2(0, T ;W
1,6/5
0 (Ω)3) ∩ C([0, T ];L4/3(Ω)3), (38)

which depends continuously on b in these spaces. Then y∗ satisfies∫∫
Q

y∗ · bdxdt =

∫
Ω

esβ
∗(0)/2ỹ0 · z(0)dx+

∫ T

0

〈F ∗1 , z〉W−1,6(Ω)3,W
1,6/5
0 (Ω)3

dt.

Here

F ∗1 =f∗1 + (esβ
∗/2(γ∗)−1/4)tŷ − (y · ∇)y∗ − (y∗ · ∇)y + (B · ∇)B∗

+ (B∗ · ∇)B −∇(B ·B∗) + curlω∗,

and (z, q) is the solution to (37) associated to b.

We know that z(0) ∈ L 4
3 (Ω)3,∇z ∈ L2(0, T ;L

6
5 (Ω)3). Remark that (y∗, ω∗, B∗) ∈

L2(0, T ;L6(Ω)3)3, all terms of the previous definition make sense by virtue of (38)
and the assumption ỹ0 ∈ L4(Ω)3. Therefore,

y∗ ∈
(
L2(0, T ;W

1,6/5
0 (Ω)3) ∩ C([0, T ];L4/3(Ω)3)

)′
= L4(0, T ;L12(Ω)3).

We remark that, by the same above argument, one obtains

(ω∗, B∗) ∈
(
L4(0, T ;L12(Ω)3)

)2
.

This ends the proof of Proposition 1.

3.2. Local controllability of the semilinear problem. In this subsection we
give the proof of Theorem 1.2 by using similar arguments as in pioneering works
[10, 16].

We will use the following inverse mapping theorem (see [2]).

Theorem 3.2. Let B1 and B2 be two Banach spaces and let A : B1 → B2 satisfy
A ∈ C1(B1;B2). Assume that b1 ∈ B1,A(b1) = b2 and that A′(b1) : B1 → B2

is surjective. Then, there exists ε > 0 such that, for every b′ ∈ B2 satisfying
‖b′ − b2‖B2

< ε, there exists a solution of the equation

A(b) = b′, b ∈ B1.
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In our setting, we use this theorem with the spaces B1 = E, B2 = X × Y , where

X =
(
L2(esβ

∗
(γ∗)−1/2(0, T );W−1,6(Ω)3)

)3

,

and
Y = H ∩ L4(Ω)3 × L4(Ω)3 ×H ∩ L4(Ω)3.

Then, we consider the operator

A(ỹ, p̃, ω̃, B̃, u, w, v) =
(
A1(ỹ, p̃, ω̃, B̃, u),A2(ỹ, ω̃, w),A3(ỹ, B̃, v), ỹ(0), ω̃(0), B̃(0)

)
with

A1(ỹ, p̃, ω̃, B̃, u) = L1(ỹ, ω̃, B̃) + (ỹ · ∇)ỹ − (B̃ · ∇)B̃ +∇p̃+
1

2
∇(B̃ · B̃)− u1O,

A2(ỹ, ω̃, w) = L2(ỹ, ω̃) + (ỹ · ∇)ω̃ − w1O,

A2(ỹ, B̃, v) = L3(ỹ, B̃) + (ỹ · ∇)B̃ − (B̃ · ∇)ỹ − P (v1O).

To apply Theorem 3.2, we first check that the operator A is of class C1(B1,B2).
Indeed, all terms arising in the definition of A are linear (and consequently C1),

except for (ỹ · ∇)ỹ − (B̃ · ∇)B̃ +
1

2
∇(B̃ · B̃), (ỹ · ∇)ω̃, and (ỹ · ∇)B̃ − (B̃ · ∇)ỹ.

However, the operators

((ỹ, p̃, ω̃, B̃, u, w, v), (ŷ, p̂, ω̂, B̂, û, ŵ, v̂)) 7→
(

(ỹ · ∇)ŷ − (B̃ · ∇)B̂ +
1

2
∇(B̃ · B̂),

(ỹ · ∇)ω̂, (ỹ · ∇)B̂ − (B̃ · ∇)ŷ
)

are continuous from B1 × B2 to X. So it suffices to prove their continuity from
B1 × B1 into G1.

First, notice that

esβ
∗/2(γ∗)−1/4(ỹ, ω̃, B̃) ∈

(
L4(0, T ;L12(Ω)3)

)3
(39)

for any (ỹ, p̃, ω̃, B̃, u, w, v) ∈ B1.

The nonlinear term (ỹ · ∇)ỹ − (B̃ · ∇)B̃ +
1

2
∇(B̃ · B̃): We have

‖esβ
∗
(γ∗)−1/2

(
(ỹ · ∇)ŷ − (B̃ · ∇)B̂ +

1

2
∇(B̃ · B̂)

)
‖L2(0,T ;W−1,6(Ω)3)

≤ C
(
‖esβ

∗
(γ∗)−1/2(ỹ ⊗ ŷ‖L2(0,T ;L6(Ω)3) + ‖esβ

∗
(γ∗)−1/2(B̃ ⊗ B̂)‖L2(0,T ;L6(Ω)3)

+ ‖esβ
∗
(γ∗)−1/2(B̃ · B̂)‖L2(0,T ;L6(Ω)3)

)
≤ C

(
‖esβ

∗/2(γ∗)−1/4ỹ‖L4(0,T ;L12(Ω)3)‖esβ
∗/2(γ∗)−1/4ŷ‖L4(0,T ;L12(Ω)3)

+ ‖esβ
∗/2(γ∗)−1/4B̃‖L4(0,T ;L12(Ω)3)‖esβ

∗/2(γ∗)−1/4B̂‖L4(0,T ;L12(Ω)3)

)
.

So, it follows from (39) that (ỹ · ∇)ỹ − (B̃ · ∇)B̃ +
1

2
∇(B̃ · B̃) belongs to the class

of C1.
The nonlinear term (ỹ · ∇)ω̂: We have

‖esβ
∗
(γ∗)−1/2(ỹ · ∇)ω̂‖L2(0,T ;W−1,6(Ω)3)

≤ C‖esβ
∗
(γ∗)−1/2ỹ ⊗ ω̂‖L2(0,T ;L6(Ω)3)

≤ C‖esβ
∗/2(γ∗)−1/4ỹ‖L4(0,T ;L12(Ω)3)‖esβ

∗/2(γ∗)−1/4ω̂‖L4(0,T ;L12(Ω)3).
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So, from (39) we have that (ỹ · ∇)ω̃ belongs to the class of C1.

The nonlinear term: (ỹ ·∇)B̃− (B̃ ·∇)ỹ: We have the same estimates as in term

(ỹ · ∇)ỹ − (B̃ · ∇)B̃. Hence, this term belongs to the class of C1.
Therefore, we have proved that A ∈ C1(B1,B2) with

A′(0, 0, 0, 0, 0, 0, 0)(ỹ, p̃, ω̃, B̃, u, w, v)

=
(
L(ỹ, ω̃, B̃) +∇p̃− u1O,−w1O,−P (v1O)), ỹ(0), ω̃(0), B̃(0)

)
,

for all (ỹ, p̃, ω̃, B̃, u, w, v) ∈ B1.
In view of the null controllability result for the linearized system (8) given in

Proposition 1, we can see that A′(0, 0, 0, 0, 0, 0, 0) is surjective.
As a consequence, we can apply Theorem 3.2 for b1 = (0, 0, 0, 0, 0, 0, 0), b2 =

(0, 0, 0, 0, 0, 0) to get the existence of ε > 0 such that if ‖ỹ(0), ω̃(0), B̃(0)‖Y ≤ ε,
then we can find controls u,w, v so that the associated solution to (7) satisfies

ỹ(., T ) = 0, ω̃(., T ) = 0, B̃(., T ) = 0 in Ω. This completes the proof of Theorem 1.2.

4. Appendix: Some well-known Carleman estimates. With the weight func-
tions α and ξ defined in (11), we now recall some well-known Carleman estimates,
which have been used in our proofs above.

Lemma 4.1. [11] Let O be a nonempty open subset of Ω. For all q ∈ L2(0, T ;H1
0 (Ω)

∩H2(Ω)), there exists C > 0 depending on Ω and O such that

s−1

∫∫
Q

e−2sαξ−1
(
|qt|2 + |∆q|2

)
dxdt

+ s3λ4

∫∫
Q

e−2sαξ3|q|2dxdt+ sλ2

∫∫
Q

e−2sαξ|∇q|2dxdt

≤ C
(∫∫
Q

e−2sα|qt + ∆q|2dxdt+ s3λ4

∫∫
O×(0,T )

e−2sαξ3|q|2dxdt
)

(40)

for any s ≥ C(T 3 + T 4) and any λ ≥ C.

Consider the equation

yt −∆y = F0 +

3∑
j=1

∂jFj in Q, (41)

where F0, F1, F2, F3 ∈ L2(Q). Then we have the following result.

Lemma 4.2. [20, Theorem 2.2] Let Ô be a nonempty open subset of Ω. There exist
s0 ≥ 1, λ0 ≥ 1 and a constant C > 0 (independent of s ≥ s0 and λ ≥ λ0) such that
for every y ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H−1(Ω)) satisfying (41), we have for every
s ≥ s0 and for every λ ≥ λ0,

s−1

∫∫
Q

e−2sαξ−1|∇y|2dxdt+ sλ2

∫∫
Q

e−2sαξ|y|2dxdt
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≤ C
(
sλ2

∫∫
Ô×(0,T )

e−2sαξ|y|2dxdt+ s−1/2
∥∥∥e−sαξ−1/4y

∥∥∥2

H
1
2
, 1
4 (Σ)

+ s−2λ−2

∫∫
Q

e−2sαξ−2|F0|2dxdt+
3∑
j=1

∫∫
Q

e−2sα|Fj |2dxdt
)
. (42)

Recall here that

‖y‖
H

1
2
, 1
4 (Σ)

=
(
‖y‖2L2(0,T ;H1/2(∂Ω)) + ‖y‖2H1/4(0,T ;L2(∂Ω))

)1/2

.

Let us now consider the following Stokes system
zt −∆z +∇q = f in Q,

∇ · z = 0 in Q,

z = 0 on Σ,

z(0) = z0 in Ω,

(43)

with z0 ∈ V and f ∈ L2(0, T ;L2(Ω)d). Then we have the following result for
solutions to (43).

Lemma 4.3. [20] Let O be a nonempty open subset of Ω. There exist s0 ≥ 1, λ0 ≥ 1
and C > 0 such that for s ≥ s0 and λ ≥ λ0 and for every solution z to the Stokes
system (43), we have

s−1

∫∫
Q

e−2sαξ−1|∇curlz|2dxdt+ sλ2

∫∫
Q

e−2sαξ|curlz|2dxdt

+ λ2

∫∫
Q

e−2sα|∇z|2dxdt+ s2λ4

∫∫
Q

ξ2|z|2dxdt

≤ C
( ∫∫
Q

e−2sα|f |2dxdt+ s3λ4

∫∫
O×(0,T )

e−2sαξ3|z|2dxdt
)
.
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[4] V. Barbu, T. Havărneanu, C. Popa and S. S. Sritharan, Exact controllability for the magne-
tohydrodynamic equations, Comm. Pure Appl. Math., 56 (2003), 732–783.
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We are concerned with the following problem in a Banach space X:

Dα
0Bu(t) ∈ Au(t) + F (t, u(t)), t 6= tk, tk ∈ (0,+∞), k ∈ Λ, (0.1)

∆u(tk) = Ik(u(tk)), (0.2)

u(0) = g(u), (0.3)

where Dα
0 , α ∈ (0, 1), is the fractional derivative in the Caputo sense, A and B are linear, closed

and unbounded operators in X, Λ ⊂ N, ∆u(tk) = u(t+k ) − u(t−k ). The functions F , g and Ik

will be specified in Section 3.
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The study of the Sobolev type equations can be traced back to the work of Barenblat et al

[5], in which the authors initiated a model of flow of liquid in fissured rocks, i.e. the equations

∂t(u− ∂2
xu)− ∂2

xu = 0.

This model then was developed and studied in [7, 25] when the authors considered the abstract

nonlinear equation
d

dt
Bu(t)−Au(t) = f(t, u(t))

in Banach spaces, where A and B are unbounded operators.

Recently, as the fractional calculus becomes a powerful tool for describing various physical

phenomena such as flows in porous media, oscillations and controls (see, e.g. [17, 23, 26]),

fractional differential equations have been considered as an alternative tool in modeling. As

a matter of fact, the fractional differential equations of Sobolev type have attracted many

researches in the last few years. We refer the reader to [3, 4, 15, 18, 24] for some recent results

on solvability and controllability which are close to our work.

As far as the system (0.1)-(0.3) is concerned, the appearance of multi-valued nonlinearity

F is motivated by a number of problems: differential equations (DEs) with discontinuous

right-hand side ([16]), differential variational inequalities ([28]), feedback controls ([20]), etc.

Regarding the impulsive condition in (0.2), this is an effect appeared as the state function stands

abrupt changes, which happen frequently in biology and engineering. The non-local condition

in (0.3) was first studied in [10] and considered as a better description for initial condition

than that in classical Cauchy problem. In applications, the non-local condition is usually in the

following forms

u(0) = u0 +
m∑
i=1

ciu(ti), ci ∈ R, ti > 0,

u(0) = u0 +
1

b

∫ b

0

k(s)u(s)ds, b > 0, k is a real function.

It should be mentioned that, impulsive fractional differential equations (IFrDEs) have been

an attractive subject in recent years. Concerning IFrDEs in finite dimensional spaces with

initial/boundary conditions, we refer to [33] for solvability and stability of Ulam type results.

For a complete reference for studies in this direction, see [30, 32]. In addition, apart from

IFrDEs with Caputo derivative, a formulation and existence of solutions for IFrDEs involving

Hadamard derivative can be found in [34]. Referring to semilinear IFrDEs in Banach spaces,

the authors in [29] gave an explicit way to represent mild solutions. By using this formulation

and fixed point approach, a number of existence results has been obtained, see e.g. [29–31].

An important question associated with the problem (0.1)-(0.3) is to address the large-time

behavior of its solutions. It should be noted that the theory of global attractors (see, e.g.

[11]) does not work in this case due to the lack of semigroup property of solution operator. In

addition, the using of Lyapunov function to analyze stability of solutions is impractical due to

the difficulty in computing and estimating fractional derivatives, even in finite dimensional case.

By this reason, results on large-time behavior of solutions to IFrDEs have been little known in

literature. In the recent papers [12, 21, 22], we studied some models of semilinear fractional DEs

in Banach spaces involving non-local conditions and impulsive effects, in which the existence of



No.x V.H. Le, D.K. Tran & T.K. Chu: GLOBALLY ATTRACTING SOLUTIONS 3

attracting solutions was proved by employing the contraction mapping principle. This approach

was introduced by Burton and Furumochi [8, 9] in dealing with stability for ordinary/functional

differential equations. However, the techniques used in [12, 21, 22] do not work for our problem

in this note since the nonlinear functions F, g and Ik are not Lipschitzian in our settings (see

Section 3 and 4).

In the present work, we prove that the problem (0.1)-(0.3) has a compact set of attracting

solutions in PC([0,+∞);X) (see Section 4). To this end, we will construct a regular measure of

non-compactness (MNC), namely χ∗ on a closed subspace of PC([0,+∞);X), then show that

the multi-valued solution operator associated with (0.1)-(0.3) is χ∗-condensing, then it admits

a compact fixed point set.

Our work is organized as follows. In the next section, we recall some notions and facts of

fractional calculus, including the characteristic solution operators given in [15], and the fixed

point theory for condensing multi-valued maps. In Section 3, we make feasible assumptions

on (0.1)-(0.3) and prove the solvability on compact intervals. Section 4 is devoted to the main

result, in which we define the MNC χ∗ and show the existence of a compact set of attracting

solutions to our problem. An application to polytope fractional partial differential equations is

presented in the last section.

1 Preliminaries

1.1 Fractional calculus

Let L1(0, T ;X) be the space of integrable functions on [0, T ], in the Bochner sense.

Definition 1.1 The fractional integral of order α > 0 of a function f ∈ L1(0, T ;X) is

defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the Gamma function, provided the integral converges.

Definition 1.2 For a function f ∈ CN ([0, T ];X), the Caputo fractional derivative of

order α ∈ (N − 1, N) is defined by

Dα
0 f(t) =

1

Γ(N − α)

∫ t

0

(t− s)N−α−1f (N)(s)ds.

Consider problem

Dα
0Bu(t) = Au(t) + f(t), t 6= tk, tk ∈ (0,+∞), k ∈ Λ, (1.1)

∆u(tk) = Ik(u(tk)), (1.2)

u(0) = g(u). (1.3)

Assume that D(B) ⊂ D(A), B is bijective and has a bounded inverse. Let {T (t)} be the C0-

semigroup generated by AB−1. Putting v(t) = Bu(t), t ≥ 0, one can rewrite (1.1)-(1.3) as

Dα
0 v(t) = AB−1v(t) + f(t), t 6= tk, tk ∈ (0,+∞), k ∈ Λ, (1.4)

∆v(tk) = BIk(u(tk)), (1.5)

v(0) = Bg(u). (1.6)
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Now employing the formulation of solutions to impulsive fractional differential equations estab-

lished in [29], we get

u(t) =Sα(t)Bg(u) +
∑

0<tk<t

Sα(t− tk)BIk(u(tk))

+

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, t > 0, (1.7)

where Sα(t) and Pα(t) are given by

Sα(t)x =

∫ ∞
0

B−1φα(θ)T (tαθ)xdθ,

Pα(t)x = α

∫ ∞
0

B−1θφα(θ)T (tαθ)xdθ,

here φα is a probability density function defined on (0,∞), that is, φα(θ) ≥ 0 and
∫∞

0
φα(θ)dθ =

1. Moreover, φα has the expression

φα(θ) =
1

π

∞∑
n=1

(−θ)n−1

(n− 1)!
Γ(nα) sin(nπα).

Let {U(t)}t≥0 is a family of bounded linear operators on X. Then we say that U(·) is norm

continuous iff the map t 7→ U(t) is continuous on (0,∞). If U(t) ∈ L(X) is a compact operator

for each t > 0 then U(·) is said to be compact.

Lemma 1.3 Let T (·) be the C0-semigroup generated by AB−1. If T (·) is uniformly

bounded, i.e. supt≥0 ‖T (t)‖ < +∞, then we have the following properties:

(1) If the semigroup T (·) is norm continuous, then Sα(·) and Pα(·) are norm continuous as

well;

(2) If B−1 is a compact operator or T (·) is a compact semigroup then Sα(·) and Pα(·) are

compact.

Proof The proof of the first part follows the same lines as in [21, Lemma 2.1]. For the

second part, if B−1 is compact then the compactness of Sα(·) and Pα(·) was proved in [15,

Lemma 3.2]. Moreover, if T (·) is a compact semigroup then Sα(·) and Pα(·) are compact due

to the arguments in [35, Lemma 3.4].

Let Φ(t, s) be a family of bounded linear operators on X for t, s ∈ [0, T ], s ≤ t. The

following result was proved in [27, Lemma 1].

Lemma 1.4 Assume that Φ satisfies the following conditions:

(Φ1) There exists a function ρ ∈ Lq(J), q > 1 such that ‖Φ(t, s)‖ ≤ ρ(t − s) for all t, s ∈
[0, T ], s ≤ t;

(Φ2) ‖Φ(t, s)− Φ(r, s)‖ ≤ ε for 0 ≤ s ≤ r − ε, r < t = r + h ≤ T with ε = ε(h)→ 0 as h→ 0.

Then the operator S : Lq
′
(0, T ;X)→ C([0, T ];X) defined by

(Sg)(t) :=

∫ t

0

Φ(t, s)g(s)ds

sends any bounded set to an equicontinuous one, where q′ is the conjugate of q (1/q′+1/q = 1).
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Define a linear operator

Qα : Lp([0, T ];X)→ C([0, T ];X),

Qα(f)(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds. (1.8)

By the Hölder inequality, we see that Qα is a bounded operator. Now using the last two lemmas,

we have the following result.

Proposition 1.5 If the semigroup T (·) generated by AB−1 is uniformly bounded and

norm continuous, then the operator Qα defined by (1.8) maps any bounded set in Lp(0, T ;X)

into an equicontinuous set in C([0, T ];X).

Proof See [21, Proposition 2.3].

1.2 Measure of noncompactness and condensing multivalued maps

Let E be a Banach space. Denote

P(E) = {B ⊂ E : B 6= ∅},

Pb(E) = {B ∈ P(E) : B is bounded},

K(E) = {B ∈ P(E) : B is compact},

Kv(E) = {B ∈ K(E) : B is convex}.

We will use the following definition of measure of noncompactness. (see [20])

Definition 1.6 A function β : Pb(E) → R+ is called a measure of noncompactness

(MNC) on E if

β(co Ω) = β(Ω) for every Ω ∈ Pb(E),

where co Ω is the closure of the convex hull of Ω. An MNC β is called

i) monotone if Ω0,Ω1 ∈ Pb(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);

ii) nonsingular if β({a} ∪ Ω) = β(Ω) for any a ∈ E,Ω ∈ Pb(E);

iii) algebraically semi-additive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any Ω0,Ω1 ∈ Pb(E);

iv) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC χ(·), which is defined as follows, for

Ω ∈ Pb(E) put

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.

Let T ∈ L(E), i.e. T is a bounded linear operator on E. Then one can define the χ-norm of T

as follows

‖T‖χ = inf{β > 0 : χ(T (B)) ≤ β · χ(B) for all B ∈ Pb(E)}. (1.9)

It is known that (see [20])

• ‖T‖χ = χ(T (B1)) with B1 being a unit ball in E.

• ‖T‖χ ≤ ‖T‖L(E).
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• ‖T‖χ = 0 iff T is a compact operator.

We need the following result, which is an MNC-estimate. Its proof can be found in [20].

Proposition 1.7 ([20]) If {wn} ⊂ L1(0, T ;E) such that

‖wn(t)‖E ≤ ν(t), for a.e. t ∈ [0, T ],

for some ν ∈ L1(0, T ), then we have

χ({
∫ t

0

wn(s)ds}) ≤ 2

∫ t

0

χ({wn(s)})ds

for t ∈ [0, T ].

We also need the following MNC-estimate for the case of uncountable sets.

Proposition 1.8 ([2]) Let D ⊂ L1(0, T ;E) such that

(1) ‖ξ(t)‖E ≤ ν(t), for all ξ ∈ D and for a.e. t ∈ [0, T ],

(2) χ(D(t)) ≤ q(t), for a.e. t ∈ [0, T ],

where ν, q ∈ L1(0, T ). Then

χ(

∫ t

0

D(s)ds) ≤ 4

∫ t

0

q(s))ds,

here ∫ t

0

D(s)ds = {
∫ t

0

ξ(s)ds : ξ ∈ D}.

We are in a position to collect some notions and facts of set-valued analysis. Let Y be a

metric space.

Definition 1.9 A multivalued map (multimap) F : Y → P(E) is said to be:

i) upper semicontinuous (u.s.c) if F−1(V ) = {y ∈ Y : F(y)∩ V 6= ∅} is a closed subset of Y

for every closed set V ⊂ E;

ii) weakly upper semicontinuous (weakly u.s.c) if F−1(V ) is closed subset of Y for all weakly

closed set V ⊂ E;

iii) closed if its graph ΓF = {(y, z) : z ∈ F(y)} is a closed subset of Y × E;

iv) compact if F(Y ) is relatively compact in E;

v) quasi-compact if its restriction to any compact subset A ⊂ Y is compact.

The following lemmas give criteria for checking if a given multimap is (weakly) u.s.c.

Lemma 1.10 ([20], Theorem 1.1.12) Let G : Y → P(E) be a closed quasi-compact

multimap with compact values. Then G is u.s.c.

Lemma 1.11 ([6], Proposition 2) Let X be a Banach space and Ω be a nonempty subset

of another Banach space. Assume that G : Ω → P(X) is a multimap with weakly compact,

convex values. Then G is weakly u.s.c if and only if {xn} ⊂ Ω with xn → x0 ∈ Ω and yn ∈ G(xn)

implies yn ⇀ y0 ∈ G(x0), up to a subsequence.

We now recall the concept of condensing multimaps ([20]).



No.x V.H. Le, D.K. Tran & T.K. Chu: GLOBALLY ATTRACTING SOLUTIONS 7

Definition 1.12 A multimap F : Z ⊆ E → P(E) is said to be condensing with respect

to an MNC β (β-condensing) if for any bounded set Ω ⊂ Z, the relation

β(Ω) ≤ β(F(Ω))

implies the relative compactness of Ω.

Let β be a monotone nonsingular MNC in E. The application of the topological degree

theory for condensing maps (see, e.g. [1, 20]) yields the following fixed point principle, which

will be use to prove the existence result for (0.1)-(0.3).

Theorem 1.13 ([20, Corollary 3.3.1]) Let M be a bounded convex closed subset of E

and let F : M → Kv(M) be a u.s.c and β-condensing multimap. Then the fixed point set

Fix(F) = {x ∈M : x ∈ F(x)} is a nonempty and compact.

2 Existence of solutions on compact intervals

Given T > 0, we denote by PC([0, T ];X) the space of functions u : [0, T ]→ X such that u

is continuous on [0, T ]\{tk : k ∈ Λ} and for each tk ∈ [0, T ], k ∈ Λ, there exist

u(t−k ) = lim
t→t−k

u(t); u(t+k ) = lim
t→t+k

u(t)

and u(tk) = u(t−k ). Then PC([0, T ];X) endowed with the norm

‖u‖PC := sup
t∈[0,T ]

‖u(t)‖,

is a Banach space. Let χ be the Hausdorff MNC in X, χPC the Hausdorff MNC in PC([0, T ];X).

We recall the following facts (see [19]): for each bounded set D ⊂ PC([0, T ];X), one has

• χ(D(t)) ≤ χPC(D), for all t ∈ [0, T ], where D(t) := {x(t) : x ∈ D}.

• If D is an equicontinuous set on each interval (tk, tk+1] ⊂ [0, T ], then

χPC(D) = sup
t∈[0,T ]

χ(D(t)).

To prove existence results for problem (0.1)-(0.3), we make the following assumptions:

(A) AB−1 is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 which is norm continu-

ous.

(F) F : [0, T ]×X → Kv(X) is a multimap satisfying that:

1. The multimap F (·, v) admits a strongly measurable selection for each v ∈ X and the

multimap F (t, ·) is u.s.c for a.e. t ∈ (0, T );

2. There exist functions m ∈ Lp(0, T ), p > 1
α and ΨF being a real-valued, continuous

and nondecreasing function, such that

‖F (t, v)‖ ≤ m(t)ΨF (‖v‖),

for all v ∈ X and for a.e. t ∈ (0, T ), here ‖F (t, v)‖ = sup{‖ξ‖ : ξ ∈ F (t, v)};

3. If B−1 and T (·) are non-compact, then for any bounded sets D ⊂ X, we have

χ(F (t,D)) ≤ k(t)χ(D),

for a.e. t ∈ (0, T ), where k ∈ Lp(0, T ) is a nonnegative function.
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(G) The nonlocal function g : PC([0, T ];X)→ D(B) obeys the following conditions:

1. Bg : PC([0, T ];X)→ X is continuous and

‖Bg(u)‖ ≤ Ψg(‖u‖PC),

for all u ∈ PC([0, T ];X), where Ψg is a continuous and nondecreasing function on

R+;

2. There exists η ≥ 0 such that

χ(Bg(D)) ≤ ηχPC(D),

for all bounded set D ⊂ PC([0, T ];X).

(I) The operator Ik : X → D(B) satisfies:

1. BIk : X → X is continuous and there exists a real-valued, continuous, nondecreasing

function ΨI and a nonnegative sequence {lk}k∈Λ such that

‖BIk(x)‖X ≤ lk ΨI(‖x‖), for all x ∈ X, k ∈ Λ;

2. There exists a nonnegative sequence {µk}k∈Λ such that

χ(BIk(D)) ≤ µkχ(D),

for all bounded subset D ⊂ X.

3. The sequence {tk}k∈Λ satisfies infk∈Λ{tk+1 − tk} > 0.

For u ∈ PC([0, T ];X), we denote

PpF (u) = {f ∈ Lp(0, T ;X) : f(t) ∈ F (t, u(t))}.

Motivated by formula (1.7), we introduce the following definition for integral solutions to

(0.1)-(0.3).

Definition 2.1 A function u ∈ PC([0, T ];X) is said to be an integral solution of problem

(0.1)-(0.3) on the interval [0, T ] iff there exists a function f ∈ PpF (u) such that

u(t) = Sα(t)Bg(u) +
∑

0<tk<t

Sα(t− tk)BIk(u(tk))

+

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, (2.1)

for any t ∈ [0, T ].

We now define the solution operator

F : PC([0, T ];X)→ P(PC([0, T ];X))

as follows

F(u)(t) =Sα(t)Bg(u) +
∑

0<tk<t

Sα(t− tk)BIk(u(tk))

+

{∫ t

0

(t− s)α−1Pα(t− s)f(s)ds : f ∈ PpF (u)

}
. (2.2)



No.x V.H. Le, D.K. Tran & T.K. Chu: GLOBALLY ATTRACTING SOLUTIONS 9

Since F has convex values, so does PpF . This implies that F has convex values as well. On the

other hand, u is an integral solution of (0.1)-(0.3) if it is a fixed point of the solution operator

F .

To establish the existence result, we need some properties of PpF .

Lemma 2.2 Under the assumption (F), the multimap PpF is well-defined and weakly

u.s.c.

Proof We first prove the weakly u.s.c property by using Lemma 1.11. Let {un} ⊂
PC([0, T ];X) such that un → u∗, fn ∈ PpF (un). We see that {fn(t)} ⊂ C(t) := F (t, {un(t)}),
and C(t) is a compact set for a.e t ∈ (0, T ). Furthermore, by (F)(2), {fn} is integrably bounded

(bounded by an Lp-integrable function). Therefore {fn} is weakly compact in Lp(0, T ;X) (see

[13]). Let fn ⇀ f∗. Then by Mazur’s lemma (see, e.g. [14]), there are f̃n ∈ co{fi : i ≥ n} such

that f̃n → f∗ in Lp(0, T ;X) and then f̃n(t) → f∗(t) for a.e t ∈ (0, T ), up to a subsequence.

Since F has compact values, the upper semicontinuous of F (t, ·) means that

F (t, un(t)) ⊂ F (t, u∗(t)) +Bε,

for all large n, here ε > 0 is given and Bε is the ball in X centered at origin with radius ε. So

fn(t) ∈ F (t, u∗(t)) +Bε,

for a.e. t ∈ (0, T ), and the same inclusion holds for f̃n(t) thanks to the convexity of F (t, u∗(t))+

Bε. Accordingly,

f∗(t) ∈ F (t, u∗(t)) +Bε,

for a.e. t ∈ (0, T ). Since ε is arbitrary, one gets f∗ ∈ PpF (u∗).

It remains to show that for each v ∈ PC([0, T ];X), PpF (v) 6= ∅. Taking (I)(3) into account,

we see that there are at most a finite number of tk ∈ [0, T ]. Then one can find a sequence

{vn} of step functions which converges uniformly to v on [0, T ]. Then for each n there exists

a strongly measurable function fn such that fn(t) ∈ F (t, vn(t)), thanks to (F)(1). That is,

{fn(t)} ⊂ C(t), where C(t) = F (t, {vn(t)}) is a compact set, thanks to the upper-continuity

of F (t, ·). Using the same argument as in the first part, we see that {fn} is a weakly compact

in Lp(0, T ;X) and fn ⇀ f ∈ Lp(0, T ;X) and f(t) ∈ F (t, v(t)) for a.e. t ∈ (0, T ). That is

f ∈ PpF (v). The proof is complete.

Lemma 2.3 Under the assumptions (A) and (F), the composition

Qα ◦ PpF : PC([0, T ];X)→ P(PC([0, T ];X))

is a u.s.c. multimap with compact values, where Qα is defined by (1.8).

Proof The proof is proceeded in two steps.

Step 1: Qα ◦ PpF is a closed multimap. Let

{un} ⊂ PC([0, T ];X), un → u∗; zn ∈ Qα ◦ PpF (un) and zn → z∗.

We show that z∗ ∈ Qα ◦ PpF (u∗) . Take fn ∈ PpF (un) such that

zn(t) = Qα(fn)(t) =

∫ t

0

(t− s)α−1Pα(t− s)fn(s)ds. (2.3)
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By Lemma 2.2 we get that fn ⇀ f∗ ∈ Lp(0, T ;X) and f∗ ∈ PpF (u∗). Since Qα is linear and

continuous, we have Qα(fn) ⇀ Qα(f∗). In addition, C(t) = {fn(t) : n ≥ 1} is relatively

compact, and then

χ({Qα(fn)(t)}) ≤ χ
({∫ t

0

(t− s)α−1Pα(t− s)fn(s)ds
})

≤ 2

∫ t

0

(t− s)α−1‖Pα(t− s)‖χ({fn(s)})ds = 0,

according to Proposition 1.7. Due to Proposition 1.5, {Qα(fn)} is equicontinuous. Then by the

Arzela - Ascoli theorem, we have {Qα(fn)} is relatively compact. Therefore one has Qα(fn)→
Qα(f∗). So it follows from (2.3) that

z∗(t) =

∫ t

0

(t− s)α−1Pα(t− s)f∗(s)ds = Qα(f∗)(t),

for all t ∈ [0, T ], where f∗ ∈ PpF (u∗), thus z∗ ∈ Qα ◦ PpF (u∗).

Step 2: Qα ◦PpF is a quasi-compact multimap. Let K ⊂ PC([0, T ];X) be a compact set and

{zn} ⊂ Qα ◦ PpF (K). We prove that {zn} is relatively compact in C([0, T ];X), and hence in

PC([0, T ];X). Let {uk} ⊂ K such that zn ∈ Qα ◦ PpF (un). Then one can assume that un → u∗

in PC([0, T ];X) up to a subsequence. Take fn ∈ PpF (un) such that zn(t) = Qα(fn)(t), for

all t ∈ [0, T ]. Since {fn(s)} ⊂ F (s, {un(s)}), one sees that {fn(s)} is relatively compact for

a.e. s ∈ (0, T ). Thus {Qα(fn)(t)} is a compact set for all t ∈ [0, T ]. In addition, {Qα(fn)} is

equicontinuous due to Proposition 1.5, then {zn} is relatively compact in C([0, T ];X).

Thus the conclusion follows from Step 1, Step 2 and Lemma 1.10.

Lemma 2.4 Let the hypotheses (A), (F), (G) and (I) hold. Then the solution operator

F satisfies

χPC(F(D)) ≤
[(
η +

∑
tk∈(0,T )

µk

)
STα + 4 sup

t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds

]
χPC(D),

for all bounded set D ⊂ PC([0, T ];X), here STα = supt∈[0,T ] ‖Sα(t)‖.

Proof Let D ⊂ PC([0, T ];X) be a bounded set. Then we have

F(D) = F1(D) + F2(D) + F3(D),

where

F1(u)(t) = Sα(t)Bg(u),

F2(u)(t) =
∑

0<tk<t

Sα(t− tk)BIk(u(tk)),

F3(u)(t) =

{∫ t

0

(t− s)α−1Pα(t− s)f(s)ds : f ∈ PpF (u), t ∈ [0, T ]

}
.

So

χPC(F(D)) ≤ χPC(F1(D)) + χPC(F2(D)) + χPC(F3(D)).

For z1, z2 ∈ F1(D), there exist u1, u2 ∈ D such that

z1(t) = Sα(t)Bg(u1),

z2(t) = Sα(t)Bg(u2), t ∈ [0, T ],
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then

‖z1(t)− z2(t)‖ ≤ ‖Sα(t)‖ ‖Bg(u1)−Bg(u2)‖

≤ STα ‖Bg(u1)−Bg(u2)‖, t ∈ [0, T ].

It follows that

‖z1 − z2‖PC ≤ STα ‖Bg(u1)−Bg(u2)‖.

Thus

χPC(F1(D)) ≤ STα · χ(Bg(D)).

Employing (G)(2), we have

χPC(F1(D)) ≤ ηSTα · χPC(D). (2.4)

Now let z1, z2 ∈ F2(D), one can find u1, u2 ∈ D such that

z1(t)− z2(t) =
∑

tk∈(0,T )

Sα(t− tk)B[Ik(u1(tk))− Ik(u2(tk))], t ∈ [0, T ].

Hence

‖z1 − z2‖PC ≤ STα
∑

tk∈(0,T )

‖BIk(u1(tk))−BIk(u2(tk))‖.

This inequality implies that

χPC(F2(D)) ≤ STα
∑

tk∈(0,T )

χ(BIk(D(tk)))

≤ STα
∑

tk∈(0,T )

µkχ(D(tk))

≤
(
STα

∑
tk∈(0,T )

µk

)
χPC(D), (2.5)

thanks to (I)(2).

Regarding F3(D), for t ∈ [0, T ], we have

χ(F3(D)(t)) = χ
( ∫ t

0

(t− s)α−1Pα(t− s)PpF (D)(s)ds)
)

≤ 4

∫ t

0

(t− s)α−1χ
(
Pα(t− s)PpF (D)(s)

)
ds, (2.6)

due to Proposition 1.8. If B−1 or T (·) is compact, so is Pα(·) due to Lemma 1.3. Then

χ(F3(D)(t)) = 0, thanks to the fact that χ
(
Pα(t − s)PpF (D)(s)

)
= 0 for s ∈ (0, t). In the

opposite case, we have

χ
(
Pα(t− s)PpF (D)(s)

)
≤ ‖Pα(t− s)‖χ χ(PpF (D)(s)) ≤ ‖Pα(t− s)‖χk(s)χ(D(s)).

Plugging this in (2.6), we get

χ(F3(D)(t)) ≤ 4

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)χ(D(s))ds

≤
(

4 sup
t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds

)
χPC(D). (2.7)
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We observe that PpF (D) is bounded in Lp(0, T ;X) since D is bounded in PC([0, T ];X). By

Proposition 1.5, the set

F3(D) = Qα ◦ PpF (D)

is equicontinuous in C([0, T ];X). Thus

χPC(F3(D)) = sup
t∈[0,T ]

χ(F3(D)(t)).

In view of (2.7), one has

χPC(F3(D)) ≤
(
4 sup
t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds
)
χPC(D). (2.8)

Combining (2.4), (2.5) and (2.8), we arrive at

χPC(F(D)) ≤
[(
η +

∑
tk∈(0,T )

µk

)
STα + 4 sup

t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds

]
χPC(D).

The proof is complete.

Theorem 2.5 Assume that the hypotheses of Lemma 2.4 hold. Then the problem (0.1)-

(0.3) has at least one integral solution in PC([0, T ];X), provided that(
η +

∑
tk∈(0,T )

µk

)
STα + 4 sup

t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds < 1, (2.9)

and

lim inf
r→∞

1

r

[(
Ψg(r) + ΨI(r)

∑
tk∈(0,T )

lk

)
STα

+ ΨF (r) sup
t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds

]
< 1,

(2.10)

where STα = supt∈[0,T ] ‖Sα(t)‖.

Proof By Lemma 2.3 and the continuity of Bg and BIk, one sees that F is u.s.c with

compact and convex values.

By (2.9) and Lemma 2.4, we obtain the χPC-condensing property for F . In order to apply

Theorem 1.13, it remains to show that F(BR) ⊂ BR for some R > 0, where BR is the closed

ball in PC([0, T ];X) centered at 0 with radius R.

Assume to the contrary that there exists a sequence {vn} ⊂ PC([0, T ];X) such that

‖vn‖PC ≤ n and zn ∈ F(vn) with ‖zn‖PC > n. From the formulation of F , one can find

fn ∈ PpF (vn) such that

zn(t) =Sα(t)Bg(vn) +
∑

0<tk<t

Sα(t− tk)BIk(vn(tk))

+

∫ t

0

(t− s)α−1Pα(t− s)fn(s)ds.

Then

‖zn(t)‖ ≤‖Sα(t)‖‖Bg(vn)‖+
∑

tk∈(0,T )

‖Sα(t− tk)‖‖BIk(vn(tk))‖

+

∫ t

0

(t− s)α−1‖Pα(t− s)‖‖fn(s)‖ds
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≤ sup
t∈[0,T ]

‖Sα(t)‖Ψg(‖vn‖PC +
∑

tk∈(0,T )

lkΨI(‖vn(tk)‖)
)

+

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ΨF (‖vn(s)‖)ds

≤STα
(

Ψg(n) +
∑

tk∈(0,T )

lkΨI(‖vn‖PC)
)

+

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ΨF (‖vn‖PC)ds

≤STα
(

Ψg(n) + ΨI(n)
∑

tk∈(0,T )

lk

)
+ ΨF (n)

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds.

Therefore,

n < ‖zn‖PC ≤STα
(

Ψg(n) + ΨI(n)
∑

tk∈(0,T )

lk

)
+ ΨF (n) sup

t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds.

Then

1 <
1

n
‖zn‖PC ≤

1

n

[
STα

(
Ψg(n) + ΨI(n)

∑
tk∈(0,T )

lk

)
+ ΨF (n) sup

t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds

]
.

Passing to the limit in the last inequality, one gets a contradiction. The proof is complete.

3 Globally attracting solutions

In this section, we prove the existence of attracting integral solution to problem (0.1)-(0.3).

To this end, we consider the function space

PC0 = {u ∈ PC([0,+∞);X) : lim
t→∞

u(t) = 0}

with the norm

‖u‖∞ = sup
t≥0
‖u(t)‖,

where PC([0,+∞);X) is defined similarly to PC([0, T ];X) as T = +∞. Then PC0 is a Banach

space. In this section, the multimap PpF is defined as follows: for u ∈ PC([0,+∞);X),

PpF (u) =
{
f ∈ Lploc(R

+;X) : f(t) ∈ F (t, u(t)) for a.e. t ∈ R+
}
.

Denote by πT the restriction operator on PC0, that is, πT (x) is the restriction of x on [0, T ].

Then the function

χ∞(D) = sup
T>0

χPC(πT (D)) (3.1)

is an MNC on PC0, here we recall that χPC is the Hausdorff MNC on PC([0, T ];X). Argued

as in [2], χ∞ is not a regular MNC on PC0. We will define a regular one on this space. Let

dT (D) = sup
x∈D

sup
t≥T
‖x(t)‖, (3.2)
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d∞(D) = lim
T→∞

dT (D), (3.3)

χ∗(D) = χ∞(D) + d∞(D). (3.4)

The following result is important for our purpose.

Lemma 3.1 The MNC χ∗ defined by (3.4) is regular on PC0.

Proof Let D ⊂ PC0 be a bounded set such that χ∗(D) = 0. It is obvious that πT (D) is

relatively compact in PC([0, T ];X). We show that D is relatively compact in PC0.

For ε > 0, since d∞(D) = 0 one can take T > 0 such that supt≥T ‖u(t)‖ < ε
2 , for all u ∈ D.

This means that

‖u− πT (u)‖∞ <
ε

2
, for all u ∈ D,

here πT (u) agrees with a function in PC0 in the following manner

πT (u) =

u(t), t ∈ [0, T ],

0, t > T.

Now since πT (D) is a compact set in PC([0, T ];X), we can write

πT (D) ⊂
N⋃
i=1

BT (ui;
ε

2
), (3.5)

where ui ∈ PC([0, T ];X), i = 1, ..., N , the notation BT (u; r) stands for the ball in PC([0, T ];X)

centered at u with radius r. Defining

ûi(t) =

ui(t), t ∈ [0, T ],

0, t > T,

then {ûi}Ni=1 belong to PC0. We assert that

D ⊂
N⋃
i=1

B∞(ûi; ε),

here B∞(u; r) is the ball in PC0 with center u and radius r. Indeed, let u ∈ D then by (3.5),

there is a number k ∈ {1, ..., N} such that

‖πT (u)− uk‖PC([0,T ];X) <
ε

2
.

This implies that

‖πT (u)− ûk‖∞ <
ε

2
.

Then

‖u− ûk‖∞ ≤ ‖u− πT (u)‖∞ + ‖πT (u)− ûk‖∞ ≤
ε

2
+
ε

2
= ε.

Thus u ∈ B∞(ûk; ε) and we have D ⊂
⋃N
i=1B∞(ûi; ε). Hence D is relatively compact in PC0.

The proof is complete.

We now prove that F keeps PC0 invariant, i.e. F(PC0) ⊂ PC0, and F is χ∗-condensing on

PC0. In order to get attracting solutions to problem (0.1)-(0.3), we have to replace (A), (F),

(G) and (I) by stronger ones.
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(A*) The semigroup {T (t)}t≥0 satisfies (A) and the operator families {Sα(t); Pα(t)}t≥0 are

asymptotically stable, that is,

lim
t→∞

‖Sα(t)‖ = 0, lim
t→∞

‖Pα(t)‖ = 0.

(F*) F : R+×X → Kv(X) satisfies (F) for every T > 0, with m, k ∈ Lploc(R+) and ΨF (r) ≤ r
for all r ≥ 0.

(G*) The function g : PC([0,+∞);X)→ D(B) satisfies (G) for any T > 0.

(I*) The jump functions Ik : X → D(B) satisfies (I) with
∑
k∈Λ

lk < +∞ and
∑
k∈Λ

µk < +∞.

The following proposition show a case, in which (A*) is satisfied.

Proposition 3.2 Assume that the semigroup {T (t)}t≥0 generated by AB−1 is norm

continuous and exponentially stable, i.e., there are positive numbers a,M such that

‖T (t)‖ ≤Me−at.

Then there exist two positive number CS and CP such that

‖Sα(t)‖ ≤M‖B−1‖min
(
1, CSt

−α) , (3.6)

‖Pα(t)‖ ≤M‖B−1‖min

(
1

Γ(α)
, CP t

−2α

)
, ∀t > 0. (3.7)

Proof The proof follows the same lines as those in [2].

Lemma 3.3 Let (A*), (F*), (G*), (I*) hold. Then F(PC0) ⊂ PC0 provided that

ϑ = sup
t>0

∫ δt

0

‖Pα(t− s)‖m(s)ds < +∞, (3.8)

κ = sup
t>0

∫ t

δt

(t− s)α−1‖Pα(t− s)‖m(s)ds < +∞, (3.9)

for some δ ∈ (0, 1).

Proof We recall that

F(u)(t) =Sα(t)Bg(u) +
∑

0<tk<t

Sα(t− tk)BIk(u(tk))

+

{∫ t

0

(t− s)α−1Pα(t− s)f(s)ds : f ∈ PpF (u)

}
, t > 0.

Let u ∈ PC0 such that R = ‖u‖∞ > 0 and z ∈ F(u). We prove that z ∈ PC0, i.e. z(t)→ 0

as t→ +∞.

Let ε > 0 be given. Then there exists T1 > 0 such that

‖u(t)‖ ≤ ε,∀t > T1. (3.10)

From the assumption that
∑
k∈Λ

lk < +∞, there exists N0 ∈ N such that
∑
k>N0

lk ≤ ε. Now for

t > 0,

‖z(t)‖ ≤ ‖Sα(t)‖‖Bg(u)‖

+
∑
k≤N0

‖Sα(t− tk)‖ ‖BIk(u(tk))‖+
∑
k>N0

‖Sα(t− tk)‖ ‖BIk(u(tk))‖
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+

∫ t

0

(t− s)α−1‖Pα(t− s)‖ ‖f(s)‖ds

≤ ‖Sα(t)‖Ψg(R) + ΨI(R)
∑
k≤N0

‖Sα(t− tk)‖ lk + S∞α ΨI(R)
∑
k>N0

lk

+

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s) ΨF (‖u(s)‖)ds

= E1(t) + E2(t) + E3(t),

where S∞α = sup
t≥0
‖Sα(t)‖, and

E1(t) = ‖Sα(t)‖Ψg(R),

E2(t) = ΨI(R)
∑
k≤N0

‖Sα(t− tk)‖ lk + S∞α ΨI(R)
∑
k>N0

lk,

E3(t) =

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s) ΨF (‖u(s)‖)ds.

By (A*) there is T2 > 0 such that

‖Sα(t)‖ ≤ ε, ‖Pα(t)‖ ≤ ε,∀t > T2, (3.11)

so

E1(t) ≤ εΨg(R), ∀t > T2. (3.12)

In addition,

E2(t) ≤ ε
( ∑
k≤N0

lk + S∞α

)
ΨI(R), ∀t > T2 + tN0

. (3.13)

Concerning E3(t), for t > T1

δ one has

E3(t) =
(∫ δt

0

+

∫ t

δt

)
(t− s)α−1‖Pα(t− s)‖m(s) ΨF (‖u(s)‖)ds

≤ ΨF (R)

∫ δt

0

(t− s)α−1‖Pα(t− s)‖m(s)ds

+ ΨF (ε)

∫ t

δt

(t− s)α−1‖Pα(t− s)‖m(s)ds

≤ R

[(1− δ)t]1−α

∫ δt

0

‖Pα(t− s)‖m(s)ds

+ ε

∫ t

δt

(t− s)α−1‖Pα(t− s)‖m(s)ds

thanks to (3.10) and the fact that δt > T1. Now choosing T3 >
T1

δ such that

R

[(1− δ)t]1−α
< ε, ∀t > T3,

we get

E3(t) ≤ (ϑ+ κ)ε, (3.14)

where ϑ, κ are given in (3.8)-(3.9). Combining (3.12)-(3.14) yields

‖z(t)‖ ≤ ε
[
Ψg(R) +

( ∑
k≤N0

lk + S∞α
)
ΨI(R) + ϑ+ κ

]
,
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for all t > max{T2 + tN0
, T3}. So the last inequality ensures that z ∈ PC0. The proof is

complete.

Lemma 3.4 Let (A*), (F*), (G*) and (I*) hold. If ϑ < +∞ and max{κ, `} < 1, where

ϑ, κ are given in (3.8)-(3.9) and

` =
(
η +

∑
k∈Λ

µk

)
S∞α + 4 sup

t>0

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds, (3.15)

then F is χ∗−condensing on PC0.

Proof By the hypotheses and Lemma 3.3, one can consider the solution operator F :

PC0 → P(PC0). Let D ⊂ PC0 be a bounded set. Taking r > 0 such that ‖u‖∞ ≤ r, ∀u ∈ D.

We have πT (D) bounded in PC([0, T ];X).

By the same arguments as in the proof of Lemma 2.4, one has

χPC
(
πT (F(D))

)
≤ lT · χPC(πT (D)),

where

lT =

[(
η +

∑
tk∈(0,T )

µk

)
STα + 4 sup

t∈(0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds

]
,

where ‖ · ‖χ is the χ-norm of a bounded linear operator defined by (1.9). This implies

χ∞(F(D)) ≤ ` · χ∞(D). (3.16)

It remains to estimate d∞(D). For each z ∈ F(D), there exists u ∈ D and f ∈ PpF (u) such

that

z(t) =Sα(t)Bg(u) +
∑

0<tk<t

Sα(t− tk)BIk(u(tk))

+

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds,∀t > 0.

Let

F1(u)(t) = Sα(t)Bg(u),

F2(u)(t) =
∑

0<tk<t

Sα(t− tk)BIk(u(tk)),

F3(u)(t) =

{∫ δt

0

(t− s)α−1Pα(t− s)f(s)ds : f ∈ PpF (u)

}
,

F4(u)(t) =

{∫ t

δt

(t− s)α−1Pα(t− s)f(s)ds : f ∈ PpF (u)

}
,

for t > 0. Then

F(D) = F1(D) + F2(D) + F3(D) + F4(D). (3.17)

We first show that

d∞(F1(D)) = d∞(F2(D)) = d∞(F3(D)) = 0 (3.18)

by arguing that for any ε > 0, there exists T > 0 such that for all z ∈ Fi(D), i ∈ {1, 2, 3},
‖z(t)‖ < Cε for t ≥ T , where C = C(r) > 0.

Let z ∈ F1(D), then one can take u ∈ D such that z(t) = Sα(t)Bg(u). We have

‖z(t)‖ ≤ ‖Sα(t)‖Ψg(‖u‖∞) ≤ ‖Sα(t)‖Ψg(r).
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The last inequality implies that for all z ∈ F1(D), ‖z(t)‖ < εΨg(r) for t ≥ T1 > 0 thanks to

the fact that ‖Sα(t)‖ → 0 as t→ +∞.

Regarding F2(D), we observe that, for z = F2(u), u ∈ D,

‖z(t)‖ ≤
∑

0<tk<t

‖Sα(t− tk)‖lkΨI(‖u(tk)‖)

≤ ΨI(r)
∑

0<tk<t

‖Sα(t− tk)‖lk

≤ ΨI(r)

∑
k≤N0

‖Sα(t− tk)‖lk +
∑
k>N0

‖Sα(t− tk)‖lk


≤ ΨI(r)

∑
k≤N0

‖Sα(t− tk)‖lk + S∞α
∑
k>N0

lk

 ,

where N0 ∈ N such that
∑
k>N0

lk < ε. Noticing that ‖Sα(t− tk)‖ < ε for all t ≥ T1 + tN0
, one

gets

‖z(t)‖ ≤ εΨI(r)

(∑
k∈Λ

lk + S∞α

)
,∀t > T1 + tN0 ,∀z ∈ F2(D).

Now for z = F3(u), u ∈ D, by (F*) we have

‖z(t)‖ ≤
∫ δt

0

(t− s)α−1‖Pα(t− s)‖m(s)‖u(s)‖ds

≤ r

[(1− δ)t]1−α

∫ δt

0

‖Pα(t− s)‖m(s)ds

≤ r ϑ

[(1− δ)t]1−α
< ε rϑ, ∀t ≥ T2 > 0,

where ϑ is defined by (3.8).

We are in a position to deal with d∞(F4(D)). For z = F4(u), u ∈ D, one has

‖z(t)‖ ≤
∫ t

δt

(t− s)α−1‖Pα(t− s)‖m(s)‖u(s)‖ds

≤
(∫ t

δt

(t− s)α−1‖Pα(t− s)‖m(s)ds

)
sup
s≥δt
‖u(s)‖

≤ κ sup
s≥δt
‖u(s)‖ ≤ κ sup

u∈D
sup
s≥δt
‖u(s)‖, ∀t > 0,

where κ is given by (3.9). Taking T ∈ (0, δt], we see that

‖z(t)‖ ≤ κ sup
u∈D

sup
s≥T
‖u(s)‖ = κ · dT (D),∀t ≥ T.

Therefore

sup
z∈F4(D)

sup
t≥T
‖z(t)‖ ≤ κ · dT (D),

and then by the definition of d∞,

d∞(F4(D)) ≤ κ · d∞(D). (3.19)

It follows from (3.17)-(3.19) that

d∞(F(D)) ≤ κ · d∞(D).



No.x V.H. Le, D.K. Tran & T.K. Chu: GLOBALLY ATTRACTING SOLUTIONS 19

Combining with (3.16), we arrive at

χ∗(F(D)) = χ∞(F(D)) + d∞(F(D))

≤ max{κ, `} (χ∞(D) + d∞(D))

= max{κ, `} · χ∗(D).

The proof is complete.

The following theorem is our main result.

Theorem 3.5 Let (A*), (F*), (G*) and (I*) hold. Then problem (0.1)-(0.3) possesses a

compact set of globally attracting solutions, provided that ϑ < +∞ and max{`, ρ} < 1, where

ϑ is defined by (3.8), ` is given in (3.15) and

ρ = lim inf
r→∞

1

r

[(
Ψg(r) + ΨI(r)

∑
k∈Λ

lk

)
S∞α

]

+ sup
t>0

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds. (3.20)

Proof By (3.20), we follows the same arguments as in the proof of Theorem 2.5 to get

a closed ball BR = B(0, R) in PC0 such that F(BR) ⊂ BR. From now on, we consider F
as a multimap from BR into itself. Notice that the condition ρ < 1 implies κ < 1. Then by

Lemma 3.4, F is χ∗-condensing. It remains to show that F is a u.s.c. multimap. Rewriting

F = F1 + F2, where

F1(u)(t) = Sα(t)Bg(u) +
∑

0<t<tk

Sα(t− tk)BIk(u(tk)),

F2(u)(t) =

{∫ t

0

(t− s)α−1Pα(t− s)f(s)ds : f ∈ PpF (u)

}
,

we see that F1 is continuous, thanks to the continuity of Bg and BIk. We will prove that

F2 is u.s.c. by using Lemma 1.10. Let {un} ⊂ BR converge to u∗ and zn ∈ F2(un) be

such that zn → z∗ (the convergence in the norm of PC0). We check that z∗ ∈ F2(u∗), i.e.

z∗(t) ∈ F2(u∗)(t),∀t > 0. But this can be proceeded by the same arguments as in the proof

of Lemma 2.3. Now we testify the quasi-compactness. Let K ⊂ BR be a compact set and

{zn} ⊂ F2(K). Then one can take {un} ⊂ K and fn ∈ PpF (un) such that

zn(t) =

∫ t

0

(t− s)α−1Pα(t− s)fn(s)ds, t > 0.

Arguing as in the proof of Lemma 2.3, we get that {πT (zn)} is relatively compact for any T > 0,

i.e.

χ∞({zn}) = sup
T>0

χPC({πT (zn)}) = 0.

Now using the estimate of d∞ as in the proof of Lemma 3.4, one obtains

d∞({zn}) ≤ κ d∞({un}).

This implies

χ∗({zn}) = χ∞({zn}) + d∞({zn}) ≤ κχ∗({un}) = 0

thanks to the compactness of {un}. Hence χ∗({zn}) = 0 and by the regularity of χ∗, {zn} is

relatively compact. The proof is complete.
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4 An application

This section is devoted to an application of the obtained abstract results to a systems of

fractional PDEs. Let Ω ⊂ RN be a bounded smooth domain. We are concerned with the

following problem

∂αt u(t, x)− ∂αt ∆xu(t, x)−∆xu(t, x) = f(t, x), (4.1)

f(t, x) ∈ co{f1(t, u(t, x)), ..., fm(t, u(t, x))}, x ∈ Ω, t > 0, t 6= tk, k ∈ N, (4.2)

u(t, x) = 0, x ∈ ∂Ω, t > 0, (4.3)

u(t+k , x) = u(t−k , x) +

∫
Ω

Hk(x, y)u(tk, y)dy, x ∈ Ω, (4.4)

u(0, x) = v(x) +

∫ b

0

∫
Ω

G(s, x, y)u(s, y)dyds, x ∈ Ω. (4.5)

In this system, ∂αt , α ∈ ( 1
2 , 1), stands for the Caputo fractional derivative with respect to t, ∆x

is the Laplacian with respect to x, and

co{f1, ..., fm} =

{
m∑
i=1

µifi : µi ≥ 0,
m∑
i=1

µi = 1

}
.

Let X = L2(Ω), A = ∆ (the Laplacian) with D(A) = H2(Ω) ∩ H1
0 (Ω). Let {λn}n≥1 be the

eigenvalues of −A with corresponding eigenvectors {en}n≥1. Then we know that 0 < λ1 <

λ2 < ... < λn < ... with λn → +∞ as n→ +∞, moreover

Au = −
∞∑
n=1

λn〈u, en〉en,

where 〈·, ·〉 stands for the inner product in X. Now consider B = I −∆ with D(B) = D(A).

We see that B has the following representation

Bu =
∞∑
n=1

(1 + λn)〈u, en〉en.

Therefore

B−1u =
∞∑
n=1

1

1 + λn
〈u, en〉en,

AB−1u =
∞∑
n=1

−λn
1 + λn

〈u, en〉en.

This implies that the semigroup T (·) generated by AB−1 can be expressed by

T (t)u =
∞∑
n=1

e
−λn
1+λn

t〈u, en〉en.

Obviously, ‖T (t)‖ ≤ e−βt,∀t ≥ 0 with β =
λ1

1 + λ1
> 0. So one gets the asymptotic stability

of the characteristic solution operators Sα(·), Pα(·) and (A*) is satisfied. Furthermore, by

Proposition 3.2

‖Sα(t)‖ ≤ ‖B−1‖min
(
1, CSt

−α) ,
‖Pα(t)‖ ≤ ‖B−1‖min

(
1

Γ(α)
, CP t

−2α

)
for all t > 0.

(4.6)
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In particular, S∞α = supt≥0 ‖Sα(t)‖ ≤ ‖B−1‖.
Let F : R+ ×X → P(X) be the multimap defined by

F (t, v)(x) = co{f1(t, v(x)), ..., fm(t, v(x))}.

We assume that fi : R+ × R→ R, i = 1, ...,m, are continuous functions such that

|fi(t, z)| ≤ m(t)|z|,∀(t, z) ∈ R+ × R, (4.7)

where m ∈ BC(R+;R+), the space of continuous bounded functions on R+, so that Iα0 m ∈
BC(R+;R+), i.e.

Iα0 m(t) = O(1) as t→ +∞. (4.8)

It is easily seen that for each (t, v) ∈ R+ ×X, F (t, v) is a closed bounded subset of the finite

dimensional space Xm = span{f1(t, v(·)), ..., fm(t, v(·))}. So F (t, v) is a compact set in X, that

is, F has compact values. By the continuity of fi, i = 1, ..,m, one can check that F (t, ·) is a

u.s.c. multimap, i.e. for vn converging to v in X and for ε > 0,

F (t, vn) ⊂ F (t, v) + εB(0, 1),∀n > N(ε),

with N(ε) ∈ N and B(0, 1) being the unit ball in X. We observe that B−1 is compact, then

(F*) is satisfied since we have

‖F (t, v)‖ ≤ m(t)‖v‖,

thanks to (4.7).

Consider the jump functions Ik defined by

Ik(v)(x) =

∫
Ω

Hk(x, y)v(y)dy.

Suppose that Hk : Ω×Ω→ R, k = 1, 2, ... are measurable functions such that Hk together with

∆xHk belong to L2(Ω× Ω). Denoting

hk(x, y) = Hk(x, y)−∆xHk(x, y),

then BIk has the form

BIk(v)(x) =

∫
Ω

hk(x, y)v(y)dy,

and it is a Hilbert-Schmidt operator. In particular, BIk is compact. We deduce that Ik satisfies

(I)(2) with µk = 0. In addition, one can check that Ik satisfies (I)(1) with

lk = ‖hk‖L2(Ω×Ω), ΨI(r) = r, ∀r ≥ 0.

Then (I*) is fulfilled if we assume
∑∞
k=1 lk <∞.

Regarding the nonlocal function, put

g(w)(x) = v(x) +

∫ b

0

∫
Ω

G(s, x, y)w(s, y)dyds, w ∈ PC([0,+∞);X).

We make an assumption that v ∈ H2(Ω) and G : [0, b] × Ω × Ω → R is a measurable function

with G(t, ·, ·),∆xG(t, ·, ·) ∈ L2(Ω× Ω). Then by putting

G̃(s, x, y) = (I −∆x)G(s, x, y),

we have

Bg(w)(x) = v(x)−∆v(x) +

∫ b

0

∫
Ω

G̃(s, x, y)w(s, y)dyds.
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It follows that

‖Bg(w)‖ ≤ ‖v‖H2 +

∫ b

0

‖G̃(s, ·, ·)‖L2(Ω×Ω)‖w(s, ·)‖ds

≤ ‖v‖H2 +

(∫ b

0

‖G̃(s, ·, ·)‖L2(Ω×Ω)ds

)
‖w‖∞.

Thus (G)(1) is satisfied with

Ψg(r) = ‖v‖H2 +

(∫ b

0

‖G̃(s, ·, ·)‖L2(Ω×Ω)ds

)
r.

Since the operator K defined by

K(v)(x) =

∫
Ω

G̃(s, x, y)v(y)dy

is a Hilbert-Schmidt operator for fixed s ∈ [0, b], we see that for any bounded set D ∈
PC([0,+∞);X), K(D(s)) is relatively compact in X. Hence the set Bg(D) presented by

Bg(D) = Bv +

∫ b

0

K(D(s))ds

is relatively compact as well, thank to the fact that (see Proposition 1.8)

χ(Bg(D)) ≤ 4

∫ b

0

χ(K(D(s)))ds = 0.

So (G)(2) is testified with η = 0.

We are now in a position to clarify the conditions in Theorem 3.5, i.e.

ϑ < +∞, ` < 1, ρ < 1.

According to the above settings for (4.1)-(4.5), we get

` =
(
η +

∑
k∈Λ

µk

)
S∞α + 4 sup

t>0

∫ t

0

(t− s)α−1‖Pα(t− s)‖χk(s)ds = 0,

ρ =

(∫ b

0

‖G̃(s, ·, ·)‖L2(Ω×Ω)ds+
∞∑
k=1

‖hk‖L2(Ω×Ω)

)
S∞α

+ sup
t>0

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds.

Let φ(t) =

∫ t

0

(t− s)α−1‖Pα(t− s)‖m(s)ds. By the estimate for Pα in (4.6) we have

φ(t) ≤ ‖B
−1‖

Γ(α)

∫ t

0

(t− s)α−1m(s)ds = ‖B−1‖Iα0 m(t) = O(1) as t→ +∞,

thanks to (4.8). So φ∞ = sup
t>0

φ(t) < +∞.

Now we check that ϑ = sup
t>0

∫ t
2

0

‖Pα(t − s)‖m(s)ds < +∞ (take δ = 1
2 ). Putting ψ(t) =∫ t

2

0
‖Pα(t− s)‖m(s)ds, we show that lim

t→+∞
ψ(t) = 0. Indeed, by the estimate (4.7) and the fact

that m ∈ BC(R+;R+), we obtain

ψ(t) ≤ ‖B−1‖
∫ t

2

0

(t− s)−2αm(s)ds
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≤ ‖B−1‖
(
t

2

)−2α ∫ t
2

0

m(s)ds ≤ ‖B−1‖
(
t

2

)−2α+1

‖m‖∞

→ 0 as t→ +∞.

One can give an example of m satisfying (4.8). Let m(t) =
µ

1 + tα
, t ≥ 0, then

Iα0 m(t) =
µ

Γ(α)

∫ t

0

(t− s)α−1 ds

1 + sα

=
µ

Γ(α)

(∫ t
2

0

(t− s)α−1 ds

1 + sα
+

∫ t

t
2

(t− s)α−1 ds

1 + sα

)

≤ µ

Γ(α)

((
t

2

)α−1 ∫ t
2

0

ds

1 + sα
+

1

1 +
(
t
2

)α ∫ t

t
2

(t− s)α−1ds

)

=
µ

Γ(α)

(
t

2

)α−1 ∫ t
2

0

ds

1 + sα
+

µ

Γ(1 + α)

(
t
2

)α
1 +

(
t
2

)α .
So

lim
t→+∞

Iα0 m(t) ≤ µ

(1− α)Γ(α)
+

µ

Γ(1 + α)
.

Summing up, the problem (4.1)-(4.5) possesses a compact set of globally attracting solutions if

ρ =

(∫ b

0

‖G̃(s, ·, ·)‖L2(Ω×Ω)ds+
∞∑
k=1

‖hk‖L2(Ω×Ω)

)
S∞α + φ∞ < 1.
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1 Introduction

Fixed point theory is one of the most powerful and fruitful tools in nonlinear analysis. The
Banach contraction principle is widely considered as the source of fixed point theory. It is
a very popular tool to deal with the existence problems in many branches of mathematical
analysis. There has been a large number of generalizations of the Banach contraction prin-
ciple. In particular, an interesting aspect is to deduce the existence and uniqueness of fixed
point for self-maps on a metric space by altering distances between the points with the use
of a certain control function. These control functions were introduced by Khan et al. in [16]
and then applied in many works as, for instance, [3, 9, 14, 27, 34], where some fixed point
theorems were investigated with the help of such altering distance functions.

Recently, a new technique was proposed in order to weaken the requirements on the
contraction property by considering metric spaces endowed with a partial ordering. This
approach was initiated by Ran and Reurings in [33] with some applications to matrix equa-
tions. It was later refined and extended in [28] by Nieto and Rodrı́guez-López and applied
to periodic boundary value problems for ordinary differential equations (ODEs). Following
this direction, in this paper, we generalize some fixed point theorems in partially ordered
sets of Amini-Harandi and Emami [3] by using altering distances. With the help of the weak
contractivity coefficient function β ∈ S := S0 ∪{1[0,∞)}, where S0 is the class of functions
β : [0, ∞) → [0, 1) that satisfy the condition

β(tn) → 1 implies tn → 0,

and 1[0,∞) is the indicator function on [0, +∞), i.e., 1[0,∞)(t) = 1 for all t ∈ [0, ∞), and
1[0,∞) = 0, otherwise, we weaken the required conditions by considering weak contractions
of Harjani and Sadarangani [14], and Nashine and Samet [27].

Since the base space does not necessarily have a vectorial structure, these fixed point
theorems can be applied to prove the existence of solutions to ODEs, and partial differen-
tial equations (PDEs) in abstract spaces. We note that the space of fuzzy numbers is not
a Banach space, but it is a quasilinear space having a partial ordering. Hence, there have
been some recent results on the existence of solutions to fuzzy ODEs (see [25, 29, 36]) as
applications of fixed point theory in partially ordered metric spaces.

In this paper, besides giving some new generalized results on the existence of coinci-
dence points for a pair of mappings in partially ordered sets, we also show their applications
in the field of fuzzy PDEs to illustrate the usability of our obtained results. The problem
considered is

kDxyu(x, y) = f (x, y, u(x, y)), (x, y) ∈ J := [0, a] × [0, b], k = 1, 2, (1)

with condition

u(x, 0) = η1(x), x ∈ [0, a], u(0, y) = η2(y), y ∈ [0, b], (2)

where u : J → RF is a fuzzy-valued mapping and kDxy (for k = 1, 2) represents the gH-
partial derivatives operators. This boundary value problem was considered in some previous
research works [2, 20–24], in which the authors proved the validity of Picard’s theorem. In
these results, the Lipschitz contractivity of the function f is vital for the existence of the
fuzzy solution. If f is just continuous or even not continuous, the situation is far different
and some necessary conditions must be imposed in order to guarantee the existence of
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solutions (in the case of crisp ODEs we can see [3, 14, 15, 27, 28], and in the fuzzy case,
we refer to [1, 29, 30, 36]).

In this paper, we show that, under the assumption of nondecreasing monotonicity and
weak-contractivity of the mapping f only over comparable elements, the existence of just a
lower or an upper solution is enough to guarantee the existence and uniqueness of two types
of fuzzy solutions to the Problem (1)–(2). Some previous significant results for ODEs have
been investigated in [29, 30, 36]. Our results presented here give some new approaches on
the existence of two types of fuzzy solutions for some class of fuzzy PDEs under the gH-
differentiability. One difficulty to be faced in the study of this problem is the existence of
gH-differences, which also allows us to obtain a new solution to fuzzy PDEs with decreasing
length of its support. In this case, the qualitative solutions may be better in comparison with
those of crisp PDEs. Our results extend to a class of fuzzy PDEs some existing results for
fuzzy ODEs by Alikhani and Bahrami [1], Nieto and Rodrı́guez-López [29], and Villamizar-
Roa et al. [36].

The remainder of this paper is organized as follows. Section 2 presents our main results
(Theorems 1 and 2), in which we prove the existence of coincidence points for a pair of
mappings in a partially ordered metric space, and, in particular, we deduce a fixed point
theorem. Our method is mainly based on the generalized contractive-like condition. Section
3 provides some results on the existence and uniqueness of solution for fuzzy partial dif-
ferential equations as an effective application of our theorems presented in Section 2. Some
necessary preliminaries about fuzzy analysis and gH-derivatives are shown in Sections 3.1
and 3.2. The boundary value problem of interest is stated in Section 3.3, and the study of the
solvability of this problem is also included. Finally, some conclusions and future directions
are discussed in Section 4.

2 Generalized Coincidence and Fixed Point Theorems

In this section, we provide some definitions and new results related to generalized
coincidence and fixed point theorems in partially ordered metric spaces.

For x ∈ R, [x] is the greatest integer function or integer value, gives the largest integer
less than or equal to x (the floor function).

By Ĉ([0, ∞)), we denote the space of all nonnegative and continuous functions φ :
[0, ∞) → [0, ∞), for which the following property holds

φ(t) = 0 if and only if t = 0.

Definition 1 [14] A nondecreasing function ψ in Ĉ([0, ∞)) is called an altering distance
function on [0, ∞).

Some examples of altering distance functions on [0, ∞) are t2; ln(1+ t); t2 − ln(1+ t2).

Definition 2 [27] Let (X,≤) be a partially ordered set and suppose that there exists a metric
d on X such that (X, d) is a metric space. We say that X is regular if, for an arbitrary
nondecreasing sequence {xn} ⊂ X such that xn → x in X, then xn ≤ x for all n ∈ N.

Definition 3 [14] If (X,≤) is a partially ordered set and f : X → X, we say that f is
monotone nondecreasing (resp., nonincreasing) if x, y ∈ X, x ≤ y implies f (x) ≤ f (y)

(resp., f (y) ≤ f (x)).
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Definition 4 [27] Let (X,≤) be a partially ordered set and let f, g be mappings from X to
itself such that f (X) ⊂ g(X). We say that f is weakly increasing with respect to g if, for
all x ∈ X, we have f (x) ≤ f (y) for all y ∈ g−1(f (x)), where

g−1(f (x)) := {u ∈ X | g(u) = f (x)}.

Definition 5 [27] Let (X, d) be a metric space and f, g : X → X. The pair {f, g} is said to
be compatible if limn→∞ d(fg(xn), gf (xn)) = 0, whenever {xn} is a sequence in X such
that limn→∞ f (xn) = limn→∞ g(xn) = x for some x ∈ X.

In this section, we extend the main results in [3, 14, 27] to get a generalized fixed point
theorem in partially ordered metric spaces.

Theorem 1 Let (X,≤) be a partially ordered set and suppose that there exists a metric d

on X such that (X, d) is a complete metric space. Let f, g : X → X be given mappings
satisfying the following assumptions:

i) f (X) ⊂ g(X).
ii) f is weakly increasing with respect to g.

iii) One of the two following conditions holds:

(a) X is a regular metric space and g(X) is a closed subspace of (X, d), or
(b) f and g are continuous and the pair (f, g) is compatible.

iv) There exist a function β ∈ S , φ ∈ Ĉ([0, ∞)), and ψ a strictly increasing altering
distance function such that the following inequality holds

ψ (d(f (x), f (y))) ≤ β (d(g(x), g(y))) ψ (d(g(x), g(y)))

−γ (d(g(x), g(y))) φ (d(g(x), g(y))) (3)

for all (x, y) ∈ X × X satisfying that g(x) and g(y) are comparable, where

γ (t) = [β(t)] for all t ∈ [0, ∞).

Then, there exists a coincidence point x of f and g in X, i.e., f (x) = g(x).

Proof We proceed in several steps.

Step 1. Firstly, we contribute a nondecreasing sequence {g(xn)} in X.
Let x0 be an arbitrary point in X. Since f (X) ⊂ g(X), we can construct a sequence {xn}

in X defined by

g(xn+1) = f (xn) for all n ∈ N ∪ {0}.
Since x1 ∈ g−1(f (x0)), x2 ∈ g−1(f (x1)) and f is weakly increasing with respect to g, we
obtain

g(x1) = f (x0) ≤ f (x1) = g(x2) ≤ f (x2) = g(x3) ≤ · · ·
Therefore, by recurrence, we obtain a nondecreasing sequence

g(x1) ≤ g(x2) ≤ g(x3) ≤ · · · ≤ g(xn) ≤ g(xn+1) ≤ · · ·
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Since g(xn) ≤ g(xn+1) for n ≥ 1, it follows from (3) that

ψ(d(g(xn+1), g(xn+2))) = ψ(d(f (xn), f (xn+1)))

≤ β(d(g(xn), g(xn+1)))ψ(d(g(xn), g(xn+1)))

−γ (d(g(xn), g(xn+1)))φ(d(g(xn), g(xn+1)))

≤ β(d(g(xn), g(xn+1)))ψ(d(g(xn), g(xn+1)))

≤ ψ(d(g(xn), g(xn+1)))

for all n ≥ 1. Hence, we have

ψ(d(g(xn+1), g(xn+2))) ≤ ψ(d(g(xn), g(xn+1))) for all n ≥ 1.

Due to the strictly increasing character of the function ψ , {d(g(xn), g(xn+1))} is a non-
increasing and bounded from below sequence in R. Therefore, there exists r ≥ 0 such
that

lim
n→∞d(g(xn), g(xn+1)) = r. (4)

We will prove that r = 0. In fact, from the continuity property of ψ and φ, we have

lim
n→∞ψ(d(g(xn), g(xn+1))) = ψ

(
lim

n→∞d(g(xn), g(xn+1))
)

= ψ(r)

and
lim

n→∞φ(d(g(xn), g(xn+1))) = φ
(

lim
n→∞d(g(xn), g(xn+1))

)
= φ(r).

If β = 1[0,∞), then γ (t) = [β(t)] = 1 for all t ≥ 0. In this case, it follows from (3) that the
following estimation holds

ψ(d(g(xn+1), g(xn+2))) ≤ ψ(d(g(xn), g(xn+1))) − φ(d(g(xn), g(xn+1))) for all n ≥ 1.

By taking limits on both sides when n → ∞, we get

ψ(r) ≤ ψ(r) − φ(r),

which implies that 0 ≤ −φ(r), and using that φ ∈ Ĉ([0, ∞)), we obtain φ(r) = 0 and
r = 0.

On the other hand, if β ∈ S0, from (3) and the inequalities g(xn) ≤ g(xn+1), n ≥ 1, we
have

ψ(d(g(xn+1), g(xn+2))) = ψ(d(f (xn), f (xn+1)))

≤ β(d(g(xn), g(xn+1)))ψ(d(g(xn), g(xn+1))), n ≥ 1.

By contradiction method, we assume that r > 0. It permits to affirm, from (4), the non-
increasing character of the sequence {d(g(xn), g(xn+1))} and the properties of ψ , that
ψ(d(g(xn), g(xn+1))) > 0 for n ≥ 1. Hence

ψ(d(g(xn+1), g(xn+2)))

ψ(d(g(xn), g(xn+1)))
≤ β(d(g(xn), g(xn+1))) < 1

for n ≥ 1. By taking limits on both sides of this equation, it leads to

lim
n→∞β(d(g(xn), g(xn+1))) = 1.

Taking into account that β ∈ S0, the previous condition implies that limn→∞ d(g(xn),

g(xn+1)) = 0, which is a contradiction.
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Hence, in both cases, we have that r = 0 and thus, {g(xn)} is a nondecreasing sequence
satisfying that

lim
n→∞d(g(xn), g(xn+1)) = 0. (5)

Step 2. Next, we prove that {g(xn)} is a Cauchy sequence.
Case 1: If there exists an n ∈ N such that g(xn) = g(xn+1), then, from (3), we have

ψ(d(f (xn), f (xn+1))) ≤ β(d(g(xn), g(xn+1)))ψ(d(g(xn), g(xn+1))) = 0.

This inequality implies, by the properties of ψ , that f (xn) = f (xn+1) or g(xn+1) =
g(xn+2). So, for all m ≥ n, we have that g(xm) = g(xn). It obviously shows that {g(xn)} is
a Cauchy sequence.
Case 2: Assume that all the successive terms of {g(xn)} are different, that is, g(xn) 	=
g(xn+1) for every n ∈ N. We prove that

lim sup
m→∞

sup
n≥m

d(g(xn), g(xm)) = 0.

Indeed, suppose that lim supm→∞ supn≥m d(g(xn), g(xm)) 	= 0 and select ε > 0 such
that

lim sup
m→∞

sup
n≥m

d(g(xn), g(xm)) > ε.

Then, we can choose two subsequences {g(xnk
)}, {g(xmk

)} of {g(xn)} such that nk ≥ mk >

k and
d(g(xnk

), g(xmk
)) > ε. (6)

For each fixed mk , we choose nk to be the smallest number such that nk ≥ mk satisfying
(6). Note that (6) implies, in fact, that nk > mk . Hence, it follows that nk − 1 ≥ mk and

d(g(xnk−1), g(xmk
)) ≤ ε.

Then, we get

ε < d(g(xnk
), g(xmk

)) ≤ d(g(xnk
), g(xnk−1)) + d(g(xnk−1), g(xmk

))

≤ d(g(xnk
), g(xnk−1)) + ε. (7)

Taking into account (5) and letting k → ∞ in (7), we have

lim
k→∞d(g(xnk

), g(xmk
)) = ε. (8)

Since

d(g(xnk
), g(xmk

)) ≤ d(g(xnk
), g(xnk−1)) + d(g(xnk−1), g(xmk−1))

+d(g(xmk−1), g(xmk
)), k ≥ 1, (9)

using (5), (6), and passing to the limit inferior when k → ∞ in the inequality (9), we obtain

lim inf
k→∞ d(g(xnk−1), g(xmk−1)) ≥ ε. (10)

On the other hand, from the estimation

d(g(xnk−1), g(xmk−1)) ≤ d(g(xnk
), g(xnk−1)) + d(g(xnk

), g(xmk
))

+d(g(xmk−1), g(xmk
)), k ≥ 1,
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we get, from (5) and (8), that

lim sup
k→∞

d(g(xnk−1), g(xmk−1)) ≤ ε. (11)

Thus, by combining (10) and (11), we have

lim
k→∞d(g(xnk−1), g(xmk−1)) = ε. (12)

Now mk ≤ nk implies mk − 1 ≤ nk − 1 and, thus, g(xmk−1) ≤ g(xnk−1). Applying the
inequality (3) once again, we have

ψ(d(g(xnk
), g(xmk

))) = ψ(d(f (xnk−1), f (xmk−1)))

≤ β(d(g(xnk−1), g(xmk−1)))ψ(d(g(xnk−1), g(xmk−1)))

−γ (d(g(xnk−1), g(xmk−1)))φ(d(g(xnk−1), g(xmk−1))). (13)

If β = 1[0,∞), then γ (t) = β(t) = 1 for all t ≥ 0. Since ψ and φ are continuous, by passing
to the limit as k → ∞ in (13), we have ψ(ε) ≤ ψ(ε) − φ(ε), that is, 0 ≤ −φ(ε). Hence,
by the properties of φ, it follows that φ(ε) = 0 and ε = 0.

On the other hand, if β ∈ S0, then 0 ≤ β(t) < 1 for all t ≥ 0. Denote tk =
d(g(xnk−1), g(xmk−1)) for k ≥ 1. Since {β(tk)} ⊂ [0, 1] and [0, 1] is a compact set in R,
then there exists a subsequence {β(tkj

)} converging to λ ∈ [0, 1]. Therefore, by choosing
subsequences if necessary, we assume that

lim
k→∞β(d(g(xnk−1), g(xmk−1))) = λ ∈ [0, 1].

If λ = 1, then limk→∞ d(g(xnk−1), g(xmk−1)) = 0, which implies that ε = 0. If 0 ≤ λ < 1,
then, from

ψ(d(g(xnk
), g(xmk

))) = ψ(d(f (xnk−1), f (xmk−1)))

≤ β(d(g(xnk−1), g(xmk−1)))ψ(d(g(xnk−1), g(xmk−1))), k ≥ 1,

by passing to the limit as k → ∞ and using the continuity property of ψ , we have that
ψ(ε) ≤ λψ(ε), or, equivalently, (1 − λ)ψ(ε) ≤ 0. Hence, ψ(ε) = 0 and ε = 0.

Therefore, it follows that

lim sup
m→∞

sup
n≥m

d(g(xn), g(xm)) = 0.

Thus, {g(xn)} is a Cauchy sequence in (X, d).
Step 3. We prove the existence of a coincidence point of f and g.
Case 1: Assume that X is a regular metric space and that g(X) is a closed subspace of
(X, d). Then (g(X), d) is a complete metric subspace of (X, d). Since {g(xn)} is a Cauchy
sequence in (g(X), d), there exists u = g(z) ∈ g(X) such that g(xn) → u = g(z) as
n → ∞. Since {g(xn)} is a nondecreasing sequence and X is regular, then g(xn) ≤ g(z) for
all n ∈ N. Applying (3) once again, we have

0 ≤ ψ(d(f (z), g(xn+1)))

= ψ(d(f (z), f (xn)))

≤ β(d(g(z), g(xn)))ψ(d(g(z), g(xn))) − γ (d(g(z), g(xn)))φ(d(g(z), g(xn)))

≤ β(d(g(z), g(xn)))ψ(d(g(z), g(xn)))

≤ ψ(d(g(z), g(xn))).

By using the property of continuity of ψ and letting n → ∞, we get

ψ(d(f (z), g(z))) = 0.
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It clearly follows that d(f (z), g(z)) = 0 and f (z) = g(z).
Case 2: Assume that f and g are continuous and that the pair (f, g) is compatible.

Since {g(xn)} is a Cauchy sequence in a complete metric space (X, d), there exists z ∈ X

such that g(xn) → z and f (xn) = g(xn+1) → z, as n → ∞. Since f , g are continuous, we
get

lim
n→∞g(g(xn)) = g(z); lim

n→∞f (g(xn)) = f (z); lim
n→∞g(f (xn)) = g(z).

Since limn→∞ f (xn) = limn→∞ g(xn) = z and the pair (f, g) is compatible, it follows that

lim
n→∞d(g(f (xn)), f (g(xn))) = 0.

Thus, from

0 ≤ d(g(z), f (z)) ≤ d(g(z), g(g(xn+1))) + d(g(f (xn)), f (g(xn))) + d(f (g(xn), f (z)))

and letting n → ∞, we have that d(g(z), f (z)) = 0, i.e., f (z) = g(z).
In consequence, z is a coincidence point of f and g and the theorem is proved.

Remark 1 Theorem 1 is actually an extension of some previous results in [3] and [27].
Indeed,

1. If we choose β(·) = 1[0,∞)(·), then we get the context of Theorem 2.4 and Theorem
2.6 in [27];

2. If we choose β ∈ S0, then γ (t) = [β(t)] = 0 for all t ∈ [0, ∞). Hence, we receive a
generalized result connected to Theorem 2.1 in [3], with ψ an altering distance function
and g a generalized function defined on X.

Theorem 2 Assume that (X,≤) is a partially ordered set and that there exists a metric d

on X such that (X, d) is a complete metric space. Let f : X → X be a nondecreasing
mapping. Assume that:

i) There exists β ∈ S such that

ψ(d(f (x), f (y))) ≤ β(d(x, y))ψ(d(x, y)) − γ (d(x, y))φ(d(x, y)) (14)

for all x ≤ y in X, where ψ is a strictly increasing altering distance function, φ ∈
Ĉ([0, ∞)) and γ (t) = [β(t)] for all t ∈ [0, ∞).

ii) There exists x0 ∈ X such that x0 ≤ f (x0) or f (x0) ≤ x0.
iii) One of the two following conditions holds:

(a) X is a regular metric space; or
(b) f is continuous.

Then f has a fixed point in X, that is, there exists a point z ∈ X such that f (z) = z.
Furthermore, if

for each y, z ∈ X, there exists x ∈ X which is comparable both to y and z, (15)

then the fixed point of f is unique.

Proof If f (x0) = x0, then x0 is a fixed point of f . We consider the case when x0 < f (x0),
that is, x0 ≤ f (x0) but x0 	= f (x0). Since f is a nondecreasing mapping, by induction
method, we construct a sequence

x0 < f (x0) ≤ f 2(x0) ≤ · · · ≤ f n(x0) ≤ f n+1(x0) ≤ · · ·
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Set xn+1 = f (xn) for all n ≥ 0. We have that {xn} is a nondecreasing sequence in X. The
existence of a fixed point for the mapping f is proved similarly to the proof of Theorem 1
when g is the identity mapping from X to itself, i.e., g = IdX .

Now, we prove the uniqueness of the fixed point. Indeed, assume that y and z are two
fixed points of f . From hypothesis (15), there exists a point x ∈ X which is comparable both
to y and z. From the monotonicity property of f , this implies that, for each n ∈ N, f n(x) is
comparable both to f n(y) = y and f n(z) = z. Therefore, by applying the inequality (14),
we have

ψ(d(z, f n(x))) = ψ(d(f n(z), f n(x)))

≤ β(d(f n−1(z), f n−1(x)))ψ(d(f n−1(z), f n−1(x)))

−γ (d(f n−1(z), f n−1(x)))φ(d(f n−1(z), f n−1(x)))

≤ β(d(f n−1(z), f n−1(x)))ψ(d(f n−1(z), f n−1(x)))

≤ ψ(d(f n−1(z), f n−1(x)))

= ψ(d(z, f n−1(x))), n ∈ N, n ≥ 2.

Denote τn = d(z, f n(x)) ∈ [0, ∞), n ∈ N, n ≥ 1. By the strict monotonicity of ψ , it
follows that 0 ≤ τn ≤ τn−1, n ∈ N, n ≥ 2. Consequently, the sequence τn is nonnegative
and decreasing. So there exists r ≥ 0 such that limn→∞ τn = r . We prove that r = 0.

Case 1: If β = 1[0,∞), then β(t) = 1 for all t ≥ 0 and γ (t) = 1 for all t ≥ 0. From (13),
we have

ψ(τn) ≤ ψ(τn−1) − φ(τn−1), n ∈ N, n ≥ 2.

Passing to the limit as n → ∞, by the continuity of the mappings ψ and φ, we have
ψ(r) ≤ ψ(r) − φ(r) and φ(r) = 0. That implies r = 0.

Case 2: If β ∈ S0, from (13), we get

ψ(τn) ≤ β(τn−1)ψ(τn−1), n ∈ N, n ≥ 2. (16)

By choosing subsequences if necessary, we assume that

lim
n→∞β(τn) = λ ∈ [0, 1],

which allows to deduce, by letting n → ∞ in (16), that ψ(r) ≤ λψ(r), that is, ψ(r)(1 −
λ) ≤ 0. If λ < 1, then ψ(r) = 0, i.e., r = 0. If λ = 1, then limn→∞ β(τn) = 1. From
the properties of the function β ∈ S0, one gets limn→∞ τn = 0. By the uniqueness of the
limit, we prove that r = 0.

By applying analogous arguments, we have limn→∞ d(y, f n(x)) = 0. It follows that

0 ≤ d(y, z) ≤ d(y, f n(x)) + d(f n(x), z) → 0 as n → ∞.

This means that y = z. It completes the proof.

Remark 2 Theorem 2 is also connected with some previous results:

1. If we choose β(·) = 1[0,∞)(·), we receive again Theorems 2.1, 2.2, and 2.3 in [14],
with weaker conditions on the function φ (here, φ is not necessarily nondecreasing on
[0, ∞)).

2. If we choose β ∈ S0, we obtain a generalized result connected to Theorem 2.1 in [3],
with ψ a strictly increasing altering distance function.

3. If we choose β ∈ S0 and ψ = Id[0,∞) the identity mapping, one has again Theorem
2.1 in [3].
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Remark 3 It is well-known that the hypothesis (15) is equivalent to the following hypothesis
in [28]:

for each y, z ∈ X, there exists in X a lower bound or an upper bound of y, z.

Remark 4 From the proof of Theorem 2, we deduce that, if z is a fixed point of f , then
limn→∞ d(f n(x), z) = 0 for any x ∈ X comparable to z.

Remark 5 We can affirm from the proof of Theorem 2 that, in order to obtain the existence
of a unique fixed point for some function f , it is not necessary for the function f to be
continuous. Instead of the condition of continuity, we can consider the requirement that the
space X is regular. This restriction is valid in the case where X is the space of fuzzy sets on
R (see [29]).

In the next section, we investigate some applications of these fixed point theorems to
prove the existence of solution for a class of fuzzy partial differential equations.

3 Application to Fuzzy Partial Differential Equations

3.1 Fuzzy Partially Ordered Metric Spaces

Let RF be the space of fuzzy sets on R that are nonempty subsets {(x, u(x)) : x ∈ R} in
R × [0, 1] of certain functions u : R → [0, 1] being normal, fuzzy-convex, upper semi-
continuous, and compact-supported.

Let u ∈ RF . The α-cuts or level sets of u are defined by

[u]α = {x ∈ R : u(x) ≥ α} for each 0 < α ≤ 1,

which are nonempty, compact, and convex subsets of R for all 0 < α ≤ 1. The same
properties hold for [u]0 = {x ∈ R : u(x) > 0}, which is called the support of u. For u ∈
RF , we denote the parametric form of u by [u]α = [ulα, urα] for all 0 ≤ α ≤ 1, and
len([u])α = urα − ulα .

In RF , we define the supremum metric d∞ as follows

d∞(u, v) = sup
0≤α≤1

dH

([u]α, [v]α)
for all u, v ∈ RF ,

where dH is the Hausdorff metric in the set consisting of all nonempty, compact, and convex
subsets of R. It is well-known that (RF , d∞) is a complete metric space (see, for instance,
[19]).

The addition and the multiplication by a scalar in the space of fuzzy numbers RF is
defined levelsetwise, that is, for all u, v ∈ RF , α ∈ [0, 1], and k ∈ R,

[u + v]α = [u]α + [v]α and [ku]α = k[u]α.

In the special case where k = −1, (−1)[u]α = (−1)[ulα, urα] = [−urα, −ulα].
If there exists w ∈ RF such that u = v + w, we call w = u 
 v the Hukuhara difference

(or H-difference) of u and v. If u 
 v exists, then [u 
 v]α = [ulα − vlα, urα − vrα] for all
0 ≤ α ≤ 1.

Lemma 1 [17] For all u, v, w, e ∈ RF , if the H-differences u 
 v, w 
 e exist, then

d∞(u 
 v, w 
 e) ≤ d∞(u,w) + d∞(v, e).
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Definition 6 [29] In RF , a partial ordering can be defined as follows:

x ≤ y if xlα ≤ ylα and xrα ≤ yrα for all α ∈ [0, 1],
where x, y ∈ RF , [x]α = [xlα, xrα], [y]α = [ylα, yrα], α ∈ [0, 1].

Lemma 2 [29] Some properties of fuzzy sets with respect to the partial ordering ≤ are:

1) If x ≤ y, then x + z ≤ y + z for x, y, z ∈ RF .
2) For every nondecreasing sequence {xn} ⊂ RF , if xn → x in RF , then xn ≤ x for all

n ∈ N.
3) Every pair of elements of RF has an upper bound and a lower bound in RF .

Lemma 3 If u, v, w ∈ RF are such that w ≤ v and the H-differences u 
 v, u 
 w exist,
then u 
 v ≤ u 
 w.

Proof It is clear that wlα ≤ vlα and wrα ≤ vrα , imply that ulα − vlα ≤ ulα − wlα and
urα − vrα ≤ urα − wrα for all α ∈ [0, 1].

For J ⊂ R
2, we denote by C(J,RF ) the space of all continuous functions defined on J

and fuzzy-valued in RF . Set

Hλ(u, v) = sup
(x,y)∈J

{
d∞(u(x, y), v(x, y))e−λ(x+y)

}

for u, v ∈ C(J,RF ), where λ > 0. It is easy to see that (C(J,RF ),Hλ) is a complete
metric space [19].

Definition 7 Consider f, g ∈ C(J,RF ). We say that f ≤ g in C(J,RF ) if and only if
f (x, y) ≤ g(x, y) for all (x, y) ∈ J . That means flα(x, y) ≤ glα(x, y) and frα(x, y) ≤
grα(x, y) for all α ∈ [0, 1] and (x, y) ∈ J .

Some of the following properties of fuzzy-valued continuous functions with respect to
the partial ordering ≤ are inferred directly from the corresponding properties of fuzzy
numbers in (RF , ≤) given in Lemma 2.

Lemma 4 Let (RF ,≤) be the space of fuzzy numbers equipped with the partial ordering
defined, then we have

1) (C(J,RF ), ≤) is a partial ordered space;
2) (C(J,RF ),Hλ) is a regular metric space;
3) Every pair of elements of C(J,RF ) has an upper bound and a lower bound in

C(J,RF ).

Proof These properties have been established briefly in [29]. We include their proofs for
the sake of completeness. The proofs of property 1) and property 3) are obvious, since they
are true in RF . So we can proceed for each (x, y) ∈ J , and these properties are satisfied
in C(J,RF ) (note that we can select the upper and lower bounds to be continuous). Hence,
we only give the proof of property 2).
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2) Indeed, assume that {un} ⊂ C(J,RF ) is a nondecreasing sequence and convergent to
u in C(J,RF ), then {un(x, y)} is a nondecreasing sequence in RF for every (x, y) ∈ J .
Moreover, for each (x, y) ∈ J ,

e−λ(x+y)d∞ (un(x, y), u(x, y)) ≤ sup
J

{
d∞(un(x, y), u(x, y))e−λ(x+y)

}
= Hλ(un, u).

Since limn→∞ Hλ(un, u) = 0, we have limn→∞ d∞(un(x, y), u(x, y)) = 0, or un(x, y)

converges to u(x, y) in RF for every (x, y) ∈ J . From Lemma 2, we have un(x, y) ≤
u(x, y) for all n ∈ N and every (x, y) ∈ J .

3.2 Some Preliminaries on Fuzzy Analysis

For u, v ∈ RF , the generalized Hukuhara difference [4] (or gH-difference) of u and v,
denoted by u �gH v is defined as the element w ∈ RF such that

u �gH v = w ⇐⇒ (i) u = v + w or (ii) v = u + (−1)w.

Notice that, if u
v exists, then u�gH v = u
v. If (i) and (ii) are satisfied simultaneously,
then w is a crisp number. Also, u �gH u = 0̂ and if u �gH v exists, it is unique.

The generalized Hukuhara partial derivatives (gH-p-derivatives, for short) of a fuzzy-
valued mapping f : I ⊂ R

2 → RF are defined in Definitions 2.9 and 3.4 in [2]. Denote by
C2(I,RF ) the set of all functions f ∈ C(I,RF ) which have gH-p-derivatives up to order
2 with respect to x and y continuous on I .

Definition 8 [2] Let f : I → RF be gH-p-differentiable with respect to x at (x0, y0) ∈ I .
We say that f is (i)-gH differentiable with respect to x at (x0, y0) ∈ I if

[fx(x0, y0)]
α = [∂xflα(x0, y0), ∂xfrα(x0, y0)] ∀α ∈ [0, 1]

and that f is (ii)-gH differentiable with respect to x at (x0, y0) ∈ I if

[fx(x0, y0)]
α = [∂xfrα(x0, y0), ∂xflα(x0, y0)] ∀α ∈ [0, 1].

The (i) and (ii)-gH derivatives of f with respect to y are defined similarly.

Definition 9 Let f ∈ C2(I,RF ) and fy be gH-p-differentiable at (x0, y0) ∈ I with respect
to x and do not have any switching points on I . We say that

a) fxy is in type 1 of gH-derivatives (denote 1Dxyf ) if the type of gH-derivatives of both
f and fy are the same. Then, for α ∈ [0, 1],

[
1Dxyf (x0, y0)

]α = [
∂xyflα(x0, y0), ∂xyfrα(x0, y0)

]
.

b) fxy is in type 2 of gH-derivatives (denote 2Dxyf ) if the type of gH-derivatives of both
f and fy are different. Then, for α ∈ [0, 1],

[
2Dxyf (x0, y0)

]α = [
∂xyfrα(x0, y0), ∂xyflα(x0, y0)

]
.

It is a well-known result that, if f is continuous on U , then f is integrable on U .
Moreover, we have the following properties.

Lemma 5 Let U be a compact subset of R2, u ≤ v in C(U,RF ). Then∫

U

u(x, y)dxdy ≤
∫

U

v(x, y)dxdy.
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Proof From the definition of the fuzzy Aumann integral [19], we have
[∫

U

u(x, y)dxdy

]α

=
[∫

U

ulα(x, y)dxdy,

∫

U

urα(x, y)dxdy

]

and [∫

U

v(x, y)dxdy

]α

=
[∫

U

vlα(x, y)dxdy,

∫

U

vrα(x, y)dxdy

]

for every α ∈ [0, 1].
Since u ≤ v in C(U,RF ), then u(x, y) ≤ v(x, y) ∈ RF for all (x, y) ∈ U . That

means, from Definition 6, that (u(x, y))lα ≤ (v(x, y))lα , (u(x, y))rα ≤ (v(x, y))rα for all
α ∈ [0, 1]. It implies that

∫

U

ulα(x, y)dxdy ≤
∫

U

vlα(x, y)dxdy,

∫

U

urα(x, y)dxdy ≤
∫

U

vrα(x, y)dxdy

for all α ∈ [0, 1]. From Definition 6, we deduce that
∫
U

u(x, y)dxdy ≤ ∫
U

v(x, y)dxdy.

3.3 Statement of the Problems

In this part, we prove some new results on the existence of a unique solution for fuzzy partial
differential equations with local boundary conditions by applying the theory presented in
Section 2.

For arbitrary positive real numbers a, b, we denote Ja = [0, a], Jb = [0, b], J = Ja ×
Jb. We recall Problem (1)–(2) with η1(·) ∈ C(Ja,RF ), η2(·) ∈ C(Jb,RF ) being given
functions such that η1(0) = η2(0) and the difference η2(y)
η1(0) exists for all y ∈ Jb and
the function f : J ×RF → RF has no switching points. This boundary value problem has
been considered in some references such as [2, 20–22]. In these papers, the authors prove
the Picard’s theorem for Problem (1)–(2), i.e., when f is Lipschitz continuous, the problem
has a unique fuzzy solution. By weakening the Lipschitz condition, now the function f only
needs to satisfy a generalized contractive-like condition between comparable items, and we
also prove the existence of fuzzy solutions.

For (x, y) ∈ J , let Ixyf (x, y, u) denote the integral
∫ y

0

∫ x

0 f (s, t, u(s, t))dsdt . We
change the order of integration with respect to the notation in [22], since, in the derivatives
kDxy , we first calculate a derivative with respect to y and then with respect to x, so that we
integrate in the reverse order.

Lemma 6 [22] Assume that f is a continuous function on J × RF and that u(·, ·) ∈
C2(J,RF ) satisfies Problem (1)–(2) in J . Then u(·, ·) satisfies the following integral
equations:

1) If k = 1 then u(x, y) = p(x, y) + Ixyf (x, y, u) for (x, y) ∈ J ; or
2) If k = 2 then u(x, y) = p(x, y) 
 (−1)Ixyf (x, y, u) for (x, y) ∈ J ,

where

p(x, y) = η1(x) + η2(y) 
 η1(0). (17)

Definition 10 A function u ∈ C(J,RF ) is called an integral solution of type 1 of the
Problem (1)–(2) if it satisfies the following integral equation

u(x, y) = p(x, y) + Ixyf (x, y, u) for all (x, y) ∈ J
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and u ∈ C(J,RF ) is called an integral solution of type 2 of the Problem (1)–(2) if it satisfies
the following integral equation

u(x, y) = p(x, y) 
 (−1)Ixyf (x, y, u) for all (x, y) ∈ J,

where p(·, ·) is defined by (17).

Remark 6 Notice that Definition 10 makes sense via Lemma 6.

Definition 11 A fuzzy function μ ∈ C2(J,RF ) is called a (k)-lower (k = 1, 2) solution of
the Problem (1)–(2) if

kDxyμ(x, y) ≤ f (x, y, μ(x, y)), (x, y) ∈ J,

μ(x, 0) ≤ η1(x), x ∈ Ja, μ(0, y) ≤ η2(y), y ∈ Jb, μ(0, 0) = η1(0).

Analogously, a fuzzy function μ ∈ C2(J,RF ) is called a (k)-upper (k = 1, 2) solution
of the Problem (1)–(2) if

kDxyμ(x, y) ≥ f (x, y, μ(x, y)), (x, y) ∈ J,

μ(x, 0) ≥ η1(x), x ∈ Ja, μ(0, y) ≥ η2(y), y ∈ Jb, μ(0, 0) = η1(0).

Remark 7 The first steps in the theory of lower and upper solutions have been given by
Picard for PDEs and ODEs [31, 32]. In both cases, the existence of a solution is guaran-
teed from a monotone iterative technique. Dragoni [10, 11] are the first ones that recognize
explicitly the central role of lower and upper solutions for ordinary differential equations
with Dirichlet boundary value conditions. In the monograph of Bernfeld and Lakshmikan-
tham [5], Ladde et al. [18] the theory of the method of lower and upper solutions and the
monotone iterative technique are presented in details.

In this paper, the existence of lower solutions or upper solutions of considered problem
is used as a sufficient condition in generalized contractive-like theorems in Section 2 to
ensure the existence and uniqueness of two types of fuzzy solutions to the Problem (1)–(2).
For more about the method of lower and upper solutions, we refer the reader to the classical
work of Mawhin [26] and the surveys in this field of De Coster and Habets [6–8] in which
we can find historical and bibliographical references together with recent results and open
problems.

3.4 Existence and Uniqueness of Fuzzy Solutions

Lemma 7 For an arbitrary strictly increasing altering distance function γ and for all
positive real numbers a, b, there exists λ > 0 such that the function

�(t) = γ (t) − γ

(
1

λ2

(
1 − e−λa

) (
1 − e−λb

)
t

)
, t ∈ [0, ∞),

belongs to Ĉ([0, ∞)).

Proof From the continuity of γ , � is a continuous function on [0, ∞). Choose λ > 0 such
that

1

λ2

(
1 − e−λa

) (
1 − e−λb

)
< 1.

Then, for all t ≥ 0, we have 1
λ2 (1 − e−λa)(1 − e−λb)t ≤ t . Since γ is increasing, it follows

that γ
(

1
λ2 (1 − e−λa)(1 − e−λb)t

)
≤ γ (t) for all t ≥ 0. Hence �(t) ≥ 0 for all t ≥ 0.



Some Generalizations of Fixed Point Theorems in Partially Ordered...

Now, we consider t > 0. From 1
λ2 (1 − e−λa)(1 − e−λb)t < t and the strict increase

property of γ , it implies that �(t) > 0. It follows that, if �(t) = 0, then t = 0 (and
conversely). It completes the proof.

Theorem 3 Let f be a continuous function that satisfies the following two hypotheses:

(h1) f : J × RF → RF is nondecreasing in the third variable, i.e., if ν ≤ ξ ∈ RF , then
f (x, y, ν) ≤ f (x, y, ξ) for all (x, y) ∈ J .

(h2) f is weakly contractive over comparable elements, that is, for some altering distance
function ψ and φ ∈ Ĉ([0, ∞)), the following estimation

ψ(d∞(f (x, y, ν), f (x, y, ξ))) ≤ ψ(d∞(ν, ξ)) − φ(d∞(ν, ξ))

holds for all (x, y) ∈ J , ν ≤ ξ in RF .

Suppose that there exists a (1)-lower solution μ ∈ C2(J,RF ) for the Problem (1)–(2).
Then the Problem (1)–(2) has a unique integral solution of type 1 on J .

Proof Define the operator T1 : C(J,RF ) → C(J,RF ) by

(T1u)(x, y) = p(x, y) + Ixyf (x, y, u), (x, y) ∈ J, (18)

for u ∈ C(J,RF ), where p(·, ·) is defined by (17).

Step 1: We prove that T1 is a nondecreasing operator in C(J,RF ).

Assume that u ≤ v in C(J,RF ), which means u(s, t) ≤ v(s, t) for all (s, t) ∈ J . From
hypothesis (h1), that is, the nondecreasing character of f with respect to the third variable,
we have that f (s, t, u(s, t)) ≤ f (s, t, v(s, t)) for all (s, t) ∈ J . Then, from Lemma 5, we
have

Ixyf (x, y, u) ≤ Ixyf (x, y, v) for (x, y) ∈ J.

It means that (T1u)(x, y) ≤ (T1v)(x, y) for all (x, y) ∈ J . Hence, T1u ≤ T1v.
Step 2: Now, we prove that

d∞(f (x, y, ν), f (x, y, η)) ≤ d∞(ν, η) for all ν ≤ η in RF and (x, y) ∈ J.

Indeed, assume that ν ≤ η in RF but d∞(ν, η) < d∞(f (x, y, ν), f (x, y, η)) for some
(x, y) ∈ J . Due to the nondecrease property of ψ , we have

ψ(d∞(ν, η)) ≤ ψ(d∞(f (x, y, ν), f (x, y, η))). (19)

On the other hand, from the hypothesis (h2), we have

ψ(d∞(f (x, y, ν), f (x, y, η))) ≤ ψ(d∞(ν, η)) − φ(d∞(ν, η))

≤ ψ(d∞(ν, η)) (20)

for all ν ≤ η in RF . From (19) and (20), one has

ψ(d∞(ν, η)) = ψ(d∞(f (x, y, ν), f (x, y, η))).

It follows from (20) that 0 ≤ −φ(d∞(ν, η)) or φ(d∞(ν, η)) = 0. Thanks to φ ∈ Ĉ([0, ∞)),
that implies d∞(ν, η) = 0. Hence

ψ(d∞(f (x, y, ν), f (x, y, η))) = ψ(d∞(ν, η)) = 0.

It implies d∞(f (x, y, ν), f (x, y, η)) = 0, leading to a contradiction.
Step 3: We check the generalized contractive-like property of the operator T1.
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For all u ≤ v in C(J,RF ), we have u(x, y) ≤ v(x, y) for all (x, y) ∈ J . It is known
from Step 2 that

d∞(f (x, y, u(x, y)), f (x, y, v(x, y))) ≤ d∞(u(x, y), v(x, y)) for all (x, y) ∈ J.

Thus

d∞((T1u)(x, y), (T1v)(x, y)) = d∞
(
p(x, y) + Ixyf (x, y, u), p(x, y) + Ixyf (x, y, v)

)

= d∞
(
Ixyf (x, y, u), Ixyf (x, y, v)

)

≤
∫ y

0

∫ x

0
d∞(f (s, t, u(s, t)), f (s, t, v(s, t)))dsdt

≤
∫ y

0

∫ x

0
d∞(u(s, t), v(s, t))dsdt

≤
∫ y

0

∫ x

0
Hλ(u, v)eλ(s+t)dsdt

= 1

λ2
Hλ(u, v)(eλx − 1)(eλy − 1).

Then, for all (x, y) ∈ J , we have

d∞((T1u)(x, y), (T1v)(x, y))e−λ(x+y) ≤ 1

λ2
Hλ(u, v)(1 − e−λx)(1 − e−λy).

Therefore

Hλ(T1u, T1v) ≤ 1

λ2
Hλ(u, v)(1 − e−λa)(1 − e−λb). (21)

For an arbitrary strictly increasing altering distance function γ, from (21), we have

γ (Hλ(T1u, T1v)) ≤ γ

(
1

λ2
Hλ(u, v)(1 − e−λa)(1 − e−λb)

)

= γ (Hλ(u, v)) −
[
γ (Hλ(u, v)) − γ

(
1

λ2
Hλ(u, v)(1 − e−λa)(1 − e−λb)

)]
.

Denote �(t) = γ (t) − γ
(

1
λ2 (1 − e−λa)(1 − e−λb)t

)
, t ∈ [0, ∞). From Lemma 7, there

exists λ > 0 such that � belongs to Ĉ([0, ∞)) and

γ (Hλ(T1u, T1v)) ≤ γ (Hλ(u, v)) − �(Hλ(u, v)) for all u ≤ v in C(J,RF ).

This means that the operator T1 satisfies the contractive-like property.
Step 4: Since there exists a (1)-lower solution μ ∈ C2(J,RF ) for the Problem (1)–(2), then

μlα(x, y) ≤ μlα(x, 0) + μlα(0, y) − μlα(0, 0) +
∫ y

0

∫ x

0
flα(s, t, μ(s, t))dsdt

≤ (η1)lα(x) + (η2)lα(y) − (η1)lα(0) +
∫ y

0

∫ x

0
flα(s, t, μ(s, t))dsdt,

μrα(x, y) ≤ μrα(x, 0) + μrα(0, y) − μrα(0, 0) +
∫ y

0

∫ x

0
frα(s, t, μ(s, t))dsdt

≤ (η1)rα(x) + (η2)rα(y) − (η1)rα(0) +
∫ y

0

∫ x

0
frα(s, t, μ(s, t))dsdt,

for α ∈ [0, 1] and (x, y) ∈ J , so that

μ(x, y) ≤ η1(x) + η2(y) 
 η1(0) + Ixyf (x, y, μ) = (T1μ)(x, y)

for all (x, y) ∈ J . It follows that μ ≤ T1μ in C(J,RF ).
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It is easy to see from Steps 1–4 that the operator T1 satisfies all the hypotheses of Theorem 2
in case β = 1[0,∞). In consequence, T1 has a fixed point in C(J,RF ). Note that C(J,RF )

satisfies that every pair of elements of C(J,RF ) have an upper bound and a lower bound in
C(J,RF ) (Lemma 4). It follows that the operator T1 has a unique fixed point, which is the
unique integral solution of type 1 to Problem (1)–(2).

Remark 8 The existence of an integral solution of type 1 is guaranteed by the weakly non-
decreasing character and the generalized weak contractivity property of function f . The
existence of an integral solution of type 2 is more difficult to obtain due to the requirement
of the existence of Hukuhara differences.

We denote

Ĉ(J,RF ) = {u ∈ C(J,RF ) : p(x, y) 
 (−1)Ixyf (x, y, u) exists for all (x, y) ∈ J },
where p(x, y) is defined by (17).

Lemma 8 Consider (C(J,RF ), d) a complete metric space. If f is a continuous function
and Ĉ(J,RF ) 	= ∅, then (Ĉ(J,RF ), d) is a complete metric space.

Proof Let {um}∞m=1 be a sequence in Ĉ(J,RF ) converging towards u (in C(J,RF )). Then,
for all (x, y) ∈ J , the following differences exist

p(x, y) 
 (−1)Ixyf (x, y, um).

For simplicity of exposition, let

F(um)(x, y) = (−1)Ixyf (x, y, um).

From Proposition 21 in [35], we know that, for each fixed (x, y) ∈ J ,⎧⎨
⎩

len[p(x, y)]α ≥ len[F(um)(x, y)]α, 0 ≤ α ≤ 1,

(p(x, y))lα − (F (um)(x, y))lα is monotonically increasing in α ∈ [0, 1],
(p(x, y))rα − (F (um)(x, y))rα is monotonically decreasing in α ∈ [0, 1].

Since f is continuous and {um}∞m=1 converges uniformly to u, then

len

[∫ y

0

∫ x

0
f (s, t, um(s, t))dsdt

]α

is convergent towards

len

[∫ y

0

∫ x

0
f (s, t, u(s, t))dsdt

]α

for each α ∈ [0, 1]. Therefore, len[F(um)(x, y)]α converges to len[F(u)(x, y)]α , where

F(u)(x, y) = (−1)Ixyf (x, y, u) = (−1)

∫ y

0

∫ x

0
f (s, t, u(s, t)) dsdt.

Hence, from the inequality

len[p(x, y)]α ≥ len[F(um)(x, y)]α, 0 ≤ α ≤ 1,

we derive that, for each fixed (x, y) ∈ J ,

len[p(x, y)]α ≥ len[F(u)(x, y)]α, 0 ≤ α ≤ 1.

Moreover, for arbitrary 0 ≤ α ≤ γ ≤ 1, we have

(p(x, y))lα − (F (um)(x, y))lα ≤ (p(x, y))lγ − (F (um)(x, y))lγ .
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Taking the limits when m → ∞ and using similar arguments as above, we receive

(p(x, y))lα − (F (u)(x, y))lα ≤ (p(x, y))lγ − (F (u)(x, y))lγ .

By analogous arguments, one has

(p(x, y))rα − (F (u)(x, y))rα ≥ (p(x, y))rγ − (F (u)(x, y))rγ

for all 0 ≤ α ≤ γ ≤ 1.
Therefore, the difference

p(x, y) 
 (−1)Ixyf (x, y, u)

exists for all (x, y) ∈ J . It shows that u ∈ Ĉ(J,RF ) and Ĉ(J,RF ) is a closed subset of the
space C(J,RF ). Since (C(J,RF ), d) is a complete metric space, (Ĉ(J,RF ), d) is also a
complete metric space.

By changing the solution space to Ĉ(J,RF ), we can prove the existence of solution of
type 2 to the Problem (1)–(2).

Theorem 4 Let f be a continuous function satisfying the hypotheses (h1)–(h2) in Theorem
3. Moreover, suppose that the following hypotheses are fulfilled:

(h3) Ĉ(J,RF ) 	= ∅.
(h4) If u ∈ C(J,RF ) satisfies that u ∈ Ĉ(J,RF ), then the Hukuhara difference

p(x, y) 
 (−1)Ixyf (x, y, ν)

also exists for every (x, y) ∈ J , where

ν(x, y) = p(x, y) 
 (−1)Ixyf (x, y, u), (x, y) ∈ J.

Suppose that there exists a (2)-lower solution μ ∈ C2(J,RF ) ∩ Ĉ(J,RF ) for the Problem
(1)–(2). Then the Problem (1)–(2) has an integral solution of type 2 on J .

Furthermore, if the following condition holds:

(h5) For each pair u, v ∈ Ĉ(J,RF ) fixed, there exists ξ ∈ C(J,RF ) an upper or a lower
bound of u, v such that the Hukuhara difference p(x, y) 
 (−1)Ixyf (x, y, ξ) exists
for all (x, y) ∈ J ,

then the Problem (1)–(2) has a unique integral solution of type 2 on J .

Proof By the hypothesis (h3), Ĉ(J,RF ) 	= ∅ and it is clear that, for every u ∈ Ĉ(J,RF ),
the Hukuhara difference p(x, y) 
 (−1)Ixyf (x, y, u) exists for all (x, y) ∈ J . By the
assumption (h4), it is reasonable to build the operator T2 : Ĉ(J,RF ) → Ĉ(J,RF ) defined
by

(T2u)(x, y) = p(x, y) 
 (−1)Ixyf (x, y, u), (x, y) ∈ J.

Similarly to Step 2 in the proof of Theorem 3, we receive from hypotheses (h1)–(h2) that

d∞(f (x, y, ν), f (x, y, η)) ≤ d∞(ν, η)

for all ν ≤ η in RF and (x, y) ∈ J .
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Using analogous arguments as in the proof of (21) and combining with Lemma 1, for all
u ≤ v in Ĉ(J,RF ), we have

d∞((T2u)(x, y), (T2v)(x, y))

= d∞
(
p(x, y) 
 (−1)Ixyf (x, y, u), p(x, y) 
 (−1)Ixyf (x, y, v)

)

≤ d∞(Ixyf (x, y, u), Ixyf (x, y, v))

≤ 1

λ2
Hλ(u, v)(eλx − 1)(eλy − 1),

and it follows that

Hλ(T2u, T2v) ≤ 1

λ2
Hλ(u, v)(1 − e−λa)(1 − e−λb). (22)

Now, assume that u ≤ v in Ĉ(J,RF ). We need to indicate the nondecreasing character
of the operator T2, proving that T2u ≤ T2v. Since u(s, t) ≤ v(s, t) for all (s, t) ∈ J ,
and using the hypothesis of the nondecreasing character of f in the third variable, we have
f (s, t, u(s, t)) ≤ f (s, t, v(s, t)) for all (s, t) ∈ J . It follows from Lemma 5 that

∫ y

0

∫ x

0
f (s, t, u(s, t))dsdt ≤

∫ y

0

∫ x

0
f (s, t, v(s, t))dsdt,

or

(−1)

∫ y

0

∫ x

0
f (s, t, v(s, t))dsdt ≤ (−1)

∫ y

0

∫ x

0
f (s, t, u(s, t))dsdt

for all (x, y) ∈ J . Hence, by Lemma 3, since the differences involved exist, we have

(T2v)(x, y) = p(x, y) 
 (−1)

∫ y

0

∫ x

0
f (s, t, v(s, t))dsdt

≥ p(x, y) 
 (−1)

∫ y

0

∫ x

0
f (s, t, u(s, t))dsdt = (T2u)(x, y)

for all (s, t) ∈ J , and the consequence is that T2 is a nondecreasing operator on Ĉ(J,RF ).
From (22), for an arbitrary strictly increasing altering distance function γ , we have

γ (Hλ(T2u, T2v)) ≤ γ

(
1

λ2
Hλ(u, v)(1 − e−λa)(1 − e−λb)

)

= γ (Hλ(u, v)) −
[
γ (Hλ(u, v)) − γ

(
1

λ2
Hλ(u, v)(1 − e−λa)(1 − e−λb)

)]
.

Denote �(t) = γ (t)−γ
(

1
λ2 (1 − e−λa)(1 − e−λb)t

)
, t ∈ [0, ∞). Then, from Lemma 7,

there exists λ > 0 such that � is in Ĉ([0, ∞)) and T2 satisfies the generalized contractive-
like condition

γ (Hλ(T2u, T2v)) ≤ γ (Hλ(u, v)) − �(Hλ(u, v)) for all u, v ∈ Ĉ(J,RF ) with u ≤ v.

Next, since there exists a (2)-lower solution μ ∈ C2(J,RF )∩ Ĉ(J,RF ) for the Problem
(1)–(2), we prove that μ ≤ T2μ. Note that the difference

(T2μ)(x, y) = p(x, y) 
 (−1)

∫ y

0

∫ x

0
f (s, t, μ(s, t))dsdt

exists for all (x, y) ∈ J , since μ ∈ Ĉ(J,RF ).
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Besides, from 2Dxyμ(x, y) ≤ f (x, y, μ(x, y)), we deduce that
∫ y

0

∫ x

0
2Dxyμ(s, t)dsdt ≤

∫ y

0

∫ x

0
f (s, t, μ(s, t))dsdt

for all (x, y) ∈ J . The previous inequality together with μ(x, 0) ≤ η1(x), μ(0, y) ≤ η2(y),
and μ(0, 0) = η1(0), implies that

μrα(x, y) ≤ μrα(x, 0) + μrα(0, y) − μrα(0, 0) +
∫ y

0

∫ x

0
flα(s, t, μ(s, t))dsdt

≤ (η1)rα(x) + (η2)rα(y) − (η1)rα(0) +
∫ y

0

∫ x

0
flα(s, t, μ(s, t))dsdt,

μlα(x, y) ≤ μlα(x, 0) + μlα(0, y) − μlα(0, 0) +
∫ y

0

∫ x

0
frα(s, t, μ(s, t))dsdt

≤ (η1)lα(x) + (η2)lα(y) − (η1)lα(0) +
∫ y

0

∫ x

0
frα(s, t, μ(s, t))dsdt

for α ∈ [0, 1] and (x, y) ∈ J , which proves that

μ(x, y) ≤ η1(x) + η2(y) 
 η1(0) 
 (−1)

∫ y

0

∫ x

0
f (s, t, μ(s, t))dsdt

= p(x, y) 
 (−1)

∫ y

0

∫ x

0
f (s, t, μ(s, t))dsdt = (T2μ)(x, y)

for all (x, y) ∈ J . Therefore, μ ≤ T2μ in Ĉ(J,RF ).
Because of Lemma 8, since Ĉ(J,RF ) is a closed subspace of C(J,RF ), then

(Ĉ(J,RF ),Hλ) is a complete metric space. Besides, the properties 1) and 2) in Lemma 4
are valid in Ĉ(J,RF ). Then the operator T2 satisfies all the hypotheses of Theorem 2 in
Ĉ(J,RF ). Hence, T2 has a fixed point in Ĉ(J,RF ). The uniqueness of fixed point comes
from the existence of an upper or a lower bound in Ĉ(J,RF ) for each pair of fixed elements
in Ĉ(J,RF ), which comes from (h5). This completes the proof.

Theorem 5 The conclusions of Theorems 3 and 4 are still valid if instead of a (k)-lower
solution, a (k)-upper solution (k = 1, 2) of Problem (1)–(2) is supposed to be exist.

Proof If μ is a (1)-upper solution to the Problem (1)–(2), then

μ(x, y) ≥ η1(x) + η2(y) 
 η1(0) + Ixyf (x, y, μ(x, y)) = (T1μ)(x, y)

for all (x, y) ∈ J , from which it follows that μ ≥ T1μ. Hence, the existence of a unique
integral solution of type 1 for Problem (1)–(2) is derived from Theorem 2. The proof of the
solvability of Problem (1)–(2) with a unique integral solution of type 2 is obtained similarly
by taking a (2)-upper solution μ in Ĉ(J,RF ).

Finally, we prove the existence of solutions to Problem (1)–(2) by applying the
generalized results obtained in Section 2 for the case β ∈ S0.

In the space C(J,RF ), we consider the metric

d(u, v) = sup
(x,y)∈J

{d∞(u(x, y), v(x, y))}.

Due to the compactness of J in R
2, it is easy to see that (C(J,RF ), d) is a complete metric

space.
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For an arbitrary altering distance function η, we denote by Bη the class of functions
ϕ : [0, ∞) → [0, ∞) which satisfy the following conditions:

i) ϕ is monotonic increasing.
ii) ϕ(t) < t for t > 0.

iii) The function β : [0, ∞) → [0, 1) defined as β(t) =
{

ϕ◦η(t)
η(t)

, t > 0,

0, t = 0
is in S0.

Theorem 6 Consider Problem (1)–(2), with a continuous function f satisfying the hypoth-
esis (h1), and suppose that there exist a strictly increasing altering distance function ψ

satisfying ψ(t) ≤ t if t > 0, and ϕ ∈ Bψ such that the following inequality holds

d∞(f (x, y, u(x, y)), f (x, y, v(x, y))) ≤ 1

ab
ϕ (ψ(d∞(u(x, y), v(x, y)))) , (x, y) ∈ J,

(23)
for u ≤ v in C(J,RF ). Then the existence of a (1)-lower solution (or a (1)-upper solution)
μ ∈ C2(J,RF ) for the Problem (1)–(2) provides the existence of a unique integral solution
of type 1 to the Problem (1)–(2).

Proof Consider the operator T1 : (C(J,RF ), d) → (C(J,RF ), d) defined by (18).
Using (h1) and following the same reasoning as in Step 1 of Theorem 3, we obtain the

nondecreasing character of the operator T1 in C(J,RF ).
For all u ≤ v in C(J,RF ), we have, from (23),

d∞((T1u)(x, y), (T1v)(x, y)) = d∞(Ixyf (x, y, u(x, y)), Ixyf (x, y, v(x, y)))

≤
∫ y

0

∫ x

0
d∞(f (s, t, u(s, t)), f (s, t, v(s, t)))dsdt

≤ 1

ab

∫ y

0

∫ x

0
ϕ (ψ(d∞(u(x, y), v(x, y)))) dsdt.

Since d∞(u(x, y), v(x, y)) ≤ d(u, v) for all (x, y) ∈ J , by using the nondecrease property
of ψ and ϕ, we get ψ(d∞(u(x, y), v(x, y))) ≤ ψ(d(u, v)) and

ϕ(ψ(d∞(u(x, y), v(x, y)))) ≤ ϕ(ψ(d(u, v)))

for all (x, y) ∈ J . It follows, for all (x, y) ∈ J , that

d∞((T1u)(x, y), (T1v)(x, y)) ≤ 1

ab
ϕ (ψ(d(u, v)))

∫ y

0

∫ x

0
dsdt

= 1

ab
xyϕ (ψ(d(u, v))) ≤ ϕ (ψ(d(u, v))) .

Thus, for u ≤ v in C(J,RF ),

d(T1u, T1v) ≤ ϕ (ψ(d(u, v))) .

From the nondecreasing character of ψ , we get, for u ≤ v in C(J,RF ),

ψ (d(T1u, T1v)) ≤ ψ (ϕ (ψ(d(u, v)))) ≤ ϕ (ψ(d(u, v)))

= ϕ (ψ(d(u, v)))

ψ(d(u, v))
ψ(d(u, v)) = β(d(u, v))ψ(d(u, v)),
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if d(u, v) > 0, and the inequality is trivially valid if d(u, v) = 0. Here, we have

β(t) =
{

ϕ◦ψ(t)
ψ(t)

if t > 0,

0 if t = 0,

which belongs to S0, by hypothesis.
Finally, let μ ∈ C2(J,RF ) be a (1)-lower solution for the Problem (1)–(2). It is clear

again that μ ≤ T1μ, since μ(x, y) ≤ η1(x)+η2(y)
η1(0)+Ixyf (x, y, μ) = (T1μ)(x, y),
(x, y) ∈ J . Similarly, if there exists a (1)-upper solution μ for the Problem (1)–(2), then we
have μ ≥ T1μ. Note that (C(J,RF ), d) is also regular.

Overall, the operator T1 satisfies all the hypotheses of Theorem 2 in case β ∈ S0. In
consequence, T1 has a fixed point in C(J,RF ). Noticing that every pair of elements of
C(J,RF ) has an upper and a lower bound, it follows that the operator T1 has a unique fixed
point.

Theorem 7 Consider Problem (1)–(2) with f continuous satisfying the hypotheses (h1),
(h3), (h4) and suppose that there exist a strictly increasing altering distance function ψ

satisfying ψ(t) ≤ t if t > 0, and ϕ ∈ Bψ such that the inequality (23) holds for u ≤ v in
C(J,RF ).

Then the existence of a (2)-lower solution (or a (2)-upper solution) μ ∈ C2(J,RF )

∩ Ĉ(J,RF ) for the Problem (1)–(2) provides the existence of a fuzzy integral solution of
type 2 to the Problem (1)–(2).

Furthermore, if the condition (h5) holds, then the Problem (1)–(2) has a unique integral
solution of type 2 on J .

Proof Using analogous arguments for the operator T2 in Theorem 4, we deduce the
existence of a (unique) integral solution of type 2 to the Problem (1)–(2).

Example 1 Denote RF
+ = {z ∈ RF : 0̂ ≤ z}, where 0̂ is defined by 0̂(t) = 1 if t = 0 and

0̂(t) = 0 in other cases. In this example, we consider the following fuzzy partial hyperbolic
equation under generalized Hukuhara derivatives

⎧⎨
⎩

kDxyu = f (x, y, u(x, y)), (x, y) ∈ J = [0, a] × [0, b],
u(x, 0) = 0, x ∈ Ja,

u(0, y) = 0, y ∈ Jb,

(24)

where f : J × RF → RF
+. Note that u(0, 0) = 0 is deduced for a solution.

Theorem 8 Consider f : J × RF → RF
+ continuous and nondecreasing with respect to

the third variable and suppose that, if u ≤ v in C(J,RF ), then

d∞(f (x, y, u(x, y)), f (x, y, v(x, y)))

≤ 1

ab
ln

(
1 + min{d2∞(u(x, y), v(x, y)), d∞(u(x, y), v(x, y))}

)
(25)

for all (x, y) ∈ J . Then Problem (24) has a unique nonnegative fuzzy integral solution of
type 1. In addition to the hypotheses, if (h3) and (h4) are satisfied, then Problem (24) has a
nonnegative integral solution of type 2 (unique if (h5) holds).
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Proof Consider the cone P = {u ∈ C(J,RF ) : u ≥ 0̂}, where we also denote by 0̂
the constant function equal to 0̂ at any point. Obviously, (P, d) is a complete metric space
(and regular). The operator T1 defined as (T1u)(x, y) = Ixyf (x, y, u) is nondecreasing
and maps P into itself since f (x, y, u(x, y)) is a nonnegative continuous function for each
u ∈ P . Besides, T1(0̂) ≥ 0̂ (0̂ is a lower solution). From Theorem 6 with ϕ(t) = ln(1 + t),
ψ(t) = min{t2, t}, we derive the conclusion.

Note that the condition f : J × RF → RF
+ can be relaxed to f : J × RF → RF if

we impose that f (x, y, 0̂) ≥ 0̂ for every (x, y) ∈ J , due to the nondecreasing character of
T1, which yields T1u ≥ T1(0̂) ≥ 0̂ for u ∈ P .

Note also that, in this example, the weak solution of type 2 is sought in the space of
functions u ∈ C(J,RF ) such that u ≥ 0̂ and f (x, y, u(x, y)) is crisp for every (x, y) ∈ J ,
so condition (h4) (and, hence, (h3)) is satisfied if f (x, y, z) is crisp for each (x, y) ∈ J and
z ∈ RF crisp. Under this restriction, (h5) also holds since, given u, v ≥ 0̂, we can take as a
crisp lower bound of u, v the constant function 0̂.

4 Conclusions

In this study, we have firstly presented some new generalized theorems on fixed points
for nondecreasing mappings from a partially ordered metric space to itself. These results
develop some previous results of [3, 14, 27] and admit them as special cases. Secondly,
we have investigated the existence and uniqueness of fuzzy solutions to a boundary value
problem for a class of fuzzy partial hyperbolic equation under generalized Hukuhara deriva-
tives. Via these results, the function placed in the right-hand side of the equation does not
need to be Lipschitz continuous. In spite of this condition, f is only demanded to satisfy a
generalized contractive-like condition. However, a hypothesis of existing a lower or upper
solution of considered problem is required. In real world applications, the use of lower and
upper solutions method is hampered by the difficulty to exhibit such functions. This method
does not require to find a solution of a boundary value problem but find lower and upper
solutions. This replacement reminds us to the Liapunov’s second method. Furthermore, in
many theorems, the assumptions at hand provide lower and upper solutions and their use
simplifies the argument. The questions arise whether it is easy to recognize that a set of
assumptions provides such lower and upper solutions? Is it easy to find them? In general,
there is no clue to finding these solutions. This drawback motivated more works to study
the way to construct the lower as well as upper solutions in differential equations theory.
Some efforts to offer a construction of lower and upper solutions can be seen Lemma 1.5.2
in [15] for initial value problems of first order ordinary differential equations, Chapters VI
to X in [8] for showing how to build in specific cases appropriate lower and upper solutions
of some classes of two points boundary value problems. For partial differential equations,
we can cite here some works [12, 13]. This observation is our primary motivation in future
work for stating conditions that ensure a given function is a lower or an upper solution of
our considered problems.
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ALMOST PERIODIC SOLUTIONS OF PERIODIC LINEAR PARTIAL

FUNCTIONAL DIFFERENTIAL EQUATIONS
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Dedicated to Prof. Nguyen Manh Hung on the occasion of his 60th birthday

Abstract. We study conditions for the abstract periodic linear functional differential equation

ẋ = Ax + F (t)xt + f(t) to have almost periodic with the same structure of frequencies as f . The

main conditions are stated in terms of the spectrum of the monodromy operator associated with

the equation and the frequencies of the forcing term f . The obtained results extend recent results

on the subject. A discussion on how the results could be extended to the case when A depends on

t is given.

1. Introduction

In this paper we consider the existence and uniqueness of almost periodic solutions with the

same structure of spectrum as f in equations of the following form

(1.1)
dx(t)

dt
= Ax(t) + F (t)xt + f(t), x ∈ X, t ∈ R,

where the (unbounded) linear operator A generates a strongly continuous semigroup and the

bounded linear operator F (t) is periodic and is defined as follows, xt ∈ Cr := C([−r, 0],X),

xt(θ) := x(t + θ), r > 0 is a given positive real number, F (t)ϕ :=
∫ 0
−r dη(t, s)ϕ(s), ∀ϕ ∈ Cr,

η(t, ·) : Cr → L(X) is periodic in t, of bounded variation, and supt ‖F (t)‖ <∞, and f is a X-valued

almost periodic function. A discussion on how the results could be extended to the case when A

depends on t periodically will be given at the end of the paper.

In the theory of ordinary differential equations one of the questions that are of interest to many

researchers is when exist periodic solutions to equations of the form

dx

dt
= B(t)x+ f(t), t ∈ R, x ∈ Cn, (F )
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where f is periodic, and B(t) is a n × n-matrix that is periodic with the same period as f(t). A

famous Massera’s Theorem ([11]) says that Eq. (F) has a periodic solution with the same period

as B and f if and only if it has a solution that is bounded on the positive half line. In addition, the

periodic solution is unique if 1 is not an eigenvalue of the monodromy operator. Since then there

have been many efforts to extend this classic result to various classes of equations and functions

(see e.g. [1, 2, 5, 6, 16, 17, 18, 19, 20, 23]). We refer the reader to some recent developments

[5, 8, 19, 20, 23] and their references for more recent information in this direction. We note that

the results on the existence of periodic solutions are usually proved via the existence of fixed points

of the monodromy operator (or, period map) (see e.g. [2, 10, 23]). Among the research methods

used in this direction we note that when f is almost periodic the monodromy operator method is no

longer applicable because the system is no longer periodic. Instead, one uses a new method that is

based on the concept of evolution semigroups associated with the evolutionary processes generated

by the equations. Also, the requirement that the period of the solutions be the same as that of the

forcing term f will be understood as a requirement on the frequencies of the solutions that are not

more than those of f . This justifies the introduction of the concept of spectrum of a function that

allows us to measure the set of frequencies of a function on the real line. As is known, a fundamental

technique of research in the ODE and FDE is variation-of-constants formulas (VCF) in the phase

space. In the case of abstract functional differential equations, the VCF in the phase space is no

longer valid. Instead, a weak version may make sense. In this short paper we will recall briefly

these concepts and related results in the next section. We will present an extension of the Massera’s

Theorem for almost periodic solutions of Eq. (1.1) (Theorems 3.3 and 3.4). We prove that the

condition of existence of bounded solutions could be removed and the equations always have a

unique almost periodic solutions with frequencies as f if the part of spectrum of the monodromy

operator on the unit circle does not intersect the spectrum of f . To our best knowledge the results

obtained in this paper extends some previous ones in [1, 5, 18], and complements many other results

in [1, 15, 16, 17, 19, 22]. In [17] the authors showed that if A generates a compact C0-semigroup the

existence of almost periodic solutions to Eq. (1.1) could be reduced to the finite dimensional case

of ODE, so the problem could be thoroughly studied. The novelty of our results obtained in this

paper is that we study the problem when A generates any C0-semigroup, (and even more generally,

when A is a family of operators that generates a periodic evolutionary process). This makes the

part of spectrum on the unit circle more complicated and the nature of the problem is not of finite

dimension. Finally, we give a discussion on how the obtained results could be extended to the case

when A may depend on time t periodically. In this case without the variation-of-constants in the

phase space the main results are still true though their proofs will be adjusted.

2. Preliminaries

2.1. Notation. Throughout the paper we will use the following notations: N,Z,R,C stand for the

sets of natural, integer, real, complex numbers, respectively. Γ denotes the unit circle in the complex
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plane C. For any complex number z the notation <z stands for its real part. X will denote a given

complex Banach space. Given two Banach spaces X,Y by L(X,Y) we will denote the space of all

bounded linear operators from X to Y. As usual, σ(T ), ρ(T ), R(λ, T ) are the notations of the spec-

trum, resolvent set and resolvent of the operator T . The notations BC(R,X), BUC(R,X), AP (X)

will stand for the spaces of all X-valued bounded continuous, bounded uniformly continuous func-

tions on R and its subspace of almost periodic (in Bohr’s sense) functions, respectively.

2.2. Circular Spectrum of Functions. Below we will introduce a transform of a function g ∈
L∞(R,X) on the real line that leads to a concept of spectrum of a function. This spectrum coincides

with the set of eisp(g) if in addition g is uniformly continuous, where sp(g) denotes the Beurling

spectrum of g. All results mentioned below on the circular spectrum of a function could be found

in [14].

Let g ∈ L∞(R,X). Consider the complex function Sg(λ) in λ ∈ C\Γ defined as

(2.1) Sg(λ) := R(λ, S)g, λ ∈ C\Γ.

Since S is a translation, this transform is an analytic function in λ ∈ C\Γ.

Definition 2.1. The circular spectrum of g ∈ L∞(R,X) is defined to be the set of all ξ0 ∈ Γ

such that Sg(λ) has no analytic extension into any neighborhood of ξ0 in the complex plane. This

spectrum of g is denoted by σ(g) and will be called for short the spectrum of g if this does not

cause any confusion. We will denote by ρ(g) the set Γ\σ(g).

Proposition 2.2. Let {gn}∞n=1 ⊂ L∞(R,X) such that gn → g ∈ L∞(R,X), and let Λ be a closed

subset of the unit circle. Then the following assertions hold:

i) σ(g) is closed.

ii) If σ(gn) ⊂ Λ for all n ∈ N, then σ(g) ⊂ Λ.

iii) σ(Ag) ⊂ σ(g) for every bounded linear operator A acting in BUC(R,X) that commutes

with S.

iv) If σ(g) = ∅, then g = 0.

Proof. For i), ii) and iv) the proofs are given in [14]. For iii) the proof is obvious from the definition

of the circular spectrum. �

Corollary 2.3. Let Λ be a closed subset of the unit circle and F be one of the function spaces

BUC(R,X), AP (X). Then, the set

(2.2) ΛF (X) := {g ∈ F| σ(g) ⊂ Λ}

is a closed subspace of F .
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Lemma 2.4. Let Λ be a closed subset of the unit circle and F be one of the function spaces

BUC(R,X), AP (X). Then, the translation operator S leaves the space ΛF (X) invariant. Moreover,

(2.3) σ(S|ΛF (X)) = Λ.

Below we will recall the concept of Beurling spectrum of a function. We denote by F the Fourier

transform, i.e.

(2.4) (Ff)(s) :=

∫ +∞

−∞
e−istf(t)dt

(s ∈ R, f ∈ L1(R)). Then the Beurling spectrum of u ∈ BUC(R,X) is defined to be the following

set

sp(u) := {ξ ∈ R : ∀ε > 0 ∃f ∈ L1(R),

suppFf ⊂ (ξ − ε, ξ + ε), f ∗ u 6= 0}

where

f ∗ u(s) :=

∫ +∞

−∞
f(s− t)u(t)dt.

The following result is a consequence of the Weak Spectral Mapping Theorem that relates the

circular spectrum and Beurling spectrum of a uniformly continuous function.

Corollary 2.5. Let g ∈ BUC(R,X). Then

(2.5) σ(g) = eisp(g).

2.3. Almost periodic functions. A subset E ⊂ R is said to be relatively dense if there exists

a number l > 0 (inclusion length) such that every interval [a, a + l] contains at least one point of

E. Let f be a continuous function on R taking values in a complex Banach space X. f is said to

be almost periodic in the sense of Bohr if to every ε > 0 there corresponds a relatively dense set

T (ε, f) (of ε-periods ) such that

sup
t∈R
‖f(t+ τ)− f(t)‖ ≤ ε, ∀τ ∈ T (ε, f).

If f is almost periodic function, then (approximation theorem [9, Chap. 2]) it can be approximated

uniformly on R by a sequence of trigonometric polynomials, i.e., a sequence of functions in t ∈ R
of the form

(2.6) Pn(t) :=

N(n)∑
k=1

an,ke
iλn,kt, n = 1, 2, ...;λn,k ∈ R, an,k ∈ X, t ∈ R.

Of course, every function which can be approximated by a sequence of trigonometric polynomials is

almost periodic. Specifically, the exponents of the trigonometric polynomials (i.e., the reals λn,k in
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(2.6)) can be chosen from the set of all reals λ (Fourier exponents) such that the following integrals

(Fourier coefficients)

a(λ, f) := lim
T→∞

1

2T

∫ T

−T
f(t)e−iλtdt

are different from 0. As is known, there are at most countably such reals λ, the set of which will

be denoted by σb(f) and called Bohr spectrum of f . Throughout the paper we will use the relation

sp(f) = σb(f).

If g ∈ BUC(R,X) with countable σ(g), then its Beurling spectrum sp(g) is also countable by

Corollary 2.5. Therefore, if X does not contain any space isomorphic to c0 (the space of all numerical

sequences converging to zero), the function g is almost periodic (see e.g. [9]). If X is convex it does

not contain c0.

2.4. Evolutionary processes and the associated evolution semigroups.

Definition 2.6. Let (U(t, s))t≥s be a two-parameter family of bounded operators in a Banach

space X. Then, it is called an evolutionary process if

i) U(t, t) = I for all t ∈ R,

ii) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r,
iii) The map (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X,

iv) ‖U(t, s)‖ < Neω(t−s) for some positive N,ω independent of t ≥ s .

An evolutionary process is called 1-periodic if

U(t+ 1, s+ 1) = U(t, s), for all t ≥ s.

Recall that for a given 1-periodic evolutionary process (U(t, s))t≥s the following operator

M(t) := U(t, t− 1), t ∈ R

is called monodromy operator (or sometime period map, Poincaré map). Thus we have a family of

monodromy operators. We will denote M := M(0). The nonzero eigenvalues of M(t) are called

characteristic multipliers. An important property of monodromy operators is stated in the following

lemma whose proof can be found in [7, 8].

Lemma 2.7. Under the notation as above the following assertions hold:

i) M(t + 1) = M(t) for all t; characteristic multipliers are independent of time, i.e. the

nonzero eigenvalues of M(t) coincide with those of M ,

ii) σ(M(t))\{0} = σ(M)\{0}, i.e., it is independent of t,

iii) If λ ∈ ρ(M), then the resolvent R(λ,M(t)) is strongly continuous,

iv) If M denotes the operator of multiplication by M(t) in any one of the function spaces

BUC(R,X) or AP (X), then

(2.7) σ(M)\{0} ⊂ σ(M)\{0}.
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Given an evolutionary process (U(t, s))t≥s, the following semigroup (T h)h≥0 is called its associ-

ated evolution semigroup

(2.8) T hg := U(t, t− h)g(t− h), t ∈ R, g ∈ BUC(R,X).

In general, the evolution semigroup associated with a 1-periodic evolutionary process may not

be strongly continuous in the whole space BUC(R,X), but in a closed subspace F that includes

all elements of AP (X) and mild solutions in the above sense (see e.g. [1], [18]). To describe the

evolution semigroup associated with a given (U(t, s))t≥s we consider the following integral equation

(2.9) u(t) = U(t, s)u(s) +

∫ t

s
U(t, ξ)f(ξ)dξ, for all t ≥ s,

where f is an element of BUC(R,X). We recall the following linear operator L : D(L) ⊂
BUC(R,X) → BUC(R,X), where D(L) consists of all solutions of Eq.(2.9) u(·) ∈ BUC(R,X)

with some f ∈ BUC(R,X). If u ∈ D(L), then we define Lu(·) := f . This operator L is well defined

as a singled-valued operator and is obviously an extension of the differential operator d/dt−A (see

e.g. [16]). Below, by abuse of notation, we will use the same notation L to designate its restriction

to closed subspaces of BUC(R,X) if this does not make any confusion.

If (T (t))t≥0 is a C0-semigroup in a Banach space X, then U(t, s) := T (t − s) determines a

1-periodic evolutionary process.

2.5. Mild solutions of Eq.(1.1) and a variation of constants formula.

Definition 2.8. A continuous function u(·) on R is said to be a mild solution on R of Eq.(1.1)

with initial φ ∈ Cr, and is denoted by u(·, s, φ, f) if us = φ and for all t > s

(2.10) u(t) = T (t− s)φ(0) +

∫ t

s
T (t− ξ)[F (ξ)uξ + f(ξ)]dξ.

A function u ∈ BC(R,X) is said to be a mild solution of (1.1) on R if

(2.11) u(t) = T (t− s)u(s) +

∫ t

s
T (t− ξ)[F (ξ)uξ + f(ξ)]dξ, for all t ≥ s.

Below we will denote by F the operator acting on BUC(R,X) defined by the formula

Fu(ξ) := F (ξ)uξ, ∀u ∈ BUC(R,X).

The following results can be verified directly following the lines in [1, 12, 18].

Lemma 2.9. Let (T h)h≥0 be the evolution semigroup associated with a given strongly continuous

semigroup (T (t))t≥s and S denote the space of all elements of BUC(R,X) at which (T h)h≥0 is

strongly continuous. Then the following assertions hold true:

i) Every mild solution u ∈ BUC(R,X) of Eq.(1.1) is an element of S,

ii) AP (X) ⊂ S,
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iii) For the infinitesimal generator G of (T h)h≥0 in the space S one has the relation: Gg = −Lg
if g ∈ D(G).

For bounded uniformly continuous mild solutions x(·) the following characterization is very

useful:

Theorem 2.10. x(·) is a bounded uniformly continuous mild solution of Eq.(1.1) if and only if

Lx(·) = Fx(·) + f .

As is well known, the homogeneous equation associated with (1.1) generates an evolutionary

process (U(t, s))t≥s in the space Cr = C([−r, 0],X). In fact,

(2.12) U(t, s) : Cr 3 φ 7→ ut ∈ Cr,

where u is the solution of the equation

u(τ) = T (τ − s)φ(0) +

∫ τ

s
T (τ − ξ)F (ξ)uξdξ, τ ≥ s,

us = φ.

We introduce a function Γn defined by

Γn(θ) =


(nθ + 1)I, −1/n ≤ θ ≤ 0

0, θ < −1/n,

where n is any positive integer and I is the identity operator on X. Since the evolutionary process

(U(t, s))t≥s is strongly continuous, the Cr-valued function U(t, s)Γnf(s) is continuous in s ∈ (−∞, t]
whenever f ∈ BC(R,X).

The following theorem, whose proof could be found in [17], is a variation of constant formula for

solutions of (1.1) in the phase space Cr:

Theorem 2.11. The segment ut(s, φ; f) of solution u(·, s, φ, f) of (1.1) satisfies the following

relation in Cr:

(2.13) ut(s, φ; f) = U(t, s)φ+ lim
n→∞

∫ t

s
U(t, ξ)Γnf(ξ)dξ, t ≥ s.

Moreover, the above limit exists uniformly for bounded |t− s|.

3. Existence of almost periodic solutions of Eq.(1.1)

The result below is an upper estimate of the spectrum of a mild solution to (1.1) that is a key

to understand the behavior of a bounded and uniformly continuous mild solution of (1.1).
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Lemma 3.1. Let u be a bounded and uniformly continuous mild solution of the equation (1.1).

Then, the following estimate holds

(3.1) σ(u) ⊂ σΓ(M) ∪ σ(f).

where σΓ(M) := {z ∈ C : |z| = 1, z ∈ σ(M)}.

Proof. By the formula (2.13)

ut = U(t, t− 1)ut−1 + lim
n→∞

∫ t

t−1
U(t, s)Γnf(s)ds,(3.2)

and the limit exists uniformly for all bounded t. First, as f is uniformly continuous and bounded

we can see that the function

(3.3) A : R 3 t 7→ lim
n→∞

∫ t

t−1
U(t, s)Γnf(s)ds ∈ Cr

is also bounded and uniformly continuous. We can check easily the valadity of the identity

λR(λ, S)S(−1) = R(λ, S) + S(−1),

for any |λ| 6= 1, where S(t) stands for the translation group, and S := S(1). Note that the operator

M of multiplication by M(t) commutes with S since the evolutionary process (U(t, s))t≥s is 1-

periodic. Below we will denote by ω the function R 3 t 7→ ut ∈ Cr. Then, from the identity (3.2)

one has (for all λ 6= 0 and |λ| 6= 1)

λR(λ, S)ω = λR(λ, S)MS(−1)ω + λR(λ, S)A.

Therefore,

λR(λ, S)ω −MR(λ, S)ω = MS(−1)ω + λR(λ, S)A,

(λ−M)R(λ, S)ω = MS(−1)ω + λR(λ, S)A.

As shown in [14, Lemma 5.3] for each fixed n ∈ N

σ(Gnf) ⊂ σ(f),

where

Gnf(t) :=

∫ t

t−1
U(t, s)Γnf(s)ds.

As the limit in the formula (2.13) is uniform in t we can see that σ(A) ⊂ σ(f). Finally, if

λ0 6∈ (σΓ(M) ∪ σ(f)), then near λ0 the following holds

R(λ, S)ω = R(λ,M)(MS(−1)ω + λR(λ, S)A).(3.4)

This shows that the complex function R(λ, S)ω is defined as an analytic function in a neighborhood

of λ0.

We will show further that this yields that the function R(λ, S)ω(0) is also defined and analytic

in a neighborhood of λ0. In fact, before we proceed that we introduce p : Cr → X defined as
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p(w) := w(0). If so, with our above notations p ◦ω = u, and p ◦Skω = Sku for all k ∈ N. If |λ| > 1

we have

p ◦R(λ, S)ω = λ−1p ◦ (I − S/λ)−1ω

= λ−1p ◦

( ∞∑
k=0

Sk/λk

)
ω

= λ−1

( ∞∑
k=0

Sk/λk

)
u

= R(λ, S)u.

Note that for simplicity we make an abuse of notation by denoting also by S the translation in the

function space BUC(R,X) as well as in BUC(R, Cr). Similarly, for λ 6= 0 and |λ| < 1 we can show

that p ◦ R(λ, S)ω = R(λ, S)u. Hence, the transform R(λ, S)u of the function u has p ◦ R(λ, S)ω

as an analytic extension in a neighborhood of λ0. This shows that (3.1) holds true, finishing the

proof of the lemma. �

Next, we recall some concepts and results in [20]. Note that although the proofs could be found

in [20] we would like to give some new ones that seem to be simpler and would be more convenient

to the reader.

Let us consider the subspace N ⊂ BUC(R,X) (or AP (X), respectively) consisting of all functions

v ∈ BUC(R,X) (or AP (X), respectively) such that

(3.5) σ(v) ⊂ S1 ∪ S2 ,

where S1, S2 are disjoint closed subsets of the unit circle Γ.

Lemma 3.2. Under the above notations and assumptions the function space N can be split into

a direct sum N = N1 ⊕ N2 such that v ∈ Ni if and only if σ(v) ⊂ Si for i = 1, 2. Moreover, any

bounded linear operator in BUC(R,X) (or AP (X), respectively), that commutes with the translation

S, leaves invariant N as well as Nj, j = 1, 2.

Proof. By Lemma 2.4 and the Riezs spectral projection the space N could be split into the direct

sum N = N1 ⊕N2 with N1 is the image of the projection

P :=
1

2iπ

∫
γ
R(λ, S|N )dλ ,

where γ is a positively oriented contour enclosing S1 and disjoint from S2. We have

σ(S|N1) ⊂ S1; σ(S|N2) ⊂ S2.

Therefore, if v ∈ Ni, (i = 1, 2) by the definition of the circular spectrum it is easy to see that

σ(v) ⊂ σ(S|Ni) ⊂ Si.
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The second claim is obvious as any bounded linear operator in BUC(R,X) (or AP (X), respectively)

that commutes with S must commute with P , so it leaves the spaces N ,N1,N2 invariant. �

Theorem 3.3. (Decomposition Theorem) Let the following condition be satisfied

i) Eq.(1.1) has a mild solution u ∈ BUC(R,X) (or in AP (X), respectively)

ii)

(3.6) σΓ(M) \σ(f) be closed.

Then there exists a mild solution w of Eq.(1.1) in BUC(R,X) (or AP (X), respectively) such that

(3.7) σ(w) ⊂ σ(f),

that is unique if

(3.8) σΓ(M) ∩ σ(f) = ∅.

Proof. By Lemma 3.1

(3.9) σ(u) ⊂ σΓ(M) ∪ σ(f).

Let us denote by Λ the set σΓ(M)∪σ(f), S1 the set σ(f) and S2 the set σΓ(M) \ σ(f), respectively.

Thus, these two sets are closed and disjoint subsets of the unit circle Γ, so by Lemma 3.2 there

exists the projection P from N onto N1 which is commutative with F and T h. Since u is a mild

solution of (1.1) if and only if u ∈ D(L) and

(3.10) Lu = Fu+ f,

by Lemma 2.9 we have

Lu = −Gu,

so this yields

PLu = −PGu

= −P lim
h→0+

T hu− u
h

= − lim
h→0+

P
T hu− u

h

= − lim
h→0+

T hPu− Pu
h

= −GPu

= LPu.

Since Pf = f and P commutes with F ,

PLu = PFu+ Pf

LPu = FPu+ f.
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By Theorem 2.10 this shows w := Pu ∈ N1 is a mild solution of Eq. (1.1) that has circular

spectrum σ(Pu) ⊂ S1 = σ(f). Next, if condition (3.8) holds, then the uniqueness of such a

solution in N1 is clear. In fact, suppose that there is another mild solution v ∈ BUC(R,X) (or

in AP (X), respectively) to Eq.(1.1) such that σ(v) ⊂ σ(f), then w − v is a mild solution of the

homogeneous equation corresponding to Eq.(1.1), so σ(w − v) ⊂ σΓ(M). As σ(v) ⊂ σ(f), by (3.8)

this yields that σ(w − v) = ∅, and because of this w − v = 0. This completes the proof of the

theorem. �

Recall that the set of all real numerical sequences that are convergent to zero is a Banach space

with sup-norm that is denoted by c0. As a consequence of the above theorem we obtain the following

main result of the paper.

Theorem 3.4. Assume that Eq. (1.1) has a bounded uniformly continuous mild solution u, and

Condition (3.6) of Theorem 3.3 is satisfied. Moreover, let the space X not contain c0 and σ(f) be

countable. Then there exists an almost periodic mild solution w to Eq.(1.1) such that σ(w) ⊂ σ(f)

. Furthermore, if (3.8) holds, then such a solution w is unique.

Proof. The proof is obvious in view of [9, Theorem 4, p.92] and Theorem 3.3. �

Below we will relax the condition on the existence of a bounded uniformly continuous mild

solutions when a condition (3.8) is satisfied.

Theorem 3.5. Under the above notation assume that

(3.11) σΓ(M) ∩ σ(f) = ∅

holds. Then there exists a unique almost periodic mild solution w to Eq. (1.1) such that σ(w) ⊂
σ(f).

Proof. Consider the difference equation

(3.12) w(t) = M(t)w(t− 1) + g(t), t ∈ R,

where for all t ∈ R

M(t) := U(t, t− 1),

g(t) := lim
n→∞

∫ t

t−1
U(t, s)Γnf(s)ds.

First, we note that g is almost periodic function taking values in Cr. In fact, for each n ∈ N the

function

Fn : R 3 t 7→ Γnf(t) ∈ Cr
is an almost periodic function with σ(Fn) ⊂ σ(f). Next, by [14, Lemma 5.3] the function

F : R 3 t 7→
∫ t

t−1
U(t, ξ)Fn(ξ)dξ
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is also almost periodic, and σ(F ) ⊂ σ(Fn) ⊂ σ(f). Therefore, g is almost periodic and σ(g) ⊂ σ(f).

By [14, Theorem 4.7] if (3.11) holds there exists a unique almost periodic solution w to (3.12)

such that σ(w) ⊂ σ(f). Our next goal is to prove that there exists a mild solution u of Eq. (1.1)

such that un = w(n) for all n ∈ Z. For each fixed n ∈ Z consider the unique mild solution to Eq.

(1.1) on the interval [n, n+ 1] that is generated by the equation

u(t) = T (t− n)[w(n)](0) +

∫ t

n
T (t− η)[F (η)uη + f(η)]dη, t ∈ [n, n+ 1],

un = w(n).

This solution exists uniquely on the interval [n, n+1] for each n ∈ Z. By the Variation-of-Constants

formula (2.13)

(3.13) ut = U(t, n)w(n) + lim
m→∞

∫ t

n
U(t, s)Γmf(s)ds, t ≥ n.

Therefore, if t = n+ 1 we have that un+1 = w(n+ 1). This means that we obtain a mild solution u

of Eq. (1.1) that is defined on each interval [n, n+ 1] by (3.13) so that it coincides with w at each

integer n. Therefore, the sequence w(n) = un is almost periodic. This yields that u(n) = un(0) is

an almost periodic sequence. We are going to prove that u is almost periodic function. The proof

will follow a well known idea in [4] that are used in [1, 5] as well. For the completeness we present

it below.

As w(·) and f are almost periodic, so is the function g : R 3 t 7→ (w(t), f(t)) ∈ C × X (see

[9, p.6]). As is known, the sequence {g(n)} = {(w(n), f(n))} is almost periodic. Hence, for every

positive ε the following set is relatively dense (see [4, p. 163-164])

T := Z ∩ T (g, ε),

where T (g, ε) := {τ ∈ R : supt∈R ‖g(t + τ) − g(t)‖ < ε}, i.e., the set of ε periods of g. Hence, for

every m ∈ T we have

‖f(t+m)− f(t)‖ < ε, ∀t ∈ R,

‖w(n+m)− w(n)‖ < ε, ∀n ∈ Z.

Since u is a solution to Eq.(2.10), for 0 ≤ s < 1 and all n ∈ N, we have

‖u(n+m+ s)− u(n+ s)‖ ≤ ‖T (s)‖ · ‖w(n+m)− w(n)‖

+

∫ s

0
‖T (s− ξ)‖

[
sup
t
‖F (t)‖ · ‖un+m+ξ − un+ξ‖

+‖f(n+m+ ξ)− f(n+ ξ)‖
]
dξ

≤ Neω‖w(n+m)− w(n)‖+Neω
∫ s

0

[
‖F‖

×‖un+m+ξ − un+ξ‖+ ‖f(n+m+ ξ)− f(n+ ξ)‖
]
dξ.
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Hence

‖xn+m+s − xn+s‖ ≤ Neω‖w(n+m)− w(n)‖

+Neω
∫ s

0

[
‖F‖ · ‖xn+m+ξ − xn+ξ‖+ ‖f(n+m+ ξ)− f(n+ ξ)‖

]
dξ.

Using the Gronwall inequality we can show that

(3.14) ‖un+m+s − un+s‖ ≤ εM,

where M is a constant which depends only on supt ‖F (t)‖, N, ω. This shows that m is a εM -period

of the function x(·). Finally, since T is relatively dense for every ε, we see that x(·) is an almost

periodic mild solution of Eq.(1.1). Once the almost periodicity of u was proved we are are able to

apply the Decomposition Theorem 3.3 to finish the proof of this theorem. �

4. Discussion: Variation-of-constant formula in the phase space and further

extension

Our results in the previous section could be extended to a bit more general case of periodic

equations. Namely, let us consider equations of the form

(4.1)
du

dt
= A(t)u+ F (t)ut + f(t), t ∈ R,

where the family of (possibly unbounded) operators A(t) generates a 1-periodic evolutionary process

and F (t) is a 1-periodic family of bounded operators as in (1.1), and f is an almost periodic function

taking values in X.

The presentation of our proofs of the results in the previous section relies on the variation-of-

constants formula (2.13) in the phase space Cr that allows us to easily outline the ideas. In turn,

we have made use of the formula available in the case when A(t) is independent of t although our

results could be true even if A(t) may depend on t periodically with the same period as that of

F (t).

As shown in [5, Lemma 4.1], there is a way to get around with the variation-of-constant formula

(2.13). Below is a version of Lemma 4.1 from [5] that could be used to extend our results in the

previous section to the general case of equations (4.1). We consider the following Cauchy Problem

for each given t ∈ R

y(ξ) =

∫ ξ

t−1
V (ξ, η)[F (η)yη + f(η)]dη, ξ ≥ t− 1,

yt−1 = 0 ∈ Cr,

where (V (t, s))t≥s is a 1-periodic evolutionary process generated by the homogeneous equation

du

dt
= A(t)u,

Let us define v : R 3 t 7→ yt ∈ Cr. We define the operator L : BUC(R,X) 3 f 7→ v.
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Lemma 4.1. The operator L is well defined operator in BUC(R,X) that is linear and continuous

and commutes with the translation S.

Proof. Since the proof could be easily adapted from that of [5, Lemma 4.1] details will be omitted.

�

From the definition of the function v we can verify that if u is a mild solution of (1.1) on the

real line, then

ut = U(t, t− 1)ut−1 + v(t), t ∈ R.
Therefore, the circular spectrum of u could be estimated as below

Lemma 4.2.

σ(u) ⊂ σΓ(M) ∪ σ(f).

Proof. Since L is linear, bounded and commutes with S we have σ(v) = σ(Lf) ⊂ σ(f). The rest

of the proof is similar to that of Lemma 3.1. �

All main results of the previous section, Theorems 3.3, 3.4 and 3.5 will follow if we adjust the

technique of decomposition as discussed in [20] to periodic evolutionary processes.
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We study the degenerate elliptic system of the form

{
−ΔGu = vp

−ΔGv = uq
on R

N = R
N1 × R

N2 ,

where ΔG := Δx + |x|2αΔy is the Grushin operator, α ≥ 0 and p ≥ q > 1. We 
establish some Liouville type results for stable solutions of the system. In particular, 
we prove the comparison principle – a crucial step to establish such results. As 
consequences, we obtain a Liouville type theorem for the scalar equation and provide 
a counterpart of the previous result in C. Cowan (2013) [7].

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the Liouville type theorem for stable classical solutions of the semilinear degenerate 
elliptic system

{
−ΔGu = vp

−ΔGv = uq
in R

N = R
N1 × R

N2 , (1.1)

where ΔGu = Δxu + |x|2αΔyu is the Grushin operator, Δx and Δy are Laplace operators with respect to 
x ∈ R

N1 and y ∈ R
N2 . Here we always assume that α ≥ 0 and p ≥ q > 1. Recall that Gα is elliptic for |x| �= 0

and degenerates on the manifold {0} × R
N2 . This operator was introduced in [16] (see also Baouendi [1]) 
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and has attracted the attention of many mathematicians. In the special case α = 1, this operator is close 
related to the Heisenberg Laplacian in Hn = C

n × R (see e.g., [3,4]).
We start by noting that, in the case α = 0, the system (1.1) is reduced to the Lane–Emden system

{
−Δu = vp

−Δv = uq
in R

N , (1.2)

which has received considerably attention in the last decade (see e.g., [22,27,26,29,7,13] and references 
therein). For this system, the so-called Lane–Emden conjecture says that there has no positive classical 
solution if and only if the pair (p, q) lies below the Sobolev critical hyperbola, i.e.,

1
p + 1 + 1

q + 1 > 1 − 2
N

.

So far, this conjecture has been proved for the case N ≤ 4, see e.g., [22,27,26,29]. When N ≥ 5, there 
have been some partial results concerning the nonexistence of positive classical solution, see [29,5,21]. For 
the class of positive radial solutions, the Lane–Emden conjecture was solved by Mitidieri [22], Serrin and 
Zou [28].

Recently, the Liouville type theorem for a special class of solutions – the so-called stable solutions – 
has been studied by many mathematicians, see [12,30,9,11] for Lane–Emden equation and [7,13,18,19] for 
Lane–Emden system. In particular, Cowan [7] has obtained the following result.

Theorem A. (Cowan [7])

i) Suppose 2 < q ≤ p and

N − 2 − 4p + 4
pq − 1

⎛
⎜⎝

√
pq(q + 1)

p + 1 +

√√√√pq(q + 1)
p + 1 −

√
pq(q + 1)

p + 1

⎞
⎟⎠ < 0. (1.3)

Then there is no positive stable solution of (1.2). In particular, there is no positive stable solution of 
(1.2) for any 2 ≤ q ≤ p if N ≤ 10.

ii) Suppose 1 < q ≤ 2, 
√

pq(q+1)
p+1 −

√
pq(q+1)

p+1 −
√

pq(q+1)
p+1 < q

2 and (1.3). Then there is no positive stable 

solution of (1.2).

The main tools in [7] are comparison principle, integral estimates via stability assumption and boostrap 
argument. This result was then partially extended in [19,18,17] to the case of weighted Lane–Emden system.

We now turn to the general case α ≥ 0. It is well known that when α > 0, the operator ΔG belongs to the 
wide class of subelliptic operators studied by Franchi et al. in [14] (see also [3,4]). Let us recall some related 
results for the scalar version of (1.1), i.e., for the equation −ΔGu = up. The Liouville type theorem has 
been recently proved by Monticelli [24] for nonnegative classical solutions, and by Yu [31] for nonnegative 
weak solutions. The optimal condition on the range of the exponent is p < Nα+2

Nα−2 , where

Nα := N1 + (1 + α)N2

is called the homogeneous dimension. The main tool in [24,31] is the Kelvin transform combined with 
technique of moving planes. Before that, Dolcetta and Cutrì [10] established the Liouville-type theorem for 
nonnegative super-solutions under the condition p ≤ Nα

Nα−2 (see also [8]). However, to our best knowledge, 
there has not any work treating the system (1.1) for the case α > 0.
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The purpose of this paper is to classify the stable solutions of (1.1). Before stating our main results, let 
us recall the definition of such solutions motivated by [23], see also [7,13].

Definition. A positive solution (u, v) ∈ C2(RN ) ×C2(RN ) of (1.1) is called stable if there are positive smooth 
functions ξ, η such that

{
−ΔGξ = pvp−1η

−ΔGη = quq−1ξ
in R

N . (1.4)

Our first result concerning the classification of stable solutions of (1.1) is the following.

Theorem 1.1.

i) Suppose that 4
3 < q ≤ p and

Nα < 2 + 4p + 4
pq − 1

⎛
⎜⎝

√
pq(q + 1)

p + 1 +

√√√√pq(q + 1)
p + 1 −

√
pq(q + 1)

p + 1

⎞
⎟⎠ . (1.5)

Then there is no stable positive solution of (1.1). In particular, the assertion is true if Nα ≤ 10.
ii) In the case 1 < q ≤ max(4

3 , p), in addition to (1.5), we assume that

√
pq(q + 1)

p + 1 −

√√√√pq(q + 1)
p + 1 −

√
pq(q + 1)

p + 1 <
q

2 . (1.6)

Then the system (1.1) has also no stable positive solution.

Notice immediately that Theorem A is a direct consequence of Theorem 1.1 when α = 0.
In the above theorem, one sees that in the case 1 < q ≤ max( 4

3 , p), there is additional assumption (1.6)
due to the restriction of technique. Motivated by the idea in [17] concerning the inverse comparison principle, 
we obtain the second result without assumption (1.6).

Theorem 1.2. Suppose that 1 < q ≤ max(4
3 , p) and

Nα < 2 +
(

2 + 2(q + 1)
pq − 1 + 4(2 − q)

p + q − 2

) ⎛
⎜⎝

√
pq(q + 1)

p + 1 +

√√√√pq(q + 1)
p + 1 −

√
pq(q + 1)

p + 1

⎞
⎟⎠ . (1.7)

Then there is no bounded stable positive solution of (1.1). In particular, the system (1.1) has no bounded 

stable positive solution if Nα ≤ 2 + 2
(√

2 +
√

2 −
√

2
)

� 6.359.

As consequences, let us consider the scalar equation

−ΔGu = up in R
N = R

N1 × R
N2 . (1.8)

Recall that, see e.g. [11], a classical solution of (1.8) is called stable if
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p

∫
RN

up−1φ2dxdy ≤
∫
RN

|∇Gφ|2dxdy, for all φ ∈ C1
c (RN ). (1.9)

In particular, it follows from (2.1) when p = q, u = v, that (1.9) is a consequence of the notion of stability 
for the system.

The following is a corollary of Theorems 1.1 and 1.2.

Corollary 1.3. Assume p > 1 and

Nα − 2 − 4
p − 1(p +

√
p2 − p) < 0. (1.10)

Then the problem (1.8) has no stable positive solution. In particular, there is no stable positive solution of 
(1.8) if Nα ≤ 10.

Remark 1.4. In the case 1 < p ≤ 4
3 , the non-existence of bounded stable solutions of (1.8) with α = 0

was proved in [17]. This result is improved in our Corollary 1.3 without restriction on the boundedness of 
solutions.

To prove Theorems 1.1 and 1.2, we borrow crucially the idea of Cowan [7] who established Theorem A. 
The key in the proof is the comparison principle and nonlinear integral estimates. The former was proved 
by Souplet [29] (see also Bidaut-Véron [2] for the proof in bounded domain with additional assumption), 
and it is shown to be very useful to study qualitative properties of solutions of elliptic system, see e.g., 
[13,7,18,25]. However, the techniques used to prove the comparison principle in the previous works for the 
Laplace operator do not seem applicable to the system (1.1) because the operator ΔG is no longer symmetry 
and it degenerates on the manifold {0} × R

N2 . Then, in this paper, we establish the comparison principle 
for Grushin operators by developing the idea in [6]. In addition, the L1-estimate to the boostrap iteration 
in [7] does not work in the case of Grushin operator, we instead switch to the L2-estimate in the boostrap 
argument. We also employ the idea in [17] to prove the “inverse” comparison principle which is crucial to 
handle the case 1 < q ≤ 4

3 . Remark also that the method used in the present paper can be applied to 
study the weighted systems, and to more general class of degenerate operator, such as the Δλ operator (see 
[15,20]) of the form

Δλ :=
N∑

i=1
∂xi

(λ2
i ∂xi

), λ = (λ1, . . . , λN ) : RN → R
N .

Here λi : RN → R, i = 1, ..., N are nonnegative continuous functions satisfying some properties such that 
Δλ is homogeneous of degree two with respect to a group dilation in RN .

We finish this section by describing briefly outline of the proof. Suppose that (u, v) is a stable positive 
solution of (1.1).

Step 1. From the definition, we give a stability criterion under the integral form.

√
pq

∫
RN

v
p−1

2 u
q−1

2 φ2dxdy ≤
∫
RN

|∇Gφ|2dxdy, for all φ ∈ C1
c (RN ),

where ∇G := (∇x, |x|α∇y) denotes the Grushin gradient.
Step 2. Establish the comparison principle

vp+1

p + 1 ≤ uq+1

q + 1
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without assumptions on the boundedness and the stability of solutions, and the inverse comparison principle

u ≤ ‖v‖
p−q
q+1
∞ v

for bounded solutions.
Step 3. Let θ = pq(q+1)

p+1 and 
√

θ −
√

θ −
√

θ < t <
√

θ +
√

θ −
√

θ. Using the comparison principle we 
prove

∫
RN

vpu2t−1φ2dxdy ≤ C

∫
RN

u2t
(
|∇Gφ|2 + |ΔGφ|φ

)
dxdy.

for all φ ∈ C2
c (RN ; [0, 1]). Moreover, for bounded solutions in the case 1 < q ≤ max(p; 43 ), we obtain

∫
BR×BR1+α

u2dxdy ≤ CRNα−2− 2(q+1)
pq−1 − 4(2−q)

p+q−2 ,

where BR (resp. BR) denotes the ball of radius R centered at the origin of RN1 (resp. RN2).
Step 4. We finally use L2-estimates for Grushin operator and apply the bootstrap iteration to obtain the 

desired results.
The paper is organized as follows. In Section 2, we establish some technical lemmas. The proof of Theo-

rems 1.1, 1.2 and Corollary 1.3 are given in Section 3.

2. Some technical lemmas

In this section, we shall prove some auxiliary results concerning the system (1.1). We first establish a 
stability inequality.

Lemma 2.1. Assume that (u, v) is a positive stable solution of the system (1.1). Then for φ, ψ ∈ C1
c (RN ), 

we have

√
pq

∫
RN

v
p−1

2 u
q−1

2 |φψ|dxdy ≤ 1
2

∫
RN

(|∇Gφ|2 + |∇Gψ|2)dxdy.

In particular, if ψ = φ then we have

√
pq

∫
RN

v
p−1

2 u
q−1

2 φ2dxdy ≤
∫
RN

|∇Gφ|2dxdy. (2.1)

Proof. We follow the idea in [7,13]. Let φ, ψ ∈ C1
c (RN ). Multiplying the first equation in (1.4) by φ2

ξ we get

−
∫
RN

ΔGξ.
φ2

ξ
dxdy =

∫
RN

pvp−1η
φ2

ξ
dxdy.

Using the integration by parts and Young’s inequality 2ab − b2 ≤ a2 to obtain

−
∫
RN

ΔGξ.
φ2

ξ
dxdy =

∫
RN

(
2φ

ξ
∇Gφ · ∇Gξ − |∇Gξ|2 φ2

ξ2

)
dxdy ≤

∫
RN

|∇Gφ|2dxdy.
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Consequently,
∫
RN

pvp−1η
φ2

ξ
dxdy ≤

∫
RN

|∇Gφ|2dxdy. (2.2)

By the same argument, we also have
∫
RN

quq−1ξ
ψ2

η
dxdy ≤

∫
RN

|∇Gψ|2dxdy. (2.3)

Finally, adding (2.2), (2.3) and using again the Young inequality for the left hand side, we obtain the desired 
result. �

In what follows, the constant C does not depend on a positive parameter R and may change from line 
to line. The following lemma is more or less known, we provide here the proof because we couldn’t find a 
satisfactory one in the literature.

Lemma 2.2. Suppose that (u, v) is a positive solution of (1.1) with p ≥ q > 1. Then, for R > 0 there exists 
C > 0 independent of R such that ∫

BR×BR1+α

vpdxdy ≤ CRNα−2− 2(p+1)
pq−1 , (2.4)

and ∫
BR×BR1+α

uqdxdy ≤ CRNα−2− 2(q+1)
pq−1 . (2.5)

Proof. Let χj ∈ C∞
c (R; [0, 1]), j = 1, 2 such that χj = 1 on [−1, 1] and χj = 0 outside [−21+(j−1)α, 21+(j−1)α].

For R > 0, put ϕR(x, y) = χ1( |x|
R )χ2( |y|

R1+α ). Then, there exists C > 0 independent of R such that

|∇xϕR| ≤ C

R
, |∇yϕR| ≤ C

R1+α
,

|ΔxϕR| ≤ C

R2 , |ΔyϕR| ≤ C

R2(1+α) .

Let m ≥ 2 be a fixed constant which will be chosen sufficiently large later on. Multiplying the first equation 
in (1.1) by ϕm

R and integrating over B2R × B(2R)1+α to arrive at
∫

B2R×B(2R)1+α

−ΔGuϕm
R dxdy =

∫
B2R×B(2R)1+α

vpϕm
R dxdy. (2.6)

On the other hand, using the integration by parts and Hölder’s inequality we get∫
B2R×B(2R)1+α

−ΔGuϕm
R dxdy ≤ Cm

R2

∫
B2R×B(2R)1+α

uϕm−2
R dxdy

≤ CmR
Nα
q′ −2

⎛
⎜⎝ ∫

B2R×B(2R)1+α

uqϕ
(m−2)q
R dxdy

⎞
⎟⎠

1
q

, (2.7)
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where 1
q + 1

q′ = 1. Combining (2.6) and (2.7) to obtain

∫
B2R×B(2R)1+α

vpϕm
R dxdy ≤ CmR

Nα
q′ −2

⎛
⎜⎝ ∫

B2R×B(2R)1+α

uqϕ
(m−2)q
R dxdy

⎞
⎟⎠

1
q

. (2.8)

The same argument also yields, for k ≥ 2, that

∫
B2R×B(2R)1+α

uqϕk
Rdxdy ≤ CkR

Nα
p′ −2

⎛
⎜⎝ ∫

B2R×B(2R)1+α

vpϕ
(k−2)p
R dxdy

⎞
⎟⎠

1
p

, (2.9)

where 1
p + 1

p′ = 1.
Note that pq > 1, then we choose k = (m − 2)q and m large such that (k − 2)p = ((m − 2)q − 2)p > m. 

Hence, (2.8) and (2.9) give

∫
B2R×B(2R)1+α

vpϕm
R dxdy ≤ CmR

Nα
q′ −2+ Nα

qp′ − 2
q

⎛
⎜⎝ ∫

B2R×B(2R)1+α

vpϕm
R dxdy

⎞
⎟⎠

1
pq

. (2.10)

Therefore, (2.4) is deduced from (2.10) and a simple computation. Similarly, (2.5) follows from (2.4) and 
(2.9). �

By interpolation argument, we also have

Corollary 2.3. Under the assumptions of Lemma 2.2, for 0 ≤ t < p, 0 ≤ τ < q, there is C > 0 independent 
of R such that

∫
BR×BR1+α

vtdxdy ≤ CRNα− 2(q+1)
pq−1 t,

and ∫
BR×BR1+α

uτ dxdy ≤ CRNα− 2(p+1)
pq−1 τ .

We next generalize the comparison property in [29,6,2] for the system (1.1) without stability assumption.

Lemma 2.4. Suppose that (u, v) is a smooth positive solution of (1.1) with 1 < q ≤ p. Then there holds

vp+1

p + 1 ≤ uq+1

q + 1 . (2.11)

Proof. Let σ = q+1
p+1 ≤ 1 and l = σ− 1

p+1 . The inequality (2.11) is equivalent to

v ≤ luσ. (2.12)

Put w = v − luσ. A simple computation gives
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Δxw = Δxv − lσΔxu.uσ−1 − lσ(σ − 1)|∇xu|2uσ−2,

|x|2αΔyw = |x|2α
(
Δyv − lσΔyu.uσ−1 − lσ(σ − 1)|∇yu|2uσ−2)

.

Therefore,

ΔGw = ΔGv − lσΔGu.uσ−1 − lσ(σ − 1)|∇Gu|2uσ−2

≥ ΔGv − lσΔGu.uσ−1 = −uq + lσuσ−1vp

= uσ−1 (
−uq+1−σ + lσvp

)
= uσ−1

((v

l

)p

− (uσ)p
)

.

(2.13)

We now prove (2.12) by contradiction. Suppose that M = sup
RN w > 0 (M ≤ +∞).

Case 1: the supremum of w is attained at infinity.
Choose the cut-off function χ ∈ C∞

c (RN ; [0, 1]) and let φ(x, y) = χm(x, y). Here m > 0 will be chosen 
later. Since ∇χ and Δχ are bounded, there is a constant C > 0 such that

|Δφ| ≤ Cφ
m−2

m ,
|∇φ|2

φ
≤ Cφ

m−2
m . (2.14)

Let φR(x, y) = φ( x
R , y

R1+α ), wR = φRw then

sup
RN

wR(x, y) = max
RN

wR(x, y) → M as R → ∞. (2.15)

Take (xR, yR) such that maxRN wR(x, y) = wR(xR, yR). This implies that

∇GwR(xR, yR) = 0, ΔGwR(xR, yR) ≤ 0. (2.16)

In what follows, all the estimates are taken at the point (xR, yR). First, using ∇wR = 0 at (xR, yR) we have

0 = ∇GwR = ∇GφR w + φR ∇Gw.

Thus,

∇Gw = −φ−1
R ∇GφR w.

Since ΔGwR ≤ 0 at the point (xR, yR), we obtain

0 ≥ ΔGwR = ΔGφRw + 2∇GφR · ∇Gw + φRΔGw.

Hence,

φRΔGw ≤ (2φ−1
R |∇GφR|2 − ΔGφR)w. (2.17)

Combining (2.14) and (2.17), one has

φRΔGw ≤ C

R2 φ
m−2

m

R w. (2.18)

Recall that v − luσ = w. Then for w > 0, it is easy to see that

vp

wp
− (luσ)p

wp
≥ 1 or equivalently (v

l
)p − (uσ)p ≥ wp

lp
. (2.19)
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It follows from (2.13), (2.18) and (2.19) that

φRuσ−1wp ≤ C

R2 φ
m−2

m

R w.

Recall that the constant C is independent of R. Consequently,

φ
m+2

m

R uσ−1wp ≤ C

R2 φRw.

By choosing m = 2
p−1 (or p = m+2

m ), we get

uσ−1wp
R ≤ C

R2 wR, or uσ−1wp−1
R ≤ C

R2 . (2.20)

We recall that all the above estimates are taken at the point (xR, yR). Note that σ − 1 ≤ 0. If the sequence 
u(xR, yR) is bounded, then uσ−1(xR, yR)wp−1

R (xR, yR) ≥ Cwp−1
R (xR, yR) where C > 0 is independent of R. 

This together with (2.20) follow wp−1
R (xR, yR) ≤ C

R2 . Let R → ∞ we have contradiction.
If the sequence u(xR, yR) is unbounded, up to a subsequence, we may assume that

lim
R→+∞

u(xR, yR) = +∞.

Since p ≥ q > 1, there exists ε > 0 small enough such that pq −1 −ε(q +1) > 0 and p > 1 +ε. For 0 < b < a, 
using the mean value theorem we have

ap − bp = (a1+ε)
p

1+ε − (b1+ε)
p

1+ε

≥ p

1 + ε
(b1+ε)

p
1+ε −1(a1+ε − b1+ε)

= p

1 + ε
(bp−ε−1)(a1+ε − b1+ε)

≥ p

1 + ε
(bp−ε−1)(a − b)1+ε.

Choosing a = 1
l v(xR, yR), b = uσ(xR, yR) and using (2.13), we arrive at

ΔGw(xR, yR) ≥ Cuσ−1(xR, yR)uσ(p−1−ε)(xR, yR)w1+ε

= Cu
pq−1−ε(q+1)

p+1 (xR, yR)w1+ε(xR, yR) ≥ Cw1+ε(xR, yR), (2.21)

where C > 0 (independent of R) and in the last inequality we have used the unboundedness of the sequence 
u(xR, yR).

Inserting (2.21) into (2.18) and choosing m+2
m = 1 + ε, we obtain

wε
R(xR, yR) ≤ C

R2 . (2.22)

It suffices to take R → +∞ in (2.22) to get the contradiction.
Case 2: there is (x0, y0) such that M = sup

RN w = w(x0, y0) > 0.
The estimates (2.13) and (2.19) imply that

ΔGw(x0, y0) ≥ Cuσ−1(x0, y0)wp(x0, y0) > 0.

Hence, there exists at least an index j such that ∂2w
∂x2

j
(x0, y0) > 0 or ∂2w

∂y2
j

(x0, y0) > 0. This contradicts 
w(x0, y0) = sup

RN w. The proof is complete. �
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Combining the proof of Lemma 2.4 with the idea in [17], we have the inverse comparison principle as 
follows.

Lemma 2.5. Suppose that (u, v) is a smooth positive solution of (1.1) with 1 < q ≤ p and v is bounded. Then 
u is bounded and satisfies

u ≤ ‖v‖
p−q
q+1
∞ v. (2.23)

Proof. Let l = ‖v‖
p−q
q+1
∞ and w = u − lv. Then

ΔGw = −vp + luq = − vp

‖v‖p
∞

‖v‖p
∞ + luq ≥ − vq

‖v‖q
∞

‖v‖p
∞ + luq = l

(
uq − (lv)q

)
. (2.24)

In order to obtain the proof, it suffices to use the arguments as in Lemma 2.4 by noting that (2.13) is 
replaced by (2.24). The detail is then omitted. �

Using Lemma 2.4 and following the proof in [13, Proposition 2], we get

Lemma 2.6. Let θ = pq(q+1)
p+1 and

√
θ −

√
θ −

√
θ < t <

√
θ +

√
θ −

√
θ. (2.25)

Then we have ∫
RN

vpu2t−1φ2dxdy ≤ C

∫
RN

u2t(|∇Gφ|2 + |ΔGφ|φ)dxdy,

for all φ ∈ C2
c (RN ) satisfying 0 ≤ φ ≤ 1. Here C does not depend on (u, v).

Proof. It follows from Lemma 2.1 with the test function utφ that

√
pq

∫
RN

v
p−1

2 u
q−1

2 u2tφ2dxdy ≤
∫
RN

|∇G(utφ)|2dxdy

= t2
∫
RN

|∇Gu|2u2t−2φ2dxdy +
∫
RN

u2t|∇Gφ|2dxdy − 1
2

∫
RN

u2tΔG(φ2)dxdy (2.26)

Multiplying the first equation in (1.1) by u2t−1φ2 and integrating by parts to arrive at

(2t − 1)
∫
RN

|∇Gu|2u2t−2φ2dxdy − 1
2t

∫
RN

u2tΔG(φ2)dxdy =
∫
RN

vpu2t−1φ2dxdy. (2.27)

Thus, from (2.26) and (2.27) one has

√
pq

∫
RN

v
p−1

2 u
q−1

2 u2tφ2dxdy ≤ t2

2t − 1

∫
RN

vpu2t−1φ2dxdy + C

∫
RN

u2t(|∇Gφ|2 + |ΔGφ|φ)dxdy (2.28)

To end the proof, it is enough to apply Lemma 2.4 to the left hand side of (2.28) and remark that θ− t2

2t−1 =√
pq(q+1)

p+1 − t2

2t−1 > 0. �
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The following lemma is a key step to deal with the case 1 < q ≤ max(p; 43 ) in the proof of Theorem 1.2.

Lemma 2.7. Let (u, v) be a positive solution of (1.1) with 1 < q ≤ max(p; 43 ). If v is bounded, then

∫
BR×BR1+α

u2dxdy ≤ CRNα−2− 2(q+1)
pq−1 − 4(2−q)

p+q−2 .

Proof. Let χ ∈ C∞
c (RN ; [0, 1]) be a cut-off function satisfying χ = 1 on B1 × B1 and χ = 0 outside 

B2 ×B21+α . Put ϕR(x, y) = χ( x
R , y

R1+α ). Note that (2.28) is still true without the assumption (2.25). Taking 
φ = ϕm

R , t = 1 in (2.28) and then applying Lemma 2.4 to the right hand side to obtain

√
pq

∫
RN

v
p−1

2 u
q+3

2 ϕ2m
R dxdy ≤

√
p + 1
q + 1

∫
RN

v
p−1

2 u
q+3

2 ϕ2m
R dxdy + C

R2

∫
RN

u2ϕ2m−2
R dxdy. (2.29)

Since pq > p+1
q+1 , the estimate (2.29) yields

∫
RN

v
p−1

2 u
q+3

2 ϕ2m
R dxdy ≤ C

R2

∫
RN

u2ϕ2m−2
R dxdy. (2.30)

By applying Lemma 2.5 to the left hand side of (2.30), we have

∫
RN

u
p+q+2

2 ϕ2m
R dxdy ≤ C

R2

∫
RN

u2ϕ2m−2
R dxdy. (2.31)

Recall that 1 < q ≤ max(p, 43 ), then σ := p+q−2
p+2−q ∈ (0, 1) and 2 = σq + (1 − σ)p+q+2

2 . We estimate the 
integral in the right hand side of (2.31) by using Hölder’s inequality as follows

∫
RN

u2ϕ2m−2
R dxdy ≤

⎛
⎝ ∫

RN

u
p+q+2

2 ϕ2m
R dxdy

⎞
⎠

1−σ ⎛
⎝ ∫

RN

uqϕ
2m− 2

σ

R dxdy

⎞
⎠

σ

(2.32)

≤

⎛
⎝ ∫

RN

u
p+q+2

2 ϕ2m
R dxdy

⎞
⎠

1−σ
⎛
⎜⎝ ∫

B2R×B(2R)1+α

uqdxdy

⎞
⎟⎠

σ

,

where in the last inequality we have used 0 ≤ ϕR ≤ 1 and chosen m large enough such that mσ > 1.
Combining (2.31), (2.32) and (2.5) to obtain

∫
RN

u2ϕ2m−2
R dxdy ≤ CR−2 1−σ

σ RNα−2− 2(q+1)
pq−1 = CRNα−2− 2(q+1)

pq−1 − 4(2−q)
p+q−2 .

Finally, note that ϕR = 1 on BR × BR1+α , we finish the proof of Lemma. �
Remark 2.8. The boundedness of v in Lemma 2.7 is only necessary for the use of the fact that u ≤ Cv in 
Lemma 2.5. However, if p = q, then we have u = v by Lemma 2.4. Thus, in the case p = q, Lemma 2.7 is 
still true without the assumption of boundedness of solutions.
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3. Proof of main results

3.1. Proof of Theorem 1.1

Let ϕ ∈ C∞
c (RN ; [0, 1]) be a cut-off function such that

ϕ = 1 on B1 × B1 and ϕ = 0 outside B2 × B21+α . (3.1)

Let w be a smooth function and let kα = Nα

Nα−2 . By using Sobolev inequality (see [31]) and integration by 
parts, we have

⎛
⎝ ∫

B1×B1

w2kαdxdy

⎞
⎠

1
2kα

≤

⎛
⎜⎝ ∫

B2×B21+α

(wϕ)2kαdxdy

⎞
⎟⎠

1
2kα

≤ C

⎛
⎜⎝ ∫

B2×B21+α

|∇G(wϕ)|2dxdy

⎞
⎟⎠

1
2

= C

⎛
⎜⎝ ∫

B2×B21+α

|∇G(w)|2ϕ2 + w2|∇Gϕ|2 + 1
2∇G(w2) · ∇G(ϕ2)dxdy

⎞
⎟⎠

1
2

= C

⎛
⎜⎝ ∫

B2×B21+α

|∇G(w)|2ϕ2 + w2|∇Gϕ|2 + 1
2w2(−ΔG(ϕ2))dxdy

⎞
⎟⎠

1
2

≤ C

⎛
⎜⎝ ∫

B2×B21+α

|∇G(w)|2 + w2dxdy

⎞
⎟⎠

1
2

.

Thus,

⎛
⎝ ∫

B1×B1

w2kαdxdy

⎞
⎠

1
kα

≤ C

∫
B2×B21+α

(|∇G(w)|2 + w2)dxdy.

A scaling argument follows that

⎛
⎜⎝ ∫

BR×BR1+α

w2kαdxdy

⎞
⎟⎠

1
kα

≤ CR
2+Nα

(
1

kα
−1

) ∫
B2R×B(2R)1+α

|∇G(w)|2dxdy

+ CR
Nα

(
1

kα
−1

) ∫
B2R×B(2R)1+α

w2dxdy. (3.2)

Suppose that (u, v) is a positive stable solution of (1.1). Set

w = ut for
√

θ −
√

θ −
√

θ < t <
√

θ +
√

θ −
√

θ.
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Then,

|∇Gw|2 = t2|∇Gu|2u2t−2.

Let ϕR = ϕ 
(

x
R , y

R1+α

)
where ϕ is given in (3.1). Then,∫

BR×BR1+α

|∇G(w)|2dxdy = C

∫
BR×BR1+α

|∇Gu|2u2t−2dxdy

≤ C

∫
B2R×B(2R)1+α

|∇Gu|2u2t−2ϕ2
Rdxdy. (3.3)

Multiplying the first equation in (1.1) by u2t−1ϕ2
R and using the integration by parts, we obtain∫

B2R×B(2R)1+α

|∇Gu|2u2t−2ϕ2
Rdxdy = 1

2t − 1

∫
B2R×B(2R)1+α

vpu2t−1ϕ2
Rdxdy

+ 1
2t(2t − 1)

∫
B2R×B(2R)1+α

u2tΔG(ϕ2
R)dxdy.

(3.4)

The estimations (3.3), (3.4) and Lemma 2.6 imply that
∫

BR×BR1+α

|∇G(w)|2dxdy ≤ CR−2
∫

B2R×B(2R)1+α

w2dxdy.

This together with (3.2) give

⎛
⎜⎝ ∫

BR×BR1+α

w2kα

⎞
⎟⎠

1
kα

dxdy ≤ CR
Nα

(
1

kα
−1

) ∫
B2R×B(2R)1+α

w2dxdy. (3.5)

In the following, we need the assumption (1.6) which is rewritten as

√
θ −

√
θ −

√
θ <

q

2 , θ = pq(q + 1)
p + 1 .

It is easy to see that θ ≥ q2 and the function θ �→
√

θ −
√

θ −
√

θ is decreasing. Then

1
2 = lim

θ→+∞

(√
θ −

√
θ −

√
θ

)
≤

√
θ −

√
θ −

√
θ ≤ q −

√
q2 − q.

On the other hand, if q > 4
3 , then q −

√
q2 − q ≤ q

2 . Therefore, the condition (1.6) is always fulfilled in 
case (i).

Fix a real positive number τ satisfying

2(
√

θ −
√

θ −
√

θ) ≤ 2τ < q. (3.6)

Let m be a non-negative integer satisfying τkm−1
α <

√
θ +

√
θ −

√
θ ≤ τkm

α . We construct an increasing 
geometric sequence
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√
θ −

√
θ −

√
θ < t1 < t2 < ... < tm <

√
θ +

√
θ −

√
θ

given by

2t1 = 2τk, 2t2 = 2τkkα, ..., 2tm = 2τkkm−1
α ,

where k ∈ [1, kα] is chosen such that tm is arbitrarily close to 
√

θ +
√

θ −
√

θ.
To simplify notations below, we use Rn = 2nR. By using (3.5) and an induction argument, we obtain

⎛
⎜⎝ ∫

BR×BR1+α

u2tmkαdxdy

⎞
⎟⎠

1
tmkα

≤ C

(
R

Nα

(
1

kα
−1

)) 1
tm

⎛
⎜⎝ ∫

BR1 ×B(R1)1+α

u2tmdxdy

⎞
⎟⎠

1
tm

= CR
Nα

(
1

kαtm
− 1

tm

) ⎛
⎜⎝ ∫

BR1 ×B(R1)1+α

u2tm−1kαdxdy

⎞
⎟⎠

1
tm−1kα

≤ CR
Nα

(
1

kαtm
− 1

t1

) ⎛
⎜⎝ ∫

BRm ×B(Rm)1+α

u2t1dxdy

⎞
⎟⎠

1
t1

= CR
Nα

(
1

kαtm
− 1

τk

) ⎛
⎜⎝ ∫

BRm ×B(Rm)1+α

u2τkdxdy

⎞
⎟⎠

1
τk

.

(3.7)

For the last integral, we shall use Hölder’s inequality, (3.5) and Corollary 2.3 to obtain

∫
BRm ×B(Rm)1+α

u2τkdxdy ≤

⎛
⎜⎝ ∫

BRm ×B(Rm)1+α

u2τkαdxdy

⎞
⎟⎠

k
kα

⎛
⎜⎝ ∫

BRm ×B(Rm)1+α

dxdy

⎞
⎟⎠

1− k
kα

≤ C

⎛
⎜⎝R

Nα

(
1

kα
−1

) ∫
BRm+1 ×B(Rm+1)1+α

u2τ dxdy

⎞
⎟⎠

k

R
Nα

(
1− k

kα

)

≤ C

(
R

Nα

(
1

kα
−1

)
.RNα− 2p+2

pq−1 .2τ

)k

R
Nα

(
1− k

kα

)

= C
(

R
Nα
kα

− 2p+2
pq−1 .2τ

)k

R
Nα

(
1− k

kα

)
.

Consequently,

⎛
⎜⎝ ∫

BRm ×B(Rm)1+α

u2τkdxdy

⎞
⎟⎠

1
τk

≤ CR
Nα
τkα

− 2p+2
pq−1 .2.R

Nα

(
1− k

kα

)
1

τk = CR
Nα
τk − 2p+2

pq−1 .2. (3.8)

Substituting (3.8) into the last inequality of (3.7), one has
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⎛
⎜⎝ ∫

BR×BR1+α

u2tmkαdxdy

⎞
⎟⎠

1
tmkα

≤ CR
Nα

kαtm
− 2p+2

pq−1 .2. (3.9)

Recall that kα = Nα

Nα−2 , θ = pq(q+1)
p+1 . Under Assumption (1.5), we choose k ∈ [1, kα] such that tm close to 

√
θ +

√
θ −

√
θ and then the exponent in the right hand side of (3.9) is negative. Let R → +∞ in (3.9), we 

obtain the contradiction.
For the second assertion in (i), by adopting the proof in [7, Remark 3], we have p+1

pq−1 (
√

θ +
√

θ −
√

θ) > 2
for any 4

3 < q ≤ p. Then (1.5) is fulfilled if Nα ≤ 10. The proof is finished.

3.2. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that of Theorem 1.1. Then we give here the sketch of proof and 
the detail is omitted.

We emphasize that Lemma 2.7 plays an important role in the proof. To avoid using the condition √
θ −

√
θ −

√
θ < q

2 as in Theorem 1.1, we replace the constant τ in (3.6) by the one satisfying

2(
√

θ −
√

θ −
√

θ) ≤ 2τ < 2.

Then Lemma 2.7 follows that

∫
BRm ×B(Rm)1+α

u2τ dxdy ≤

⎛
⎜⎝ ∫

BRm ×B(Rm)1+α

u2dxdy

⎞
⎟⎠

τ ⎛
⎜⎝ ∫

BRm ×B(Rm)1+α

dxdy

⎞
⎟⎠

1−τ

≤ CR

(
Nα−2− 2(q+1)

pq−1 − 4(2−q)
p+q−2

)
τ
RNα(1−τ)

= CR
Nα−

(
2− 2(q+1)

pq−1 − 4(2−q)
p+q−2

)
τ
.

By the same argument as in the proof of Theorem 1.1, we obtain the following estimate

⎛
⎜⎝ ∫

BR×BR1+α

u2tmkαdxdy

⎞
⎟⎠

1
tmkα

≤ CR
Nα

kαtm
−2− 2(q+1)

pq−1 − 4(2−q)
p+q−2 . (3.10)

By the assumption (1.7), we choose k ∈ [1, kα] such that tm close to 
√

θ +
√

θ −
√

θ and then the right hand 
side of (3.10) tends to zero as R → +∞ and obtain the contradiction.

For the rest of proof. We shall show that, for all 1 < q ≤ max(4
3 ; p),

F (p, q) :=
(

2 + 2(q + 1)
pq − 1 + 4(2 − q)

p + q − 2

)(√
θ +

√
θ −

√
θ

)
> 2

(√
2 +

√
2 −

√
2
)

.

Indeed, for p ≥ q > 1, we have

2(q + 1)
pq − 1 ≥ 2

p − 1 and θ >
2p

p + 1 .

Combining with the fact that f(z) :=
√

z +
√

z − √
z is increasing in (1, ∞), we deduce that
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F (p, q) >

(
2 + 2

p − 1

)(√
2p

p + 1 +

√
2p

p + 1 −
√

2p

p + 1

)
, for all 1 < q ≤ max(4

3 ; p). (3.11)

Denote s = 2p
p+1 with s ∈ (1, 2), then (3.11) is written as

F (p, q) > g(s) := s

s − 1

(√
s +

√
s −

√
s
)

, for all 1 < q ≤ max(4
3 ; p).

A simple estimate yields

g′(s) = − 1
(s − 1)2

[
f(s) − s(s − 1)

2
√

s
√

s − √
s

(
f(s) − 1

2

)]
< 0, for all s ∈ (1, 2)

where we used

s(s − 1)
2
√

s
√

s − √
s

< 1, for all s ∈ (1, 2).

This implies

F (p, q) > g(2) = 2
(√

2 +
√

2 −
√

2
)

for all 1 < q ≤ max(4
3 ; p).

Thus, (1.7) is true if Nα ≤ 2 + 2
(√

2 +
√

2 −
√

2
)

. The proof is complete.

Remark 3.1. In Theorem 1.1(i), by taking p = q and letting p → ∞ we see that the right-hand side of (1.5)
tends to 10. Hence,

inf
4/3<q≤p

⎛
⎜⎝2 + 4p + 4

pq − 1

(√
pq(q + 1)

p + 1 +

√√√√pq(q + 1)
p + 1 −

√
pq(q + 1)

p + 1

)⎞
⎟⎠ = 10.

Similarly, by taking q = 1 and letting p → ∞ in the right-hand side of (1.7), one see that

inf
1<q≤max( 4

3 ,p)

⎛
⎜⎝2 +

(
2 + 2(q + 1)

pq − 1 + 4(2 − q)
p + q − 2

) (√
pq(q + 1)

p + 1 +

√√√√pq(q + 1)
p + 1 −

√
pq(q + 1)

p + 1

)⎞
⎟⎠

= 2 + 2
(√

2 +
√

2 −
√

2
)

.

3.3. Proof of Corollary 1.3

Recall that the stability of the solution of (1.1) implies the estimate (2.1) which is exactly, when p =
q, u = v, the definition of stable solution of (1.8). Let p = q, then u = v by Lemma 2.4 and the system (1.1)
becomes the scalar equation (1.8).

Case 1. q > 4
3 . It follows from Theorem 1.1 (with p = q) that the problem (1.8) has no stable positive 

solution provided (1.10).
Case 2. 1 < q ≤ 4

3 . By using Remark 2.8, it is easy to see that if p = q, then the first assertion of 
Theorem 1.2 is still true without the assumption of boundedness of solutions. It means that problem (1.8)
has no stable positive solution provided (1.10).

In both cases, there is no stable positive solution of (1.8) if Nα ≤ 10. The proof is finished.
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