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Workshop on Partial Differential Equations and Applications
VIASM, October 4, 2017
On the occasion of Professor Nguyen Manh Hung’s 60" birthday

SCIENTIFIC PROGRAM

Morning Session
8h30-9h00: Registration in the 7" floor of Ta Quang Buu library
9h00-9h05: Opening
Chair: Tran Pinh Ké
9h05-9h35: Binh Nho Hao

Inverse problems with nonnegative and sparse solutions: Algorithms and
application to the phase retrieve problem

9h35-10h05: Ngd Quéc Anh
Bdt dang thirc Hardy-Littlewood-Sobolev ngiroc trén R"

10h05-10h30: Coffee Break
Chair: Lé Van Hién
10h30-11h00: Vii Trong Lwéng

Nonlinear hyperbolic partial differential equations on nonsmooth domains
11h00-11h30: Phan Quédc Hung

A Liouville-type theorem for a cooperative parabolic system
11h45-14h00: Lunch



Afternoon Session

Chair: Pinh Nho Hao
14h00-14h30: Nguyén Xuan Thao

Discrete-time Fourier sine integral transforms
14h30-15h00: Cung Thé Anh

Local exact controllability to trajectories of the magneto-micropolar fluid
equations

15h00-15h30: Coffee Break
Chair: Cung Thé Anh
15h30-16h00: Tran Pinh Ké

A brief on Professor Nguyen Manh Hung ’s scientific life
16h00-16h30:

Celebration of Professor Nguyen Manh Hung’s 60" birthday
16h30-16h35: Closing
16h45-19h00: Workshop Banquet



A brief of Professor Nguyén Manh Hung

VAI NET VE GIAO SU NGUYEN MANH HUNG

NGUT.GS.TSKH. Nguyén Manh Hung sinh ngay
6 thang 10 nam 1957 tai Pan Phugng, Ha NAi.
Niam 1978, 6ng tot nghiép loai gioi Khoa Toan
(nay la Khoa Toan-Tin), Truong Pai hoc Su pham
Ha Noi, va duoc gitr lai Truong lam cén bd giang
day. Nam 1980, 6ng tot nghiép Hé sau dai hoc (nay
la hé¢ Thac si) cia Khoa. Tur nam 1978 dén nim
1990, ong giang day tai Khoa Toan, truong Dai
hoc Su pham Ha Noi.

Trong giai doan 1990-1999, dng la nghién ctru sinh
va sau d6 14 thuc tap sinh sau tién si tai Khoa Toan
Co, Pai hoc Tong hop Quéc gia Moskva mang tén
Lomonosov (MGU) duéi sy huéng dan caa GS noi
tiéng V.A. Kondratiev. Ong bao vé luan an TS nam 1994 va TSKH niam 1999 tai
trudng dai hoc danh tiéng nay. Ong dwoc phong PGS nam 2002 va GS nam 2011.

Sau khi vé nu6e nam 1999, ong tiép tuc cong tac tai Khoa Toan-Tin, Truong Dai
hoc Su pham Ha Noi. Ong da trai qua nhiéu vi tri khac nhau. Tir 1999 dén 2004 Ia
giang vién, tir 2004 dén 2011 1a Truong Bo mon Giai tich, nim hoc 2006-2007 Ia
Truong Ban thanh tra nhan dan Truong DHSP Ha Noi, tir nam 2007 dén 2012 la
Truong phong Tap chi va Thong tin khoa hoc céng nghé, Truong DPHSP Ha Noi.
Trong giai doan 1a Truong Bo mon, Ong da c¢6 cong 16n trong viéc xay dung Bo
mon Giai tich tré thanh mot bd mdn manh caa Truong, dwoc ting Gidy chimg nhan
cua Bo Gido duc va Pao tao vé dién hinh tién tién giai doan 2006-2010 va Giai tap
thé tiéu biéu vé Khoa hoc Cong nghé cua Truong DHSP Ha Noi nim 2012. Duéi
su lanh dao cua 6ng, Bo mon Giai tich gdm nhiéu can bo tré co ning luc di tro
thanh mét trung tdm manh vé nghién ctu va dao tao sau dai hoc chuyén nganh
Phuong trinh vi phan va tich phan ¢ Viét Nam. Trong giai doan lam Trudng
phong Tap chi va Thong tin Khoa hoc cdng nghé¢, 6ng 1a ngudi c6 cong lon trong
viéc timg budc xay dung Phong theo huéng chuan hoa va dwa Tap chi khoa hoc
caa Truong DHSP Ha Noi trg thanh mot trong bon tap chi khoa hoc hang dau cua



cac truong dai hoc va da dugc Bo Gido duc va Pao tao chon dé dau tu nang cép
theo chuan tap chi khoa hoc ISl.

T thang 10/2012 d&én nay, 6ng chuyén sang lam cong tac quan Ii tai Hoc vién
Quan i Gido duc. Tir thang 10/2012 dén thang 12/2013 6ng lam Phé Giam ddc
Hoc vién, sau d6 1a Pho Giam ddc phu trach Hoc vién tir thang 1/2014 dén thang
11/2016, va tir thang 11/2016 dén nay, ong 1a Pho Giam dbc Hoc vién. Ong ciing 1a
Bi thu Dang uy Hoc vién Quan Ii Gido duc tir thang 1/2014 dén nay.

Vé chuyén mdn, GS.TSKH Nguyén Manh Hang la mét chuyén gia c6 uy tin cua
Viét Nam vé Phuong trinh dao ham riéng. Huéng nghién ctu chinh cia Gido su la
nghién ciu mot cach hé thong cac bai toan bién ban dau ddi véi cac hé phuong
trinh dao ham riéng tuyén tinh khdng dung, bao gom hé parabolic, hé hyperbolic
va hé Schrodinger, trong cac tru hiru han hoac v6 han c6 day la mién khong tron.
Céc nghién ctu tap trung vao su ton tai duy nhat nghiém, tinh tron ctia nghiém va
cong thirc biéu dién tiém can nghiém trong 1an can cac diém ki di.

Theo hudng nghién ciu ndy, GS Nguyédn Manh Hung d3 cong bd hon 50 bai bao
khoa hoc trén cac tap chi chuyén nganh quéc té duoc to Mathematical Reviews
cua Hoi Toan hoc My diém danh, véi hon 30 bai bao trén cac tap chi trong danh
muc ISI, trong d6 c6 nhitng tap chi uy tin cao nhu J. Differential Equations,
Nonlinear Anal., Sbornik Math., Russian Math. Surveys, Dokl. Akad. Nauk,
Differential Equations,...

Gigo su ciing 14 chu nhiém cua 02 dé tai nghién cu cip Nha nudc va 02 dé tai
nghién ctru co ban do Quy NAFOSTED tai tro. Cac dé tai nay déu duoc hoan
thanh dng han véi chat lugng tot.

GS Nguyén Manh Hung la nguoi ¢6 cong I6n trong viéc gay dung va phét trién
nhém nghién cau vé Phuong trinh dao ham riéng tai Khoa Toan-Tin, trudng Dai
hoc Su pham Ha Noi. Ngay nay, ddy la mdt trong nhiing trung tam nghién cau va
dao tao sau dai hoc uy tin cua Viét Nam vé linh vuc ndy. Trong nhimng nim gan
day, trung binh mdi nim cic thanh vién cua B6 mén Giai tich, Khoa Toan-Tin,
Truong DHSP Ha Noi, huéng din 04 NCS bao vé thanh cong luan an tién si, hon
20 hoc vién cao hoc bao vé thanh cong luan vin thac si, va cong bd khoang 20 bai
bao khoa hoc trén cac tap chi quéc té uy tin trong danh myc 1SI.

GS Nguyén Manh Hung d3 dugc moi tham gia Ban Chwong trinh va 1am bao co
mai tai nhiéu hoi nghi va hoi thao khoa hoc trong nuéc va quéc té. Gido su ciing
tham gia phan bién bai cho mot s6 tap chi chuyén nganh quéc té.



Gido su ciing da thiét lap duoc quan hé qudc té va hop tac khoa hoc véi mot s6
gido su & PHQG Sun Yet-sen (Pai Loan), PHQG Pusan (Han Quéc), DHTHQG
Moskva mang tén Lomonosov, PHQG Voronezh (Nga), PH West Georgia (Mi);
PH Bharathiar Bang Coimbatore (An P9), DPHTH Gottingen (D).

GS Nguyén Manh Hung ciing 13 ngudi rat thanh cong trong cong tac dao tao sau
dai hoc. Gido su huéng dan va dong huéng din 10 NCS, trong d6 09 NCS da bao
vé thanh cong luan an tién si, va dd huéng dan hon 30 hoc vién cao hoc bao vé
thanh cong luan van thac si. Cac nghién ctru sinh di bao vé bao gém: Cung Thé
Anh (2006), Pham Triéu Duong (2006), Nguyén Thanh Anh (2010), Nguyén Thi
Kim Son (2010) Vi Trong Ludng (201 1) Do Vin Loi (2011), Phing Kim Chuc
(2012), Nguyén Thi Lién (2016) va Nguyen Thanh Tung (2017). Gido su cling la
Chu tich hogc Phan bién ciia nhiéu Hoi dong danh gia luan an tién si.

Gido su cling rat tich cuc trong viéc viét sach phuc vu dao tao. Gido su 1a tac gia
caa mot s6 sach chuyén khao, gido trinh dai hoc va gido trinh sau dai hoc vé
Phuong trinh dao ham riéng. Cudn giao trinh Phuong trinh dao ham riéng cia Giéo
su da dugc stir dung rong rai trong céc truong dai hoc su pham.

Do nhimg ddng gop ndi bat trong cong téc quan 1i, nghién ciu khoa hoc, giang day
va dao tao, GS.TSKH Nguyén Manh Hung da dwoc Nha nuéc tang thusng nhiéu
danh hi¢u va chuc danh cao quy: Huan chuong Lao dong hang Ba (2016), Nha
gido uu t (2010), Gido su (2011).

Nhan dip GS Nguy&n Manh Hang tron 60 tudi, nhitng ngudi hoc trd cii chung toi
xin kinh chic Gido su manh khoe va tiép tuc c6 nhitng dong gbp trong sw nghiép
gido duc va dao tao.

Cung Thé Anh — Tran Pinh Ké
Khoa Toan-Tin, Trwong DPHSP Ha Noi



ABSTRACTS

Local exact controllability to trajectories of the magneto-micropolar
fluid equations

Cung The Anh
Department of Mathematics, Hanoi National University of Education

Email: anhctmath@hnue.edu.vn

We prove the exact controllability to trajectories of the magneto-micropolar fluid
equations with distributed controls. We first establish new Carleman inequalities for the
associated linearized system which lead to its null controllability. Then, combining the
null controllability of the linearized system with an inverse mapping theorem, we deduce
the local exact controllability to trajactories of the nonlinear problem.

This is joint work with Vu Manh Toi.
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Bat dang thirc Hardy-Littlewood-Sobolev nguoc trén R™
Ngd Quéc Anh
Khoa Toan-Co-Tin hoc, Truong Pai hoc Khoa hoc Tu nhién, Ha Noi

Email: ngoquocanh@gmail.com

Bit dang thic Hardy-Littewood-Sobolev (HLS) trén R™ c6 lich sir 1au doi bit ngudn tir
cac két qua vé tich phan Riemann-Liouville cua Hardy va Littewood nhitng nam 20 thé
ky truée. Nam 1938, dé ching minh két qua vé phép nhing ma sau nay mang tén ong,
bang cach st dung cac két qua noi suy Marcinckiewicz, Sobolev d tong quét két qua cua
Hardy va Littewood cho truong hop R™ va thu dwoc bat dang thic tich chap véi nhan ky
di dang

I 1xI7* [l = [1f g
trong d6 a > 0, g>1, va p>1 1a cac hang sé thich hop.

Tuy nhién phai mat gan 50 nam thi bai toan tim hang sb tot nhat va viéc phan loai cac
ham ti uu dé bat dang thic HLS xay ra ddu bang mai dugc giai quyét trong mot cong
trinh cta E. Lieb nam 1983. K& tir cdng trinh cua Lieb, bat ddng thirc HLS tré thanh chu
dé nghién ciru ndng bong thu hat rat nhidu nha toan hoc bai méi lién hé gitra né vai cac
bt dang thic Sobolev, Moser-Trudinger-Onoffri, v.v.

Néam 2015, khi nghién ctru truong hop Ky di cua bai toan xac dinh metric bao giac vai o
cong v hudng cho truéc (prescribed scalar curvature problem), J. Dou va M. Zhu lan
dAu tién gioi thidu dang nguoc cua bat dang thiee HLS trén R™

[1f * 11U, =2 11f g,

trong d6 a > 0, g>1, va p>1. Bé ching minh bat dang thirc va chi ra sy ton tai cia ham
t6i wu, Dou va Zhu da d& xut va sir dung cac két qua noi suy Marcinckiewicz nguoc.
Trong bao c&o nay, toi s& gidi thidu mot cach tiép can méi sir dung biéu dién tich phan
duéi dang 16p (layer cake representation) dé chirg minh bét dang thicc HLS nguoc. Viéc
chiing minh sy ton tai cua ham téi wu ciing nhu phén loai ching ciing s& duoc dé cap
trong bao céo. Dy la két qua cong tac véi Nguyén Vian Hoang (Pai hoc Paul Sabatier,
Toulouse, CH Phap).
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Inverse problems with nonnegative and sparse solutions:
Algorithms and application to the phase retrieve problem

Dinh Nho Hao
Institute of Mathematics, VAST

Email: hao@math.ac.vn

We study a gradient-type method and a semismooth Newton method for minimization
problems in regularizing inverse problems with nonnegative and sparse solutions. We
propose a special penalty functional forcing the minimizers of regularized minimization
problems to be nonnegative and sparse and then apply the suggested algorithms for
finding the solution to the problem. The strong convergence of the gradient-type method
and the local superlinear convergence of the semismooth Newton method are proved.
Then, we use these algorithms for the phase retrieval problem and illustrate their
efficiency in numerical examples, particularly in the practical problem of optical imaging
through scattering media where all the noises from experiment are presented.

This is joint work with Pham Quy Muoi and Dang Cuong.
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A Liouville-type theorem for a cooperative parabolic system
Phan Quoc Hung
Institute of Research and Development, Duy Tan University, Da Nang

Email: hungpgmath@gmail.com

We prove the nonexistence of entire positive solutions to a cooperative parabolic system.
By nontrivial modifications of the techniques of Gidas and Spruck and of Bidaut-Véron,
we partially improve the results of Quittner in space dimensions N > 3. In particular, our
result solves the important case of the parabolic Gross-Pitaevskii system in space
dimension N = 3. We also give the results on universal singularity estimates, universal
bounds for global solutions, and blow-up rate estimates for the corresponding initial
value problem.
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Nonlinear hyperbolic partial differential equations on nonsmooth
domains

Vu Trong Luong
Department of Mathematics, Tay Bac University

Email: vutrongluong@gmail.com

In this report, we give a discussion on our results related to nonlinear hyperbolic partial
differential equations on nonsmooth domains. The concrete results are local existence and
regularity of solutions of certain semilinear hyperbolic partial differential equation on
domains with an edge or cone with edges.

This is joint work with Nguyen Thanh Tung.
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Discrete-time Fourier sine integral transforms
Nguyen Xuan Thao

School of Applied Mathematics and Informatics, Hanoi University of Science and
Technology

Email: thaonxbmai@yahoo.com

Some integral transforms have attracted the attention of many mathematicians such as
Fourier transform, fractional Fourier transform, discrete Fourier transform, Fourier
transform on time scale and discrete-time Fourier transform. In this talk, we will
construct and study the discrete-time Fourier sine transform

Xe(@) = Fuprlx(m}(@) =2 ) x(n) sin(nv)
n=0

and its inverse

T

() = P (%, (D)) = — [ X,(@) sin(na)do,
0

where X, (w) is a periodic function with period 2.

We also study its operator properties, Parseval's identity, discrete-time Fourier cosine
transform, Fourier sine generalized convolution theorems, and the Titchmarsh theorem.
They are useful for solving infinite systems of linear algebraic equations.

This is joint work with Nguyen Anh Dai.
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PARTICIPANTS

1. Cung Thé Anh
Pho gido su Tién si
bai hoc Su pham Ha Noi

anhctmath@hnue.edu.vn

2. Ngb Quéc Anh
Tién si
bai hoc Khoa hoc Ty nhién, PHQG HN

ngoquocanh@gmail.com

3. Nguyén Thanh Anh

Tién st

Nha xuat ban Gi&o duyc tai Thanh phé Ho
Chi Minh

thanhanhsp@gmail.com

4. Nguyén Thi Van Anh
Nghién ctru sinh
Dai hoc Su pham Ha Noi

vananh.89.nb@gmail.com

5. Bui Huy Béch
Nghién ctru sinh
bai hoc Su pham Ha Noi

bachtoanedu@gmail.com
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6. Tran Vin Bang
Tién st
bai hoc Su pham Ha Nai 2

tranvanbang@hpu2.edu.vn

7. Nguyén Dinh Binh
Tién si
Bo Khoa hoc va Cong nghé

ndbinh@most.gov.vn

8. Nguyén Tién Da

Thac si

Dai hoc Hong Birc
tiendaktn186@gmail.com

9. Nguyén Vin Pic
Nghién cttu sinh
bai hoc Thuy loi

dacnv@wru.vn

10. Pham Triéu Dwong
Tién si

bai hoc Su pham Ha Noi
duongptmath@hnue.edu.vn



11. Pinh Nho Hao
Gi4o su Tién si khoa hoc

Vién Toan hoc, Vién Han 1am Khoa hoc
va Cong nghé Viét Nam

hao@math.ac.vn

12. L& Van Hién
Pho gi4o su Tién si
bai hoc Su pham Ha Noi

hienlv@hnue.edu.vn

13. Pham Vin Hoing
Nghién cttu sinh

Truong THPT Kim Lién
phamhoang0103@gmail.com

14. Nguyén Manh Hiing
Gido su Tién s khoa hoc
Hoc vién Quan li Gido duc

nmhungmath@gmail.com

15. Vii Viét Hung

Tién si

Pai hoc Tay Bic
viethungdhtb@gmail.com
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16. Ha Duy Hung

Tién si

Truong THPT chuyén, PHSP Ha Noi
hunghaduy@gmail.com

17. Phan Quéc Hung

Tién si

Vién Nghién ciru va Phét trién CNC, Dai
hoc Duy Tan, Pa Nang

hungpgmath@gmail.com

18. Nguyén Bich Huy

Pho gi4o su Tién si

bai hoc Su pham TP. HCM
huynb@hcmup.edu.vn

19. Nguyén Pirc Huy
Tién si
Pai hoc Gido duc, PHQG Ha Nbi

huynd@vnu.edu.vn

20. Tran Pinh K¢
Pho gi4o su Tién si
Pai hoc Su pham Ha Noi
ketd@hnue.edu.vn



21.Lé Vin Kién 26. D6 Viin Loi

Ctr nhén Tién si

Dai hoc Tay Bic Pai hoc Hong Bl
mr.kiencan@gmail.com dovanloi@hdu.edu.vn

22.Pd Lan 27. Nguyén Vin Loi

Tién si Tién si khoa hoc

bai hoc Thuy loi Hoc vién Phu nix VN, Vién Radar - Vién

dolan@tlu.edu.vn Nghién cttu va Phat trien Viettel

loinv14982@gmail.com

23. Nguyén Thi Lién
Tién si 28. Vii Trong Ludng
Dai hoc Su pham Ha Noi Tién si

lienhnue@gmail.com Pai hoc Tay Bac

vutrongluong@gmail.com

24. Tran Thi Loan
Tién si 29. Bui Kim My
Pai hoc Su pham Ha Noi Nghién ctru sinh

loantt@hnue.edu.vn Dai hoc Su pham Ha N6i 2

mybk17@yahoo.com.vn

25. Hoang Viét Long
Tién si 30. Nguyeén Thi Ngén
Pai hoc Ki thuat Hau can Thac si

Cong an Nhan dan Nha xuat ban Dai hoc Su pham

longhv08@gmail.com ngannt.nxb@hnue.edu.vn
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31. Ha Tién Ngoan

Pho gi4o su Tién si

Vién Toan hoc, Vién Han 1am Khoa hoc
va Cong nghé Viét Nam

htngoan@math.ac.vn

32. Khdng Chi Nguyén
Nghién cutu sinh
DPai hoc Tan Trao

nguyenkc69@gmail.com

33. Tran Minh Nguyét
Nghién cttu sinh
bai hoc Thang Long

tmnguyettlu@gmail.com

34. Nguyén Nhu Quén
Nghién ctu sinh
Dbai hoc Dién luc

nnquan78@gmail.com

35. Pao Trong Quyét
Tién si
Hoc vién Tai chinh

dtg100780@gmail.com
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36. Ty Van Quynh
Thac si

bai hoc Ha Long
quynhtyvan@gmail.com

37. Alexandre Radjesvarane
Giao su
bai hoc Viét Phap

radjesvarane.alexandre@usth.edu.vn

38. Phan Quang Sang
Tién si
Hoc vién Nong nghié¢p Viét Nam

pgsang@vnua.edu.vn

39. Pang Thanh Son
Tién si
Dbai hoc Thoéng tin lién lac

dangthanhson@tcu.edu.vn

40. Nguyén Thi Kim Son
Tién si
Pai hoc Su pham Ha Noi

sonntk@hnue.edu.vn



41. Nguyén Nhw Thing
Tién si
bai hoc Su pham Ha Noi

thangnn@hnue.edu.vn

42. Pang Thi Phwong Thanh
Nghién cttu sinh

bai hoc Hung Vuong
thanhdp83@gmail.com

43. Nguyén Vin Thanh
Nghién ctru sinh

Truong THPT Chuyén Ngoai ngir,
DHNN, PHQGHN

nthanh128@gmail.com

44. Phan Xuan Thanh
Tién si
DPai hoc Bach khoa Ha Noi

thanh.phanxuan@hust.edu.vn

45. Mai Xuan Thao
Tién si
Dai hoc Hong Dirc

mxthao7@gmail.com
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46. Nguyén Xuan Thao
Pho gi4o su Tién si
Dai hoc Bach khoa Ha Noi

thaonxbmai@yahoo.com

47. Lé Quang Thuén
Tién si
bai hoc Quy Nhon

lequangthuan@qnu.edu.vn

48. LAm Tran Phwong Thity
Thac si
bai hoc Bién luc

thuyltp@epu.edu.vn

49. Lé Thi Thuy
Tién si
bai hoc Bién luc

thuylephuong@gmail.com

50. L& Tran Tinh
Thac si
Pai hoc Hong Dl

hdutrantinh.vn@gmail.com



51. Nguyén Dwong Toan
Tién si
bai hoc Hai Phong

ngduongtoanhp@gmail.com

52. Vit Manh Téi
Tién si
bai hoc Thuy loi

toivmmath@gmail.com

53. Nguyén Minh Tri
Gi4o su Tién si khoa hoc

Vién Toan hoc, Vién Han lam Khoa hoc
va Cong nghé Viét Nam

triminh@math.ac.vn

54. Nguyén Xuan Tu
Nghién ctu sinh
bai hoc Hung Vuong

nguyenxuantu1982@gmail.com

55. Nguyén Viét Tuan
Nghién cttu sinh
Dai hoc Sao Bo

nguyentuandhsd@gmail.com
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56. Dwong Anh Tuén
Tién si
Pai hoc Su pham Ha Noi

tuandamath@gmail.com

57. L& Anh Tuin
Nghién ctu sinh
Pai hoc Khoa hoc, Pai hoc Hué

latuan964@gmail.com

58. Tran Qudc Tuén
Thac si
THPT Chuyén Bién Hoa Ha Nam

tgtuan.chn@hanam.edu.vn

59. Tran Vin Tuin
Nghién ctu sinh
Pai hoc Su pham Ha Noi 2

trantuansp2@gmail.com

60. Nguyén Thanh Tung
Nghién ctru sinh

Trudng TH, THCS, THPT Chu Vin An,
Pai hoc Tay Bic

thanhtungcva2013@gmail.com
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CONTROL THEORY
Volume 6, Number 3, September 2017 pp. 357—379

LOCAL EXACT CONTROLLABILITY TO TRAJECTORIES OF
THE MAGNETO-MICROPOLAR FLUID EQUATIONS

CuNG THE ANH*

Department of Mathematics, Hanoi National University of Education
136 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Vu MANH ToI

Faculty of Computer Science and Engineering, Thuyloi University
175 Tay Son, Dong Da, Hanoi, Vietnam

(Communicated by Viorel Barbu)

Dedicated to Prof. Nguyen Manh Hung on the occasion of his 60th birthday

ABSTRACT. In this paper we prove the exact controllability to trajectories of
the magneto-micropolar fluid equations with distributed controls. We first
establish new Carleman inequalities for the associated linearized system which
lead to its null controllability. Then, combining the null controllability of the
linearized system with an inverse mapping theorem, we deduce the local exact
controllability to trajactories of the nonlinear problem.

1. Introduction and statement of main results. Let 2 be a bounded con-
nected domain in R?, d € {2,3}, whose boundary 9% is regular enough. Let 7' > 0
and we will use the notations Q@ = Q x (0,7),X = 90 x (0,7), and we denote by
n(x) the outward unit normal to I at the point = € 9f.

We consider the controllability of the following magneto-micropolar fluid equa-
tions:

(yt—Ay—i—(y-V)y—(B~V)B+Vp+V(@) — curlw + ulp  in Q,
w —Aw—(d—2)V(V-w)+ (y-Vw+w=curly+ wlp in Q,

B —AB+ (y-V)B— (B-V)y= P(vlp) inQ, (1)
V-y=V-B=0 in Q,
y=0,,w=0, B=0 on X,
y(0) = ¢°, w(0) =w®, B(0) = B° in Q,

where y and B respectively describe the flow velocity vector and the magnetic field
vector,

scalar angular velocity if d = 2,
(wi(zx, t),wa(x,t),ws(x,t)) angular velocity vector if d = 3,

2000 Mathematics Subject Classification. 93B05, 35Q35, 93C20.

Key words and phrases. Magneto-micropolar fluid, local controllability to trajectories, Carle-
man inequality, inverse mapping theorem.
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p is a scalar pressure, while 3", w® and B° are the given initial velocity, initial
angular velocity and initial magnetic field, and (u, w, v) stands for control functions
acting on a small nonempty open subset O of €.

Here we have used the following notations:

In the case d = 2, we denote curla = 0,,a2 — 0,,a1 for a vector function a =
(a1, a2), and curlb = (9,,b, —9,, b) for a scalar function b.

In the case d = 3, we denote

curla = (Oy,a3 — OpyG2, 0psa1 — Or, a3, 0, a2 — Oz a1)

for a vector function a = (a1, as, as).
In this work, the control function acting on the equations satisfied by the mag-
netic B is assumed to have the form

P(vlp) = vlp + Vy, for some x € L*(0,T; H'(Q)). (2)

This form of the control v has been also considered in recent works on the local exact
controllability of the MHD system [4, 5, 18, 19]. There is only a recent result on the
controllability of MHD system [3] in which the control acting on the magnetic field
has support in an arbitrarily small open subset of the spatial domain, i.e., the control
has the form 10 Po(v1p), where Py is the classical Helmholtz projector related to
O (i.e., the orthogonal projection operator from L2?(0)% onto the completion of the
set {v € C(0)4|V -v = 0in O} in the norm of L?(0)?. However, since the
boundary conditions on the magnetic field in our system is different from that in
[3], so here we cannot use ideas in [3] to establish our Carleman estimate for the
component C' of the adjoint system respectively to the magnetic field. Hence, we
are not able to get an estimate of the right-hand side of the component C' having
the form [[, e~ 25¢£*|PoC|?dadt as in [3]. So we only obtain the controllability of
(1) with the control function acting on the magneto field has the form (2). The
controllability of (1) with the control function acting on the magneto field has the
form 1o Po(vlp) remains an open question.

The magneto-micropolar fluid is a model of fluids in which micro-structures of the
fluid and its electronic-magnetic properties are taken into account. In the past years,
there have been a number of works devoted to studying mathematical questions
related to the magneto-micropolar fluid equations. The existence and uniqueness of
weak /strong solutions to (1) were studied in [8, 14, 25, 27, 28]. The regularity and
blow-up criterion of solutions were studied in [13, 23, 33, 35]. Besides, the long-time
behavior of solutions was investigated in [1, 6, 21, 22, 24, 29]. However, to the best
of our knowledge, there is no work on the controllability of the magneto-micropolar
fluid equations. This is the motivation of the present paper. Because here we focus
on the controllability, we have omitted some physical constants in this model.

It is noticed that the magneto-micropolar fluid equations contain the micropolar
equations (when B = 0), the MHD equations (when w = 0), the Navier-Stokes equa-
tions (when B = 0 and w = 0) as particular cases. The local exact controllability
of the Navier-Stokes equations has been studied extensively in many works, see e.g.
[10, 12, 26] and references therein. In recent years, the local exact controllability of
the MHD system was also studied by a number of authors in [3, 4, 5, 18, 19], and
that of the micropolar fluid equation was studied in [9, 17].

To study system (1), we use the following function spaces

H:{yGLZ(Q)d|V'y:0andy-n200n89}
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with the norm

d /2
Il = (3 [ wyfda) "
=1

and
V={yeH()" |V -y=0in Q}

with the norm

d 1/2
ol = (3 [ 1vufar) .
=1

The main question considered in this paper is that whether (1) is locally exactly
controllable to the trajectories.

Let us fix a regular trajectory (¥,p,w,B) of the non-controlled system corre-
sponding to (1), i.e.,

— — B2
7, — A+ G-V)y—(B-V)B+Vp+V |51 ):curlw in Q,
w

W —Aw—(d—=2)V(V- W)+ @7 -Vo+w=curly inQ,

B, —AB+ (y-V)B—(B-V)y=0 in Q, 3)
V.g=V-B=0 in Q,
y=0,w=0, B=0 on X,
| 7(0) = 7°, @w(0) = °, B(0)=B" in Q,
for some initial data (7°,%°, B").
We will assume that (7, p,w, B) satisfies
(7w, B) € L>(Q)° if d = 2, (4)
and
(,w,B) € L*(Q)" if d = 3. (5)

As long as the initial conditions are concerned, we will assume that

Hx L*(Q) x H if d = 2,

(HNLA(Q)3) x L4(Q)3 x (HNL*(Q)3)  ifd=3. ©)

(y°,w° BY) € By := {
We are now ready to formulate the main results in the present paper. First, the
result in the case of two dimensions is given in the following theorem.

Theorem 1.1. Letd = 2. Assume that (¥, p,w, B) satisfies (4). Then (1) is locally
exactly controllable to (y,p,w, B) at any time T > 0, that is, there ewists € > 0 such
that, for any initial data (y°,w°, B®) satisfying (6) and

- 7 —0
1" =70l + |’ =@l 2@y + 1B = B ||lg <-e,

there exist controls (u,w,v) € L?(O x (0,T))° such that the solution (y,p,w, B) of
(1) satisfying

y(.T) =75, T),w(-,T) =w(-,T) and B(-,T) = B(-,T) in .

The following theorem is the result in the case of three dimensions.
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Theorem 1.2. Letd = 3. Assume that (J,p,w, B) satisfies (5). Then (1) is locally
exactly controllable to (y,p,w, B) at any time T > 0, that is, there exists € > 0 such
that, for any initial data (y°,w°, B®) satisfying (6) and

- . —0
Hyo - yOHHmL4(Q)3 + ||WO - w0||L4(Q)3 + HBO - B HHmL4(Q)3 <g,

there exist controls (u,w,v) € L?(O x (0,T))° such that the solution (y,p,w, B) of
(1) satisfying

y(-,T) =5(,T), w-,T) =w(-,T) and B(-,T) = B(-,T) in Q.

Remark 1. From the above theorems, by taking w = 0 and B = 0 we recover the
local exact controllability result in [26] for Navier-Stokes equations, which improved
the previous results in [10] and references therein. Moreover, by taking B = 0 only,
we improved the previous result on local exact controllability to trajectories of the
micropolar fluids in [9] in the sense that a weaker regularity of the given trajectory
and initial data is required.

Our strategy is as follows: Let the trajectory (¥, p,w, B) be given in (3) satisfying
(4) or (5). Firstly, let us introduce the auxiliary nonlinear system:

(5 — AT+ ((T+7)-V)T+ @ V)§— (B+B)-V)B
—(B-V)B+Vp+ %V((E +B)-B) + %V(E-E) =cwrld +ulp in Q,

W —Aw—(d—2)V(V-@0)+ (7 +7) -V
+(y-V)w+w=curly +wlp in Q,

B,—AB+((+7)-V)B+(§-V)B

—~((B+B)-V)j— (B- V)7 = P(vlo) in Q,

V-§=V-B=0 in Q,

7=0, =0, B=0 on %,

7(0) =7°, &(0) =&°, B(0) = B° in €.
(7)

Setting (y, p,w, B) = (J + ¥, P + P, @ + w, B + B), it is seen that to prove the main
results, what we have to do is to prove the local null controllability of (7). In other
words, we have to show that, for some € > 0, whenever the initial datum in (7)
satisfies

1°,&° B%)|g, <e,

we can find controls u,w and v such that the associated solution (¥, p, @, E) of (7)
satisfies

7(-.T) =0, &(-,T) =0 and B(-,T) = 0 in Q.

To do this, we will follow the strategy introduced by Fursikov and Imanuvilov [12]
in the context of Navier-Stokes equations. Let us consider the linearized system
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around (7,w, B):
U~ AG+ @G- V)i+@-V)g— (B-V)B
—(E -V)B+Vp+ V(B - E) = fi+curlo+ulp in @,
W —AD—(d—2)V(V-0)+ (7-V)w
+y - Vo+wd = fo+curly+wlp inQ,

Bi—AB+@-V)B+@-V)B—(B-V)j— (B-V)y (8)
= f3+ P(vlp) in Q,
V.- §=V-B=0 in Q,
7=0,0=0, B=0 on ¥,
7(0) = 7°, @(0) =&°, B(0) = B° in Q,

where f1, fo and f3 are functions that decay exponentially to zero as ¢t — T~ .

We will prove that, under appropriate assumptions for f1, fo and f3, these above
linear system (8) is null controllable. After that, combining the null controllabil-
ity of (8) with an inverse mapping theorem, it will lead to the local null exact
controllability of (7).

A basic tool for proving the null controllability of (8) is a global Carleman in-
equality for solutions to the following associated adjoint system

—pr — Ap — (D*p)y + (D*C)B+ Vr =curly + ('Vy)w + g1 in Q,

—r — Ap — (d—=2)V(V - ) + (- V)¢ + ¢ = curlp + go in Q,

—Cy — AC + (D°9)B — (D*C)y + Vr = g3 in Q,

Vip=V-C=0 in Q,

p=0,v=0 C=0 on X,

\ (1) = 7, H(T) =4, (1) = C7 in .
9)

Here we have used the notations D* := V + 'V and D? := V — V. In (9), the
pressure functions are m, r.

To obtain the above main results, which particularly improve some recent related
results, we have to establish new necessary Carleman inequalities. This is in fact
the main contribution of our paper.

Let us explain the method used to construct our Carleman inequality. Firstly,
using the Carleman estimate in [20, Theorem 4.1] (see also in [26, Theorem 3.4])
for the Stokes system with suitable f, we get the global integral estimates for the
component ¢ in both cases d = 2 and d = 3. Since the magneto field has the
homogeneous Dirichlet condition and the equation satisfying the magneto field has
an addition pressure, then the global integral estimates for the component C' can
be established as same as the estimates for the component ¢. The global integral
estimate for the component 1 is obtained separately in two cases d = 2 and d = 3.
In the case d = 2, we can use the Carleman inequality directly for the heat equation
to the component 1 to get the estimate for ¢». However, in the case d = 3, we cannot
use the Carleman inequality directly for the heat equations to the component v since
the equation satisfying by 1 has the term V(V -v). To overcome this difficulty, we
exploit some ideas in [17] by using the Carleman inequality [20, Theorem 2.2] for the
nonhomogeneous heat equations with suitable powers of the weight functions. Then,
we can establish our new Carleman estimates with slightly weaker requirement of
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the regularity of the trajectory as that in the case of micropolar fluid equations [9,
Propositon 4].

The paper is organized as follows. In Section 2, we establish new Carleman
inequalities for the solutions to the adjoint linearized system. Section 3 is devoted
to proving Theorem 1.1 and Theorem 1.2. We first use the new Carleman inequality
to prove the null controllability of the linearized system, then the conclusion of the
proof of the main results is obtained by combining the null controllability of the
linearized system and an inverse mapping theorem. In the Appendix we recall some
well-known Carleman inequalities which are used in the proof.

2. Carleman inequalities.

2.1. Statement of Carleman inequalities. In this subsection, we will formulate
a suitable Carleman estimate for the adjoint system (9). To do this, we introduce
some weight functions. Let O CC O and n° € C?(Q) satisfy

n°>0in Q, n° =0 on 9N and [Vn°| > 0in 2\ O. (10)

The existence of such a function n° was given in [11, Lemma 1.1]. Let £ € C°°([0,T))
be a function such that

Lt) >0 for all t € [0,T7,
L) =t for all t € [0,T/4],
Lt)=T—t forallte[3T/4,T].
We now consider the following weight functions
AN lloctmz) _ o A(0° (2)+ma) e’ (@) +m1)
()" , &, 1) = BT
AP lloc+mz) _ gAmy

a(zx,t) =

(11)

a*(t) = rilea%( a(z,t) = alaa(t) = 0L ,

. B ) B B e)\ml
£ (t) = glég&(%t) = &loa(t) = o0k

where A > 1 and mq, ms are two constants chosen for the moment such that m; <
mo and 3C > 0 (independent of \) such that VA > 1,

|Orar] < CE5/*) and |82 al < CE3/2.
For example, we can choose with mqg > 0,

mo
mi = (4+mo)[nlloe, M2 = (4+mo + —)[n"]|oc.

Theorem 2.1. Let d = 2. Assume that the trajectory (y,p,w, B) satisfies (4),

(91,92, 93) € L?>(Q)®. Then there exist some positive constants C, 3¢ and \g, only
depending on Q and O, such that the solution (p,¥,C) of (9) satisfies

st // e 25 (| |? + |Ay|?) dadt + s°A* //e*%ag?’mﬁdxdt
Q Q

+ s\? // e~ 2L Vap|Pdadt + s // e 25¢ 1 (|Veurlyp|? + |VeurlC|?)dadt
Q Q
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+ A2 // e~ 25%¢ (|eurlp| + |curlC|?)dxdt + A2 // e~ (|Vpl? + |[VC|?)dxdt
Q Q

422 // o202 (|ol? 1 |CJ2)dadt
Q

<c(sx // =20 (|f2 - [0 + [C[2)dadt

Ox(0,T)

+ [ e nl + loal +1gaP)dzdt), (12)
Q

for s = 8o(T% +T*) and A = Xo(1 + |[Flloo + [IBlloo + [|@]l)-

Theorem 2.2. Let d = 3. Assume that the trajectory (y,p,w, B) satisfies (5),

(91,92,93) € L*(Q)°. Then there exist some positive constants C,3¢ and Ao, only
depending on Q and O, such that the solution (p,¥,C) of (9) satisfies

3—1// e 2 (e |? + |AY?) dadt + s®A? // e~ 253 )| 2dadt
Q Q

+ sA? // 6*28“§|vw|2dxdt+// e 25|V(V - ) |2 dzdt

Q Q
+ 5222 // e 22|V )| Pdadt + s // e” 2 (Veurlp|? + |VeurlC|?) dzdt

Q Q
+ s)\? // e 2%¢ (Jeurlp]? + |curlC|?) dadt

Q
+ A2 // e 2 (|Vp|? + |VCO|?)dxdt + s>\ // e 25 (|o)|? + |C?)dadt

Q

< e\t // =253 (]2 + [¢]? + O] ddt

Ox(0,T)

+ [ [ el + selgal? + lgoP?)dnd) (13)
Q

for s = 5o(T% +T*) and A = Mo(1+ [[Flloo + [[Blloo + [[@]loo)-

Remark 2. By taking C' = 0 and 9 = 0, we recover the improved versions of
Carleman estimates for the Navier-Stokes equations, which were recently obtained
in [26] (see also in [20]).

2.2. Proof of Carleman inequalities. We will prove Theorem 2.1 and Theorem
2.2 in several steps.

Step 1. Estimation of global terms ¢ and C: Notice that the system for
the components ¢ (and C) in the adjoint system (9) can be viewed as the Stokes
system (43) in the Appendix with ¢ replaced by T —t and f = (D*p)y — (D*C)B +
curly) + (*V)w + g1 (and f = —(D%p)B + (D*C)y + g3). So, applying Lemma 4.3
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in the Appendix to components ¢ (and C) in (9) we get some positive constants
sg > 1, g > 1 and C > 0 such that

s7! // e 2s¢~1(|Veurlyp|? + |VeurlC|?)dzdt
Q

+ A2 // e 2% (|eurlp|? + |curlC|?)dxdt

Q
+ A2 // e~ (|Vpl? + |[VC|?)dxdt + s2\* // e 25 (|o)? + |C|?)dxdt

Q Q

< e (Ul + 1B [[ eVl + [vOP)duat
Q
+(1+ ||w||§o)//e—2sa|v¢|2dxdt
Q

[ e g+ lgaPrddr+ 25t [[ e (o +CP)dudt)  (14)
Q O x(0,T)
for any s > sg and A > \g, where we have used the fact that |curlp|? < C|Vp|? and

eurly? < ¢V -
Therefore, taking A > max{o,C(||¥||cc + || B|l>)}, we have from (14) that

st // e 25¢" (| Veurlp|? + |VeurlC|?)dadt
Q
+ s\? // e~ 25%¢(|eurlp|? + |curlC|?)dadt
Q
+ A2 // e 2 (|Ve|? + |VC|*)dzdt + s*\* // e 2% (|p|? + |C)?)dxdt
Q Q
<c(a+@lZ) [[ e vuPdn
Q

+ // 23 (|, + |ga|?)dadt + s*A0 // =2 ([pf? + |C)dedr).  (15)
Q

Ox(0,T)
Step 2. Estimation of global term v: We will consider two cases:

Case d = 2. Using the Carleman estimate (40) in the Appendix for 4 in (9) with
d = 2, we deduce that

3—1//6—25045—1 (|¢t|2+ |A,¢|2) daﬁ‘dt+83A4 //6—25a53|,¢|2dxdt

5 J
+ 522 // e 2| Vy|2dudt < C (X! // 203 |o) 2
Q

Ox(0,T)
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b [ [ e P +leurlof? + lgaf?)ddt + gl [ [ e 2o voldudt). o)
Q Q

for s > C(T3 +T*) and A > C.

Case d = 3. We apply the divergence operator to the equation satisfied by ) in
(9) with d = 3 to deduce that

— 0V -) =248V -9) =V - (¥ + ([H- V)Y + g2). (17)

Thus, we apply the Carleman estimate (42) in the Appendix for the equation (17)
with different powers of £&. More precisely, we apply that Carleman inequality to
s1/2€1/2%7 . 4p and we get that

// e 2 V(V - )| dzdt + 52\ // e 252\ - | 2dxdt
Q Q

2

§C(52)\2 // 6—28a52|v-¢|2dxdt+sl/2He—sagl/‘*v-wH

HE (D)
Ox(0,T)
—0—5// e 25|y Pdadt + 5|7 // 6*28a5|vw|2dxdt+s// e*25a5|gg|2dxdt)
Q Q Q
(18)
for s > sg and A > \g, where OccOcco.

On the other hand, since 9 satisfies the system

—Yr =AY =V(V-9) = (- V)¢p —¢p+curlp+g>  inQ, (19)
P =0 on 3,

then using the Carleman (40) in the Appendix for ¢ in (19), we deduce that

571 // e 2 (| |? + |AY[?) dadt
Q

+ 5302 // e 223 |2 dadt + s\ // e 25¢| V|2 dadt

Q Q
<c(sha // e—ZSag3|¢|2+é/e—2w|wv~w)l2dmt

Ox(0,T)

+// 6_2$a(|¢|2 + |Curlgo|2 _|_ |92‘2)da’;dt+ ||y||go// 6_25a|v¢‘2d$dt>7 (20)
5 Q

for s > C(T3 + T*) and A > C. Combining (18) and (20) yields the estimate

3*1//6*28%*1 (|1we]? + |A|?) dodt
Q

+ s34 // e 250¢3 || 2dadt + sA\? // e 25|V | dadt
Q Q
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+ // e~ V(V - )| 2dadt + 52\ // e 252V - )P dadt
Q Q

gc(s3A4 // e~ 25063 2 dadt + 522 // e~250€2|V . |2 dudt

Ox(0,T) Ox(0,T)

2
1 gl/2 He—saé-l/élv ) wH L
H2 1(%)

o) Q

for s > max{so,C(T2 + T*)} and A > max{\,C(1 + ||7|loc)}-
Furthermore, integrating by parts and using the Cauchy inequality, we get

5222 // e 252V - | 2dxdt gg// e 25Y|V(V - ) |2 dzdt
Ox(0,T) Q

+ Ce1s2)\2 // e 252 |2 dadt
Ox(0,T)

for any € > 0. Hence, choosing ¢ sufficiently small, one infers from (21) that

57 [ [t (unf? + 1A0P) dodt
Q
+ 532\t // e 2503 |2 dadt + s\? // e 25| Vap|2dadt

Q Q
+// eV (V - )| 2dedt + s2\? // e~ 22|V - |2 dadt
Q Q

<c(s*2 // e 2 drdt + 5 ||e= 4V |

Ox(0,T)

+ s// e 25| go|Pdadt + // 6725a|curl<p|2dxdt). (22)
Q Q

1 1
H21(%)

We now estimate the trace terms. From the definition of || - ||H%%(E), we have
2
s'/2 Hefmfl/élv : T/’HH%%(E) <C <||01V 220,750 () F ||01¢||§{1(0,T;L2(Q)3)) ;
(23)
where o 1= s/4(g%)1/4e—5",

We see that 011 satisfies

—0(o1y) — A(o19) = V(V - (01¢)) = —o1(y - V)Y — o1%)
— oY+ ojcurlp + 0192 in Q,
o1y =0 on X,
(o19)(T) =0 in Q.

Hence, using a similar classical energy estimate for the heat equation, we get
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o813 020 + o161 o2y <€ [ [ o curll +[ga)dodt

Q
Il [[ otverded+ [[(@h)? + otwPdsar). (20
Q Q

Since |0} | < Cs®/4(£*)11/8e=2" | one deduces from (24) and (23) that

1/2 —sa 1/4v 2
s He & ‘wHH%%(E)

< C($1/2 // e~ 25212 |curlp|?dadt + s/? // e 250 2| gy |2 dadt
Q Q

s [ [ et 2 vudadt + 572 [ [ ettt dnar).
Q Q

Combining (22) and (24), we get
s—l// e 25 (|2 + | AY)?) dadt + s3X\* //6—28a53|¢|2dmt

Q Q
+ sA? // e*25a§|v¢|2dxdt+// e 25|V (V - )| dxdt
Q Q

+ s2\? //e_2sa§2|V~q/;|2dxdt §C<s3)\4 // e~ 23 |Pdadt

Ox(0,T)

Q
+ s1/2 // e~ 25212 |curlp |2 dadt + s// 6_28a§|gg|2d$dt), (25)
Q Q

for s > max{so,C(T% + T*)} and A > max{\o,C(1 + ||F]|oc)}. Here we have used
the fact that 81/251/2 > C for s > CT*.

Step 3. Conclusion.

Conclusion of Theorem 2.1. Combining (15) and (16) with note that |curlp|? <
C|V<p|2: we get (12) for s > 5o(T°% + T*) and A > Ao(1 + [|[F]leco + [|Blloo + [|@]|00),
where A\g = max{)\g,C} and §y = max{sg,C}. This completes the proof of Theorem
2.1.

Conclusion of Theorem 2.2. Combining (15) and (25), we get (13) for A >
A1+ [|F]loo + || Blloo + ||@]lec) and for any s > 5o(T% + T*). This completes the
proof of Theorem 2.2.

3. Proof of the main results. In this section, we will give the proof of Theorem
1.2, i.e. the result in the case of three dimensions. The proof of Theorem 1.1 (the
result in the case d = 2) is very similar to that in the case d = 3, so it is omitted
here.

3.1. Null controllability for the linear system (8). We now prove the null
controllability for the system (8) and this will be crucial when proving the local
controllability of (1) in the next subsection.
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We can rewrite problem (&) as follows

L(7,&, B) + (Vp,0,0) = (fi +ulo, fo +wlo, fs + P(vlp)) in Q,

V-§=V-B=0 in Q,
V=V @ e
y=0,w=0,B=0 on X,

5(0) =3°, ®(0) =&°, B(0) = B° in Q,
where
L(:’ljaa}aB) (Ll(y7w B) LQ(yv ) L3(y7 ))
with

Li(§.@.B) =5~ Ay + (5 V)§+ (@ V)§ — (B-V)B ~ (B-V)B — curl,
Ly(y,w) == wy — Aw — V(V - w) - Vo+w+ (y-V)w— curly,
L3(§,B) =By = AB+ (7 V)B —(B-V)y + (- V)B — (B V)7,
We would like to find the controls (u,w,v) such that the solution (7,@, B) to (26)
satisfies B
F(T)=0,(T) =0, B(T) =0 in Q. (27)

We first deduce the Carleman inequality with weight functions that do not vanish
at t = 0. More precisely, let us consider the function

i) = LT/2) f0o<t<T/2,
) ) ifT/2<t<T,
and we define new weight functions

AU lost+mz) _ A(n° (z)+m1)

6(x7t) = = >

()
A (@) +ma)
v(z,t) = W,
B*(t) = max B(z,t), v*(t) = mmv(x t).
ze) e

We will prove the following lemma.

Lemma 3.1. Let s and X be like in Theorem 2.2. Then there exists a positive con-
stant Cy depending on T, s and X\, such that every solution (¢,1,C) of (9) satisfies

+ [ [P 10Pysd + [ [ 209010 Pdas
Q Q

- // "B A (V| + V|2 + |VCO|?)dadt

Q
e / / 2B (|gu|? + |gs|?)derdt + / / =28y |go P dedt
Q Q

b [ el + 1P + O doat). (28)

Ox(0,T)
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Proof. The proof of this lemma is similar to those in some recent works on the
controllability of the fluid models (see for instance [16]). More precisely, this lemma
is a consequence of (13) and energy estimates satisfied by solutions of (9). In what
follows, we only give the sketch of the proof.

We introduce a function ¥ € C*([0,7]) such that

Y=1in[0,7/2], 9 =0in [37/4,T].
Then (Y, 9, IC) satisfies

— (V) — A(Wp) — (D*9p)y + (D*IC)B + V(I7) = curl(Jy)

+('V(99))@ + dg1 — ' in Q,
—(0)e — A(Y) = V(V - (9¢)) — (T - V)(U9) + 9¢Y = curl(Pp) + dg2  in Q,
—(9C)¢ — A(WC) + (D*Ip)B — (D“9C)g + V(Ir) = dg3 — 9'C in Q,
V-(p)=V-C)=0 in Q,
Yo =0,9p =0,9C =0 on X,
(We)(T) =0, (V)(T) =0,(WC)(T) =0 in Q.

(29)

Multiplying (29), by d¢, (29), by 99, (29); by 9C, then integrating over €
and using the Cauchy inequality, there exists a positive constant C depending on
[7llo0: [[©][ocs [[Blloe such that

— 5 | (el +19¢]* + PICP?) dz + / (V@) |* + IV (09) [ + [V(IC)|?) da
Q Q

= C(/Q (19 ]* + |99 + [9C?) da + /Q (19g1]? + [9g2]? + [9g3]?) d
+ [ PP + 10 + [CP)dz).

(30)
So, from inequality (30) we get the energy estimate

||79(p||%°°(07T;H) + ||19§0||%2(07T;V) + ||19¢||2Loo(o,T;L2(Q)3) + ||19¢||%2(0,T;H3(Q)3)
+ ||190||2L°o(0,T;H) + ||79C||%2(0,T;V)
= C(T)(||?9/<P||%2(Q)3 +19Y172(g)e + 19" CllT2(g)e + H?9(91792,93)||%2(Q)9>-
This implies that
1(0(0),%(0), C(O)1 220 + 1l 72 0,72:) + 101 F2 00,7222 0)2) + IC 20,7211
+ ||<P||%2(0,T/2;V) + ||¢||2Lz(o,T/2;Hg(Q)3) + HCH%Q(QT/Q;V)
<C(T) (H(% Y, C)||%2(T/2,3T/4;L2(Q)9) + ||(gla92793)||%2(0,3T/4;L2(Q)9)>'
From the last inequality and the fact that
0 < e 29843, 725842 728" < C vt e[0,T/2]; e 2% >C, vt €]0,37/4],
we have

[0(0) 1720z + 1(0) 172y + IC(O)]172(0s
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T/2 T/2
+/ /e*%ﬁ 2(|gl? + |CP) dmdt+/ / 29803 2dadt
0 Q

T/2 X
4 / / =25 (1Vf? + V[ + [VOP?)dadt

0 Q
3T /4 3T/4
S A R L T N R
T/2 Q T/2
3T /4 3T /4
/ 67255(|g1|2 + |g3|2)dxdt +/ / 67286"}/|gg|2d$dt). (31)
0 Q 0 Q

Note that, since 8 = « in Q x (T/2,T), we have

T T
[ [ e e + (cPyasdt + | / ~298.3|p 2t
T/2 Jo T/2

T
+/ / e 2P 5 (V]2 + V|2 + |VC|?)dxdt
T/2JQ

< / / =202 g|? + |CP?)dudt + / / e~ 25083 |2 dudt
Q Q

+ // =25 e (Vo + V|2 + VO dwdt

Q
c([[ e Unl + lgafdwdt + [ [ e 2¢lgafdud
Q Q

b [ el + wl + () dodt). (32
Ox(0,T)

for some positive constant C depending on sg, \g. Here, we have used the Carleman
inequality (13) with note that

// e~ 29" £ |V |2dadt < c// ™25 € |eurly| *dadt
Q Q

since p =0 on ¥ and V- =0 in .
Now, since

720 e72Py 7293 > ¢ > 0 Vvt €[0,T/2],

we conclude from (32) that

/ / 202 (e + |CP? )d;vdt+/ / —20y3 P dadt
T/2

+/ /6_255*7*(|Vgo|2+|V¢|2+|VC|2)dacdt
T/2JQ

< C(\//efzslg('g”2 + |gg‘2)dxdt+//672513,_)/|g2|2dxdt
N Q

b [[ e h3 el + 10 + (P dsat).

Ox(0,T)
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Combining (33) and (31) we get (28). O

Now, we proceed to define the spaces where (26)-(27) will be solved. The main
space will be

E = {(ﬂ,ﬁ,&,é,u,w,v) %Py, 6567_1/2@,655§ € L*(Q)3,

Py 732 (ulp,wle, P(vlo)) € L*(Q)°,

eS8 2 (4 TV e L2(0,T; V)N L>=(0,T; H) N L*(0, T; L'2(Q)?),

eSP 2 (TG € L2(0,T; HY(Q)%) N L>=(0, T; L*(9)%) N L*(0, T; L'2(2)%),

e 2(y)TVAB € L2(0,T; V)N L=(0,T; H) N L*(0,T; L'?(9)?),
e ( *y—1/2 (Ll(y,w, B) +Vp— ulo) € L%(0,T; W—H5(Q)3),

P (v) V2 (Le(3,®) — wlo) € L2(0,T; W 15()?),

esﬁ*(y")*l/2 (Ls(7, B) — P(vlo)) € L2(0,T; W H0(2)h) |

)
)~

Observe that F is a Banach space with the norm
1@ 5, @, B, u, w,)|I%
=[(e**7, e*P7~1%@, P B)|[72(q)0 + ey~ (ulo, wlo, P(v10))lI72(q)e
+ [le*FT /2 (v*) T 1/4~||L2(0 T;V)AL (0,T; H)NLA(0,T;L12(2)3)
+ ||esﬁ*/2(7*) 1/4~||L2(0 T;H(2)3)NL> (0,T;L2(Q)3)NLA(0,T;L12(2)3)
+ [les 2 ()~ 1/4B||L2(O,T;V)ﬁLOO(O,T;H)ﬁL4(0,T;L12(Q)3)
+ e () T2 (La(5,@, B) + VP — ulo) 132 0.0w - 16(0)%)
+ 1" (v) T2 (L2(5,@) — wlo)I720.0:w 15 (099)
+ e () T2 (Ls(F, B) — P(v10)) 132 0. 1w 1.6(02)5) -
Remark 3. We can see that if (y,p,w, B,u,w,v) € E then (.,T) = 0,&(.,T) =

0,B(.,T) = 0 in €, so (¥,p,&, B, u,w,v) solves a null controllability problem for
system (26) with an appropriate right-hand side (f1, f2, f3).

We will prove the following result.
Proposition 1. Assume that (7, D, ) satisfies (5) and (3°,&°, §0) € (HNL*(Q)3)x
LA(Q)3 x (H N L*(Q)3). Furthermore, assume that

655* (’7*)71/2(.]017 f27 f3) € (L2(07 T7 W7176(9)3))

Then, there exist control functions u € L?(O x (0,T))3,w € L*(O x (0,T))3
v E LQ(O x (0,T))3 such that if (y,0, B) is the associated solution to (26), one has
(1,0, @, B,u,w,v) € E. In particular, §(.,T) = 0,&(.,T) = 0, B(.,T) = 0 in €.

3

Proof. The proof is similar to that of Proposition 2 in [16] (see also Proposition 3
in [10]), so in what follows we only give the sketch of the proof.
Let L* be defined by

L*(x, k, p) = (LT (X, K, p), L3 (x, k), L5(x, p))
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with
Li(x, Ky p) = —x¢ — Ax — (D*X)7 + (D?p) B — curls — ('Vk)w,
Li(x,k) = =kt = Ak = V(V - k) = (- V)k + k — curly,
L5(x,p) = —pt — Ap+ (D°x)B — (D%p)y,

and let us introduce the space
Xo = {(x.0.%.p.€) € C*(@Q)F x C'(@) x C*(@Q)* x C2(@)* x C* @)
V‘X:V‘p:OinQ,X:O,sz,szonE}.
Then, we consider the following variational problem: find (%, &, &, p, f ) such that

a((X, 6,5, p,0), (X, 0, 5,0,0)) = (G, (X, 0, 5,0,C)) s Y(x,0,5,pC) € Xo, (34)

(X6, k,p,C), (x, 0,5, p,C))
// e 2*P(Li (%, &, p) + V&) - (L5 (X, k, p) + Vo)dzdt

+ [ [ e hLstia) - Lyt mdear
@)

+ // e~ 28 (L;(f(,ﬁ) + VCA) (L (x, p) + V) dardt
Q

—0—// —2s8 v (Rlo - xlo + klo - klo + plo - plo) dadt,

and

T
(G, (x,0,k,p,0)) = / (f1.X0 1 1(9)3H1(Q)3dt+/ (f2r ) -1 (s, 13 (s At

/<f3, ()8 H (@)

+ [ (3 %0 +3° 5(0) + B p(0)) do.

From the Carleman inequality (28) applied to functions of Xy, which implies that
a(-,+) is a scalar product on Xg. Therefore, we can consider the space X, the
completion of Xy with respect to the norm associated to a(-,-) (denoted by || - || x).
Then X is a Hilbert space and a(-, -) is well-defined, continuous and definite positive
on X. Furthermore, thanks to (28), we see that the linear form (y,o, &, p, () —
(G, (x, 0, K, p,C)) is well-defined and bounded on X. Consequently, in view of Lax-
Milgram’s lemma, there exists a unique solution (X, d, &, p, f) of (34).
Let (§,&, B) and (@, @, 0) be given by

g=e P (Li(X, &, p) + V&) in Q,
@ = e 2 PyL5 (X, k) in Q,
B =27 (L3, 0) + VC) in Q, (3
(1,0, 0) = —e~2%893 (Xlo, klo, plo) in Q.
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Then, it is readily seen that they satisfy
// e (1912 + 4@ + | BI?) dadt
// 258573 (lalo? + [wlo)? + |01lo[?) dedt (36)

((X? 0-7 K"? p)? (X7 0-7 I%7 ﬁ)) < +m'

Moreover, we can see from (36) that (7,0, B) € L?(Q)°,4lp € L?*(Q)?, wlo €
L2(Q)3, 010 € L?(Q)3. On the other hand, from (34) and (35), we see that (4, &, B)
together with some pressure p is the unique solution of (26) which is defined by the
transposition with v = 4, w = w,v = 0.

Finally, we must check that (g, p, o, B, i, W, V) belongs to E. We already know
that

e*P (9,710, B) € L2(Q)9, 28y 73 (4lp, wle, P(0l0)) € L2(Q)?,
esﬁ*(ry*)fl/Q(L ( @, )—va—ulo) c LQ(O T: W~ IG(Q) )
e (v) T2 (La(9, @) — wlo) € L*(0,T; W 10(Q)?),

e (v*)7V2(Ls(y, B) — P(0lo)) € L*(0,T; W~16(Q)%).
Therefore, it remains to check that
e 2 (y )Ty € L2(0,T; V) N L>®(0,T; H) N L*(0,T; L'*(Q)*),
eSB2 (TG € L2(0,T; HY(Q)%) N L>=(0, T; L*(Q)%) N L*(0, T; L*2(Q)%),
eSB 2 (y)TVAB € L2(0,T; V)N L=(0,T; H) N L*(0, T; L'?(Q)%).
To this end, let us set
(y*,w*, B*) = e 2 (y)"V4(g,0,B), p* = e /?p,
(FE, [, 12) = e 12 (y*) " YA (fy + Ao, fo + dlo, f5 + P(010)).
Then they satisfy
Ay + @ V)Y + - V)T (B-V)B" —(B"-V)B+ Vp"
+V(B- B) —curlw” = fi + (e *(v") "y in Q,
—Aw" = V(V ")+ (7 - V" + (y" - V)w
+w" —curly” = f5 + (72 (y) TN in @,
—AB"+(@-V)B"+(y" - V)B—(B-V)y" — (B"-V)y
=fi+ (PO YB i Q,

V.y =V-B*=0 in Q,
y*207W*:07B*:0 onZ,
(" (0). " (0). B*(0)) = & @/ ((0)") '/ (3.5", BY) in .

We can see that
fi 4 (7 2(y) Vg € L2(0, T HH(Q)?),
f3 + (7 Py TN € L2(0, T HH(Q)Y),
F5 4 (e 2(y) TV, B € LP(0, T H™H()).
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Moreover, y*(0) € H,w*(0) € L?(Q)2 and B*(0) € H. Therefore, from the well-
known result in [28], we know that

y* € L*(0,T; V)N L>(0,T; H)

w* € L2(0,T; HY(2)3) N L>(0,T; L*(2)3)

B* € L2(0,T; V)N L>(0,T; H).

We now have to prove that (y*,w*, B*) € (L*(0, T} LlQ(Q)?’))S.
To prove y* € L*(0,T; L'2(Q)3), we follow the arguments in [10]. To do this, let
be L3(0,T; L1 (2)3) and we consider the following Stokes system
—z—Az+Vh=0 inQ,
V-z=0 inQ,
z=0 onX,
z2(T)=0 in Q.

(37)

We know (see [10, Lemma 2], the proof uses regularity properties for the Stokes
system [15] and some fine interpolation results [30]) that the system (37) has a
unique solution (z, k) satisfying

z € L2(0,T; Wy S2(Q)®) n c([o, T); LY3()?), (38)

which depends continuously on b in these spaces. Then y* satisfies
T
* _ sB*(0)/2~0 *
//y -bdxdt = /Q e ©)/ y - Z(O)dx +/0 <F1 7Z>W—1,G(Q)3’W0176/5(Q)3 dt.

Here
FY =fi + (e 2(y) Vg = - V)y" = (v - V)g+ (B-V)B*
+(B*-V)B — V(B - B*) + curlw*,
and (z,q) is the solution to (37) associated to b.
We know that z(0) € Lz ()3, Vz € L2(0,T; L5 (2)3). Remark that (y*,w*, B*) €
L?(0,T; L5(92)3)3, all terms of the previous definition make sense by virtue of (38)
and the assumption ° € L4(Q)3. Therefore,

v € (L2, 75wy (@)") C([o,T];L4/3(Q)3))' — LA(0,T; L2(Q)%).
We remark that, by the same above argument, one obtains
(w*, B*) € (L*(0,T; L'2(2)%))°.
This ends the proof of Proposition 1. O

3.2. Local controllability of the semilinear problem. In this subsection we
give the proof of Theorem 1.2 by using similar arguments as in pioneering works
[10, 16].
We will use the following inverse mapping theorem (see [2]).

Theorem 3.2. Let By and By be two Banach spaces and let A : By — Ba satisfy
A € CY(B1;Bs). Assume that by € By, A(by) = by and that A'(by) : By — B2
is surjective. Then, there exists ¢ > 0 such that, for every b’ € Bs satisfying
|6 — b2l||B, < €, there exists a solution of the equation

A(b) = b/, be B.
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In our setting, we use this theorem with the spaces By = F, By = X x Y, where

X — (Lz(esﬁ* (7*)71/2(0’7—); W*l,G(Q)?,))B 7

and
Y = HN L*(Q)3 x L*(Q)3 x H N L*(Q)3.
Then, we consider the operator
A(§7ﬁ7a7§7uvwvv) = (Al(g,ﬁ,a,E,U),AQ(@,&E,M),A;}(@/,E,U),g(O),&(O),E(O))
with
L~ = - . ~ ~ _ 1 ~ ~
Ay, 9, @, Byu) = Li(y,0, B) + (- V)y — (B-V)B+Vp+ V(B B) —ulo,
AZ(gaavw) = LQ(gva}) + (?7 V)a - U)l(’)7

To apply Theorem 3.2, we first check that the operator A is of class C(By, Bs).
Indeed, all terms arising in the definition of A are linear (and consequently C*),

~ ~ ~ ~ 1_, ~ ~ ~ ~ ~ ~ ~
except for (y-V)y — (B-V)B + §V(B -B), (y-V)w, and (y - V)B — (B - V)y.
However, the operators
e = PN ~ . ~ ~ 1_ ~ =
((y,p,w,B,u,w,v), (y,p,w,B,u,w,v)) = <(y : V)y - (B . V)B + §V(B . B)7
5+ V)@, (7-V)B — (B-V)y)

are continuous from B; x By to X. So it suffices to prove their continuity from
Bl X Bl into Gl.
First, notice that

e 2 () VG, @, B) € (L0, T5 L12()))

(39)
for any (v, p, @, B, u,w,v) € By.
The nonlinear term (j- V) — (B-V)B + %V(E . B): We have
1% ()2 (@ V)T~ (B V)B + V(B - B))llo,raw-rocarm
< C(H@S'B* (v) VP ® YllL2(0,1508()3) + ||€Sﬂ* (7*)71/2(§ ® §)||L2(O,T;L6(Q)3)
+11e”" (7)) V2B - B2 rire@m )
< C(”eSB*/2(7*)71/4§”L4(0,T;L12(Q)3) €72 (v )~ 4G Laco. i (9
+ Hesﬁ*/Q(’V*)_1/4§HL4(0,T;L12(Q)3)||esﬁ*/2(7*)_1/4§||L4(0,T;L12(Q)3))-

- -1~ ~
So, it follows from (39) that (y - V)y — (B-V)B + EV(B - B) belongs to the class

of Ct.
The nonlinear term (y - V): We have

€57 (v*) ™2 (7 - V)| p20,m5w 1.6 (20)9)
< Clle*” (v*) 725 & Bl p20,7520 ()%

< Clle*? 2 (v )TV 4G a0, sz 1€ 2 () T AB | pao, sz (o)) -
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So, from (39) we have that (7 - V)w belongs to the class of C*.

The nonlinear term: (7-V)B — (B-V)j: We have the same estimates as in term

(7 - V)7 — (B - V)B. Hence, this term belongs to the class of C?.
Therefore, we have proved that A € C1(By, Bz) with

A'(0,0,0,0,0,0,0)(7, p, @, B, u, w,v)

= (L@, B) + Vi — ulo, —wlo, —P(v16)),5(0),5(0), B(0) ),

for all (ﬂ,ﬁ,@,é,u,w,v) € B;.

In view of the null controllability result for the linearized system (8) given in
Proposition 1, we can see that .A’(0,0,0,0,0,0,0) is surjective.

As a consequence, we can apply Theorem 3.2 for b, = (0,0,0,0,0,0,0),b =
(0,0,0,0,0,0) to get the existence of € > 0 such that if HQ(O),&(O),E(O)HY < g,
then we can find controls u,w,v so that the associated solution to (7) satisfies
7(.,T)=0,&(.,T) = 0,B(.,T) = 0 in . This completes the proof of Theorem 1.2.

Q)

4. Appendix: Some well-known Carleman estimates. With the weight func-
tions a and & defined in (11), we now recall some well-known Carleman estimates,
which have been used in our proofs above.

Lemma 4.1. [11] Let O be a nonempty open subset of Q. For all q € L*(0,T; HL(Q)
N H2(Q)), there exists C > 0 depending on Q and O such that

s [[ereet (il +18qP) dude
Q
+ 8301 // e 2503 g2 dadt 4 sA\? // e 25¢| V| dxdt

Q Q
< C(// e 2% qp + Aq|?dxdt + s3\* // 6_28°‘§3|q|2dxdt) (40)
Q

Ox(0,T)
for any s > C(T® + T*) and any A\ > C.

Consider the equation

3

j=1

where Fy, F1, Fa, F3 € L?(Q). Then we have the following result.

Lemma 4.2. [20, Theorem 2.2] Let O bea nonempty open subset of Q. There exist
so =1, Ag = 1 and a constant C > 0 (independent of s > sg and A > o) such that
for everyy € L2(0,T; HY(Q))NH(0,T; H-1(Q)) satisfying (41), we have for every
s > sg and for every X\ > g,

st //6_280‘5_1|Vy|2d:cdt—|—5)\2 //6_2m£|y|2dmdt
Q Q
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< C(S)\Q // 6_25a§|y|2dxdt+s_1/2 He—sa£—1/4yH
5><(0,T)

3
—{—3_2)\_2// e‘zsa§_2|F0|2dxdt+Z// 6_230‘|Fj|2dxdt>. (42)
Q =g

Recall here that

2

11
H21(%)

1/2
13,4y = (10125 0.zsar 200 + 9000 oy )
Let us now consider the following Stokes system
2 —Az+Vqg=f in Q,
V-2=0 in @,
z=0 on X,
2(0) =29 in Q,
with 29 € V and f € L2(0,T;L?(©)?). Then we have the following result for
solutions to (43).

(43)

Lemma 4.3. [20] Let O be a nonempty open subset of Q. There exist so > 1, 0 > 1
and C > 0 such that for s > sqg and A > Ay and for every solution z to the Stokes
system (43), we have

st // e~ ¢ Y Veurlz|2dadt 4+ sA\? // e~ 25%¢|curlz|*dxdt
Q Q

+ A2 //ef2sa|vz|2dxdt+82x4/ &%\ 2|2 dzdt

Q Q
< C(// e 25| fI2dxdt + sP\* // 6725“§3|z|2dxdt).
Q

Ox(0,T)
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We are concerned with the following problem in a Banach space X:

D§Bu(t) € Au(t) + F(t,u(t)), t # tg,tx € (0,400),k € A, (0.1)
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u(0) = g(u), (0.3)
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The study of the Sobolev type equations can be traced back to the work of Barenblat et al

[5], in which the authors initiated a model of flow of liquid in fissured rocks, i.e. the equations
Ot (u — 92u) — 0?u = 0.

This model then was developed and studied in [7, 25] when the authors considered the abstract

nonlinear equation

4 Bu(t) ~ Au(t) = f(t,u(t)
in Banach spaces, where A and B are unbounded operators.

Recently, as the fractional calculus becomes a powerful tool for describing various physical
phenomena such as flows in porous media, oscillations and controls (see, e.g. [17, 23, 26]),
fractional differential equations have been considered as an alternative tool in modeling. As
a matter of fact, the fractional differential equations of Sobolev type have attracted many
researches in the last few years. We refer the reader to [3, 4, 15, 18, 24] for some recent results
on solvability and controllability which are close to our work.

As far as the system (0.1)-(0.3) is concerned, the appearance of multi-valued nonlinearity
F is motivated by a number of problems: differential equations (DEs) with discontinuous
right-hand side ([16]), differential variational inequalities ([28]), feedback controls ([20]), etc.
Regarding the impulsive condition in (0.2), this is an effect appeared as the state function stands
abrupt changes, which happen frequently in biology and engineering. The non-local condition
in (0.3) was first studied in [10] and considered as a better description for initial condition
than that in classical Cauchy problem. In applications, the non-local condition is usually in the

following forms

u(0) = up + Zcm(ti), ¢ €RE; >0,
i=1

1 b
u(0) = up + 5 / k(s)u(s)ds,b > 0,k is a real function.
0

It should be mentioned that, impulsive fractional differential equations (IFrDEs) have been
an attractive subject in recent years. Concerning IFrDEs in finite dimensional spaces with
initial/boundary conditions, we refer to [33] for solvability and stability of Ulam type results.
For a complete reference for studies in this direction, see [30, 32]. In addition, apart from
IFrDEs with Caputo derivative, a formulation and existence of solutions for IFrDEs involving
Hadamard derivative can be found in [34]. Referring to semilinear IFrDEs in Banach spaces,
the authors in [29] gave an explicit way to represent mild solutions. By using this formulation
and fixed point approach, a number of existence results has been obtained, see e.g. [29-31].
An important question associated with the problem (0.1)-(0.3) is to address the large-time
behavior of its solutions. It should be noted that the theory of global attractors (see, e.g.
[11]) does not work in this case due to the lack of semigroup property of solution operator. In
addition, the using of Lyapunov function to analyze stability of solutions is impractical due to
the difficulty in computing and estimating fractional derivatives, even in finite dimensional case.
By this reason, results on large-time behavior of solutions to IFrDEs have been little known in
literature. In the recent papers [12, 21, 22], we studied some models of semilinear fractional DEs
in Banach spaces involving non-local conditions and impulsive effects, in which the existence of
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attracting solutions was proved by employing the contraction mapping principle. This approach
was introduced by Burton and Furumochi [8, 9] in dealing with stability for ordinary/functional
differential equations. However, the techniques used in [12, 21, 22] do not work for our problem
in this note since the nonlinear functions F, g and Ij are not Lipschitzian in our settings (see
Section 3 and 4).

In the present work, we prove that the problem (0.1)-(0.3) has a compact set of attracting
solutions in PC([0, +00); X) (see Section 4). To this end, we will construct a regular measure of
non-compactness (MNC), namely x* on a closed subspace of PC([0, +00); X), then show that
the multi-valued solution operator associated with (0.1)-(0.3) is x*-condensing, then it admits
a compact fixed point set.

Our work is organized as follows. In the next section, we recall some notions and facts of
fractional calculus, including the characteristic solution operators given in [15], and the fixed
point theory for condensing multi-valued maps. In Section 3, we make feasible assumptions
on (0.1)-(0.3) and prove the solvability on compact intervals. Section 4 is devoted to the main
result, in which we define the MNC x* and show the existence of a compact set of attracting
solutions to our problem. An application to polytope fractional partial differential equations is

presented in the last section.

1 Preliminaries
1.1 Fractional calculus
Let L'(0,T; X) be the space of integrable functions on [0, T], in the Bochner sense.
Definition 1.1 The fractional integral of order a > 0 of a function f € L'(0,T;X) is
defined by
t
10 = 7 | =97 ()

where T" is the Gamma function, provided the integral converges.

Definition 1.2 For a function f € CN([0,T]; X), the Caputo fractional derivative of
order a € (N — 1, N) is defined by

D30 = w9 )

Consider problem

D§Bu(t) = Au(t) + f(t), t # tg,tx € (0,400),k € A, (1.1)
Au(tk) = Ik(u(tk)), (1.2)
u(0) = g(u). (13

Assume that D(B) C D(A), B is bijective and has a bounded inverse. Let {T'(¢)} be the Co-

semigroup generated by AB~!. Putting v(t) = Bu(t),t > 0, one can rewrite (1.1)-(1.3) as
Dgv(t) = AB Yo(t) + f(t), t # tg,tr € (0,400),k € A, (1.4)
Av(ty) = Bl (u(ty)), (1.5)
v(0) = Bg(u). (1.6)
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Now employing the formulation of solutions to impulsive fractional differential equations estab-
lished in [29], we get

u(t) =Sa(t)Bg(u) + Y Sa(t — tx) BIx(ulty))

0<tr <t
t
+ / (t—8)* 1P, (t — 5)f(s)ds,t > 0, (1.7)
0
where S, (t) and P,(t) are given by
Sa(t)z = /OC B¢, (0)T(t*0)xdb,
0
P,(t)z = « / B~ Y09¢(0)T(t*0)xd6,
0

here ¢, is a probability density function defined on (0, o), that is, ¢, (6) > 0 and fooo P (0)d =
1. Moreover, ¢, has the expression

[e.e]

ba(0) = % z:l %F(na) sin(nma).

n—
Let {U(t)}+>0 is a family of bounded linear operators on X. Then we say that U(-) is norm
continuous iff the map ¢ — U (t) is continuous on (0,00). If U(t) € L(X) is a compact operator
for each ¢t > 0 then U(-) is said to be compact.

Lemma 1.3 Let T(-) be the Cp-semigroup generated by AB~!. If T(-) is uniformly
bounded, i.e. sup;>q [|T(t)|| < 400, then we have the following properties:

(1) If the semigroup T'(-) is norm continuous, then S, (-) and P,(-) are norm continuous as

well;

(2) If B~! is a compact operator or T(-) is a compact semigroup then S,(-) and P,(-) are

compact.

Proof The proof of the first part follows the same lines as in [21, Lemma 2.1]. For the
second part, if B~! is compact then the compactness of S,(-) and P,(-) was proved in [15,
Lemma 3.2]. Moreover, if T'(-) is a compact semigroup then S, () and P,(-) are compact due
to the arguments in [35, Lemma 3.4].

Let ®(t,s) be a family of bounded linear operators on X for ¢,s € [0,7],s < t. The
following result was proved in [27, Lemma 1].

Lemma 1.4 Assume that & satisfies the following conditions:

(®1) There exists a function p € L9(J),q > 1 such that |®(¢,s)|| < p(t — s) for all t,s €
[0,T],s < t;

(®2) |®(t,s) — P(r,s)]| <efor0<s<r—er<t=r+h<T withe=¢h)—>0ash—0.
Then the operator S : L9 (0,T; X) — C([0,T]; X) defined by
¢
Sa)(0):= [ B(t.s)g()s

sends any bounded set to an equicontinuous one, where ¢’ is the conjugate of ¢ (1/¢'+1/q = 1).
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Define a linear operator

Qo : LP([0,T]; X) — C([0,T]; X),

Qu(/)(t) = /O (t— $)2 1 Pa(t — 5) f(s)ds. (18)

By the Holder inequality, we see that )., is a bounded operator. Now using the last two lemmas,

we have the following result.

Proposition 1.5 If the semigroup T(-) generated by AB~! is uniformly bounded and
norm continuous, then the operator @, defined by (1.8) maps any bounded set in L?(0,7"; X)
into an equicontinuous set in C([0, T]; X).

Proof See [21, Proposition 2.3].

1.2 Measure of noncompactness and condensing multivalued maps

Let E be a Banach space. Denote

PE)={BCE:B+#0},

Py(E) ={B € P(E) : B is bounded},
K(F)={B € P(F): B is compact},
K,(E)={B e K(E) : B is convex}.

We will use the following definition of measure of noncompactness. (see [20])

Definition 1.6 A function 8 : Py(F) — RT is called a measure of moncompactness
(MNC) on E if
B(co Q) = () for every Q € Py(E),

where ¢o (2 is the closure of the convex hull of 2. An MNC 3 is called
i) monotone if Qy, Q1 € Pp(E), Qo C Q; implies 3(Q) < B(21);
ii) nonsingular if S({a} U Q) = B(?) for any a € E,Q € Py(E);
iii) algebraically semi-additive if (20 + Q1) < 8(Q0) + 8(21) for any Qg, 2y € Py(E);
iv) regular if 5(2) = 0 is equivalent to the relative compactness of €.

An important example of MNC is the Hausdorff MNC x(-), which is defined as follows, for
Qe Py(E) put
x(Q) = inf{e > 0: Q has a finite e-net}.

Let T € L(FE), i.e. T is a bounded linear operator on E. Then one can define the x-norm of T'
as follows
1T\l =inf{8 > 0: x(T'(B)) < 8- x(B) for all B € Py(E)}. (1.9)

It is known that (see [20])
o |7, = x(T(By)) with By being a unit ball in E.

o Tl < 1T[2(r)-
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o |T||, =0 iff T is a compact operator.

We need the following result, which is an MNC-estimate. Its proof can be found in [20].
Proposition 1.7 ([20]) If {w,} C L*(0,T; E) such that

lwn(O)|le < v(t), for a.e. t € [0,T],

for some v € L'(0,T), then we have

X /0 wa(s)ds}) <2 /0 x({wa(s)}ds

for t € [0,T].
We also need the following MNC-estimate for the case of uncountable sets.

Proposition 1.8 ([2]) Let D C L'(0,T; E) such that
(1) 1E®Ne < v(t), for all € € D and for a.e. t € [0,T],
(2) x(D(t)) < q(t), for a.e. t € (0,77,
where v,q € L*(0,T). Then
¢ ¢
D(s)ds) < 4 ds,
©([ Dds) <4 [ atoas
here
¢ ¢
/ D(s)ds = {/ &(s)ds : € € D}.
0 0

We are in a position to collect some notions and facts of set-valued analysis. Let Y be a

metric space.

Definition 1.9 A multivalued map (multimap) F : Y — P(F) is said to be:

i) upper semicontinuous (w.s.c) if F~1(V) ={y € Y : F(y) NV # 0} is a closed subset of ¥’
for every closed set V C FE;

ii) weakly upper semicontinuous (weakly u.s.c) if F~1(V) is closed subset of Y for all weakly
closed set V C E;

ili) closed if its graph 'z = {(y, 2) : z € F(y)} is a closed subset of Y x E;
iv) compact if F(Y') is relatively compact in E;
v) quasi-compact if its restriction to any compact subset A C Y is compact.

The following lemmas give criteria for checking if a given multimap is (weakly) u.s.c.

Lemma 1.10 (/20], Theorem 1.1.12) Let G : Y — P(E) be a closed quasi-compact
multimap with compact values. Then G is u.s.c.

Lemma 1.11 ([6], Proposition 2) Let X be a Banach space and 2 be a nonempty subset
of another Banach space. Assume that G : Q@ — P(X) is a multimap with weakly compact,
convex values. Then G is weakly u.s.c if and only if {z,,} C Q with ,, — z¢ € Q and y,, € G(z,,)
implies ¥, — yo € G(x0), up to a subsequence.

We now recall the concept of condensing multimaps ([20]).
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Definition 1.12 A multimap F : Z C E — P(E) is said to be condensing with respect
to an MNC S (8-condensing) if for any bounded set 2 C Z, the relation
B(Q) < B(F(2))
implies the relative compactness of €.

Let 8 be a monotone nonsingular MNC in E. The application of the topological degree
theory for condensing maps (see, e.g. [1, 20]) yields the following fixed point principle, which

will be use to prove the existence result for (0.1)-(0.3).

Theorem 1.13 ([20, Corollary 3.3.1]) Let M be a bounded convex closed subset of E
and let F : M — K,(M) be a us.c and §-condensing multimap. Then the fixed point set
Fix(F) ={x € M : 2z € F(x)} is a nonempty and compact.

2 Existence of solutions on compact intervals

Given T > 0, we denote by PC([0,T]; X) the space of functions w : [0,7] — X such that u
is continuous on [0, T]\{tx : ¥ € A} and for each t;, € [0,T],k € A, there exist

u(ty) = lim w(t); w(t))= lim u(t)
t—t; -t

and u(ty) = u(t; ). Then PC([0,T]; X) endowed with the norm
[ullpe == sup u(®)l],
t€[0,7)
is a Banach space. Let x be the Hausdorff MNC in X, xp¢ the Hausdorff MNC in PC([0, T]; X).
We recall the following facts (see [19]): for each bounded set D C PC([0,T]; X), one has
o x(D(t)) < xpc(D), for all t € [0,T], where D(t) := {z(t) : x € D}.
e If D is an equicontinuous set on each interval (g, tx+1] C [0, 7], then

xprc(D) = tes[l(l)pT] X(D(t)).

To prove existence results for problem (0.1)-(0.3), we make the following assumptions:

(A) AB™! is the infinitesimal generator of a Co-semigroup {T(t)}1>0 which is norm continu-
ous.
(F) F:[0,T] x X = K(X) is a multimap satisfying that:
1. The multimap F(-,v) admits a strongly measurable selection for each v € X and the
multimap F(t,-) is u.s.c for a.e. t € (0,T);

2. There emist functions m € LP(0,T), p > é and Vg being a real-valued, continuous

and nondecreasing function, such that
1E @) < m)¥e(v]),
for allv € X and for a.e. t € (0,T), here |[F(t,v)|| = sup{||£]| : £ € F(t,v)};
3. If B~ and T(-) are non-compact, then for any bounded sets D C X, we have
X(F(t, D)) < k(t)x(D),

for a.e. t € (0,T), where k € LP(0,T) is a nonnegative function.
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(G) The nonlocal function g : PC([0,T); X) — D(B) obeys the following conditions:
1. Bg:PC(]0,T); X) — X s continuous and

[ Bg(u)ll < ¥y([[ullpe),

for all w € PC([0,T]; X), where ¥, is a continuous and nondecreasing function on
R+

2. There exists n > 0 such that

X(Bg(D)) < nxpc(D),
for all bounded set D C PC([0,T]; X).

(I) The operator I, : X — D(B) satisfies:

1. Bl : X — X is continuous and there exists a real-valued, continuous, nondecreasing

function ¥y and a nonnegative sequence {li}ren such that
IBIk(x)x <l Wi(|lz]]), for allz € X,k € A;
2. There exists a nonnegative sequence {ug}ren such that
X(BIk(D)) < px(D),
for all bounded subset D C X.
3. The sequence {ti}ren satisfies infrep{tp+1 — tx} > 0.
For u € PC([0,T]; X), we denote
Pr(u) ={f € LP(0,T; X) : f(t) € F(t, u(t))}.

Motivated by formula (1.7), we introduce the following definition for integral solutions to
(0.1)-(0.3).

Definition 2.1 A function u € PC([0,T]; X) is said to be an integral solution of problem
(0.1)-(0.3) on the interval [0, T iff there exists a function f € Ph(u) such that

u(t) = Sa(t)Bg(u) + > Salt — ti) BIx(u(ty))

0<t<t
+ /Ot(t —8)* P, (t — 5)f(s)ds, (2.1)
for any t € [0,T].
We now define the solution operator
F :PC([0,T); X) — P(PC([0,T]; X))

as follows

F(u)(t) =Sa(t)Bg(u) + > Sal(t—tx)BIx(ulty))

0<trp<t

+ { /Ot(t —8)* P (t — s)f(s)ds : f € Pg(u)}. (2.2)
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Since F' has convex values, so does P%. This implies that F has convex values as well. On the
other hand, u is an integral solution of (0.1)-(0.3) if it is a fixed point of the solution operator
F.

To establish the existence result, we need some properties of Pk.

Lemma 2.2 Under the assumption (F), the multimap P% is well-defined and weakly

u.S.C.

Proof We first prove the weakly u.s.c property by using Lemma 1.11. Let {u,} C
PC([0,T); X) such that u, — u*, f,, € Ph(u,). We see that {f,(¢t)} C C(t) := F(t,{un(t)}),
and C(t) is a compact set for a.e t € (0,T). Furthermore, by (F)(2), {f,.} is integrably bounded
(bounded by an LP-integrable function). Therefore {f,} is weakly compact in L?(0,T; X) (see
[13]). Let f, — f*. Then by Mazur’s lemma (see, e.g. [14]), there are f, € co{f; : i > n} such
that f, — f* in LP(0,T; X) and then f,(t) — f*(t) for a.e t € (0,T), up to a subsequence.
Since F' has compact values, the upper semicontinuous of F'(¢,-) means that

F(t,un(t)) C F(t,u"(t)) + Be,
for all large n, here € > 0 is given and B is the ball in X centered at origin with radius €. So
fu(t) € F(t,u*(t)) + Be,

for a.e. t € (0,T), and the same inclusion holds for f,(t) thanks to the convexity of F(t, u*(t))+
Be. Accordingly,

f(t) € F(t,u*(t)) + B,
for a.e. t € (0,T). Since e is arbitrary, one gets f* € Ph(u*).

It remains to show that for each v € PC([0,T]; X), Ph(v) # 0. Taking (I)(3) into account,
we see that there are at most a finite number of ¢, € [0,7]. Then one can find a sequence
{vn} of step functions which converges uniformly to v on [0,7]. Then for each n there exists
a strongly measurable function f, such that f,(t) € F(t,v,(t)), thanks to (F)(1). That is,
{fo(t)} C C(t), where C(t) = F(t, {vn(t)}) is a compact set, thanks to the upper-continuity
of F(t,-). Using the same argument as in the first part, we see that {f,} is a weakly compact
in LP(0,7; X) and f,, — f € LP(0,T;X) and f(t) € F(t,v(t)) for a.e. ¢t € (0,T). That is
[ € PP.(v). The proof is complete.

Lemma 2.3 Under the assumptions (A) and (F), the composition
Qa0 PL : PC([0,T); X) — P(PC([0,T]; X))
is a u.s.c. multimap with compact values, where @ is defined by (1.8).

Proof The proof is proceeded in two steps.

Step 1: Qq o P is a closed multimap. Let
{un} CPC([0,T); X),un — u*; 25 € Qo 0 Pha(uy) and z, — z*.

We show that z* € Q, o Ph(u*) . Take f,, € Ph(uy,) such that

enlt) = Qulfu)(1) = / (t = $)2LPa(t — 5) fu(s)ds. (2.3)
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By Lemma 2.2 we get that f, — f* € LP(0,7;X) and f* € Ph(u*). Since Q is linear and
continuous, we have Q. (fn) — Qua(f*). In addition, C(t) = {f.(t) : n > 1} is relatively
compact, and then

QEOD <x({ [ (6= )" Palt = )fu ()05}
< 2/0 (t— 3)0‘*1”Pa(t —5)|Ix({ fn(s)})ds = 0,

according to Proposition 1.7. Due to Proposition 1.5, {Q.(fn)} is equicontinuous. Then by the
Arzela - Ascoli theorem, we have {Q.(f)} is relatively compact. Therefore one has Q(fn) —
Qo (f*). So it follows from (2.3) that

() = /0 (t— )2 Pa(t — 5)f*(s)ds = Qu(f*)(),

for all t € [0,T], where f* € Ph(u*), thus z* € Q4 o Ph(u*).

Step 2: Qq 0 PE is a quasi-compact multimap. Let K C PC([0,T7]; X) be a compact set and
{zn} C Qqa o PR(K). We prove that {z,} is relatively compact in C([0,7]; X), and hence in
PC([0,T); X). Let {up} C K such that z, € Q4 © Pi(uy). Then one can assume that u, — u*
in PC([0,T); X) up to a subsequence. Take f, € Ph(u,) such that z,(t) = Qa(fn)(t), for
all t € [0,T]. Since {fn(s)} C F(s,{un(s)}), one sees that {f,(s)} is relatively compact for
a.e. s € (0,T). Thus {Qu(fn)(t)} is a compact set for all ¢ € [0,T]. In addition, {Qu(fn)} is

equicontinuous due to Proposition 1.5, then {z,} is relatively compact in C([0,T]; X).

Thus the conclusion follows from Step 1, Step 2 and Lemma 1.10.

Lemma 2.4 Let the hypotheses (A), (F), (G) and (I) hold. Then the solution operator
F satisfies

t
xpe(F(D)) < [(n+ > ) ST 44 sup / (t = )7 [ Palt = )| k(s)ds | xpe (D),
t,e(0.7) te(0,T]J0

for all bounded set D C PC([0, T]; X), here S& = sup,eo.7) [[Sa(t)]-
Proof Let D C PC([0,T]; X) be a bounded set. Then we have
F(D) = F1(D) + F2(D) + F3(D),

where

Fi(u)(t) = Sa(t)Bg(u),

Fo(u)(t) = > Salt —tx) Bli(ulty)),

Fs(u)(t) = { /0 (t —8)* L Py (t — s)f(s)ds : f € Ph(u),t € [O,T}}.
So

xpe(F(D)) < xpe(Fi(D)) + xpe(F2(D)) + xpe(F3(D)).
For z1, 29 € F1(D), there exist u1,us € D such that

z1(t) = Sa(t)Bg(uw),
22(t) = Sa(t)Bg(uz),t € [0, T,
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then

[21(t) = z2()[| < [1Sa(®)[] [[Bg(u1) — Bg(us)]
< Sa [1Bg(ur) — Byg(uz)||, t € [0, T].
It follows that
lz1 = 22l pe < S& [1Bg(ur) — Bg(ua)|-
Thus
xpe(Fi(D)) <S5 - x(Bg(D)).
Employing (G)(2), we have
xpe(Fi(D)) <nS% - xpe(D).
Now let z1, 20 € Fa(D), one can find uy,us € D such that
z1(t) — z2(t) = Z So(t — t) B[Ix(u1(tg)) — Ix(ua(te))], t € [0, 7).
t,€(0,T)

Hence

21 — zollpe < S5 D |IBIk(ua(ts)) — BIk(ua(ty))]-
t,€(0,T)

This inequality implies that
xpe(Fa(D) <S5 Y7 x(BI(D(t)))
t,€(0,T)

<S5 Y mx(D(tr)

t,€(0,T)

S(Sf > Nk)XPC(D)a
tr€(0,T)

thanks to (I)(2).
Regarding F3(D), for t € [0,T], we have

X(F(D)(®)) = x( / (t = $)* Pyt — $)PL(D)(s)ds))

<4 [ =" (Palt = 9PHD) ).

due to Proposition 1.8. If B~! or T(-) is compact, so is P,(-) due to Lemma 1.3.

(2.4)

(2.5)

(2.6)

Then

x(F3(D)(t)) = 0, thanks to the fact that x(Pa(t — s)PR(D)(s)) = 0 for s € (0,¢). In the

opposite case, we have

X(Pa(t = )PE(D)(5)) < | Pa(t = 8)lx X(PE(D)(5)) < [[Pa(t — 8)llyk(s)x(D(s))-

Plugging this in (2.6), we get
X(F3(D)(t)) < 4/0 (t = 5) Y[ Palt = 8)llxk(s)x(D(s))ds

<(1sm [ ()Pl M k(s)ds ) xre(D).

t€(0,T]

(2.7)
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We observe that P%(D) is bounded in L?(0,T; X) since D is bounded in PC([0,T]; X). By
Proposition 1.5, the set
F3(D) = Qa o Pp(D)
is equicontinuous in C([0,7]; X). Thus
xpe(Fs(D)) = sup x(Fs(D)(1)).
t€[0,T]
In view of (2.7), one has
t
xpe(F3(D)) < (4 sup / (t = ) 7 [Pa(t — 5)llxk(s)ds) xpe (D). (2.8)
te(0,7]J0
Combining (2.4), (2.5) and (2.8), we arrive at

t
xpe(F(D)) < [(n+ > uk)52+4 sup /(t—s)a—1||Pu(t—s)||Xk(s)ds vre(D).
t,€(0,7) te(0,7]Jo

The proof is complete.

Theorem 2.5 Assume that the hypotheses of Lemma 2.4 hold. Then the problem (0.1)-
(0.3) has at least one integral solution in PC([0,T]; X ), provided that

t
(77 + Z ,uk)Sg +4 sup / (t — 8)* | Pa(t — s)|| k(s)ds < 1, (2.9)
e (0. t€(0,71J0

and

nminfi{(\pg(rwwl(r) > n)st

r—00
t€(0.T) (2.10)

t
+ Yp(r) sup / (t— s)O‘_IHPa(t —s)|[lm(s)ds| < 1,
te(0,7]J0

where S = supseo, 7y [1Sa (t)]]-

Proof By Lemma 2.3 and the continuity of Bg and BlIj, one sees that F is u.s.c with
compact and convex values.

By (2.9) and Lemma 2.4, we obtain the ypc-condensing property for F. In order to apply
Theorem 1.13, it remains to show that F(Bgr) C Bg for some R > 0, where Bp is the closed
ball in PC([0,T]; X) centered at 0 with radius R.

Assume to the contrary that there exists a sequence {v,} C PC([0,T]; X) such that
lonllpe < n and z, € F(vy,) with ||z,]|pc > n. From the formulation of F, one can find
fn € Ph(v,) such that

Zn(t) =Sa(t)Bg(vn) + > Salt — te) Blx(vn(ts))

0<tp<t
+ /0 (t — 8)* Pyt — 8) fn(s)ds.
Then
za @) <Sa @Bl + > 1Salt = te) | BIk(va(t)]

t,€(0,T)

+ /0 (t — 8)* Y| Po(t — 8)|||| fu(s)||ds
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< sup [Sal)Zy(lnllpe + 3 Wi(lon(ti)]))
te[0,T]

tr€(0,T)
+ [ =Pt = )l (o) s
<SE(wym)+ > W¥i(lvallpe))

tr€(0,T)
+ [ = P = () ¥ (onllre)is
<ST(wym)+wi(m) Y2 1)

t,€(0,T)

+ \I/F(n)/o (t — ) Y| Po(t — s)||m(s)ds

Therefore,
n < Ilzallpe <SE(Ug(m) +in) - 1
tr€(0, T)
+ Ppr(n) sup / (t — 8)* || Py(t — s)||m(s)ds.
te(0,T]
Then

1<7||znupc< [ST( (n) + ¥r(n) Y

th(O,T)
t
) swp [ (0= = 9)m(s)ds]
tG(O,T] 0

Passing to the limit in the last inequality, one gets a contradiction. The proof is complete.

3 Globally attracting solutions
In this section, we prove the existence of attracting integral solution to problem (0.1)-(0.3).

To this end, we consider the function space

PCy = {u € PC([0,4+0); X) : 11m u(t) = 0}
with the norm
[[ulloc = sup [u(®)]l,
>0
where PC([0, +00); X) is defined similarly to PC([0,T]; X) as T = +oo. Then PCy is a Banach
space. In this section, the multimap P is defined as follows: for u € PC([0, +00); X),
={fell (R*;X): f(t) € F(t,u(t)) for ae. t e R*}.

Denote by mr the restriction operator on PCy, that is, mr(x) is the restriction of x on [0,T].
Then the function

Xoo(D) = sup xpe(mr (D)) (3.1)

is an MNC on PCy, here we recall that xpc is the Hausdorff MNC on PC([0,T]; X). Argued
as in [2], Xoo is not a regular MNC on PCy. We will define a regular one on this space. Let

dr (D) = sup sup ||z (t)]], (32)
zeDt>T
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deo(D) = Jim_dz (D), (3.3)
X' (D) = xoo (D) + duc (D). (3.4)

The following result is important for our purpose.

Lemma 3.1 The MNC x* defined by (3.4) is regular on PCy.

Proof Let D C PCqy be a bounded set such that x*(D) = 0. It is obvious that wr(D) is
relatively compact in PC([0,T]; X). We show that D is relatively compact in PCj.

For € > 0, since d (D) = 0 one can take T' > 0 such that sup,~r [|u(t)|| < §, for all u € D.
This means that

lu — mp(u)]|co < ; for alluw € D,
here mp(u) agrees with a function in PCy in the following manner

u(t), telo,T],
mr(u) =
0, t>T.

Now since nr (D) is a compact set in PC([0,T]; X ), we can write

9, (3.5)

7TT(D) C U BT(U@'; 5

i=1
where u; € PC([0,T]; X),i = 1,..., N, the notation Br(u;r) stands for the ball in PC([0,T]; X)

centered at u with radius r. Defining

~ t)— ui(t)v tG[O,T],
0, t>1T,

then {a;}_, belong to PCy. We assert that

N
D c | Bx(tiis ),
i=1
here By (u;r) is the ball in PCy with center v and radius r. Indeed, let uw € D then by (3.5),
there is a number k € {1,..., N} such that
€
|77 (u) — ukHPC([O,T];X) < 3
This implies that
. €
() — i oo < <.

Then

. N € €
lu = Gklloo < [lu =77 (u)lloo + 77 (1) = Grfleo < 5 + 5 =e

Thus u € B (tr;€) and we have D C Uf\;l Boo(u;;€). Hence D is relatively compact in PCy.
The proof is complete.

We now prove that F keeps PCy invariant, i.e. F(PCy) C PCo, and F is x*-condensing on
PCo. In order to get attracting solutions to problem (0.1)-(0.3), we have to replace (A), (F),
(G) and (I) by stronger ones.



No.x V.H. Le, D.K. Tran & T.K. Chu: GLOBALLY ATTRACTING SOLUTIONS 15

(A*) The semigroup {T(t)}i>0 satisfies (A) and the operator families {Sqo(t); Pu(t)}i>0 are
asymptotically stable, that is,

lim [[Sa ()] =0, Jim [|Pa(0)] = 0.

t—o0

(F*) F:RT x X — K,(X) satisfies (F) for every T > 0, with m,k € L} (RY) and Vp(r) <r
for all r > 0.

(G*) The function g : PC([0, +00); X) — D(B) satisfies (G) for any T > 0.

(I*) The jump functions I, : X — D(B) satisfies (I) with > I < 400 and >, pur < +o0.
keA keA

The following proposition show a case, in which (A*) is satisfied.
Proposition 3.2 Assume that the semigroup {T'(t)}:>0 generated by AB™! is norm
continuous and exponentially stable, i.e., there are positive numbers a, M such that

1T ()] < Me™.

Then there exist two positive number C's and Cp such that

[Sa(t)|| < M||B~"||min (1, Cst™®), (3.6)
1
< -1 : —2« . .
|1 P (®)|| < M||B™"|| min <F(a)’CPt ) , Vt>0 (3.7)

Proof The proof follows the same lines as those in [2].

Lemma 3.3 Let (A¥), (F*), (G*), (I*) hold. Then F(PCy) C PCy provided that

5t
9= sup/ | Pa(t — s)|| m(s)ds < +o0, (3.8)
>0 Jo
t
K= sup/ (t — 8)* Y|P (t — 5)|| m(s)ds < +oo, (3.9)
t>0 J 5t

for some § € (0,1).

Proof We recall that
Fu)(t) =Sa(®)Bg(u) + Y Salt —ti) BIx(u(ty))

O<tp<t

+ { /Ot(t —8)* P (t —s)f(s)ds: f € P;(u)},t > 0.

Let u € PCq such that R = ||u|lcc > 0 and z € F(u). We prove that z € PCy, i.e. z(t) — 0
as t — +oo.
Let € > 0 be given. Then there exists 77 > 0 such that

lu(®)| <€Vt >T. (3.10)
From the assumption that > I < 400, there exists Ny € N such that > I < e. Now for

kEA k>No
t >0,

[z@ON < [[1Sa®) I Bg(u)]
+ D ISalt = ti) [ IBIk(u(ti)] + Y 1Sa(t — ti) | | BIx(u(ti) |

k<N k> No
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+/0 (t— s)a—1||Pa(t — ) If(s)|lds

< ISa®lWg(R) + Wr(R) Y [1Salt = te) | ls + SZVI(R) Y U

k<Npo k>No
+ /O (t =) H|Palt = s)l| m(s) Wr([lu(s)])ds
=F (t) + Eg(t) + E‘g(t)7

where S3° = sup ||S,(t)]], and
>0

Eq(t) = [15a()[[¥y(R),
Ey(t) = Ur(R) Y 1Salt —te)ll I + ST (R) Y I,

k<N k> No
Es(t) = /O (t =) H[Pa(t — s)[lm(s) Cr(|lu(s)])ds.

By (A*) there is T, > 0 such that

1Sa(®)]l < & | Pa(d)ll < eVt > T, (3.11)
SO
FE (t) < EWQ(R), Yt > Ts. (312)
In addition,
Ea(t) < e ( 3 b+ Sf)\IJI(RL Vit > Ty + t,. (3.13)
k<N,

Concerning Fs(t), for t > % one has
St t
Ba(0) = ([ + [ )= 1Pale = ) m(s) we(lus)l)ds
ot
<Ue(R) [ =9 Pt = ) ()

+ (o) /5 (=) Pt = ) m(s)ds

R S5t
< @y f, WP limieds

¢
+ e/ (t — 8)* Y| Py(t — s)|| m(s)ds
ot
thanks to (3.10) and the fact that §¢ > T}. Now choosing 73 > Lt such that

R
W<67 Vt>T37

we get
Es(t) < (VU + K)e, (3.14)

where 9, k are given in (3.8)-(3.9). Combining (3.12)-(3.14) yields
Izl < e[Wo(R) + (D I+ S)WUi(R) + 0 + k],

k<No
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for all ¢ > max{Ts + tn,,T5}. So the last inequality ensures that z € PCy. The proof is
complete.

Lemma 3.4 Let (A*), (F*), (G*) and (I*) hold. If ¥ < 400 and max{k, ¢} < 1, where
9, K are given in (3.8)-(3.9) and

0= (n+ Y ) S+ 43213/ (t = ) [ Palt — 8)]lok(s)ds, (3.15)

keA 0
then F is x*—condensing on PCy.

Proof By the hypotheses and Lemma 3.3, one can consider the solution operator F :
PCy — P(PCy). Let D C PCy be a bounded set. Taking r > 0 such that ||u|. < r, Yu € D.
We have 77 (D) bounded in PC([0,T]; X).

By the same arguments as in the proof of Lemma 2.4, one has

xpc(rr(F(D))) <l - xpe(nr(D)),

where .
Ip = [(n + 0y uk)sf +4 sup / (t — )Y Pa(t — 5)|I k(s)ds |,
tee(0.T) t€(0,7] Jo
where | - || is the x-norm of a bounded linear operator defined by (1.9). This implies

It remains to estimate doo (D). For each z € F(D), there exists u € D and f € Ph(u) such
that

2(t) =Sa(t)Bg(u) + > Salt —ti)Blx(u(ts))

0<tp<t
—|—/O (t—8)“" " Py(t —s)f(s)ds,Vt > 0.
Let
Fr(u)(t) = Sa(t)Bg(u),
Folu)(t) = Y Salt —te) BIx(ulty)),

0<tp<t

ot
fg(m(wz{ 0 (t—s)“1Pa(t—s)f(s)ds:f€7’§(U)},

Fiw® = { =9 pate— o) sssds £ e Ph

for t > 0. Then
.F(D) = ]:1(D) + .FQ(D) + .7:3(D) + ]:4(D) (317)

We first show that
doo (F1(D)) = doo(F2(D)) = doo(F3(D)) =0 (3.18)

by arguing that for any ¢ > 0, there exists T' > 0 such that for all z € F;(D), ¢ € {1,2,3},
lz(t)|| < Ce for t > T, where C = C(r) > 0.
Let z € F1(D), then one can take u € D such that z(t) = S, (t)Bg(u). We have

12O < 1Sa@O1Tg([lulloo) < 1Sa(®)[Tg(r)-
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The last inequality implies that for all z € F1(D), ||z(t)|| < e Uy(r) for t > T7 > 0 thanks to
the fact that || S, (¢)|| — 0 as t — 4oc.
Regarding F>(D), we observe that, for z = Fa(u),u € D,
2@ < D2 1Salt = i) 1@ r(luct)l)

0<trp<t

SW(r) Y [ISalt — i)l

O<tp<t

SUL(r) [ D0 1Salt = ti)llle+ Y [1Salt —te) 1l

k<No k>No

SU(r) | D0 I8alt = te)llle + 52 > I |

k<No k>Ny

where Ny € N such that Zk>N0 Ik < e. Noticing that ||Sa(t —tr)|| < € for all ¢t > Ty + ty,, one
gets

| 2(8)]| < eWy(r) (Z Ik + 5;;°> Nt > Ty +ty,,Vz € Fo(D).
keA

Now for z = F3(u),u € D, by (F*) we have

ot
Izl S/O (t =) Pat = 5)llm(s)l|u(s)l|ds

5t
r
< P, (t — s)|lm(s)ds
< e [, 1Pel=9)lm()
S#<ET’&,V?‘:ZT2>O,

where ¥ is defined by (3.8).
We are in a position to deal with doo (Fa(D)). For z = Fy(u),u € D, one has

=0l < [ (0= Pt = ) (o) (o) s
< ( [ =9 tirae- s>||m<s>ds) s ()|

< sup [[u(s) || < r sup sup [[us)l, ¥t > 0,
s>6t weD s>5t

where « is given by (3.9). Taking T € (0, §t], we see that
[2()] < & sup sup |lu(s)|| = & - dr(D),Vt = T.
ueD s>T

Therefore

sup sup [[2(t)[| < k- dr(D),
2€F4(D) t>T

and then by the definition of d.,

doo(F1(D)) < k- doo (D). (3.19)
It follows from (3.17)-(3.19) that

doo (F(D)) < k- doo (D).
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Combining with (3.16), we arrive at
X (F(D)) = Xoo(F(D)) + doo(F(D))
< max{r, £} (Xoo (D) + doo (D))
= max{k, ¢} - x* (D).
The proof is complete.

The following theorem is our main result.

Theorem 3.5 Let (A*), (F*), (G*) and (I*) hold. Then problem (0.1)-(0.3) possesses a
compact set of globally attracting solutions, provided that ¥ < 400 and max{¢, p} < 1, where
9 is defined by (3.8), £ is given in (3.15) and

p= liminfi[(\llg(r) + Wy(r) Z lk-)Sgo:|

00
keA

+ sup/O (t — 8)* 71| Pu(t — 5)||m(s)ds. (3.20)

>0
Proof By (3.20), we follows the same arguments as in the proof of Theorem 2.5 to get
a closed ball By = B(0,R) in PCy such that F(Br) C Bg. From now on, we consider F
as a multimap from Bpg into itself. Notice that the condition p < 1 implies x < 1. Then by

Lemma 3.4, F is x*-condensing. It remains to show that F is a u.s.c. multimap. Rewriting
F = F1 + Fa, where

Fi(u)(t) = Sa(t)Bg(u) + D Salt — tr) BIi(u(ty)),

Falu)(t) = { / (-5 P ] $)f(s)ds: f € P§<u>} 7

we see that Fj is continuous, thanks to the continuity of Bg and BI;. We will prove that
F5 is w.s.c. by using Lemma 1.10. Let {u,} C Bpg converge to u* and z, € Fa(u,) be
such that z, — z* (the convergence in the norm of PCy). We check that z* € Fa(u*), i.e.
2*(t) € Fa(u*)(t),Vt > 0. But this can be proceeded by the same arguments as in the proof
of Lemma 2.3. Now we testify the quasi-compactness. Let K C Bg be a compact set and
{zn} C F2(K). Then one can take {u,} C K and f, € Ph(uy) such that

t
zn(t) = / (t — 8)* L Py (t — 8) fn(s)ds,t > 0.
0
Arguing as in the proof of Lemma 2.3, we get that {mr(z,)} is relatively compact for any T > 0,
ie.
Xoo({zn}) = sup xpo({mr(zn)}) = 0.
T>0

Now using the estimate of d, as in the proof of Lemma 3.4, one obtains

doo({zn}) < Kdoo({Un}).
This implies
X ({#n}) = Xoo({2n}) + doc({2n}) < X" ({un}) =0

thanks to the compactness of {u,}. Hence x*({z,}) = 0 and by the regularity of x*, {z,} is
relatively compact. The proof is complete.
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4 An application

This section is devoted to an application of the obtained abstract results to a systems of
fractional PDEs. Let © C RY be a bounded smooth domain. We are concerned with the
following problem

Ofu(t, x) — 05 Azu(t, ©) — Azu(t,x) = f(t, x), (4.1)
ft,x) € co{f1(t,u(t,x)), .., frn(t,u(t,x))},x € Q,t > 0,t # b, k €N, (4.2)
u(t,x) =0, x € 9Q,t > 0, (4.3)
U(t;,l‘) = u(t]:wr) + / Hk(‘r7y)u(tk,y)dyv T e Qa (44)
Q
b
u(0,z) = v(x) +/0 /QG(s7ac,y)u(s,y)dyd5, x €. (4.5)

In this system, 05, « € (%7 1), stands for the Caputo fractional derivative with respect to ¢, A,
is the Laplacian with respect to x, and

CO{flv..-7fnL} = {Z,Uzzfz oy > O’Zﬂl = 1} .
i=1 i=1

Let X = L?(Q2), A = A (the Laplacian) with D(A) = H?(Q) N H(Q). Let {\,}n>1 be the
eigenvalues of —A with corresponding eigenvectors {ey},>1. Then we know that 0 < A\ <
Ay < ... < Ay < ... with \,, = 400 as n — +00, moreover

Ay = — Z AU, €n)en,
n=1

where (-, -) stands for the inner product in X. Now consider B = I — A with D(B) = D(A).
We see that B has the following representation

Bu=Y (1+A)(u,en)en.

n=1

Therefore

= 1
B 'y = U, €n)En,
;HAn( n)en

= *>\n
AB 1y = Z o (u, en)en.

n=1

This implies that the semigroup T'(-) generated by AB~! can be expressed by

'S
T(t)u = Z 611)37;/ t<u7 €n>€n~

n=1

A
Obviously, |T(t)|| < e™P*,vt > 0 with 8 = +1A
1

1
of the characteristic solution operators S, (-), Po(-) and (A*) is satisfied. Furthermore, by

> 0. So one gets the asymptotic stability

Proposition 3.2
[Sa(®)]| < [[B™" min (1, Cst™),
(4.6)

1
| Pa(®)]| < ||B~"| min (F(a),cpz:?a) for all £ > 0.



No.x V.H. Le, D.K. Tran & T.K. Chu: GLOBALLY ATTRACTING SOLUTIONS 21

In particular, S3° = sup, s |5 (t)[] < | B~
Let F': Rt x X — P(X) be the multimap defined by
F(t,v)(z) = co{fi(t,v(x)), ..., fm(t,v(x))}.

We assume that f; : Rt x R — R,i = 1,...,m, are continuous functions such that

|f1(t,2)| Sm(t)|z|,V(t,z) ERJr XR? (47)
where m € BC(RT;R™), the space of continuous bounded functions on RT, so that I§m €
BO(R*;RY), i.e.

Igm(t) = O(1) as t — +o0. (4.8)
It is easily seen that for each (¢,v) € RT x X, F(t,v) is a closed bounded subset of the finite
dimensional space X,, = span{f1(t,v()), ..., fm(t,v(-))}. So F(t,v) is a compact set in X, that
is, F has compact values. By the continuity of f;,i = 1,..,m, one can check that F(t,-) is a
u.s.c. multimap, i.e. for v, converging to v in X and for € > 0,
F(t,v,) C F(t,v) +eB(0,1),Vn > N(e),

with N(e) € N and B(0,1) being the unit ball in X. We observe that B~! is compact, then
(F*) is satisfied since we have
1E(E 0)]| < m@)]ol,

thanks to (4.7).
Consider the jump functions I; defined by

L)@ = [ Hieprd.
Suppose that Hi : Q x Q2 — R, k = 1,2, ... are measurable functions such that Hj together with
A, Hj, belong to L?(2 x Q). Denoting
hi(z,y) = Hi(z,y) — DaHi(z,y),
then BI; has the form
BI()(@) = [ hu(awy)olo)dy,

Q
and it is a Hilbert-Schmidt operator. In particular, B} is compact. We deduce that I}, satisfies

(I)(2) with g = 0. In addition, one can check that Iy satisfies (I)(1) with
Ik = ||hellz2(@x0), Y1(r) =7Vr >0.

Then (I*) is fulfilled if we assume Y p- ;[ < oo.
Regarding the nonlocal function, put

b
g(w)(xz) = v(x) —|—/O /QG(s,x,y)w(s,y)dyds, w € PC([0,+00); X).

We make an assumption that v € H?(2) and G : [0,b] x Q@ x 2 — R is a measurable function
with G(t,-,-), A,G(t,-,-) € L?(Q x Q). Then by putting
G(s,z,y) = (I — AL)G(s,z,y),

we have

b
Bg(w)(z) = v(z) — Av(x) +/0 /Qé(&x,y)w(s,y)dyds.
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It follows that

b
1Bg(w)[| < ||v]| +/0 G (s, )2 @xe)llw(s, )l ds

b
< lvllg= + (/o G(Sm')||L2(QxQ)dS> l|lw]|oo-

Thus (G)(1) is satisfied with

b
y(r) = vl 2 + (/ ||G(Sm')||L2(QxQ)dS> L
0
Since the operator K defined by
K)(@) = [ Gty

is a Hilbert-Schmidt operator for fixed s € [0,b], we see that for any bounded set D €
PC([0,+00); X), K(D(s)) is relatively compact in X. Hence the set Bg(D) presented by

b
Bg(D) = Bv +/ K(D(s))ds
0
is relatively compact as well, thank to the fact that (see Proposition 1.8)

b
x(Bg(D)) < 4 / X(K(D(s)))ds = 0.

So (G)(2) is testified with n = 0.
We are now in a position to clarify the conditions in Theorem 3.5, i.e.

Y <400, £<1, p<l1.

According to the above settings for (4.1)-(4.5), we get

t
0= (n+3 m)se+ 4sup/ (t = )" Y| Pa(t — 8)[lyk(s)ds = 0,
keA t>0 Jo

b 0o
p= (/ HG(Sv K ')||L2(Q><Q)ds + Z ||hk||L2(Q><Q)> SZO
0

k=1

t
+ sup/ (t —8)* | Puo(t — s)||m(s)ds.
t>0 Jo
¢
Let ¢(t) = / (t — s)*7 1| Py(t — s)||m(s)ds. By the estimate for P, in (4.6) we have
0
1B~ [*  aa-1 _r-1) 7 _
o(t) < (t—s)*""m(s)ds = || B[ I§m(t) = O(1) as t — +oo0,
L) Jo
thanks to (4.8). So ¢ = sup ¢(t) < +oo.
>0

Now we check that ¢ = sup/ [ Pa(t — s)||m(s)ds < +oo (take § = 1). Putting ¢(t) =
>0 .Jo

5 P, (t—s)||m(s)ds, we show that lim (t) = 0. Indeed, by the estimate (4.7) and the fact
0 t—+
—+00
that m € BC(RT;R™), we obtain

b(t) < B / "t — 52 m(s)ds
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" —2a % " —2a+1
<15 (3) [ Tmeas<is(5) Il

—0ast — +oo.

I

m, t 2 07 then

One can give an example of m satisfying (4.8). Let m(t) =

t
o I a—1_ds
Iom(t)zm/o(t—s) 11+Sa

H a-1_ds ' a-1_ds
= t— t—
(@) /0 (t=s) 1+5“‘+/;( 2 1+ se

a—1 t t
I t /2 ds 1 / o1
—_— - t— d
(@) (2) o T+s 11 (5)° (E=e)ds

B ﬁ (DH/O 11850« * F(lioﬁ 15}2;)&.

. p p
< .
Jm lem®) < T ey Y T v )

ole+

IN

So

Summing up, the problem (4.1)-(4.5) possesses a compact set of globally attracting solutions if

b o)
p= / IG (s, M2 @xeyds + D 1wl 2@xq) | S2° + doo < 1.
0 k=1
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1 Introduction

Fixed point theory is one of the most powerful and fruitful tools in nonlinear analysis. The
Banach contraction principle is widely considered as the source of fixed point theory. It is
a very popular tool to deal with the existence problems in many branches of mathematical
analysis. There has been a large number of generalizations of the Banach contraction prin-
ciple. In particular, an interesting aspect is to deduce the existence and uniqueness of fixed
point for self-maps on a metric space by altering distances between the points with the use
of a certain control function. These control functions were introduced by Khan et al. in [16]
and then applied in many works as, for instance, [3, 9, 14, 27, 34], where some fixed point
theorems were investigated with the help of such altering distance functions.

Recently, a new technique was proposed in order to weaken the requirements on the
contraction property by considering metric spaces endowed with a partial ordering. This
approach was initiated by Ran and Reurings in [33] with some applications to matrix equa-
tions. It was later refined and extended in [28] by Nieto and Rodriguez-Lépez and applied
to periodic boundary value problems for ordinary differential equations (ODEs). Following
this direction, in this paper, we generalize some fixed point theorems in partially ordered
sets of Amini-Harandi and Emami [3] by using altering distances. With the help of the weak
contractivity coefficient function 8 € S := SoU{1[0,o0)}, Where Sy is the class of functions
B : [0, 00) — [0, 1) that satisfy the condition

B(t;,) — 1 implies ¢, — O,

and 1[q,o0) is the indicator function on [0, +00), i.e., 1{9,00)(2) = 1 for all ¢ € [0, c0), and
1[0,00) = 0, otherwise, we weaken the required conditions by considering weak contractions
of Harjani and Sadarangani [14], and Nashine and Samet [27].

Since the base space does not necessarily have a vectorial structure, these fixed point
theorems can be applied to prove the existence of solutions to ODEs, and partial differen-
tial equations (PDESs) in abstract spaces. We note that the space of fuzzy numbers is not
a Banach space, but it is a quasilinear space having a partial ordering. Hence, there have
been some recent results on the existence of solutions to fuzzy ODEs (see [25, 29, 36]) as
applications of fixed point theory in partially ordered metric spaces.

In this paper, besides giving some new generalized results on the existence of coinci-
dence points for a pair of mappings in partially ordered sets, we also show their applications
in the field of fuzzy PDEs to illustrate the usability of our obtained results. The problem
considered is

kay“(x,)’):f(xvy’”(x,)’))v (xvy)ej:: [O,a]X[O,b], k:1’27 (1)

with condition

u(x,0) =n1(), xe€l0,a], u@,y)=n2(y), yel0,5b], (2)

where u : J — RF is a fuzzy-valued mapping and ; Dy, (for k = 1, 2) represents the gH-
partial derivatives operators. This boundary value problem was considered in some previous
research works [2, 20—24], in which the authors proved the validity of Picard’s theorem. In
these results, the Lipschitz contractivity of the function f is vital for the existence of the
fuzzy solution. If f is just continuous or even not continuous, the situation is far different
and some necessary conditions must be imposed in order to guarantee the existence of
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solutions (in the case of crisp ODEs we can see [3, 14, 15, 27, 28], and in the fuzzy case,
we refer to [1, 29, 30, 36]).

In this paper, we show that, under the assumption of nondecreasing monotonicity and
weak-contractivity of the mapping f only over comparable elements, the existence of just a
lower or an upper solution is enough to guarantee the existence and uniqueness of two types
of fuzzy solutions to the Problem (1)—(2). Some previous significant results for ODEs have
been investigated in [29, 30, 36]. Our results presented here give some new approaches on
the existence of two types of fuzzy solutions for some class of fuzzy PDEs under the gH-
differentiability. One difficulty to be faced in the study of this problem is the existence of
gH-differences, which also allows us to obtain a new solution to fuzzy PDEs with decreasing
length of its support. In this case, the qualitative solutions may be better in comparison with
those of crisp PDEs. Our results extend to a class of fuzzy PDEs some existing results for
fuzzy ODEs by Alikhani and Bahrami [1], Nieto and Rodriguez-Lépez [29], and Villamizar-
Roa et al. [36].

The remainder of this paper is organized as follows. Section 2 presents our main results
(Theorems 1 and 2), in which we prove the existence of coincidence points for a pair of
mappings in a partially ordered metric space, and, in particular, we deduce a fixed point
theorem. Our method is mainly based on the generalized contractive-like condition. Section
3 provides some results on the existence and uniqueness of solution for fuzzy partial dif-
ferential equations as an effective application of our theorems presented in Section 2. Some
necessary preliminaries about fuzzy analysis and gH-derivatives are shown in Sections 3.1
and 3.2. The boundary value problem of interest is stated in Section 3.3, and the study of the
solvability of this problem is also included. Finally, some conclusions and future directions
are discussed in Section 4.

2 Generalized Coincidence and Fixed Point Theorems

In this section, we provide some definitions and new results related to generalized
coincidence and fixed point theorems in partially ordered metric spaces.

For x € R, [x] is the greatest integer function or integer value, gives the largest integer
less than or equal to x (the floor function).

By C([0, 00)), we denote the space of all nonnegative and continuous functions ¢ :
[0, 00) — [0, c0), for which the following property holds

¢(@) =0 1ifandonlyif r=0.

Definition 1 [14] A nondecreasing function v in C ([0, 00)) is called an altering distance
function on [0, c0).

Some examples of altering distance functions on [0, c0) are 12 In(1 4+1); 12 —In(1 +£2).
Definition 2 [27] Let (X, <) be a partially ordered set and suppose that there exists a metric
d on X such that (X, d) is a metric space. We say that X is regular if, for an arbitrary

nondecreasing sequence {x,} C X such that x, — x in X, then x,, < x for alln € N.

Definition 3 [14] If (X, <) is a partially ordered set and f : X — X, we say that f is
monotone nondecreasing (resp., nonincreasing) if x, y € X, x < y implies f(x) < f(y)

(resp., f(y) = f(x)).
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Definition 4 [27] Let (X, <) be a partially ordered set and let f, g be mappings from X to
itself such that f(X) C g(X). We say that f is weakly increasing with respect to g if, for
allx € X, wehave f(x) < f(y) forall y € g’1 (f(x)), where

g (f)) i ={ueX|gw = f(x))

Definition 5 [27] Let (X, d) be a metric space and f, g : X — X. The pair { f, g} is said to
be compatible if lim,,_, oo d(fg(x,), gf (x)) = 0, whenever {x,} is a sequence in X such
that lim,— oo f(x,) = lim;—  g(x;,) = x for some x € X.

In this section, we extend the main results in [3, 14, 27] to get a generalized fixed point
theorem in partially ordered metric spaces.

Theorem 1 Ler (X, <) be a partially ordered set and suppose that there exists a metric d
on X such that (X, d) is a complete metric space. Let f, g : X — X be given mappings
satisfying the following assumptions:

D f(X) CgX).
i)  f is weakly increasing with respect to g.
iii) One of the two following conditions holds:

(a) X is a regular metric space and g(X) is a closed subspace of (X, d), or
(b) f and g are continuous and the pair (f, g) is compatible.

iv) There exist a function B € S, ¢ € é([O, 00)), and  a strictly increasing altering
distance function such that the following inequality holds

Y (d(f(x), f(¥))) = Bd(gx), g())) ¥ (d(g(x), g(y))
—y (d(g(x), 8(»))) ¢ (d(g(x), g(¥))) 3

forall (x,y) € X x X satisfying that g(x) and g(y) are comparable, where
y() =[B@)] forallt € [0, co).
Then, there exists a coincidence point x of f and g in X, i.e., f(x) = g(x).

Proof We proceed in several steps.

Step 1. Firstly, we contribute a nondecreasing sequence {g(x,)} in X.
Let xo be an arbitrary point in X. Since f(X) C g(X), we can construct a sequence {x;,}
in X defined by

g(xp+1) = f(xn) foralln € NU{0}.

Since x1 € g7 (f(x0)), x2 € g~ '(f(x1)) and f is weakly increasing with respect to g, we
obtain

gx1) = fxo) < f(x1) =gx2) < f(x2) =g(x3) < ---

Therefore, by recurrence, we obtain a nondecreasing sequence

gx1) < g(x2) <gx3) <--- <glxp) < glxpg1) <---
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Since g(x,) < g(x,41) for n > 1, it follows from (3) that

VY (d(g(xn+1), 8(xn42))) = ¥ (d(f (xn), f(Xn4+1)))
< B(d(g(xn), gXn+ DNV ((g(xn), §(Xn+1)))
—y(d(g(xn), 8(Xn+1))P(d(g(xn), 8(Xn+1)))
< B(d(g(xn); gCxn+ DNV (d(g(xn), §(Xn+1)))
< ¥ (d(g(xn), 8(xXn+1)))

for all n > 1. Hence, we have
Y(d(g(xnt1), 8xnt2))) < Y (d(g(xn), g(xpt1))) foralln > 1.

Due to the strictly increasing character of the function v, {d(g(x;), g(xn+1))} is a non-
increasing and bounded from below sequence in R. Therefore, there exists » > 0 such
that

lim d(g(xp), g(xn4+1)) =7 “4)
n—oo
We will prove that » = 0. In fact, from the continuity property of ¢ and ¢, we have

Jim y(d (@), gar)) = ¥ ( lim d(g(xa). gGins1)) = ¥ ()

and
Jim ¢ (d(g0on), gCinsn)) = ¢ ( 1im d(g(in), gCiar1)) = ¢ ().

If B = 1{0,00), then y (t) = [B(¢)] = 1 for all + > 0. In this case, it follows from (3) that the
following estimation holds

Y (d(8(Xn+1), 8(Xnt2))) = W (d(g(xn), 8(Xn+1))) — ¢ (d(g(xn), (Xn41))) foralln = 1.
By taking limits on both sides when n — oo, we get
V() =y@r) — o),

which implies that 0 < —¢ (), and using that ¢ é([O, 00)), we obtain ¢ (r) = 0 and
r=0.

On the other hand, if 8 € Sy, from (3) and the inequalities g(x;) < g(xp+1). n > 1, we
have

Y (d(gxnt1), 8(xni2))) = Y (d(f (xn), f(Xnt1)))
< B(d(g(xn), §xn+ NP (d(g(xn), g(xn+1))), n=1.
By contradiction method, we assume that » > 0. It permits to affirm, from (4), the non-

increasing character of the sequence {d(g(x;), g(x,+1))} and the properties of i, that
Y (d(g(xn), g(xn+1))) > Oforn > 1. Hence

Y (d(g(xn+1), §(Xn+2)))
Y (d(g(xn), &(Xn11)))

for n > 1. By taking limits on both sides of this equation, it leads to

= Bd(gxn), g(xn41))) < 1

lim B(d(g(xn), g(xnt1))) = 1.

Taking into account that 8 € Sy, the previous condition implies that lim,_—, o d(g(x,),
g(x,+1)) = 0, which is a contradiction.
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Hence, in both cases, we have that » = 0 and thus, {g(x,)} is a nondecreasing sequence
satisfying that

Jim d(g(xn), g(xn+1)) = 0. (5)

Step 2. Next, we prove that {g(x;)} is a Cauchy sequence.
Case 1: If there exists an n € N such that g(x,) = g(x,+1), then, from (3), we have

Y (d(f (xn)s [(xnt1))) = BA(8(xn), §(Xnt 1)) W (d(8(Xn), &(Xn+1))) = 0.

This inequality implies, by the properties of v, that f(x,) = f(xu+1) or g(xp4+1) =
g(x,42). So, for all m > n, we have that g(x,,) = g(x5). It obviously shows that {g(x;)} is
a Cauchy sequence.

Case 2: Assume that all the successive terms of {g(x,)} are different, that is, g(x,) #
g(x,4+1) for every n € N. We prove that

lim supsupd(g(x,), g(xm)) = 0.

m—00 n>m

Indeed, suppose that lim sup,, _, o, SUpP,;>,, d(g(xx), g(xm)) # 0 and select ¢ > 0 such
that

lim supsupd(g(x,), g(xm)) > &.

m—00 n>m

Then, we can choose two subsequences {g(xp, )}, {g(xm,)} of {g(x,)} such that ny > my >
k and

d(g(xn), &(xXm;)) > . (6)

For each fixed myj, we choose nj to be the smallest number such that n;y > my satisfying
(6). Note that (6) implies, in fact, that ny > my. Hence, it follows that ny — 1 > my and

d(g(xni—1), 8(xm,)) < €.
Then, we get

d(g(xn,), &(Xn—1)) + d(g(xXni—1), & (Xm,))
d(g(xn;)s §(Xn—1)) +&. N

e <d(g(xn), 8(xm)) =
=
Taking into account (5) and letting k — oo in (7), we have

JHm d(g(xXn,), 8 (Xm,)) = & &)

Since

d(g(xn), 8(xmy)) = d(g(xn), &(Xn—1)) + d(g(Xni—1), & Xmy—1))
+d(g(xmk71)a g(xmk)), k Z 1’ (9)

using (5), (6), and passing to the limit inferior when k — o0 in the inequality (9), we obtain

lim infd (g (xn -1, 8 (¥ —1)) = . (10)

On the other hand, from the estimation

d(g(xn—1), §(Xm—1)) = d(8(xny)s 8 (Xny—1)) + d(g(xny) > §(Xmy )
+d(g(Xm—1), 8 (Xm)), k=1,
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we get, from (5) and (8), that
lim supd (g (xn;—1), 8 (Xm—1)) < &. (11)

k—o00

Thus, by combining (10) and (11), we have
lim d(g(xn,—1), §(xXm;—1)) = €. (12)
k— 00

Now my < nj implies my — 1 < ny — 1 and, thus, g(x;,,—1) < g(x,,—1). Applying the
inequality (3) once again, we have

Y (d(g(xn), 8(xmy))) = Y d(f (xXng—1)s f(mp—1)))

= Bd(g(xni—1), 8 (Xm—DNV (A (8 (Xnp—1)5 8 Xmy—1)))
=y (d(€(xXn—1), 8 Xmy—1)))P (A (g (Xny—1)s § Xmy—1))).  (13)
If B = 1{0,00), then y(t) = B(t) = 1 forallz > 0. Since ¥ and ¢ are continuous, by passing
to the limit as k — oo in (13), we have V¥ (g) < ¥(g) — ¢ (&), thatis, 0 < —¢(g). Hence,
by the properties of ¢, it follows that ¢ (¢) = 0 and ¢ = 0.

On the other hand, if 8 € Sp, then 0 < B(t) < 1 for all ¢+ > 0. Denote 7, =
d(g(Xp,—1), 8(Xm;—1)) for k = 1. Since {B(#;)} C [0, 1] and [0, 1] is a compact set in R,
then there exists a subsequence {8(f,)} converging to A € [0, 1]. Therefore, by choosing
subsequences if necessary, we assume that

kliﬂgoﬂ(d(g(xnkfl), 8(xm—1))) = 2 € [0, 1].

If A =1, then limy_, oo d(g(Xp;—1), 8(Xm;—1)) = 0, which implies thate = 0.If0 < A < 1,
then, from
Y (d(g(xn), 8(xm))) = Y d(f (np—1)s [ (Xmp—1)))

= B(@Xni—1); 8 Xm—DNY (d(g(xpy—1), §(Xmy—1))), k=1,
by passing to the limit as k — oo and using the continuity property of v, we have that

Y (e) < AP (e), or, equivalently, (1 — A)¥r(e) < 0. Hence, ¥(¢) =0 and ¢ = 0.
Therefore, it follows that

lim sup sup d(g(x,), g(xm)) = 0.

m—o00 n>m

Thus, {g(x;)} is a Cauchy sequence in (X, d).

Step 3. We prove the existence of a coincidence point of f and g.

Case 1: Assume that X is a regular metric space and that g(X) is a closed subspace of
(X, d). Then (g(X), d) is a complete metric subspace of (X, d). Since {g(x,)} is a Cauchy
sequence in (g(X), d), there exists u = g(z) € g(X) such that g(x,) — u = g(2) as
n — oo. Since {g(x,)} is a nondecreasing sequence and X is regular, then g(x,) < g(z) for
all n € N. Applying (3) once again, we have

0 = ¥(d(f(2), gxn+1)))
= Y d(f(2), f(xn)))
= Bd(g(2), g(xn)))V(d(8(2), 8(xn))) — ¥ (d(8(2), 8(xn)))P(d(8(2), 8(xn)))
= B(d(g(2), g(xn))) Y (d(g(2), g(x1)))
= ¥ (d(g(2), g(xn))).

By using the property of continuity of i and letting n — oo, we get

Vv (d(f(2). g(2)) =0.
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It clearly follows that d(f(z), g(z)) = 0 and f(2) = g(2).
Case 2: Assume that f and g are continuous and that the pair (f, g) is compatible.

Since {g(x,)} is a Cauchy sequence in a complete metric space (X, d), there exists z € X
such that g(x,) — z and f(x;) = g(x,+1) — z,asn — oo. Since f, g are continuous, we
get

1im g(g(x)) = g(2);  lim f(g0x) = £ lim g(f(xn) = g(2).

Since limy, 00 £ (xp) = lim,_ 00 g(xx) = z and the pair (f, g) is compatible, it follows that
Jim d(g(f (xn)), f(g(xn))) = 0.

Thus, from

0=d(g(2), f(2)) =d(g(2), g(g(xn+1))) +d(€(f(xn)), f(g(xn))) +d(f(g(xn), f(2)))

and letting n — oo, we have that d(g(z), f(z)) =0, i.e., f(z) = g(2).
In consequence, z is a coincidence point of f and g and the theorem is proved. O

Remark 1 Theorem 1 is actually an extension of some previous results in [3] and [27].
Indeed,

1. If we choose B(-) = 1[0,00)(:), then we get the context of Theorem 2.4 and Theorem
2.6 in [27];

2. If we choose B € Sy, then y (1) = [B(¢)] = O for all # € [0, c0). Hence, we receive a
generalized result connected to Theorem 2.1 in [3], with v an altering distance function
and g a generalized function defined on X.

Theorem 2 Assume that (X, <) is a partially ordered set and that there exists a metric d
on X such that (X, d) is a complete metric space. Let f : X — X be a nondecreasing
mapping. Assume that:

i) There exists B € S such that
Yd(f(x), f(¥)) < BUx, y)Yd(x,y) —y(dx, y)d(x,y)) (14)

for all x < yin X, where ¥ is a strictly increasing altering distance function, ¢ €
C ([0, 00)) and y (t) = [B(t)] for all t € [0, c0).

i) There exists xo € X such that xo < f(xg) or f(x0) < xo.

iii) One of the two following conditions holds:

(a) X is a regular metric space; or
(b) f is continuous.

Then f has a fixed point in X, that is, there exists a point z € X such that f(z) = z.
Furthermore, if

foreach y, z € X, there exists x € X which is comparable both to y and z, (15)
then the fixed point of f is unique.
Proof If f(xp) = x¢, then xg is a fixed point of f. We consider the case when xg < f(xp),

that is, xo < f(xp) but xo # f(xp). Since f is a nondecreasing mapping, by induction
method, we construct a sequence

x0 < f(x0) < f2(x0) <--- < fM(xo) < f (o) < - -
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Set x,+1 = f(x,) for all n > 0. We have that {x,} is a nondecreasing sequence in X. The
existence of a fixed point for the mapping f is proved similarly to the proof of Theorem 1
when g is the identity mapping from X to itself, i.e., g = Idx.

Now, we prove the uniqueness of the fixed point. Indeed, assume that y and z are two
fixed points of f. From hypothesis (15), there exists a point x € X which is comparable both
to y and z. From the monotonicity property of f, this implies that, foreachn € N, f"(x) is
comparable both to f”(y) = y and f"(z) = z. Therefore, by applying the inequality (14),
we have

Y (d(z, f"(x))

V(" (), £ (x)))

BUEf" @), eV A @), 1))

—y@(f" @, NS @ @), )
BUEf" @), "NV E T @), 7))
Y @), )

Yz f"'x), neN, n=2.

Denote t, = d(z, f"(x)) € [0,00), n € N, n > 1. By the strict monotonicity of v, it

follows that 0 < 7, < 1,—1, n € N, n > 2. Consequently, the sequence 7, is nonnegative
and decreasing. So there exists » > 0 such that lim,,_, », T, = . We prove that r = 0.

IA

INTA

Case 1: If B = 1[p,00), then B(z) = 1 forallz > O and y(¢z) = 1 for all # > 0. From (13),
we have
Y () < ¥ (th-1) —P(th-1), neN, n>2.
Passing to the limit as n — oo, by the continuity of the mappings ¥ and ¢, we have
Y () <Y(@r)— ¢()and ¢ (r) = 0. That implies r = 0.
Case 2: If B € Sy, from (13), we get

V(t) < B(t-DY¥(th—1), neN,n=2. (16)

By choosing subsequences if necessary, we assume that
lim B(z,) =2 € [0, 1],
n—oo

which allows to deduce, by letting n — oo in (16), that ¥ (r) < Ay (r), thatis, ¥ (r)(1 —
M) <0.IfA < 1,then ¥ (r) = 0,i.e.,r = 0. If A = 1, then lim,,_, »c B(7,) = 1. From
the properties of the function 8 € Sp, one gets lim,,_, o 7, = 0. By the uniqueness of the
limit, we prove that r = 0.

By applying analogous arguments, we have lim, _, oo d(y, f"(x)) = 0. It follows that
0=<d(y,z) =d@, f"(x)) +d(f"(x),z) - 0 asn — oo.
This means that y = z. It completes the proof. OJ

Remark 2 Theorem 2 is also connected with some previous results:

1. If we choose B(-) = 10,00)(:), We receive again Theorems 2.1, 2.2, and 2.3 in [14],
with weaker conditions on the function ¢ (here, ¢ is not necessarily nondecreasing on
[0, 00)).

2. If we choose B € Sy, we obtain a generalized result connected to Theorem 2.1 in [3],
with i a strictly increasing altering distance function.

3. If we choose B € Sp and ¢ = Idjp,) the identity mapping, one has again Theorem
2.11in [3].

@ Springer



H.V. Long et al.

Remark 3 It is well-known that the hypothesis (15) is equivalent to the following hypothesis
in [28]:

for each y, z € X, there exists in X a lower bound or an upper bound of y, z.

Remark 4 From the proof of Theorem 2, we deduce that, if z is a fixed point of f, then
lim,_, 5 d(f"(x), z) = 0 for any x € X comparable to z.

Remark 5 We can affirm from the proof of Theorem 2 that, in order to obtain the existence
of a unique fixed point for some function f, it is not necessary for the function f to be
continuous. Instead of the condition of continuity, we can consider the requirement that the
space X is regular. This restriction is valid in the case where X is the space of fuzzy sets on
R (see [29)]).

In the next section, we investigate some applications of these fixed point theorems to
prove the existence of solution for a class of fuzzy partial differential equations.

3 Application to Fuzzy Partial Differential Equations
3.1 Fuzzy Partially Ordered Metric Spaces

Let R~ be the space of fuzzy sets on R that are nonempty subsets {(x, u(x)) : x € R} in
R x [0, 1] of certain functions # : R — [0, 1] being normal, fuzzy-convex, upper semi-
continuous, and compact-supported.

Let u € Rx. The a-cuts or level sets of u are defined by

[u]* ={x e R:u(x) >a} foreachO <o« <1,

which are nonempty, compact, and convex subsets of R for all 0 < o« < 1. The same
properties hold for [#]° = {x € R : u(x) > 0}, which is called the support of u. For u €
R 7, we denote the parametric form of u by [u]* = [ujy, ure] forall 0 < o« < 1, and
len([uD)® = ure — usq.

In R £, we define the supremum metric doo as follows

doo(u,v) = sup dg ([u]*,[v]*) forallu,v e Ry,

O<a<l

where dp is the Hausdorff metric in the set consisting of all nonempty, compact, and convex
subsets of R. It is well-known that (R 7, d~) is a complete metric space (see, for instance,

[19]).
The addition and the multiplication by a scalar in the space of fuzzy numbers R r is
defined levelsetwise, that is, forall u, v € Rr, @ € [0, 1], and k € R,

[u+v]* =[u]®+[v]* and [ku]® = k[u]®.
In the special case where k = —1, (—1)[u]* = (—D[ujq, rol = [—tra, —Ui1a]-
If there exists w € Rx such that u = v + w, we call w = u © v the Hukuhara difference
(or H-difference) of u and v. If u & v exists, then [u & v]* = [ujq — Vig, Ure — Vre] for all
O<ac=<l.

Lemma 1 [17] Forallu, v, w, e € Rx, if the H-differences u © v, w & e exist, then

doo(U O v, WO e) <dso(u,w)+ ds(v, e).
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Definition 6 [29] In R £, a partial ordering can be defined as follows:

x <y if xig <y and Xrq < Yra forall ¢ € [0, 1],

where x, y € Rz, [x]* = [xia, Xral, [V]* = [Via: yral, @ € [0, 11.
Lemma 2 [29] Some properties of fuzzy sets with respect to the partial ordering < are:

1) Ifx <y thenx+z=<y-+zforx,y,zeRr.

2) For every nondecreasing sequence {x,} C Rr, if x, — x in Rg, then x,, < x for all
neN.

3) Every pair of elements of R xr has an upper bound and a lower bound in R r.

Lemma 3 Ifu,v, w € Rr are such that w < v and the H-differences u & v, u © w exist,
thenu ©v <u S w.

Proof 1t is clear that w;y < vy and wyq < Vyq, imply that u;y — vig < U;jq — Wy, and

Urg — Vg < Urq — Wypg forall o € [0, 1]. O

For J C R?, we denote by C(J, Rx) the space of all continuous functions defined on J
and fuzzy-valued in R z. Set

Hy,v) = sup fdoouir, v, vix, e 60}
(x,y)ed

for u,v € C(J,Rx), where 1 > 0. It is easy to see that (C(J, Rx), H,) is a complete
metric space [19].

Definition 7 Consider f, g € C(J,Rx). We say that f < g in C(J, Rx) if and only if

S, y) < g(x,y) forall (x,y) € J. That means fio(x,y) < gia(x,y) and fro(x,y) <
gra(x,y) foralla € [0, 1] and (x, y) € J.

Some of the following properties of fuzzy-valued continuous functions with respect to
the partial ordering < are inferred directly from the corresponding properties of fuzzy
numbers in (Rx, <) given in Lemma 2.

Lemma 4 Let (Rx, <) be the space of fuzzy numbers equipped with the partial ordering
defined, then we have

1) (C(J,Rxr), <) is a partial ordered space;

2) (C(J,Rx), Hy) is a regular metric space;

3) Every pair of elements of C(J,Rx) has an upper bound and a lower bound in
C(J,Rx).

Proof These properties have been established briefly in [29]. We include their proofs for
the sake of completeness. The proofs of property 1) and property 3) are obvious, since they
are true in Rr. So we can proceed for each (x, y) € J, and these properties are satisfied
in C(J, Rx) (note that we can select the upper and lower bounds to be continuous). Hence,
we only give the proof of property 2).
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2) Indeed, assume that {u,} C C(J, Rx) is a nondecreasing sequence and convergent to
u in C(J, Rx), then {u,(x, y)} is a nondecreasing sequence in R r for every (x, y) € J.
Moreover, for each (x, y) € J,

e A (U (x, y), u(x, y)) < sup {doo(un (x,y), u(x, y))e—)»(x+y)} = Hy (un, u).
J

Since lim;, o0 H (uy, u) = 0, we have lim,, s o0 doo(Un(x, y), u(x,y)) = 0, or u,(x,y)
converges to u(x,y) in Rx for every (x,y) € J. From Lemma 2, we have u,(x,y) <
u(x,y) foralln € Nandevery (x,y) € J. O

3.2 Some Preliminaries on Fuzzy Analysis
For u,v € Rz, the generalized Hukuhara difference [4] (or gH-difference) of u# and v,
denoted by u Ogp v is defined as the element w € R+ such that

UOggv=w <<= @ODu=v+w or (i) v=u-+(—Dw.

Notice that, if u©v exists, then uOgyv = u©wv. If (i) and (ii) are satisfied simultaneously,

then w is a crisp number. Also, u Ogy u = 0 and if u OgH V exists, it is unique.

The generalized Hukuhara partial derivatives (gH-p-derivatives, for short) of a fuzzy-
valued mapping f : I € R> — R are defined in Definitions 2.9 and 3.4 in [2]. Denote by
C2%(1, Rx) the set of all functions f € C(, Rx) which have gH-p-derivatives up to order
2 with respect to x and y continuous on /.

Definition 8 [2] Let f : I — R r be gH-p-differentiable with respect to x at (xg, yo) € 1.
We say that f is (i)-gH differentiable with respect to x at (xo, yo) € I if

[ fx (xo, yo)]“ = [0x fia (X0, Y0), Ox fra (X0, yo)] Vo € [0, 1]
and that f is (i1)-gH differentiable with respect to x at (xg, yo) € [ if

[ fx (x0. _YO)]O[ = [0x fra (X0, ¥0), Ox fia (X0, yo)] Vo € [0, 1].
The (i) and (ii)-gH derivatives of f with respect to y are defined similarly.

Definition 9 Let f € C2(I, Rx) and fy be gH-p-differentiable at (xo, yo) € I with respect
to x and do not have any switching points on /. We say that

a) fyyisintype 1 of gH-derivatives (denote | Dy, f) if the type of gH-derivatives of both
S and f) are the same. Then, for o € [0, 1],

[1Dxy £ (x0. y0) % = [0xy fia (X0, Y0), Oxy fra (X0, 0)] -

b)  fxy isin type 2 of gH-derivatives (denote 7 Dy, f) if the type of gH-derivatives of both
J and f, are different. Then, for o € [0, 1],

[2nyf(x01 _VO)]a = [axyfroc (x0, ¥0), Oxy fia (x0, yo)] .

It is a well-known result that, if f is continuous on U, then f is integrable on U.
Moreover, we have the following properties.

Lemma 5 Let U be a compact subset of R?, u < v in C(U, Rx). Then

/ u(x, y)dxdy 5/ v(x, y)dxdy.
U U
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Proof From the definition of the fuzzy Aumann integral [19], we have

[ / u(x,y)dxdy] - [ / ia (x. y)dxdy, / um(x,wdxdy}

U U U

[ / v(x,y>dxdy} — [ / Ut Crs y)dxdy, / vmoc,y)dxdy]
U U U

for every o € [0, 1].

Since u < v in C(U,Rx), then u(x,y) < v(x,y) € Rx for all (x,y) € U. That
means, from Definition 6, that (u(x, )i < (W(x, Y)ia, W(x, ¥))ra < (v(x, y))rq for all
o € [0, 1]. It implies that

and

/ i (x, y)dxdy < / Ve (x, y)dxdy, / ya (x, y)dxdy < f VraCrs y)dxdy
U U U U

for all @ € [0, 1]. From Definition 6, we deduce that fU u(x, y)dxdy < fU v(x, y)dxdy.
O

3.3 Statement of the Problems

In this part, we prove some new results on the existence of a unique solution for fuzzy partial
differential equations with local boundary conditions by applying the theory presented in
Section 2.

For arbitrary positive real numbers a, b, we denote J, = [0,a], J, = [0,b], J = J, X
Jp. We recall Problem (1)-(2) with n1(-) € C(Jg, Rxr), n2(:) € C(Jp, Rx) being given
functions such that 11 (0) = 12(0) and the difference 1, (y) © n1(0) exists for all y € J, and
the function f : J x Rx — R# has no switching points. This boundary value problem has
been considered in some references such as [2, 20-22]. In these papers, the authors prove
the Picard’s theorem for Problem (1)—(2), i.e., when f is Lipschitz continuous, the problem
has a unique fuzzy solution. By weakening the Lipschitz condition, now the function f only
needs to satisfy a generalized contractive-like condition between comparable items, and we
also prove the existence of fuzzy solutions.

For (x,y) € J, let Iy f(x,y,u) denote the integral [§ [ f(s,, u(s,t))dsdt. We
change the order of integration with respect to the notation in [22], since, in the derivatives
k Dxy, we first calculate a derivative with respect to y and then with respect to x, so that we
integrate in the reverse order.

Lemma 6 [22] Assume that f is a continuous function on J x Rxr and that u(-,-) €
C%(J,Rx) satisfies Problem (1)—(2) in J. Then u(-,-) satisfies the following integral
equations:

1) Ifk=1thenu(x,y) = px,y)+ Liyf(x,y,u)for(x,y) € J; or
2) Ifk=2thenu(x,y) = p(x,y) © (=Dl f(x,y,u)for (x,y) € J,

where
p(x,y) = ni1(x) +n2(y) ©n1(0). (17)

Definition 10 A function u € C(J,Rx) is called an integral solution of type 1 of the
Problem (1)—(2) if it satisfies the following integral equation

ulx,y) =px,y)+ Ly f(x,y,u) forall (x,y)eJ
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andu € C(J, Rx) is called an integral solution of type 2 of the Problem (1)—(2) if it satisfies
the following integral equation

M(X, y) = p(X, )’) e (_I)Ixyf(X, y, I/l) fOr all (x5 y) € J7
where p(-, -) is defined by (17).

Remark 6 Notice that Definition 10 makes sense via Lemma 6.

Definition 11 A fuzzy function u € C%(J, Rx) is called a (k)-lower (k = 1, 2) solution of
the Problem (1)—(2) if

kDxyp(x,y) = f(x,y, ulx,y), (x,y)€J,
ux,0 =mx), xe€Jg, w(©,y) <na(y), yep, 1 (0, 0) = n1(0).

Analogously, a fuzzy function u € C 2(J,Rx) is called a (k)-upper (k = 1, 2) solution
of the Problem (1)—(2) if

kayM(x’y)Zf(-x7yvu“(-xvy))v (-xvy)e‘lz
w(x,0) =n1(x), xe€Jg, w(©,y) = n2(y), ye€p, 1 (0, 0) = n1(0).

Remark 7 The first steps in the theory of lower and upper solutions have been given by
Picard for PDEs and ODEs [31, 32]. In both cases, the existence of a solution is guaran-
teed from a monotone iterative technique. Dragoni [10, 11] are the first ones that recognize
explicitly the central role of lower and upper solutions for ordinary differential equations
with Dirichlet boundary value conditions. In the monograph of Bernfeld and Lakshmikan-
tham [5], Ladde et al. [18] the theory of the method of lower and upper solutions and the
monotone iterative technique are presented in details.

In this paper, the existence of lower solutions or upper solutions of considered problem
is used as a sufficient condition in generalized contractive-like theorems in Section 2 to
ensure the existence and uniqueness of two types of fuzzy solutions to the Problem (1)—(2).
For more about the method of lower and upper solutions, we refer the reader to the classical
work of Mawhin [26] and the surveys in this field of De Coster and Habets [6—8] in which
we can find historical and bibliographical references together with recent results and open
problems.

3.4 Existence and Uniqueness of Fuzzy Solutions

Lemma 7 For an arbitrary strictly increasing altering distance function y and for all
positive real numbers a, b, there exists A > 0 such that the function

D) = y(t) —y (% (1 — ) (1 - e_)‘b) z) . 1€[0,00),
belongs to é([O, 00)).

Proof From the continuity of y, ® is a continuous function on [0, c0). Choose A > 0 such

that |
2 (l —eik") <1 —ef)”b> < 1.
Then, for all + > 0, we have %2(1 —e M1 — e‘“’)t < t. Since y is increasing, it follows

that y (;—2(1 — ey (] — e**b)t) < () forall r > 0. Hence ®(7) > O for all # > 0.
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Now, we consider 7 > 0. From %2(1 — e (1 — ¢ )t < t and the strict increase
property of y, it implies that ®(z) > 0. It follows that, if ®(¢) = O, then r = 0 (and
conversely). It completes the proof. OJ

Theorem 3 Let f be a continuous function that satisfies the following two hypotheses:

(h;) f:J xRxr — Rr isnondecreasing in the third variable, i.e., if v < & € R, then

Sy, v) = flx,y,8) forall (x,y) € J.
(hp) f is weakly contractive over comparable elements, that is, for some altering distance
Sfunction Y and ¢ € C([0, 00)), the following estimation

Y (doo(f(x, y,v), f(x,,8))) < Y(doo(V,§)) — P(doc(v, §))
holds forall (x,y) e J,v <& inRg.

Suppose that there exists a (1)-lower solution u € C?(J,Rx) for the Problem (1)—(2).
Then the Problem (1)—(2) has a unique integral solution of type 1 on J.

Proof Define the operator T} : C(J, Rxr) — C(J, Rx) by
(Tlu)(x’)’)zp(x’)’)‘leyf(x,y’M), (xay)e‘]7 (18)
foru € C(J, Rxr), where p(-, -) is defined by (17).

Step 1: We prove that T is a nondecreasing operator in C(J, Rr).

Assume that u < v in C(J, Rr), which means u(s, t) < v(s, t) for all (s,?) € J. From
hypothesis (hy), that is, the nondecreasing character of f with respect to the third variable,
we have that f(s,t, u(s,t)) < f(s,t,v(s,t)) forall (s,?) € J. Then, from Lemma 5, we
have

Liyf(x,y,u) < Iyyf(x,y,v) for(x,y)eJ.

It means that (Tyu)(x, y) < (T1v)(x, y) forall (x, y) € J. Hence, Thu < Tyv.
Step 2: Now, we prove that

doo (f(x,y,V), f(x,y,1) <doo(v,n) forallv <ninRrand (x,y) € J.

Indeed, assume that v < 5 in Rx but deo(v, n) < doo(f(x,y,v), f(x,y,n)) for some
(x,y) € J. Due to the nondecrease property of i, we have

Y (doo(v, M) < Y (doo(f(x,y,v), f(x,y,m)). (19)
On the other hand, from the hypothesis (h;), we have
Y (doo(f(x, y,v), f(x,y,m)) = Y (doo(v,n) — ¢ (doc(v, 0))
= ¥ (doo(v, 1) (20)
for all v < 5 in R£. From (19) and (20), one has

Y (doo (v, M) = ¥ (doo(f(x, y,v), f(x,y,m)).

It follows from (20) that 0 < —¢ (do (v, n)) or ¢ (dso (v, n)) = 0. Thanks to ¢ € é([O, 00)),
that implies ds (v, ) = 0. Hence

Y (doo (f (x, y, V), f(x,y,m)) = ¥ (do(v,n) = 0.

It implies doo ( f (x, y, V), f(x, ¥y, n)) = 0, leading to a contradiction.
Step 3: We check the generalized contractive-like property of the operator 77.

@ Springer



H.V. Long et al.

For allu < vin C(J,Rx), we have u(x, y) < v(x, y) for all (x, y) € J. It is known
from Step 2 that

doo (f(x,y, u(x,y), f(x,y,v(x,))) <doo(u(x,y),vix,y)) forall (x,y) e J.
Thus

doo((Tlu)(xs )’)a (T]U)(.X, )’)) doo (p(-xa Y) + Ixyf(x, Y, u)s p(-xa Y) + Ixyf(x, Y U))

dOO (I)(y.f(x7 Y, M), I.ny(x’ ) U))

/y/xdoo(f(s, t,u(s, 1)), f(s,t,v(s, t)))dsdt
o Jo

IA

< V/yfxdoo(u(s, 1), v(s, t))dsdt
0 JO

y X
/ / Hy (1, v)e*S D dsdr
0 JO

1
= ﬁH,\(u, V)™ — (e —1).

IA

Then, for all (x, y) € J, we have

doo (T11) (x, ¥), (T1V)(x, y))e *HY) < %Hx(u, V)(1 — e ™) (1 —e™™).

Therefore :
Hy(Tiu, Tiv) < —5 Hy(u, v)(1 —e My (1 — ey, 1)

For an arbitrary strictly increasing altering distance function y, from (21), we have

1 —A —Ab
y (Hy(Thu, T1v)) <y (EH’\(M’ V(1 —eD(1 —e ))
1 —\a —Ab
= y(H)(u,v)) — [V(HA(M, V) —y (FHA(M» V(A —e)1 —e ))} .

Denote ®(1) = y (1) — y (%2(1 —ehay(] — e’“’)t), ¢ € [0, 50). From Lemma 7, there
exists A > 0O such that & belongs to C'([O, 00)) and

y (H,(Thu, T1v)) < y(H)(u,v)) — ®(H)(u,v)) forallu <vin C(J,Rx).
This means that the operator T satisfies the contractive-like property.

Step 4: Since there exists a (1)-lower solution u € C 2(J, Rx) for the Problem (1)—(2), then

y px
P (X ¥) < 1 (. 0) + 1 (0, ¥) — p1a (0, 0) + [0 /O fia(s. 1, (s, )dsdt

A

y rx
< (m)za(x)+(nz)za(y)—(nl)za(0)+/0 /0 Jia (s, t, (s, t))dsdt,

y px
fra (e ¥) < Hra (s 0) + sra (0, ¥) — sra (0, 0) + /0 /0 Fras. . (s, D)dsd

IA

y px
MDra () + (12)ra (¥) — (11)ra (0) +/O /0 Sra(s, t, u(s, t))dsdt,
fora € [0, 1] and (x, y) € J, so that

mx, y) =m@) +m20)0nO) + Ly f(x,y, n) = (T1uw)(x,y)
for all (x, y) € J.Itfollows that u < Ty in C(J, Rx).
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It is easy to see from Steps 1—4 that the operator 7 satisfies all the hypotheses of Theorem 2
in case B = 1[0,00). In consequence, 77 has a fixed point in C(J, Rr). Note that C(J, Rr)
satisfies that every pair of elements of C(J, Rr) have an upper bound and a lower bound in
C(J, Rr) (Lemma 4). It follows that the operator 77 has a unique fixed point, which is the
unique integral solution of type 1 to Problem (1)—(2). O

Remark 8 The existence of an integral solution of type 1 is guaranteed by the weakly non-
decreasing character and the generalized weak contractivity property of function f. The
existence of an integral solution of type 2 is more difficult to obtain due to the requirement
of the existence of Hukuhara differences.

We denote

CUJ,Rr)={uecCU,Rx): px,y) © (=D 1y f(x,y,u) exists for all (x, y) € J},
where p(x, y) is defined by (17).

Lemma 8 Consider (C(J, Rr), d) a complete metric space. If f is a continuous function
and C(J,Rx) # @, then (C(J, Rx), d) is a complete metric space.

Proof Let {u,,,}‘r’noz1 be a sequence in C‘(J, R ) converging towards u (in C(J, Rx)). Then,
for all (x, y) € J, the following differences exist

Px, ) © (=Dl f(x, y, um).
For simplicity of exposition, let
Fum)(x,y) = (=Dlxy f(x, y, tum).
From Proposition 21 in [35], we know that, for each fixed (x, y) € J,

len[p(x, y)I* = len[F (up)(x, Y)I*, 0=<a <1,
(p(x, YD — (F(um)(x, )i is monotonically increasing in o € [0, 1],
(px, Y)ra — (F(um)(x, ¥))ro is monotonically decreasing in o € [0, 1].

Since f is continuous and {u,,};>_, converges uniformly to u, then

len |:/'y /xf(s, t, Uy (s, t))dsdt:|
0 0
Yy o[rx o
len [/ / f(s,t,u(s, t))dsdt:|
o Jo

for each « € [0, 1]. Therefore, len[ ' (u,,)(x, y)]* converges to len[ F (u)(x, y)]¥, where

is convergent towards

Fu)(x,y) = (=Dl f(x,y,u) = (—U/Oyfoxf (s,t,u(s, 1)) dsdt.
Hence, from the inequality
len[p(x, )% = len[F (up)(x, M1%, 0=<o <1,
we derive that, for each fixed (x, y) € J,
len[p(x, y)]* > len[F(u)(x, y)]*, 0<oa <1
Moreover, for arbitrary 0 < o < y < 1, we have

(P, Y)ia — (F(um) (X, Y)ia = (p(x, YD1y — (F(m) (X, YD1y -
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Taking the limits when m — oo and using similar arguments as above, we receive

(p(x, YDia — (F)(x, y)ia = (p(x, Y1y — (F)(x, ¥))iy -

By analogous arguments, one has

(P, Y)ra — (F@)(x, Y)ra = (p(X, y)ry — (F)(x, y))ry

forall0 <o <y <1.
Therefore, the difference

p(x’ y) e (_I)Ixyf(xv yv I/l)

exists for all (x, y) € J. It shows thatu € é(J, R£) and (:’(J, Rx) isAa closed subset of the
space C(J, Rx). Since (C(J,Rx), d) is a complete metric space, (C(J, Rx), d) is also a
complete metric space. O

By changing the solution space to C(J,Rx), we can prove the existence of solution of
type 2 to the Problem (1)—(2).

Theorem 4 Let f be a continuous function satisfying the hypotheses (h1)—(hy) in Theorem
3. Moreover, suppose that the following hypotheses are fulfilled:

(h3) CU.Rp) #0. )
(hg) Ifu € C(J, Ryx) satisfies that u € C(J, Rx), then the Hukuhara difference

p(x’ y) S (_I)Ixyf(x» Y, U)

also exists for every (x,y) € J, where

V(xv)’):P(x,)’)e(_l)lxyf(x,)’v”)v (x’)’)e-]

Suppose that there exists a (2)-lower solution u € C*>(J, Rx) N C'(J, R £) for the Problem
(1)—(2). Then the Problem (1)—(2) has an integral solution of type 2 on J.
Furthermore, if the following condition holds:

(hs) Foreach pairu,v € é(], R r) fixed, there exists & € C(J, Rx) an upper or a lower
bound of u, v such that the Hukuhara difference p(x,y) © (—=1)Iy, f(x, y, &) exists
forall (x,y) € J,

then the Problem (1)—(2) has a unique integral solution of type 2 on J.

Proof By the hypothesis (h3), C’(], Rr) # ¥ and it is clear that, for every u € é(J, Rx),
the Hukuhara difference p(x,y) © (—=1)Iy, f(x,y, u) exists for all (x,y) € J. By the

assumption (hy), it is reasonable to build the operator 77 : c (J,Rr) — c (J, Rx) defined
by

(Tzu)(x’J’)ZP(X’Y)G(—l)Ixyf(x’y,u)v (X,y)e-]-

Similarly to Step 2 in the proof of Theorem 3, we receive from hypotheses (hj)—(h;) that

dOO(f(x’ Yy, U), f(-xv Yy, 7))) E dOO(vv 77)

forallv < ninRr and (x,y) € J.
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Using analogous arguments as in the proof of (21) and combining with Lemma 1, for all
u <vin C(J,Rx), we have

doo ((T2u)(x, y), (T2V)(x, y))
= dOO (p(x’ )’) e (_1)Ixyf(xv Y, IA), p(x’ y) o (_1)1xyf(xs Y, U))
< doo(Ixy f(x, y,u), Iy f(x, y,v))

1
= @, v) (e — (e — 1),
and it follows that

w(Tou, Tov) = <5 Hy @, v)(1 — )1 — 7). (22)

Now, assume that u < v in C (J, Rx). We need to indicate the nondecreasing character
of the operator 7>, proving that Tbu < T,v. Since u(s,t) < v(s,t) for all (s,¢) € J,
and using the hypothesis of the nondecreasing character of f in the third variable, we have
f(s,t,u(s, 1)) < f(s,t,v(s,t)) forall (s,t) € J. It follows from Lemma 5 that

/yfxf(s, t,u(s, t))dsdt < /y/xf(s, t,v(s, 1))dsdt,
0o JO 0 JO

(—1)/y/xf(s,t, v(s, t))dsdt < (—1)/y/‘xf(s,t, u(s, t))dsdt
0 JO 0 JO

for all (x, y) € J. Hence, by Lemma 3, since the differences involved exist, we have

or

y px
() (x, y) =p<x,y>e<—1>/0 [0 Fls. 1, v(s, D)dsdt

A%

y px
px,y) 6 (—1)/O /0 f(s,t,u(s, t))dsdt = (Tru)(x, y)

for all (s, t) € J, and the consequence is that 75 is a nondecreasing operator on c (J,Rx).
From (22), for an arbitrary strictly increasing altering distance function y, we have

1 —\a —Ab
y(Hy(Thu, Thv)) <y (A_ZHA(M’ V) —e )1 —e ))
1 —\a —Ab
=y (H)(u,v)) — I:J/(Hx(u, v) —vy (ﬁHx(u, V1 -1 —e ))} .

Denote ®(¢) = y(t) —y (%2(1 —e M1 — e*)‘b)t), t € [0, 00). Then, from Lemma 7,

there exists A > 0 such that ® is in C ([0, 00)) and T, satisfies the generalized contractive-
like condition

y (H)(Thu, Thv)) < y(H)(u,v)) — ®(H)(u,v)) forallu,v e é(J, Rr) withu < v.

Next, since there exists a (2)-lower solution . € C2(J, Rx) N C (J, Rx) for the Problem
(1)—(2), we prove that u < T, u. Note that the difference

y px
<Tzu><x,y>=p<x,y>e(—1>f0 /O Fls. 1, u(s, 0)dsd

exists for all (x, y) € J, since u € C(J, Rx).
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Besides, from 2 Dyypu(x, y) < f(x,y, u(x, y)), we deduce that

y px y px
/ / 2Dyyp(s, t)dsdt < / / f(s,t, u(s, t))dsdt
0 JO 0 JO

for all (x, y) € J. The previous inequality together with u(x, 0) < n1(x), ©(0, y) < n2(y),
and 1 (0, 0) = n1(0), implies that

y X
Mra(X,Y) < wra(x,0) + o (0, y) — o (0, 0)+/0 /0 Jia (s, t, u(s, t))dsdt

A

y px
< Mra®) + 1)ra () — (1)ra(0) + /0 /O fia(s. 1. u(s, D)dsdt,

A

y px
Wi (X2 ¥) < tia(x 0) + a1 (0, ) — 111a(0, 0) + /0 /0 Fra(s. 1, (s, 0)dsdt

IA

y rx
(nl)la(x)+(772)la(Y)_(nl)la(0)+/() /0 Jra(s, t, u(s, t))dsdt

fora € [0, 1] and (x, y) € J, which proves that

y px
W, y) < m(x)+nz(y)em(0)e(—1>/o /0 F(s.t. u(s. 0)dsd

y px
=p<x,y)e<—1>]0 /0 Flsot, s, D)dsdt = (Tap)(x, y)

for all (x, y) € J. Therefore, u < T>u in C(J,Rx).

Because of Lemma 8, since C’(J, Rx) is a closed subspace of C(J,Rx), then
(C‘(J, Rx), H)) is a complete metric space. Besides, the properties 1) and 2) in Lemma 4
are valid in C(J, Rz). Then the operator 7> satisfies all the hypotheses of Theorem 2 in
é(J , Rx). Hence, T has a fixed point in (:‘(J , Rx). The uniqueness of fixed point comes
from the existence of an upper or a lower bound in C(J, Rx) for each pair of fixed elements
inC (J, Rx), which comes from (hs). This completes the proof. O

Theorem 5 The conclusions of Theorems 3 and 4 are still valid if instead of a (k)-lower
solution, a (k)-upper solution (k = 1, 2) of Problem (1)—(2) is supposed to be exist.

Proof If u is a (1)-upper solution to the Problem (1)—(2), then
ux, y) = nix) +m(y) ©ni0) + Ly f(x, y, nlx, y)) = (i) (x, y)

for all (x, y) € J, from which it follows that © > T77u. Hence, the existence of a unique
integral solution of type 1 for Problem (1)—(2) is derived from Theorem 2. The proof of the
solvability of Problem (1)—(2) with a unique integral solution of type 2 is obtained similarly
by taking a (2)-upper solution u in c J, Rx). OJ

Finally, we prove the existence of solutions to Problem (1)—(2) by applying the
generalized results obtained in Section 2 for the case 8 € Sop.
In the space C(J, Rr), we consider the metric

d(l/t,U) - Sup {dOO(u(xy )’)»U(xs J’))}
(x,y)eJ

Due to the compactness of J in R2, it is easy to see that (C(J, Rx), d) is a complete metric
space.
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For an arbitrary altering distance function 1, we denote by B, the class of functions
¢ : [0, 00) — [0, oo) which satisfy the following conditions:

i) @ is monotonic increasing.
i) () <tfort > 0.
pon(®) 4 0,

iii) The function B : [0, c0) — [0, 1) defined as B(¢) = { Oﬂ(f) ’ F—0

is in Sp.

Theorem 6 Consider Problem (1)—(2), with a continuous function f satisfying the hypoth-
esis (hy), and suppose that there exist a strictly increasing altering distance function
satisfying ¥ (t) <t ift > 0, and ¢ € By, such that the following inequality holds

doo(f(x, y,u(x,y)), f(x,y,v(x,y))) < %w (Y (doo(u(x, y), v(x,¥)))), (x,y)€J,
(23)
foru < vin C(J,Rx). Then the existence of a (1)-lower solution (or a (1)-upper solution)
we C*(J,Rx) for the Problem (1)—(2) provides the existence of a unique integral solution
of type 1 to the Problem (1)—(2).

Proof Consider the operator 771 : (C(J, Rxr),d) — (C(J,Rx), d) defined by (18).

Using (h1) and following the same reasoning as in Step 1 of Theorem 3, we obtain the
nondecreasing character of the operator 77 in C(J, R r).

For allu < vin C(J, Rx), we have, from (23),

dOO((Tlu)(xv )’)’ (T]U)(.x, )’)) = doo(lxyf(xa y7 M(.X', y))s Ixyf(x7 ys U(x, Y)))

< /y/xdoo(f(s, t,u(s,t)), f(s,t,v(s,t)))dsdt
0 JO

IA

IR
—/ [ @ (Y(doo(u(x, y), v(x, y)))) dsdt.
ab 0 0

Since doo (u(x, y), v(x, y)) < d(u, v) for all (x, y) € J, by using the nondecrease property
of ¥ and ¢, we get ¥ (doo (u(x, ¥), v(x, ¥))) < ¥ (d(u, v)) and

P (doo(u(x, y), v(x, ¥)))) = @Y (d(u, v)))
for all (x, y) € J. It follows, for all (x, y) € J, that

A

1 v
oo (Ty10) (x, ), (T10) (X, ¥)) < g (W (d(u, v))) / / dsdt
ab o Jo

= ﬁm@ (Y (d(u,v))) < ¢ (Y(du,v))).
Thus, foru < vin C(J, Rx),
d(Tyu, Tiv) < ¢ (Y(d(u, v))).
From the nondecreasing character of i, we get, foru < vin C(J, Rr),

Y (d(Tiu, Tv)) = ¥ (¢ (Y(d(u,v)))) < ¢ (¥ (du, v)))
¢ (Y (du,v)))

= ) V@) =l vy, v),
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if d(u, v) > 0, and the inequality is trivially valid if d(u, v) = 0. Here, we have

poyr(t)
B(t) = o) ift >0,
0 ift =0,

which belongs to Sy, by hypothesis.

Finally, let u € C?%(J,Rx) be a (1)-lower solution for the Problem (1)—(2). It is clear
again that u < Ty, since p(x, y) < ni(x) +m()©n1(0) + Ixy f(x, y, w) = (T1p)(x, y),
(x, y) € J. Similarly, if there exists a (1)-upper solution u for the Problem (1)—(2), then we
have u > Ty . Note that (C(J, Rx), d) is also regular.

Overall, the operator 7} satisfies all the hypotheses of Theorem 2 in case 8 € Sp. In
consequence, 77 has a fixed point in C(J, Rr). Noticing that every pair of elements of
C(J, Rr) has an upper and a lower bound, it follows that the operator 77 has a unique fixed
point. O

Theorem 7 Consider Problem (1)—(2) with f continuous satisfying the hypotheses (hy),
(h3), (hg) and suppose that there exist a strictly increasing altering distance function
satisfying ¥ (t) < tift > 0, and ¢ € By such that the inequality (23) holds for u < v in
C(J,Rx).

Then the existence of a (2)-lower solution (or a (2)-upper solution) u € C%(J,Rx)
NCWJ,Rx) for the Problem (1)—(2) provides the existence of a fuzzy integral solution of
type 2 to the Problem (1)-(2).

Furthermore, if the condition (hs) holds, then the Problem (1)—(2) has a unique integral
solution of type 2 on J.

Proof Using analogous arguments for the operator 7> in Theorem 4, we deduce the
existence of a (unique) integral solution of type 2 to the Problem (1)—(2). O

Example 1 Denote Rrf ={zeRF : 0< z}, where 0 is defined by 6(t) =1ift =0and
0(#) = 0 in other cases. In this example, we consider the following fuzzy partial hyperbolic
equation under generalized Hukuhara derivatives

kayM:f(xvy’“(xv)’)), (an)EJ:[Ova]X[O,b],
u(x,0) =0, x € Jy, 24)
u(0,y) =0, y € Jp,

where f : J x R — RxT. Note that 1(0, 0) = 0 is deduced for a solution.

Theorem 8 Consider f : J x Ry — RxT continuous and nondecreasing with respect to
the third variable and suppose that, if u < v in C(J, Rx), then

doo (f(x,y,u(x,y)), f(x,y,v(x,¥)))

1
= —In (1 4+ min{aZ (u(x. ). v(x. ). doo(x, 1) v })  @29)

for all (x,y) € J. Then Problem (24) has a unique nonnegative fuzzy integral solution of
type 1. In addition to the hypotheses, if (h3) and (hs) are satisfied, then Problem (24) has a
nonnegative integral solution of type 2 (unique if (hs) holds).
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Proof Consider the cone P = {u € C(J,Rxr) : u > 6}, where we also denote by 0
the constant function equal to 0 at any point. Obviously, (P, d) is a complete metric space
(and regular). The operator 77 defined as (Thu)(x,y) = Iy f(x,y,u) is nondecreasing
and maps P into 1tself smce f (x,y,u(x,y)) is a nonnegative continuous function for each
u € P. Besides, T} (0) >0 (O is a lower solution). From Theorem 6 with ¢(¢) = In(1 + 1),
Y = min{¢2, ¢}, we derive the conclusion.

Note that the condition f : J x Rr — Rr*t canbe relaxedto f : J x Rr — R if
we impose that f(x, y, 0) > 0 for every (x, y) € J, due to the nondecreasing character of
Ty, which yields Tiu > T (6) > 0foru e P.

Note also that, in this example, the weak solution of type 2 is sought in the space of
functions u € C(J, Rx) such that u > 0 and f(x,y,u(x,y)) is crisp for every (x,y) € J,
so condition (hy) (and, hence, (h3)) is satisfied if f(x, y, z) is crisp for each (x, y) € J and
z € Rz crisp. Under this restriction, (hs) also holds since, given u, v > 6, we can take as a
crisp lower bound of u, v the constant function 0. O

4 Conclusions

In this study, we have firstly presented some new generalized theorems on fixed points
for nondecreasing mappings from a partially ordered metric space to itself. These results
develop some previous results of [3, 14, 27] and admit them as special cases. Secondly,
we have investigated the existence and uniqueness of fuzzy solutions to a boundary value
problem for a class of fuzzy partial hyperbolic equation under generalized Hukuhara deriva-
tives. Via these results, the function placed in the right-hand side of the equation does not
need to be Lipschitz continuous. In spite of this condition, f is only demanded to satisfy a
generalized contractive-like condition. However, a hypothesis of existing a lower or upper
solution of considered problem is required. In real world applications, the use of lower and
upper solutions method is hampered by the difficulty to exhibit such functions. This method
does not require to find a solution of a boundary value problem but find lower and upper
solutions. This replacement reminds us to the Liapunov’s second method. Furthermore, in
many theorems, the assumptions at hand provide lower and upper solutions and their use
simplifies the argument. The questions arise whether it is easy to recognize that a set of
assumptions provides such lower and upper solutions? Is it easy to find them? In general,
there is no clue to finding these solutions. This drawback motivated more works to study
the way to construct the lower as well as upper solutions in differential equations theory.
Some efforts to offer a construction of lower and upper solutions can be seen Lemma 1.5.2
in [15] for initial value problems of first order ordinary differential equations, Chapters VI
to X in [8] for showing how to build in specific cases appropriate lower and upper solutions
of some classes of two points boundary value problems. For partial differential equations,
we can cite here some works [12, 13]. This observation is our primary motivation in future
work for stating conditions that ensure a given function is a lower or an upper solution of
our considered problems.
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ALMOST PERIODIC SOLUTIONS OF PERIODIC LINEAR PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS
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Dedicated to Prof. Nguyen Manh Hung on the occasion of his 60th birthday

ABSTRACT. We study conditions for the abstract periodic linear functional differential equation
& = Az + F(t)z: + f(t) to have almost periodic with the same structure of frequencies as f. The
main conditions are stated in terms of the spectrum of the monodromy operator associated with
the equation and the frequencies of the forcing term f. The obtained results extend recent results
on the subject. A discussion on how the results could be extended to the case when A depends on

t is given.

1. INTRODUCTION

In this paper we consider the existence and uniqueness of almost periodic solutions with the

same structure of spectrum as f in equations of the following form

(L.1) d”;lff) = Ax(t) + F(t)r, + f(t), z€Xt€R,

where the (unbounded) linear operator A generates a strongly continuous semigroup and the
bounded linear operator F(t) is periodic and is defined as follows, z; € C, = C([-r,0],X),
z¢(0) == z(t +0), r > 0 is a given positive real number, F(t)p := f_or dn(t,s)e(s), Yo € Cy,
n(t,-) : Cp — L(X) is periodic in ¢, of bounded variation, and sup; || F(t)| < oo, and f is a X-valued

almost periodic function. A discussion on how the results could be extended to the case when A

depends on t periodically will be given at the end of the paper.

In the theory of ordinary differential equations one of the questions that are of interest to many

researchers is when exist periodic solutions to equations of the form

dx
% =B(t)x+ f(t),t e R,z € C", (F)
Date: Received June 5, 2017, accepted September 14, 2017.
2000 Mathematics Subject Classification. Primary: 34K06, 34G10; Secondary: 35B15, 35B40.
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2 VU TRONG LUONG AND NGUYEN VAN MINH

where f is periodic, and B(t) is a n x n-matrix that is periodic with the same period as f(t). A
famous Massera’s Theorem ([11]) says that Eq. (F) has a periodic solution with the same period
as B and f if and only if it has a solution that is bounded on the positive half line. In addition, the
periodic solution is unique if 1 is not an eigenvalue of the monodromy operator. Since then there
have been many efforts to extend this classic result to various classes of equations and functions
(see e.g. [1, 2,5, 6, 16, 17, 18, 19, 20, 23]). We refer the reader to some recent developments
5, 8, 19, 20, 23] and their references for more recent information in this direction. We note that
the results on the existence of periodic solutions are usually proved via the existence of fixed points
of the monodromy operator (or, period map) (see e.g. [2, 10, 23]). Among the research methods
used in this direction we note that when f is almost periodic the monodromy operator method is no
longer applicable because the system is no longer periodic. Instead, one uses a new method that is
based on the concept of evolution semigroups associated with the evolutionary processes generated
by the equations. Also, the requirement that the period of the solutions be the same as that of the
forcing term f will be understood as a requirement on the frequencies of the solutions that are not
more than those of f. This justifies the introduction of the concept of spectrum of a function that
allows us to measure the set of frequencies of a function on the real line. As is known, a fundamental
technique of research in the ODE and FDE is variation-of-constants formulas (VCF) in the phase
space. In the case of abstract functional differential equations, the VCF in the phase space is no
longer valid. Instead, a weak version may make sense. In this short paper we will recall briefly
these concepts and related results in the next section. We will present an extension of the Massera’s
Theorem for almost periodic solutions of Eq. (1.1) (Theorems 3.3 and 3.4). We prove that the
condition of existence of bounded solutions could be removed and the equations always have a
unique almost periodic solutions with frequencies as f if the part of spectrum of the monodromy
operator on the unit circle does not intersect the spectrum of f. To our best knowledge the results
obtained in this paper extends some previous ones in [1, 5, 18], and complements many other results
in [1, 15, 16, 17, 19, 22]. In [17] the authors showed that if A generates a compact Cp-semigroup the
existence of almost periodic solutions to Eq. (1.1) could be reduced to the finite dimensional case
of ODE, so the problem could be thoroughly studied. The novelty of our results obtained in this
paper is that we study the problem when A generates any C-semigroup, (and even more generally,
when A is a family of operators that generates a periodic evolutionary process). This makes the
part of spectrum on the unit circle more complicated and the nature of the problem is not of finite
dimension. Finally, we give a discussion on how the obtained results could be extended to the case
when A may depend on time t periodically. In this case without the variation-of-constants in the

phase space the main results are still true though their proofs will be adjusted.

2. PRELIMINARIES

2.1. Notation. Throughout the paper we will use the following notations: N, Z, R, C stand for the
sets of natural, integer, real, complex numbers, respectively. I' denotes the unit circle in the complex



ALMOST PERIODIC SOLUTIONS OF FDE 3

plane C. For any complex number z the notation Rz stands for its real part. X will denote a given
complex Banach space. Given two Banach spaces X, Y by L(X,Y) we will denote the space of all
bounded linear operators from X to Y. As usual, o(T), p(T), R(A,T') are the notations of the spec-
trum, resolvent set and resolvent of the operator T'. The notations BC(R,X), BUC(R, X), AP(X)
will stand for the spaces of all X-valued bounded continuous, bounded uniformly continuous func-

tions on R and its subspace of almost periodic (in Bohr’s sense) functions, respectively.

2.2. Circular Spectrum of Functions. Below we will introduce a transform of a function g €

L*(R,X) on the real line that leads to a concept of spectrum of a function. This spectrum coincides

with the set of ¢?P(9) if in addition ¢ is uniformly continuous, where sp(g) denotes the Beurling
spectrum of ¢g. All results mentioned below on the circular spectrum of a function could be found
in [14].

Let g € L™®(R, X). Consider the complex function Sg(\) in A € C\I" defined as
(2.1) Sg(A) == R()\,5)g, AeC\L.
Since S is a translation, this transform is an analytic function in A € C\I'.

Definition 2.1. The circular spectrum of g € L*(R,X) is defined to be the set of all {, € T
such that Sg(\) has no analytic extension into any neighborhood of & in the complex plane. This
spectrum of ¢ is denoted by o(g) and will be called for short the spectrum of g if this does not
cause any confusion. We will denote by p(g) the set I'\o'(g).

Proposition 2.2. Let {g,}°; C L>(R,X) such that g, — g € L*(R,X), and let A be a closed
subset of the unit circle. Then the following assertions hold:

i) o(g) is closed.
ii) If o(gn) C Afor all n € N, then o(g) C A.
iii) o(Ag) C a(g) for every bounded linear operator A acting in BUC(R,X) that commutes
with S.
iv) If o(g) = 0, then g = 0.

Proof. For i), ii) and iv) the proofs are given in [14]. For iii) the proof is obvious from the definition
of the circular spectrum. O

Corollary 2.3. Let A be a closed subset of the unit circle and F be one of the function spaces
BUC(R,X), AP(X). Then, the set

(2:2) Ar(X):={g € F|o(g) C A}

is a closed subspace of F.
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Lemma 2.4. Let A be a closed subset of the unit circle and F be one of the function spaces
BUC(R,X), AP(X). Then, the translation operator S leaves the space Ar(X) invariant. Moreover,

(2.3) o(S|arx) = A

Below we will recall the concept of Beurling spectrum of a function. We denote by F' the Fourier

transform, i.e.

+00

(2.4 (Ff)(s) = / e f (1)t

—00

(s € R, f € L*(R)). Then the Beurling spectrum of u € BUC(R,X) is defined to be the following
set

splu) = {£€R:Ve>0 3f € L'(R),
suppF'f C (E—€,&4¢€), f*u# 0}

where
“+0o0

fru(s):= f(s—t)u(t)dt.

The following result is a consequence of the Weak Spectral Mapping Theorem that relates the

circular spectrum and Beurling spectrum of a uniformly continuous function.
Corollary 2.5. Let g € BUC(R,X). Then
(25) o'(g) = eisp(g)_

2.3. Almost periodic functions. A subset £ C R is said to be relatively dense if there exists
a number [ > 0 (inclusion length) such that every interval [a,a + [| contains at least one point of
E. Let f be a continuous function on R taking values in a complex Banach space X. f is said to
be almost periodic in the sense of Bohr if to every € > 0 there corresponds a relatively dense set
T(e, f) (of e-periods ) such that

sup | f(t+7) = f(t)| <€ VT eT(e f).
teR

If f is almost periodic function, then (approximation theorem [9, Chap. 2]) it can be approximated

uniformly on R by a sequence of trigonometric polynomials, i.e., a sequence of functions in ¢t € R

of the form
N

(2.6) Pat) = Y anpe™H, n=1,2,.;hp €Ranp € X, ER.
k=1

Of course, every function which can be approximated by a sequence of trigonometric polynomials is
almost periodic. Specifically, the exponents of the trigonometric polynomials (i.e., the reals A, j, in
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(2.6)) can be chosen from the set of all reals A (Fourier exponents) such that the following integrals

(Fourier coefficients)

a(\, f) == lim — / f(t)e ™t

T%oo 2T
are different from 0. As is known, there are at most countably such reals A, the set of which will
be denoted by o3(f) and called Bohr spectrum of f. Throughout the paper we will use the relation

sp(f) = ou(f)-

If g € BUC(R,X) with countable o(g), then its Beurling spectrum sp(g) is also countable by
Corollary 2.5. Therefore, if X does not contain any space isomorphic to ¢ (the space of all numerical
sequences converging to zero), the function g is almost periodic (see e.g. [9]). If X is convex it does

not contain c¢g.
2.4. Evolutionary processes and the associated evolution semigroups.

Definition 2.6. Let (U(t,s))i>s be a two-parameter family of bounded operators in a Banach
space X. Then, it is called an evolutionary process if
i) U(t,t) =1 forall teR,
i) U(t,s)U(s,r) =U(t,r) forall t>s>r,
iii) The map (t,s) — U(t,s)z is continuous for every fixed z €X,
iv) |U(t,s)|| < Ne“(t=5) for some positive N,w independent of ¢ > s .

An evolutionary process is called 1-periodic if
Ut+1,s+1)=U(ts), forallt>s.
Recall that for a given 1-periodic evolutionary process (U(t, s)):>s the following operator
M(t):=U(t,t—1),teR

is called monodromy operator (or sometime period map, Poincaré map). Thus we have a family of
monodromy operators. We will denote M := M(0). The nonzero eigenvalues of M(t) are called
characteristic multipliers. An important property of monodromy operators is stated in the following
lemma whose proof can be found in [7, 8].

Lemma 2.7. Under the notation as above the following assertions hold:

i) M(t+ 1) = M(t) for all t; characteristic multipliers are independent of time, i.e. the
nonzero eigenvalues of M(t) coincide with those of M,
ii) a(M(t)\{0} = o(M)\{0}, i.e., it is independent of t,
iii) If A € p(M), then the resolvent R(\, M(t)) is strongly continuous,
iv) If M denotes the operator of multiplication by M(t) in any one of the function spaces
BUC(R,X) or AP(X), then

(2.7) a(M)\{0} C o(M)\{0}.
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Given an evolutionary process (U(t, s))i>s, the following semigroup (T");>( is called its associ-

ated evolution semigroup
(2.8) Thg .= U(t,t — h)g(t — h), t € R,g € BUC(R,X).

In general, the evolution semigroup associated with a 1-periodic evolutionary process may not
be strongly continuous in the whole space BUC(R,X), but in a closed subspace F' that includes
all elements of AP(X) and mild solutions in the above sense (see e.g. [1], [18]). To describe the
evolution semigroup associated with a given (U(t, s))>s we consider the following integral equation

(2.9) u(t) = Ul(t, s)u(s) —l—/ U(t, &) f(&)dE, for all ¢ > s,

where f is an element of BUC(R,X). We recall the following linear operator £ : D(L) C
BUC(R,X) — BUC(R,X), where D(L) consists of all solutions of Eq.(2.9) u(-) € BUC(R,X)
with some f € BUC(R,X). If u € D(L), then we define Lu(-) := f. This operator L is well defined
as a singled-valued operator and is obviously an extension of the differential operator d/dt — A (see
e.g. [16]). Below, by abuse of notation, we will use the same notation £ to designate its restriction
to closed subspaces of BUC(R, X) if this does not make any confusion.

If (T(t))t>0 is a Cp-semigroup in a Banach space X, then U(t,s) := T(t — s) determines a

1-periodic evolutionary process.
2.5. Mild solutions of Eq.(1.1) and a variation of constants formula.

Definition 2.8. A continuous function u(-) on R is said to be a mild solution on R of Eq.(1.1)
with initial ¢ € C,, and is denoted by u(-, s, ¢, f) if us = ¢ and for all t > s

(210) ult) = T(t — $)6(0) + / T(t - )[F(€)ue + F(E)de.

A function v € BC(R, X) is said to be a mild solution of (1.1) on R if

(2.11) u(t) =T(t — s)u(s) + /t T(t = &[F(&ue + f(&)]dE, for all t > s.
Below we will denote by F the operator acting on BUC(R, X) defined by the formula
Fu(§) .= F(§)ug, Vu € BUC(R,X).
The following results can be verified directly following the lines in [1, 12, 18].

Lemma 2.9. Let (Th)hzo be the evolution semigroup associated with a given strongly continuous
semigroup (T(t))i>s and S denote the space of all elements of BUC(R,X) at which (T");>¢ is
strongly continuous. Then the following assertions hold true:

i) Every mild solution u € BUC(R,X) of Eq.(1.1) is an element of S,

i) AP(X)CS,



ALMOST PERIODIC SOLUTIONS OF FDE 7

iii) For the infinitesimal generator G of (Th)hzo in the space S one has the relation: Gg = —Lg
if g € D(G).

For bounded uniformly continuous mild solutions z(-) the following characterization is very

useful:
Theorem 2.10. z(-) is a bounded uniformly continuous mild solution of Eq.(1.1) if and only if
Lx(-)=Fz(-)+ f.

As is well known, the homogeneous equation associated with (1.1) generates an evolutionary
process (U(t, s))i>s in the space C, = C([—r,0],X). In fact,
(2.12) U(t,s): Cr2 ¢ u € Cy,

where u is the solution of the equation

wr) = T(r—s)é(0) + / " D(r = F(Euede, 7> 5.

us = o.
We introduce a function I'" defined by
(nf+1)I, -1/n<0<0
) =
0, 6 < —1/n,

where n is any positive integer and I is the identity operator on X. Since the evolutionary process
(U(t, s))>s is strongly continuous, the Cy-valued function U (¢, s)I"™ f(s) is continuous in s € (—00, t]
whenever f € BC(R, X).

The following theorem, whose proof could be found in [17], is a variation of constant formula for
solutions of (1.1) in the phase space C;:

Theorem 2.11. The segment wi(s,d; f) of solution u(-,s,,f) of (1.1) satisfies the following

relation in Cy:

¢
(2.13) u(s, 5 f) =U(t,8)p + nh—>Holo/ U(t, T f(£)dE, t>s.

Moreover, the above limit exists uniformly for bounded |t — s|.

3. EXISTENCE OF ALMOST PERIODIC SOLUTIONS OF EqQ.(1.1)

The result below is an upper estimate of the spectrum of a mild solution to (1.1) that is a key
to understand the behavior of a bounded and uniformly continuous mild solution of (1.1).
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Lemma 3.1. Let u be a bounded and uniformly continuous mild solution of the equation (1.1).

Then, the following estimate holds
(3.1) o(u) Cop(M)Ua(f).
where op(M) :={2€C: |z|=1,z€ 0(M)}.

Proof. By the formula (2.13)

(3.2) w = U(t,t—1)u—1+ lim /t U(t,s)I™ f(s)ds,
t

n—oo Ji

and the limit exists uniformly for all bounded ¢. First, as f is uniformly continuous and bounded
we can see that the function

¢
(3.3) A:R>t~ lim / U(t,s)I" f(s)ds € C,
t

n—oo fi 4
is also bounded and uniformly continuous. We can check easily the valadity of the identity
AR(\, S)S(—=1) = R(\,S) + S(-1),

for any |A| # 1, where S(t) stands for the translation group, and S := S(1). Note that the operator
M of multiplication by M(t) commutes with S since the evolutionary process (U(t,s))i>s is 1-
periodic. Below we will denote by w the function R 5 t + u; € C,. Then, from the identity (3.2)
one has (for all A # 0 and |A| # 1)

AR(N, S)w = AR(A, S)MS(=1)w + AR(), S)A.
Therefore,
AR\, S)w — MR(\, S)w = MS(~1)w + AR(), S)A
(A= M)R(\, S)w = MS(—1)w+ AR\, S)A
As shown in [14, Lemma 5.3] for each fixed n € N
a(Gnf) C a(f),

where

Gof(t) = /t U(t, )T f(s)ds.

-1
As the limit in the formula (2.13) is uniform in ¢ we can see that o(A) C o(f). Finally, if
Ao & (or(M)Ua(f)), then near Ao the following holds
(3.4) R\, S)w = RA, M)(MS(=1)w + AR(A, S)A).
This shows that the complex function R(A, S)w is defined as an analytic function in a neighborhood

of )\0.

We will show further that this yields that the function R(), S)w(0) is also defined and analytic
in a neighborhood of Ag. In fact, before we proceed that we introduce p : C, — X defined as
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p(w) := w(0). If so, with our above notations pow = u, and po S*w = S*u for all k € N. If |\ > 1

we have

poRNS)w = A lpo(I—S/Ntw

()
-! (k; S’“/Ak> u

= R(\ S)u.

Note that for simplicity we make an abuse of notation by denoting also by S the translation in the
function space BUC(R, X) as well as in BUC(R, C;). Similarly, for A # 0 and |A| < 1 we can show
that p o R(\, S)w = R(A, S)u. Hence, the transform R(A,S)u of the function u has p o R(A, S)w
as an analytic extension in a neighborhood of A\g. This shows that (3.1) holds true, finishing the
proof of the lemma. O

Next, we recall some concepts and results in [20]. Note that although the proofs could be found
in [20] we would like to give some new ones that seem to be simpler and would be more convenient
to the reader.

Let us consider the subspace N'C BUC(R, X) (or AP(X), respectively) consisting of all functions
v € BUC(R,X) (or AP(X), respectively) such that

(3.5) o(v) C S1USy,
where S1, 59 are disjoint closed subsets of the unit circle T'.

Lemma 3.2. Under the above notations and assumptions the function space N can be split into
a direct sum N = Ny & Ny such that v € N; if and only if o(v) C S; for i = 1,2. Moreover, any
bounded linear operator in BUC (R, X) (or AP(X), respectively), that commutes with the translation
S, leaves invariant N as well as Nj, j =1,2.

Proof. By Lemma 2.4 and the Riezs spectral projection the space N could be split into the direct
sum N = N1 & N with NV is the image of the projection

1
P:=— [ R(\ Sx)dA

where 7 is a positively oriented contour enclosing S7 and disjoint from Sy. We have

U(S|N1) C Sl; 0(S|N2) C So.

Therefore, if v € N;, (i = 1,2) by the definition of the circular spectrum it is easy to see that

a(v) Cao(S|n;) C S
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The second claim is obvious as any bounded linear operator in BUC(R, X) (or AP(X), respectively)
that commutes with S must commute with P, so it leaves the spaces N', N7, N invariant. O

Theorem 3.3. (Decomposition Theorem) Let the following condition be satisfied
i) Eq.(1.1) has a mild solution uw € BUC(R,X) (or in AP(X), respectively)
ii)

(3.6) or(M) \o(f) be closed.

Then there exists a mild solution w of Eq.(1.1) in BUC(R,X) (or AP(X), respectively) such that
(.7) o(w) C o(f),

that is unique if

(3.8) or(M)no(f)=0.

Proof. By Lemma 3.1
(3.9) o(u) Cor(M)Ua(f).

Let us denote by A the set op(M)Ua(f), S the set o(f) and Sy the set op(M) \ o(f), respectively.
Thus, these two sets are closed and disjoint subsets of the unit circle I', so by Lemma 3.2 there
exists the projection P from A onto N; which is commutative with F and T". Since u is a mild
solution of (1.1) if and only if u € D(L) and

(3.10) Lu=Fu+f,

by Lemma 2.9 we have

so this yields
PLu = —PGu

Since Pf = f and P commutes with F,
PLu = PFu+ Pf
LPu = FPu+f.
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By Theorem 2.10 this shows w := Pu € N is a mild solution of Eq. (1.1) that has circular
spectrum ¢(Pu) C S1 = o(f). Next, if condition (3.8) holds, then the uniqueness of such a
solution in N is clear. In fact, suppose that there is another mild solution v € BUC(R,X) (or
in AP(X), respectively) to Eq.(1.1) such that o(v) C o(f), then w — v is a mild solution of the
homogeneous equation corresponding to Eq.(1.1), so o(w —v) C op(M). As o(v) C o(f), by (3.8)
this yields that o(w — v) = (), and because of this w — v = 0. This completes the proof of the

theorem. d

Recall that the set of all real numerical sequences that are convergent to zero is a Banach space
with sup-norm that is denoted by ¢y. As a consequence of the above theorem we obtain the following
main result of the paper.

Theorem 3.4. Assume that Eq. (1.1) has a bounded uniformly continuous mild solution u, and
Condition (3.6) of Theorem 3.3 is satisfied. Moreover, let the space X not contain cy and o(f) be
countable. Then there exists an almost periodic mild solution w to Eq.(1.1) such that o(w) C o(f)

. Furthermore, if (3.8) holds, then such a solution w is unique.

Proof. The proof is obvious in view of [9, Theorem 4, p.92] and Theorem 3.3. O

Below we will relax the condition on the existence of a bounded uniformly continuous mild

solutions when a condition (3.8) is satisfied.

Theorem 3.5. Under the above notation assume that
(3.11) or(M)Nao(f)=10

holds. Then there exists a unique almost periodic mild solution w to Eq. (1.1) such that o(w) C

a(f).

Proof. Consider the difference equation
(3.12) w(t) = M(w(t —1)+g(t), t €R,
where for all t € R

M(t) = U(tt-1),

oft) = lim /t U(t, )™ f(s)ds.

n—00 J;_q

First, we note that ¢ is almost periodic function taking values in C,. In fact, for each n € N the

function
F,:Rot=T"f(t) € C,

is an almost periodic function with o(F,) C o(f). Next, by [14, Lemma 5.3] the function

PRt [ U(t, &) Fa(€)de

t—1
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is also almost periodic, and o(F') C o(F},) C o(f). Therefore, g is almost periodic and o(g) C o(f).

By [14, Theorem 4.7] if (3.11) holds there exists a unique almost periodic solution w to (3.12)
such that o(w) C o(f). Our next goal is to prove that there exists a mild solution u of Eq. (1.1)
such that u, = w(n) for all n € Z. For each fixed n € Z consider the unique mild solution to Eq.
(1.1) on the interval [n,n + 1] that is generated by the equation

ult) = T(t—n)[w(n)}(OH/ T(t = n)[F(n)uy + f(n)ldn, t € [n,n+1],

n

u, = w(n).

This solution exists uniquely on the interval [n,n+1] for each n € Z. By the Variation-of-Constants
formula (2.13)

(3.13) m:U@Mw@H—M{fU@$WV@$, t>n.

m—0o0

Therefore, if t = n+ 1 we have that u,4+1 = w(n+1). This means that we obtain a mild solution u
of Eq. (1.1) that is defined on each interval [n,n + 1] by (3.13) so that it coincides with w at each
integer n. Therefore, the sequence w(n) = u,, is almost periodic. This yields that u(n) = u,(0) is
an almost periodic sequence. We are going to prove that u is almost periodic function. The proof
will follow a well known idea in [4] that are used in [1, 5] as well. For the completeness we present
it below.

As w(-) and f are almost periodic, so is the function g : R 5 t — (w(t), f(t)) € C x X (see
9, p.6]). As is known, the sequence {g(n)} = {(w(n), f(n))} is almost periodic. Hence, for every
positive € the following set is relatively dense (see [4, p. 163-164])

T:=7ZNT(g,¢),

where T'(g,€) := {7 € R : sup,cg |lg(t + 7) — g(t)|| < €}, i.e., the set of € periods of g. Hence, for

every m € T we have

If(E+m) = f)] < eVteR,
|win+m)—wn)| < eVneZ.

Since u is a solution to Eq.(2.10), for 0 < s < 1 and all n € N, we have
lu(n+m+s) —u(n+s)l| < [T(s)]| - [lw(n+m) —wn)|
[ I = s PO B~ el
Hf(n+m+¢) = fln+ )] d¢
< Ne“[lw(n +m) —w(n)| + Ne® /OS [IFll

X|[tnsme = tunsell + /(0 +m+8) = f(n+ €[] de.
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Hence
[Zntmts = Tngsll < Ne¥[lw(n+m) —w(n)|
#NE [ TP [anmss = ansel + 1 n-+ m+€) = Sn-+ )]
Using the Gronwall inequality we can show that
(3.14) [untmets — Unts|| < €M,

where M is a constant which depends only on sup, || F(t)||, N,w. This shows that m is a eM-period
of the function z(-). Finally, since T is relatively dense for every e, we see that z(-) is an almost
periodic mild solution of Eq.(1.1). Once the almost periodicity of u was proved we are are able to

apply the Decomposition Theorem 3.3 to finish the proof of this theorem. O

4. DISCUSSION: VARIATION-OF-CONSTANT FORMULA IN THE PHASE SPACE AND FURTHER
EXTENSION

Our results in the previous section could be extended to a bit more general case of periodic
equations. Namely, let us consider equations of the form
du
(4.1) i A(t)u+ F(t)us + f(t), t € R,
where the family of (possibly unbounded) operators A(t) generates a 1-periodic evolutionary process
and F(t) is a 1-periodic family of bounded operators as in (1.1), and f is an almost periodic function

taking values in X.

The presentation of our proofs of the results in the previous section relies on the variation-of-
constants formula (2.13) in the phase space C, that allows us to easily outline the ideas. In turn,
we have made use of the formula available in the case when A(t) is independent of ¢ although our
results could be true even if A(t) may depend on ¢ periodically with the same period as that of
F(t).

As shown in [5, Lemma 4.1], there is a way to get around with the variation-of-constant formula
(2.13). Below is a version of Lemma 4.1 from [5] that could be used to extend our results in the
previous section to the general case of equations (4.1). We consider the following Cauchy Problem
for each given t € R

3
W) = [ VIEnF@m+ S, €2 -1,
t—1
h—1 = 0 S C’r‘a
where (V (¢, s)):>s is a 1-periodic evolutionary process generated by the homogeneous equation
du
— = A(t
= At

Let us define v: R 3t — y; € C,.. We define the operator L : BUC(R,X) 5 f + v.



14 VU TRONG LUONG AND NGUYEN VAN MINH

Lemma 4.1. The operator L is well defined operator in BUC(R,X) that is linear and continuous

and commutes with the translation S.

Proof. Since the proof could be easily adapted from that of [5, Lemma 4.1] details will be omitted.
U

From the definition of the function v we can verify that if u is a mild solution of (1.1) on the
real line, then
ur = U(t,t — Dug—y +0(t), t €R.

Therefore, the circular spectrum of u could be estimated as below

Lemma 4.2.
o(u) Cop(M)Ua(f).

Proof. Since L is linear, bounded and commutes with S we have o(v) = o(Lf) C o(f). The rest
of the proof is similar to that of Lemma 3.1. O

All main results of the previous section, Theorems 3.3, 3.4 and 3.5 will follow if we adjust the

technique of decomposition as discussed in [20] to periodic evolutionary processes.
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1. Introduction

In this paper, we study the Liouville type theorem for stable classical solutions of the semilinear degenerate
elliptic system

—Agu =P
“ in RY = RM x RN, (1.1)
—Agv =ul

where Agu = Azu + |z|>**Ayu is the Grushin operator, A, and A, are Laplace operators with respect to
x € RM and y € Rz, Here we always assume that o > 0 and p > ¢ > 1. Recall that G, is elliptic for |z| # 0
and degenerates on the manifold {0} x R¥2. This operator was introduced in [16] (see also Baouendi [1])
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and has attracted the attention of many mathematicians. In the special case o = 1, this operator is close
related to the Heisenberg Laplacian in H" = C" x R (see e.g., [3,4]).
We start by noting that, in the case a = 0, the system (1.1) is reduced to the Lane-Emden system

“ Ay = P
{A“ ”q in RV, (1.2)
—Av=u

which has received considerably attention in the last decade (see e.g., [22,27,26,29,7.13] and references
therein). For this system, the so-called Lane-Emden conjecture says that there has no positive classical
solution if and only if the pair (p,q) lies below the Sobolev critical hyperbola, i.e.,

12

p+1 ¢q+1 N’
So far, this conjecture has been proved for the case N < 4, see e.g., [22,27,26,29]. When N > 5, there
have been some partial results concerning the nonexistence of positive classical solution, see [29,5,21]. For
the class of positive radial solutions, the Lane-Emden conjecture was solved by Mitidieri [22], Serrin and
Zou [28].

Recently, the Liouville type theorem for a special class of solutions — the so-called stable solutions —

has been studied by many mathematicians, see [12,30,9,11] for Lane-Emden equation and [7,13,18,19] for
Lane-Emden system. In particular, Cowan [7] has obtained the following result.

Theorem A. (Cowan [7])

i) Suppose 2 < q<p and

dp+4 1 1 1
Cdp+ paa+1) | |palg+l)  fpaatD) | _ o (1.3)

N -2

Then there is no positive stable solution of (1.2). In particular, there is no positive stable solution of
(1.2) for any 2 < q<pif N <10.

ii) Suppose 1 < q < 2, ,/pqpffil) _ gy Rdetl) _ | Jpaletd) o 1 and (1.3). Then there is no positive stable

p+1 p+1
solution of (1.2).

The main tools in [7] are comparison principle, integral estimates via stability assumption and boostrap
argument. This result was then partially extended in [19,18,17] to the case of weighted Lane-Emden system.
We now turn to the general case a > 0. It is well known that when « > 0, the operator A belongs to the
wide class of subelliptic operators studied by Franchi et al. in [14] (see also [3,4]). Let us recall some related
results for the scalar version of (1.1), i.e., for the equation —Agu = uP. The Liouville type theorem has
been recently proved by Monticelli [24] for nonnegative classical solutions, and by Yu [31] for nonnegative

weak solutions. The optimal condition on the range of the exponent is p < %"‘fg, where

Na = Nl + (]. +Oé)N2

is called the homogeneous dimension. The main tool in [24,31] is the Kelvin transform combined with
technique of moving planes. Before that, Dolcetta and Cutri [10] established the Liouville-type theorem for

nonnegative super-solutions under the condition p < NN - (see also [8]). However, to our best knowledge,

there has not any work treating the system (1.1) for the case a > 0.
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The purpose of this paper is to classify the stable solutions of (1.1). Before stating our main results, let
us recall the definition of such solutions motivated by [23], see also [7,13].

Definition. A positive solution (u,v) € C*(RY) x C2(RN) of (1.1) is called stable if there are positive smooth
functions &, 7 such that

—An€ =poP1
{ GE=PT RN (1.4)

—Agn = quiTi¢
Our first result concerning the classification of stable solutions of (1.1) is the following.

Theorem 1.1.

i) Suppose that % <qg<pand

dp+4 1 1 1
N, <o et pale+l)  fpalg+D)  fpalg+1) | (15)

pg—1 p+1 p+1 p+1

Then there is no stable positive solution of (1.1). In particular, the assertion is true if N, < 10.
i) In the case 1 < ¢ < max(%,p), in addition to (1.5), we assume that

paa+l)  |pale+d)  Jpale+l) g (1.6)
p+1 p+1 p+1 2 '

Then the system (1.1) has also no stable positive solution.

Notice immediately that Theorem A is a direct consequence of Theorem 1.1 when a = 0.

In the above theorem, one sees that in the case 1 < ¢ < max(%7 p), there is additional assumption (1.6)
due to the restriction of technique. Motivated by the idea in [17] concerning the inverse comparison principle,
we obtain the second result without assumption (1.6).

Theorem 1.2. Suppose that 1 < ¢ < max(%,p) and

Na<2+<2+2(Q+1) 4(2—‘1)) pq(qH)Jr pglq+1) pala+1) | (17)

pg—1 p+q—2 p+1 p+1 - p+1

Then there is no bounded stable positive solution of (1.1). In particular, the system (1.1) has no bounded

stable positive solution if N, < 2+ 2<\/§ +v2 - \/§> ~ 6.359.

As consequences, let us consider the scalar equation
—Agu=1v? in RY =RM x RV, (1.8)

Recall that, see e.g. [11], a classical solution of (1.8) is called stable if
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p / WGP dedy < / Vao|?dady, for all ¢ € CL(RY). (1.9)
RN RN

In particular, it follows from (2.1) when p = ¢,u = v, that (1.9) is a consequence of the notion of stability
for the system.
The following is a corollary of Theorems 1.1 and 1.2.

Corollary 1.3. Assume p > 1 and
4
Na—2—]:(p+ Vp?—p) <0. (1.10)

Then the problem (1.8) has no stable positive solution. In particular, there is no stable positive solution of
(1.8) if N, < 10.

Remark 1.4. In the case 1 < p < %, the non-existence of bounded stable solutions of (1.8) with o = 0
was proved in [17]. This result is improved in our Corollary 1.3 without restriction on the boundedness of
solutions.

To prove Theorems 1.1 and 1.2, we borrow crucially the idea of Cowan [7] who established Theorem A.
The key in the proof is the comparison principle and nonlinear integral estimates. The former was proved
by Souplet [29] (see also Bidaut-Véron [2] for the proof in bounded domain with additional assumption),
and it is shown to be very useful to study qualitative properties of solutions of elliptic system, see e.g.,
[13,7,18,25]. However, the techniques used to prove the comparison principle in the previous works for the
Laplace operator do not seem applicable to the system (1.1) because the operator A is no longer symmetry
and it degenerates on the manifold {0} x R™2. Then, in this paper, we establish the comparison principle
for Grushin operators by developing the idea in [6]. In addition, the L!-estimate to the boostrap iteration
in [7] does not work in the case of Grushin operator, we instead switch to the L?-estimate in the boostrap
argument. We also employ the idea in [17] to prove the “inverse” comparison principle which is crucial to
handle the case 1 < ¢ < %. Remark also that the method used in the present paper can be applied to
study the weighted systems, and to more general class of degenerate operator, such as the Ay operator (see
[15,20]) of the form

N
Axi=Y 0,,(N0:,), A=(\1,...,An) : RN 5 RV,
i=1

Here \; : RY — R,i =1,..., N are nonnegative continuous functions satisfying some properties such that
Ay is homogeneous of degree two with respect to a group dilation in RY.

We finish this section by describing briefly outline of the proof. Suppose that (u,v) is a stable positive
solution of (1.1).

Step 1. From the definition, we give a stability criterion under the integral form.

\/;Tq/v‘%lu"’%‘qs?dxdy < /|VG¢\2da:dy, for all ¢ € C1(RV),
RN RN

where V¢ := (Vg,|2|*V,) denotes the Grushin gradient.
Step 2. Establish the comparison principle

P+l udt!
<

p+1 " qg+1
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without assumptions on the boundedness and the stability of solutions, and the inverse comparison principle
pP—q
u < [vfl& v
for bounded solutions.

Step 3. Let 6 = pq}sqﬂl) and v — V0 — V8 < t < VB + /0 — 8. Using the comparison principle we

prove

/v”u2t—1¢2dxdy < c/u2t(|vg¢|2+ |Aco|¢)dudy.

RN RN

for all ¢ € C2(RM;[0,1]). Moreover, for bounded solutions in the case 1 < ¢ < max(p; §), we obtain

2(g+1) _ 4(2—q)

/ wldzdy < CRN«72" %01 ~wia-2,

BrXxBgita

where Bg (resp. Br) denotes the ball of radius R centered at the origin of RM (resp. RV2).

Step 4. We finally use L%-estimates for Grushin operator and apply the bootstrap iteration to obtain the
desired results.

The paper is organized as follows. In Section 2, we establish some technical lemmas. The proof of Theo-
rems 1.1, 1.2 and Corollary 1.3 are given in Section 3.

2. Some technical lemmas

In this section, we shall prove some auxiliary results concerning the system (1.1). We first establish a
stability inequality.

Lemma 2.1. Assume that (u,v) is a positive stable solution of the system (1.1). Then for ¢,7» € CH(RN),
we have

p=1l g-1 1
VA [ o7 ovldudy < 5 [(VaoP + [VovP)dody,
RN RN
In particular, if 1 = ¢ then we have
Vi [ o5 Gty < [ [Vaoldudy (2.1)
RN RN

Proof. We follow the idea in [7,13]. Let ¢, € CL(RY). Multiplying the first equation in (1.4) by %2 we get

_ qu = p—1 ‘bj
/Agﬁ. ¢ dedy = /pv n ¢ dxdy.

RN RN

Using the integration by parts and Young’s inequality 2ab — b% < a? to obtain

2 2
_ / Acﬁ.%da:dy: / (2?vc¢~vcf—|vcf|2f—2> drdy < / Ve[ drdy.
RN Rf\f

RN
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Consequently,
¢2
/pvp’ln?dwdyé /\Vcaﬁ\zdwdy. (2.2)
RN RN
By the same argument, we also have
1 102 2
/quqf EFda:dy < /|VG¢| dzdy. (2.3)
RN RN

Finally, adding (2.2), (2.3) and using again the Young inequality for the left hand side, we obtain the desired
result. O

In what follows, the constant C' does not depend on a positive parameter R and may change from line
to line. The following lemma is more or less known, we provide here the proof because we couldn’t find a
satisfactory one in the literature.

Lemma 2.2. Suppose that (u,v) is a positive solution of (1.1) with p > q > 1. Then, for R > 0 there exists
C > 0 independent of R such that

/ Wdedy < CRN-"2" 55 (2.4)
BrXxBgita
and
/ widzdy < CRN-—2- %551 (2.5)
BrXBgita

Proof. Let y; € C°(R;[0,1]),5 = 1,2 such that x; = 1 on [~1,1] and x; = 0 outside [-2!tU~Da 2l+(G-1e],

For R > 0, put pgr(z,y) = Xl(%‘)xg(Rlﬂa ). Then, there exists C' > 0 independent of R such that

C
Voorl < 5. IVyerl < 7

C
|Ay99R| < m

c

Let m > 2 be a fixed constant which will be chosen sufficiently large later on. Multiplying the first equation
in (1.1) by ¢% and integrating over Bap X B(gg)i+a to arrive at

—AgupRdrdy = / PR dady. (2.6)
BarxB3p)1+a BarXBpy1+a

On the other hand, using the integration by parts and Holder’s inequality we get

C"L —
—AgupRdrdy < 5 / uply 2dxdy

BarxB3p)1+a BarXByp)1+a

< CpR / wlW P rdy | (2.7)

BngB(QR)HQ
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where é + % = 1. Combining (2.6) and (2.7) to obtain

vPpRdedy < CWR%72 uq<pgn_2)qdzdy . (2.8)

BzRXB(QR)1+u BZRXB(QR)IJra

The same argument also yields, for k > 2, that

ulphdudy < C'kR%72 vpg0<k72)pd$dy , 2.9
R R

BarXB;py1+a B2rXByp)1+a

where % + ﬁ =1
Note that pg > 1, then we choose k = (m — 2)g and m large such that (k —2)p = ((m —2)g — 2)p > m.
Hence, (2.8) and (2.9) give

2

D, m No _o4No_2 D, m
vWoRdedy < Cp R ar’ " a VR dedy . (2.10)

BQRXB(QR)1+O¢ B2R><B(QR)1+04

Therefore, (2.4) is deduced from (2.10) and a simple computation. Similarly, (2.5) follows from (2.4) and
(29). O

By interpolation argument, we also have

Corollary 2.3. Under the assumptions of Lemma 2.2, for 0 <t < p,0 <7 < q, there is C > 0 independent
of R such that

2(a+1) 4
)

vidzdy < CRNe™ a1
BrXBgita
and

_ 2(p+1)
udrpdy < CRNe~ a1 7,

BrxBgita
We next generalize the comparison property in [29,6,2] for the system (1.1) without stability assumption.

Lemma 2.4. Suppose that (u,v) is a smooth positive solution of (1.1) with 1 < g < p. Then there holds

P+l udt!

< . (2.11)
p+1 7 qg+1
Proof. Let 0 = Zi—i <land!= o 71, The inequality (2.11) is equivalent to
v <. (2.12)

Put w = v —lu?. A simple computation gives
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Ayw = Agv — loAua’ ™t = lo(o —1)|Vu?u®2,
[z Ayw = |z|*® (Ayv —loAyuu’™t —lo(o - 1)|Vyu|2u”72) .
Therefore,
Agw = Agv — loAgu.u’t —lo(o — 1)|Vau|*u® 2
> Agv — loAguu®™t = —u? + lou” P (2.13)

P
=yt (—uqH*‘7 + lov”) =71 ((%) - (u”)p> .
We now prove (2.12) by contradiction. Suppose that M = suppy w > 0 (M < +00).
Case 1: the supremum of w is attained at infinity.
Choose the cut-off function x € C2(RY;[0,1]) and let ¢(z,y) = x™(z,y). Here m > 0 will be chosen
later. Since Vy and Ay are bounded, there is a constant C' > 0 such that

Vol* m=2

|Ag| < Co™n, e Co" . (2.14)
Let ¢R(xa y) = (b(%a Rlﬂa )v WR = ¢Rw then
supwg(r,y) = I%%X’LUR(I,Z/) — M as R — oc. (2.15)
RN

Take (zg,yr) such that maxgny wr(z,y) = wr(zg,yr). This implies that

Vewr(zr,yr) =0, Acwr(zr,yr) < 0. (2.16)
In what follows, all the estimates are taken at the point (g, yg). First, using Vwg = 0 at (zg, yg) we have

0=Vgwr =Vgorw+ ¢ Vguw.
Thus,
Vew = —¢3'Vadr w.
Since Agwg < 0 at the point (zg, yr), we obtain
0> Agwp = Agprw +2Vgor - Vaw + ¢pAgw.
Hence,
orAqw < (203" Vaor]” — Aadr)w. (2.17)

Combining (2.14) and (2.17), one has

C m=2
drAqw < ﬁqf)Rm w. (2.18)
Recall that v — lu® = w. Then for w > 0, it is easy to see that
P (uo)P P
v W) > 1 or equivalently (%)p — (u)P > v (2.19)

wP wP r
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It follows from (2.13), (2.18) and (2.19) that

m—2

_ C
oru’ LyP < ﬁ(j)Rm w.

Recall that the constant C' is independent of R. Consequently,

m+2

m+2 _ C
op™ u’ LyP < ﬁqﬁRw.

m+2

m

By choosing m = [% (orp= ), we get

: (2.20)

Il

C
o—1,1D o—1, p—1
u’wp < _RQwP” oru’ wp <

We recall that all the above estimates are taken at the point (zg,yg). Note that o — 1 < 0. If the sequence
u(rr,yr) is bounded, then u”~!(zg, yR)wﬁ_l(a:R,yR) > wa{l(mR,yR) where C' > 0 is independent of R.
This together with (2.20) follow wf{_l(x ”YR) < %. Let R — oo we have contradiction.

If the sequence u(zg, yg) is unbounded, up to a subsequence, we may assume that

li = .
A, vlemum) = +oc

Since p > ¢ > 1, there exists ¢ > 0 small enough such that pg—1—¢(g+1) > 0and p > 1+¢. For 0 < b < a,

using the mean value theorem we have

P
€

a? — bP = (alte) e — (pre) T

> p (b1+5) lﬁsfl(alﬁ»s _ b1+5)

T 1l+e

— : f_a(bpfefl)(a}Jﬁe _ b1+5)
p —e— €

2 m(bp 1)(a—b)1+ .

Choosing a = %U(IR,yR),b =u’(zg,yr) and using (2.13), we arrive at

Agw(agr,yr) > Cu” (zg,yr)u" P ") (zp, yr)w'

—1-e(q+1)
e (2R, yr)W (xR, yr) > Cw' (R, yR), (2.21)
where C' > 0 (independent of R) and in the last inequality we have used the unboundedness of the sequence

u(ZR,YR)-
Inserting (2.21) into (2.18) and choosing ™2 =1 + ¢, we obtain

wix(zr, yr) < (2.22)

ﬁ.

It suffices to take R — 400 in (2.22) to get the contradiction.
Case 2: there is (2°,4°) such that M = suppy w = w(z°,7°) > 0.
The estimates (2.13) and (2.19) imply that

Agw(a®,y%) > Cu”~ (2", 4" )wP (2°,4°) > 0.

Hence, there exists at least an index j such that %(mo,yo) > 0 or %(mo,yo) > 0. This contradicts
J ke

w(z°,9°) = suppnx w. The proof is complete. O
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Combining the proof of Lemma 2.4 with the idea in [17], we have the inverse comparison principle as
follows.

Lemma 2.5. Suppose that (u,v) is a smooth positive solution of (1.1) with 1 < ¢ < p and v is bounded. Then
u is bounded and satisfies

u < o]l & v, (2.23)
Proof. Let [ = HvHé? and w = u — lv. Then
vP v
Agw = ="+ lu" = —folfe + lu* 2 ol + tuf = l(uq - (lv)q). (2.24)
Voo Vo

In order to obtain the proof, it suffices to use the arguments as in Lemma 2.4 by noting that (2.13) is
replaced by (2.24). The detail is then omitted. O

Using Lemma 2.4 and following the proof in [13, Proposition 2|, we get

Lemma 2.6. Let = % and

VO -0 -V0 <t <Vi+1\/0-V0. (2.25)

Then we have

/vpugt_lgzﬁdedy <C / W(|Vad|* + |Aco|¢)dzdy,

RN RN
for all ¢ € C2(RN) satisfying 0 < ¢ < 1. Here C does not depend on (u,v).

Proof. It follows from Lemma 2.1 with the test function u'¢ that

\/]Tq/vp%luq%lu%ﬁ?dazdyg /|Vc(ut¢)|2dxdy

RN RN
1
=¢ / |V eul*u* 2 ¢2dzdy + / |V ao|*dedy — 3 /u2tAg(¢2)dxdy (2.26)
RN RN RN
Multiplying the first equation in (1.1) by u?~1¢? and integrating by parts to arrive at
1
(2t — 1)/\ch|2u2t72¢2d$dy— g/u%Ag((ﬁz)da:dy: /vpu%*lqb?da:dy. (2.27)
RN RN RN

Thus, from (2.26) and (2.27) one has

2

/ Pt dady + C / w(|Vaol + |Aqo|d)dzdy (2.28)

RN RN

N / Upg_lugg_lu%d)Qd:rdy < 571
RN
To end the proof, it is enough to apply Lemma 2.4 to the left hand side of (2.28) and remark that 6 — % =

pa(g+1) t?
P Ty >0. O
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The following lemma is a key step to deal with the case 1 < ¢ < max(p; %) in the proof of Theorem 1.2.
Lemma 2.7. Let (u,v) be a positive solution of (1.1) with 1 < q < max(p; §). If v is bounded, then

2(g+1) _4(2—q)

wldzdy < CRN=% %01 ~via2,

BrXBgita

Proof. Let y € CX(RN;[0,1]) be a cut-off function satisfying x = 1 on By x By and x = 0 outside
By X Byi+a. Put p(z,y) = x(%, iz ). Note that (2.28) is still true without the assumption (2.25). Taking
¢ =¢R, t=11n (2.28) and then applying Lemma 2.4 to the right hand side to obtain

_ : 1 _
Dq v%u%gozmda:dy < ptl T O drdy + i w2 dxdy. 2.29
f g+1 f R? R
RN RN RN

Since pg > %, the estimate (2.29) yields

]RN

RN

By applying Lemma 2.5 to the left hand side of (2.30), we have

tot2 o C _
/ uE W dady < = / u? o 2 dwdy. (2.31)
RN RN

Recall that 1 < ¢ < max(p, %), then o := Zigzz € (0,1) and 2 = og + (1 — o)#. We estimate the

integral in the right hand side of (2.31) by using Holder’s inequality as follows

l1-0 o
[ rasay < | [0 drdody | | [u oy (232
RN RN RN
1-0o
< /up+g+2<p%{”dxdy / uldzdy |
RN B2rxBp)1ta

where in the last inequality we have used 0 < ¢r <1 and chosen m large enough such that mo > 1.
Combining (2.31), (2.32) and (2.5) to obtain

2(g+1)
—1

/u%p%{"%dxdy < CR™25% RNa—2-%

RN

2(g+1) _ 4(2-q)
= CRN"‘_2_ pa—1  pta—2

Finally, note that ¢r = 1 on Bg x Bgi+a, we finish the proof of Lemma. 0O

Remark 2.8. The boundedness of v in Lemma 2.7 is only necessary for the use of the fact that u < Cv in
Lemma 2.5. However, if p = ¢, then we have u = v by Lemma 2.4. Thus, in the case p = ¢, Lemma 2.7 is
still true without the assumption of boundedness of solutions.
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3.1. Proof of Theorem 1.1

Let ¢ € C°(RY;[0,1]) be a cut-off function such that

Let w be a smooth function and let k, =

parts, we have

Thus,

¢ =1o0n By x By and ¢ = 0 outside By X Boi+a.

No
No—-2°

1 1
e ko

/ w2k dady < / (w)?*e dzdy

B1xB; BaxByi+a

<C

1

2

/ Ve(we) Pdrdy

B2xBjita

1
| WetwlPe? + w?Vael + 5 Vo(u?) - Vol )dsdy
BaxBy14a

1
2

1
[ Vet +wVagk + ut(-Ba(e)dsdy

By xBjy1+a

Ve(w)? + wPdedy

B xBjyita
1
Fa
/ w?Fe dady <C / (IVa(w)]* + w?)dzdy.
B xB; B2 xByi+a

A scaling argument follows that

/ w?ke dady

BrXBpgita

< oprtNeli) / Vo (w)Pdady

BarXBypy1+a

+ C'RN"(iil) / widzdy.

BQRXB<2R)1+G

Suppose that (u,v) is a positive stable solution of (1.1). Set

w = ut for VO — 9—\/5<t<\/5+\/9—\/§.

(3.1)

By using Sobolev inequality (see [31]) and integration by

(3:2)
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Then,
[Vouwl|? = 2|V gul*u? 2.

Let o = ¢ (%, zi=) where ¢ is given in (3.1). Then,

[ Nowrwa=c [ Wouu sy

BrXBpita BrxBpgita

<C / IV qulu? 2o dzdy. (3.3)

BarXB(gp)1+a

2t—1

Multiplying the first equation in (1.1) by u*~1¢% and using the integration by parts, we obtain

|Vu*u? 2 phdedy = vPu?t Lot dedy

2t-1
BarXB(g)ita BarXB(p)i+a
1 (3.9
2 2
YR, A dxdy.
+2t(2t—1) / u” Ag(pg)dudy
BZRXB<2R)1+0¢
The estimations (3.3), (3.4) and Lemma 2.6 imply that
/ Vg (w)|*dedy < CR™2 / w?dzdy.
BrXBgita BarXB;py1+a
This together with (3.2) give
1
2
.
/ w2ka dxdy < CRN“(’“Q 1) / widzdy. (3.5)
BrXBpita BarXByp)1+a

In the following, we need the assumption (1.6) which is rewritten as

Vi-\o-vi<l, g Liatl)

p+1

It is casy to see that # > ¢* and the function @ — v0 — v/ — V8 is decreasing. Then

%: lim (f—Ve-Vé)g\/@— 0-VI<q-i—q

0—+o0

On the other hand, if ¢ > %, then ¢ — \/¢?> — ¢ < £. Therefore, the condition (1.6) is always fulfilled in
case (i).
Fix a real positive number 7 satisfying

2(v0 -\ - V0) <27 < q. (3.6)

Let m be a non-negative integer satisfying 7k ~1 < VI+v0-0 < Tk2'. We construct an increasing
geometric sequence
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VO -V <ty <ty<..<tm<VO+\0-V0
given by
2ty = 27k, 2ty = 27kkq, ..., 2ty = 27kET L,

where k € [1, k,] is chosen such that t,, is arbitrarily close to v/ + v/6 — V8.

To simplify notations below, we use R,, = 2"R. By using (3.5) and an induction argument, we obtain

utmke dydy <C (RN“ (i71)> " / u?tm dady

BrXxBgita BR1><B(121)1+H

1
tm—1ka

1 1
_ CRNO‘(kﬂtm zm) u2tm—lkadxdy
Bry XB(g,)1+e

1
t1

< CRN“(ﬁ_ﬁ) / i dady
BRy, XB (g, y1+a
1
Tk
= CRN“(ﬁfﬁ) / W dady

BRm XB(g,, )1+
For the last integral, we shall use Holder’s inequality, (3.5) and Corollary 2.3 to obtain

k
ko ko

/ W Fdaedy < / w¥ e dady / dzdy

BRry XB(g,,)1+e By XB(g,,)1+e Bry XB(R, )1+

k
<C (RN”(kl"_l) / u?¥ dzdy RN"(l_ﬁ)

BR,, .1 XB(g

1)1t

Consequently,

1
Tk

N, 2p+2 _ k)1 N, 2p+2
uF™*dzdy §0Rﬁ_m—1'2,RN"<l k’a)f’v CR™va-1-2,

BRy XB (g,,)14a

Substituting (3.8) into the last inequality of (3.7), one has

(38)
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tmka

2p+2

w2k g dy < CRFatm 12, (3.9)

BrXBgita

Recall that k, = NJZ‘: 5,0 = %. Under Assumption (1.5), we choose k € [1, k4] such that t,, close to

V0 + /6 — /0 and then the exponent in the right hand side of (3.9) is negative. Let R — 400 in (3.9), we
obtain the contradiction.

For the second assertion in (i), by adopting the proof in [7, Remark 3|, we have %_11(\/5+ VO —0) >2
for any % < ¢ <p. Then (1.5) is fulfilled if N, < 10. The proof is finished.

3.2. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that of Theorem 1.1. Then we give here the sketch of proof and
the detail is omitted.

We emphasize that Lemma 2.7 plays an important role in the proof. To avoid using the condition
VI =0 -0 < 1 as in Theorem 1.1, we replace the constant 7 in (3.6) by the one satisfying

2V0—1/6 - V) <27 <2.

Then Lemma 2.7 follows that
T 1-7
u¥ dxdy < / uldzdy / dxdy
Bryy XB (g, )1+« Brpu XB (g, )1+a BRpy XB (g, )14+

2(a+1) _ 4(2—q)
< CR(NG‘Z—W‘W)TRNAPT)

92— 2(q+1) _ 4(2—q)

— CRNO‘_( pa—1 p+q—2) .
By the same argument as in the proof of Theorem 1.1, we obtain the following estimate

1
T ko
No  _o_2(¢t1) _4(2-q)
/ u?tmke dady < CRFatm 2 a1 “ta-2, (3.10)

BrXxBgita

By the assumption (1.7), we choose k € [1, k] such that t,, close to v+ /0 — v/ and then the right hand
side of (3.10) tends to zero as R — +o0o and obtain the contradiction.
For the rest of proof. We shall show that, for all 1 < ¢ < max(%; D),

Fp,q) = <2+ AatD) ﬁf;}é) (x/§+ \/M) > 2(\/§+ ﬁ)

pg—1

Indeed, for p > ¢ > 1, we have

2 1 2 2
e Y -
pqg—1 p—1 p+1

Combining with the fact that f(z) := \/z + v/z — /7 s increasing in (1,00), we deduce that
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2 2p 2p 2p 4
F(p,q) > 2+ + - , forall 1 < ¢ <max(=;p). 3.11
> ( p_1)<,/p+1 e ,/p+1> g<mas(ip). (311)

Denote s = z% with s € (1,2), then (3.11) is written as

F(p,q) > g(s) := i <\/§+\/s—\/§), foralll<q§max(§;p)A

s—1
A simple estimate yields

1

(f(s) - 5)} <0, forallse(l,2)

| 5 s(s—1)
g(s)_ (8—1)2|:f() Qﬁm

where we used
s(s—1)

<1, forallse(1,2).
This implies

F(p,q) > g(2) = 2(\/5%- V2 - \/5) forall 1 < ¢ < max(g;p).

Thus, (1.7) is true if N, <2+ 2(\/5 +/2 - \/§> The proof is complete.

Remark 3.1. In Theorem 1.1(i), by taking p = ¢ and letting p — co we see that the right-hand side of (1.5)
tends to 10. Hence,

dp+4 1 1 1
mf [op A fpalatD)  fpaletd)  Jpagt D) o
4/3<q<p pg—1 p+1 p+1 p+1

Similarly, by taking ¢ = 1 and letting p — oo in the right-hand side of (1.7), one see that

inf
1<g<max(3,p

2(¢+1) | 42-9q) pa(q+1) pa(q+1) palq+1)
(2 ) )

pg—1 p+q—2 p+1 p+1 - p+1

:2+2<\/§+M).

3.8. Proof of Corollary 1.3

Recall that the stability of the solution of (1.1) implies the estimate (2.1) which is exactly, when p =
¢,u = v, the definition of stable solution of (1.8). Let p = ¢, then u = v by Lemma 2.4 and the system (1.1)
becomes the scalar equation (1.8).

Case 1. q > %. It follows from Theorem 1.1 (with p = ¢) that the problem (1.8) has no stable positive
solution provided (1.10).

Case 2.1 < ¢ < ‘31‘ By using Remark 2.8, it is easy to see that if p = ¢, then the first assertion of
Theorem 1.2 is still true without the assumption of boundedness of solutions. It means that problem (1.8)
has no stable positive solution provided (1.10).

In both cases, there is no stable positive solution of (1.8) if N, < 10. The proof is finished.
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