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Abstract
In this paper, we investigate continuity properties of the efficient solution map of
a parametric nonlinear multiobjective optimal control problem. First, by using the
equimeasurability condition of the admissible control set, we obtain the compactness
and arcwise connectedness of the feasible solution set. Next, we suggest new concepts
of the quasi-arcwise connected integrand and employ them to study the semicontinuity
of the efficient solution map of this problem. When the multiobjective function does
not satisfy these conditions, we propose an estimation hypothesis for approximate
efficient solutions to address lower semicontinuity conditions of the efficient solution
map of the reference problem. To illustrate the applicability, we apply the obtained
results to two practical models, including Glucose model and Epidemic model.
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1 Introduction

Optimal control problems have a wide range of applications, spanning diverse fields,
from space mission design and robotics to addressing economic challenges. The goal
is to determine trajectories for both the system’s state and control inputs that optimize
an objective function. This function may involve minimizing energy consumption,
maximizing comfort, or optimizing resource utilization. However, many real-world
problems require us to optimize simultaneously not only one but multiple objectives
that may be conflicting. Therefore, studies on multiobjective optimal control prob-
lems are important and significant due to the role of these models in various fields, for
instance, economics, aerospace engineering, mechanical engineering, chemical engi-
neering, multi-objective control system design, and environmental studies. We would
like to refer the reader to the papers [4, 8, 10, 16, 22, 23, 26, 27, 33, 34, 41, 43] and
the references therein for further comments and discussions. We would also like to
note further that these works mainly devoted to optimality conditions and numerical
methods for multiobjective optimal control problems.

The stability analysis for parametric optimal control problems is the next impor-
tant topic, it has received much attention of many researchers recently, see e.g. [1, 2,
13, 17, 25, 28, 32, 39]. Unfortunately, because of the lack of techniques and tools,
most of works only considered the stability of scalar optimal control problems. Let
us provide a brief overview of recent stability results for such problems. In [17], the
authors employed a strong second order optimality condition and uniform indepen-
dence of active constraint gradients to establish the Lipschitz continuity of the solution
map of a parametric nonlinear optimal control problem.When the strong second order
optimality condition in [17] was unavailable, the author of [32] substituted it with con-
straint qualifications and weakened coercivity conditions to investigate the Lipschitz
property and directional differential of the solution map and Lagrange multipliers for
such problem. Motivated by [17, 32], in [2], the authors introduced a concept of con-
vex integrand and utilized it together with Hölder continuity conditions to formulate
Hölder conditions for a linear optimal control problem. Besides, by using the continu-
ous differential and strong convexity conditions of the objective function, [25] studied
the lower semicontinuity property of a parametric optimal control problem in the case
where the state equation is linear and the cost function is convex in both variables.
Subsequently, in [28], the authors developed the techniques presented in [25] to inves-
tigate the upper semicontinuity of the solution map of this problem, where the state
equation is linear only in the control variable and the cost function is convex only in
the control variable.

Moving toworks dedicated to the differential stability for the reference problems, in
[13], the authors derived a formula for anupper evaluationof theFréchet subdifferential
of the value function of a parametric optimal control problem by establishing an
abstract result on the Fréchet subdifferential of the value function of a parametric
minimization problem. Then, in [1, 39], the authors studied the first order behavior
of the value function of a parametric convex optimal control problem. They used
appropriate regularity conditions to obtain formulas for computing the subdifferential
and the singular subdifferential of the optimal value function of the reference problem.
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To the best of our knowledge, up to now, there are only two works devoted to
the stability analysis for multiobjective optimal control problems. In [40], the authors
first established an abstract result concerning the Mordukhovich subdifferential of the
efficient point multifunction of a parametric multiobjective mathematical program-
ming problem, and then it is applied to derive a formula for the computation of the
Mordukhovich subdifferential of the efficient point multifunction of a multiobjective
parametric optimal control problem. Recently, in [9], by employing Fréchet differ-
ential conditions, the authors considered the local Hölder continuity of the efficient
solution map of a parametric multiobjective optimal control problem, where the state
equation and multiobjective function are linear in the control variable. Therefore, a
crucial topic such as stability analysis must be the focus of many works because the
existing results are inadequate for its role. Moreover, according to our observations,
the majority of works addressing stability conditions for optimal control problems
under linear and nonlinear evolution equations have relied on conditions and tools
concerning the continuous differential of objective functions as well as functions on
the right-hand side of the evolution equations. However, in many practical situations
as mentioned in [14, Sect. 1.1], these conditions are not met, and hence the study
of new approaches and tools, especially those from multivalued analysis and convex
analysis, is both deserved and significant.

Motivated by this research stream, in this paper our aim is to study continuity prop-
erties of the efficient solution map of a parametric nonlinear multiobjective optimal
control problem without assuming any differential conditions. To be more precise,
based on the equimeasurability and arcwise connectedness of the admissible control
set, we investigate the compactness, arcwise connectedness and stability of the fea-
sible solutions. For the stability of the efficient solutions, we first suggest concepts
of the quasi-arcwise connected integrand related to the convex integrand introduced
by Rockafellar [36], and then we use them together with the uniform continuity of
maps to study the continuity of efficient solution maps of the reference problems. In
the case where the multiobjective function does not satisfy the quasi-arcwise con-
nected integrand, inspired by ideas of [24, 42], we propose an estimation condition of
approximate solutions concerning a generalized formof the epi-convergence condition
in Rockafellar and Wets [37]. After that, we employ it to obtain lower semicontinuity
conditions for such problems. Moreover, we also have utilized a generalized bound-
edness condition of function on the right-hand side of the state equation, which is a
unified form of the boundedness conditions introduced by Ekeland and Temam [20],
Frankowska and Rampazzo [21] and Tammer [38], to get the boundedness of the tra-
jectory set. Under this condition, we have relaxed the uniform continuity requirements
for both the multiobjective function and the function on the right-hand side of the state
equation, as well as the conditions for the admissible control set. As a result, we have
obtained many new and significant results. Finally, as applications of obtained results,
we consider two practical situations: Glucose and epidemic models [19, 30].
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2 Preliminaries

Wedenote byR the set of real numbers, byRn the n-dimensional Euclidean space with
the norm | · |, by Rn+ the nonnegative orthant in Rn . The Banach space C([t0, t1],Rn)

is the space of all continuous functions x : [t0, t1] → R
n equipped with the norm

‖x‖ = maxt∈[t0,t1] |x(t)|. By Lp([t0, t1],Rn), 1 ≤ p ≤ ∞, we denote the space of all
the Lebesgue integrable functions defined on [t0, t1] with the norm ‖ · ‖p.

Let � and � be nonempty closed subsets of Rl and R
r , respectively, ϕ : [t0, t1] ×

R
n×R

l×R
r → R

m andψ : [t0, t1]×R
n×R

l×R
r → R

n be givenmaps.Wedealwith
the multiobjective optimal control problem of finding a control u ∈ Lp([t0, t1],Rl)

and a state x ∈ C([t0, t1],Rn) which solve

min
∫ t1

t0
ϕ
(
t, x(t), u(t), λ(t)

)
dt,

subject to

x(t) = x0 +
∫ t

t0
ψ
(
s, x(s), u(s), λ(s)

)
ds (1)

and the control constraint

u(t) ∈ � a.e. t ∈ [t0, t1].

Here x0 is a given vector in R
n , λ is an element of the parameter space � which is

defined by

� := {
λ ∈ Lq([t0, t1],Rr ) : λ(t) ∈ � ∀t ∈ [t0, t1]

}
.

Let � be a closed subset of Rn such that x0 ∈ int�. An admissible control can be
defined as a function u ∈ Lp([t0, t1],Rl) satisfying the following conditions

(i) u(t) ∈ � a.e. t ∈ [t0, t1];
(ii) for all λ ∈ �, the trajectory x corresponding to u satisfies x(t) ∈ � for all

t ∈ [t0, t1].
The set of all the admissible controls is denoted by U.

Let U be a nonempty closed subset of U, we define

X := C([t0, t1],Rn),W := X × U .

For λ ∈ �, we define

I(w, λ) :=
∫ t1

t0
ϕ
(
t, x(t), u(t), λ(t)

)
dt, (2)

K (λ) := {w = (x, u) ∈ X × U : (1) is satisfied} , (3)
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with I : W × � → R
m is a multiobjective function, and K : � ⇒ W is a feasible

solution map. Then, the multiobjective optimal control problem can be cast as the
following problem

(P(λ)): min I(w, λ) subject to w ∈ K (λ).

We denote the sets of all the minimal points and efficient solutions of (P) at λ by
Min(λ) and Eff(λ), respectively, i.e.,

Min(λ) := {
a ∈ I(K (λ), λ

) : (I(K (λ), λ) − a
) ∩ (−R

m+ \ {0}) = ∅} ,

Eff(λ) := {w ∈ K (λ) : I(w, λ) ∈ Min(λ)} .

Let λ0 ∈ � be a reference parameter. We call (P(λ0)) the original problem (or
the unperturbed problem) and (P(λ)) the perturbed problem. Our main concern is to
investigate the behavior of Eff(λ) when λ varies around λ0. For the details of the role,
significance and need of considering parametric optimization models in general and
optimal control models in particular, we refer the readers to typical works [7, 18, 35].

Definition 2.1 (see [5]) Let M1,M2 be metric spaces and F : M1 ⇒ M2 be a
set-valued map and x0 ∈ M1. It is said that

(a) F is upper semicontinuous (usc, for short) at x0 if for any neighborhood V of
F(x0), there exists a neighborhood N of x0 such that F(N ) ⊂ V .

(b) F is lower semicontinuous (lsc, for short) at x0 if for any sequence {xn} with
xn → x0 and y0 ∈ F(x0), there exist yn ∈ F(xn) such that yn → y0.

(c) F is continuous at x0 if it is both usc and lsc at x0.

Lemma 2.1 (see [5]) Let F(x0) be compact. Then, F is usc at x0 if and only if for any
sequence {xn} with xn → x0 and yn ∈ F(xn), there is a subsequence {ynk } of {yn}
such that ynk → y0 ∈ F(x0).

Definition 2.2 [31, p. 33, Definition 7.1] Let X ,Y be normed spaces, C ⊂ Y be a
cone, and f : X → Y be a vector valued map. The map f is said to be upper
C-semicontinuous at x0 if for each neighborhood V of f (x0) in Y , there exists a
neighborhood N of x0 in X such that

f (x) ∈ V + C, for all x ∈ N .

Lemma 2.2 [31, p.60, Corollary 5.10] Let X ,Y be normed spaces, A ⊂ X be a
nonempty subset, C ⊂ Y be a pointed cone, and f : X → Y be a vector valued map.
Suppose that A is compact, C is correct, i.e. cl(C) + (C \ {0Y }) ⊂ C, and f is upper
C-semicontinuous. Then, the set

Eff( f , A) := {x ∈ A : ( f (A) − f (x)
) ∩ (−C \ {0Y }) = ∅}

is nonempty, where cl(C) denotes the closure of C.

Definition 2.3 (see [12]) Having a set 	 of maps γ defined on [t0, t1], it is said that
	 is equimeasurable on [t0, t1] if there is a sequence of step functions {γk} for each
γ ∈ 	 satisfying
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(i) for each k, γk has no more than k points of discontinuity,
(ii) for any ε > 0 and δ > 0, there exists a finite number k0 (ε, δ) and for every γk

with k > k0 (ε, δ), the inequality |γk(t) − γ (t)| < ε holds except on a set of total
measure less than δ.

Lemma 2.3 (see [12]) Let 	 be an equimeasurable set of bounded functions. Then, for
all {γk} ⊂ 	, there exists a subsequence {γki } of {γk} such that {γki } converges almost
uniformly to a measurable function γ .

Definition 2.4 (see [6]) Let A be a nonempty subset of Lp([t0, t1],Rn). The set A
is said to be arcwise connected if for all w1, w2 ∈ A, there exists a continuous map
ξ : [0, 1] → A such that ξ(0) = w1 and ξ(1) = w2.

In what follows, we need the following hypotheses on ϕ,ψ,U and �.

(H1) For a.e. t ∈ [t0, t1], ϕ(t, ·, ·, ·) is uniformly continuous on � × � × � and for
each fixed (y, v, μ) ∈ � × � × �, ϕ(·, y, v, μ) is measurable on [t0, t1].

(H2) For a.e. t ∈ [t0, t1] and for all y ∈ �, ψ(t, y, ·, ·) is uniformly continuous on
� × � and for each fixed (y, v, μ) ∈ � × � × �, ψ(·, y, v, μ) is measurable
on [t0, t1].

(H3) There exists a function � ∈ L1([t0, t1],R) such that

|ψ(t, y1, v, μ) − ψ(t, y2, v, μ)| ≤ �(t)|y1 − y2|
a.e. t ∈ [t0, t1],∀(y1, v, μ), (y2, v, μ) ∈ � × � × �.

(H4) U is equimeasurable on [t0, t1] and � is bounded.

The Hypotheses (H1) − (H3) are very common in studying solution properties for
optimal control models. In the remaining part of this section, we will discuss the
equimeasurability condition in Hypothesis (H4).

Assume that U is a set of piecewise equicontinuous maps on [t0, t1], that is, there
exists a positive integer number n0 such that for each u ∈ U , the number of discon-
tinuous points of u is less than n0, and for each ε > 0, there exists σ > 0 such that
for all u ∈ U and for all t ′, t ′′ ∈ [t0, t1] with |t ′ − t ′′| < σ , we have

|u(t ′) − u(t ′′)| < ε,

unless there is a point of discontinuity t̄ of some function uwith t ′ < t̄ ≤ t ′′. According
to Lemma 3.5 in [3], the set U is equimeasurable on [t0, t1].

In the case that U is a set of maps with uniformly bounded variation on [t0, t1], that
is, there exists α0 ∈ R+ such that

Var(u; [t0, t1]) := sup{Var(u, P; [t0, t1]) : P ∈ P([t0, t1])} ≤ α0 for all u ∈ U ,

whereP([t0, t1]) is a family of all partitions of the interval [t0, t1], andVar(u, P; [t0, t1]) :=∑k
j=1

∣∣u (τ j )− u
(
τ j−1

)∣∣ with P = {τ0, τ1, . . . , τk}. Then, by Lemma 3.4 in [3], the
set U is also equimeasurable on [t0, t1].
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3 Properties of the Feasible SolutionMaps and Objective Maps

This section aims to study the compactness and arcwise connectedness of the feasible
solution set and to investigate the continuity of both the feasible solution map and
objective map. We start with the following lemma.

Lemma 3.1 Assume that the Hypotheses (H2) and (H3) are fulfilled. Let {λk} ⊂ �

and (xk, uk) ∈ K (λk) be arbitrary. If {(uk, λk)} converges to (u, λ) ∈ U × �, then
the sequence {xk} converges to x ∈ X and (x, u) ∈ K (λ).

Proof For u ∈ U and λ ∈ �, by the Hypotheses (H2) and (H3), the Eq. (1) has a
unique solution x ∈ X , and hence (x, u) ∈ K (λ). We now show that the sequence
{xk} converges to x . For all ε > 0, because ψ is uniformly continuous in the third
component and the fourth component on�×� and the sequence {(uk, λk)} converges
to (u, λ), there exists k0 ∈ N such that

|ψ(t, x(t), uk(t), λk(t))− ψ
(
t, x(t), u(t), λ(t)

)| < ε
(t1−t0)

a.e. t ∈ [t0, t1],
∀k ≥ k0.

Then, for any k ≥ k0, due to (xk, uk) ∈ K (λk) and the Hypothesis (H3), we have

|xk(t) − x(t)| ≤
∫ t

t0
|ψ(s, xk(s), uk(s), λk(s)) − ψ(s, x(s), u(s), λ(s))|ds

≤
∫ t

t0
|ψ(s, xk(s), uk(s), λk(s)) − ψ(s, x(s), uk(s), λk(s))|ds

+
∫ t

t0
|ψ(s, x(s), uk(s), λk(s)) − ψ(s, x(s), u(s), λ(s))|ds

≤
∫ t

t0
�(s)|xk(s) − x(s)|ds +

∫ t

t0

ε

(t1 − t0)
ds

≤ ε +
∫ t

t0
�(s)|xk(s) − x(s)|ds, t ∈ [t0, t1].

Applying the Gronwall lemma see [11, Lemma 18.1.i], for any k ≥ k0, we obtain

|xk(t) − x(t)| ≤ εe
∫ t
t0

�(s)ds ≤ εe‖�‖1 ∀t ∈ [t0, t1].

Consequently, maxt∈[t0,t1] |xk(t) − x(t)| ≤ εe‖�‖1 . Because ε > 0 is arbitrary, we
conclude that xk → x . The proof is complete. 
�
Corollary 3.1 Assume that the Hypotheses (H2) and (H3) are fulfilled. Let λ ∈ �

be fixed, and {(xk, uk)} ⊂ K (λ) be arbitrary. If {uk} converges to u ∈ U , then the
sequence {xk} converges to x ∈ X and (x, u) ∈ K (λ).

Corollary 3.2 Assume that the Hypotheses (H2) and (H3) are fulfilled. Let u ∈ U be
fixed and {λk} ⊂ � be arbitrary. If {λk} converges to λ ∈ �, then the sequence {xk}
with (xk, u) ∈ K (λk) converges to x ∈ X and (x, u) ∈ K (λ).
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We are now in a position to present the main results of this section.

Theorem 3.1 Assume that the Hypotheses (H2) − (H4) are fulfilled. Then, for each
λ ∈ �, K (λ) is nonempty and compact. Moreover, if the set U is arcwise connected,
then K (λ) is arcwise connected.

Proof For each λ ∈ � and u ∈ U , the Eq. (1) has a unique solution x ∈ X , and
hence the set K (λ) is nonempty. Taking arbitrary {(xk, uk)} ⊂ K (λ), then for the
sequence {uk}, by the Hypothesis (H4) and Lemma 2.3, there exists a subsequence
{uki } converging to some u, and hence u ∈ U as U is closed. Applying Corollary 3.1,
the subsequence {xki } converges to x ∈ X and (x, u) ∈ K (λ). So, the subsequence
{(xki , uki )} converges to (x, u) ∈ K (λ), i.e., K (λ) is compact.

Now, if in addition that the setU is arcwise connected, wewill show that the feasible
solution set K (λ) is also arcwise connected. Taking arbitrary w0 = (x0, u0), w1 =
(x1, u1) ∈ K (λ), then for u0 and u1 belonging to the arcwise connected set U , there
exists a continuous map ξ1 : [0, 1] → U satisfying ξ1(0) = u0, ξ1(1) = u1 and
ξ1(τ ) = uτ ∈ U for any τ ∈ (0, 1). On the other hand, for each τ ∈ [0, 1], thanks to
the Hypotheses (H2) and (H3), the equation

x = x0 +
∫ t

t0
ψ(s, x(s), uτ (s), λ(s))ds t ∈ [t0, t1]

has a unique solution xτ ∈ X . Consider a map ξ2 : [0, 1] → X defined by ξ2(τ ) = xτ .
Taking arbitrary τ ∈ [0, 1] and a sequence {τk} ⊂ [0, 1] with τk → τ , the continuity
of ξ1 on [0, 1] leads to uτk → uτ ∈ U . Applying Corollary 3.1, we have xτk → xτ , or
equivalently ξ2(τk) → ξ2(τ ) as τk → τ . So, themap ξ2 is continuous on [0, 1]. Setting
ξ := (ξ2, ξ1), then the map ξ : [0, 1] → K (λ) is continuous on [0, 1], ξ(0) = w0 and
ξ(1) = w1. 
�
Theorem 3.2 Assume that the Hypotheses (H2) − (H4) are fulfilled. Then, the map
K defined by (3) is continuous on �.

Proof � K is usc on �.
For each λ ∈ �, it follows fromProposition 3.1 that K (λ) is compact. Let {λk} ⊂ �

with λk → λ and wk = (xk, uk) ∈ K (λk) be arbitrary. By the Hypothesis (H4), there
exists a subsequence {uki } of the sequence {uk} such that {uki } converges to some u.
Due to the closedness of U , we have u ∈ U . Applying Lemma 3.1, we obtain xki → x
and (x, u) ∈ K (λ). Therefore, wki = (xki , uki ) → w := (x, u) ∈ K (λ), and so, by
Lemma 2.1, the map K is usc at λ.

� K is lsc on �.
For each λ ∈ �, we prove that K is lsc at λ. Let {λk} ⊂ � with λk → λ and

w = (x, u) ∈ K (λ) be arbitrary, we show that there are vectors wk ∈ K (λk) such
that {wk} converges to the vector w. For each λk ∈ �, the equations (1) has a unique
solution xk satisfying xk(t) = x0 + ∫ t

t0
ψ(s, xk(s), u(s), λk(s))ds. It follows from

Corollary 3.2 that xk → x , and hence the sequence {wk} with wk := (xk, u) ∈ K (λk)

converges to the vector w = (x, u). The proof is complete. 
�
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Theorem 3.3 Assume that the Hypothesis (H1) is fulfilled. Then, the map I is contin-
uous onW × �.

Proof Let (w, λ) ∈ W × � and {(wk, λk)} ⊂ W × � be arbitrary with (wk, λk) →
(w, λ). For all ε > 0 and for a.e. t ∈ [t0, t1], because the map ϕ(t, ·, ·, ·) is uniformly
continuous on � × � × �, there exists k0 ∈ N such that

∣∣ϕ(t, xk(t), uk(t), λk(t))− ϕ
(
t, x(t), u(t), λ(t)

)∣∣
<

ε

(t1 − t0)
a.e. t ∈ [t0, t1],∀k ≥ k0.

Then, for any k ≥ k0, we have

|I(wk, λk) − I(w, λ)| ≤
∫ t1

t0
|ϕ(t, xk(t), uk(t), λk(t))− ϕ

(
t, x(t), u(t), λ(t)

)|dt

≤
∫ t1

t0

ε

(t1 − t0)
dt = ε.

Because ε > 0 is arbitrary, we conclude that I(wk, λk) → I(w, λ). This completes
the proof. 
�

4 Qualitative Properties of Efficient SolutionMaps of (P)

In this section, we establish sufficient conditions for the continuity of efficient solution
maps of (P). Motivated by Rockafellar [36] and Crespi et al. [15], we first propose
concepts of generalized convexity integrand and arcwise connected integrand for a
map, and thenweuse them to study the continuity of efficient solutionmaps.When such
properties are not satisfied, we introduce a key hypothesis concerning epi-convergence
and apply it to formulate the lower semicontinuity property of the efficient solution
maps. We now introduce the concepts of the generalized convexity integrand.

Definition 4.1 Let A be a nonempty subset of Lr ([t0, t1],Rs). A map f : [t0, t1] ×
R
s → R

m is said to be

(a) naturally R
m+-quasi-convex-like integrand with respect to A if for all z1, z2 ∈ A,

there exist z3 ∈ A and τ ∈ [0, 1] such that
∫ t1

t0
f (t, z3(t))dt ∈ τ

∫ t1

t0
f (t, z1(t))dt + (1 − τ)

∫ t1

t0
f (t, z2(t))dt − R

m+.

(b) strictly naturalRm+-quasi-convex-like integrand with respect toA if for all z1, z2 ∈
A and z1 �= z2, there exist z3 ∈ A and τ ∈ [0, 1] such that

∫ t1

t0
f (t, z3(t))dt ∈ τ

∫ t1

t0
f (t, z1(t))dt + (1 − τ)

∫ t1

t0
f (t, z2(t))dt − intRm+.
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We use the following hypothesis on ϕ to study the upper semicontinuity of efficient
solution maps.

(H5) For each λ ∈ � and for each t ∈ [t0, t1], ϕ(t, ·, ·, λ(t)) is strictly natural Rm+-
quasi-convex-like integrandwith respect to K (λ), that is, for allw1 = (x1, u1) and
w2 = (x2, u2)belonging to K (λ)withw1 �= w2, there existw3 = (x3, u3) ∈ K (λ)

and τ ∈ [0, 1] such that

∫ t1

t0
ϕ(t, x3(t), u3(t), λ(t))dt ∈ τ

∫ t1

t0
ϕ(t, x1(t), u1(t), λ(t))dt

+ (1 − τ)

∫ t1

t0
ϕ(t, x2(t), u2(t), λ(t))dt − intRm+.

Theorem 4.1 Assume that the Hypotheses (H1)−(H5) are fulfilled. Then, the efficient
solution map Eff is usc on �.

Proof Let λ0 ∈ � be arbitrary. Suppose on the contrary that the map Eff is not usc at
λ0, then there exist an open setV containing Eff(λ0), a sequence {λk} ⊂ � converging
to λ0, and a sequence {wk} with wk = (xk, uk) ∈ Eff(λk) such that wk /∈ V for all k.
By the Hypothesis (H4) and Lemma 2.3, the sequence {uk} has a subsequence {uki }
converging almost uniformly to a measurable function u. The closedness of U leads to
u ∈ U . Applying Lemma 3.1, we obtain that the subsequence {xki } converges to some
vector x and (x, u) ∈ K (λ0). Due to wk /∈ V for all k, we have w = (x, u) /∈ Eff(λ0).
Hence, there exists w̄ = (x̄, ū) ∈ K (λ0) such that

I(w̄, λ0) − I(w, λ0) ∈ −R
m+ \ {0}. (4)

Since ϕ is strictly natural Rm+-quasi-convex-like with respect to K (λ0), there exist
ŵ = (x̂, û) ∈ K (λ0) and τ ∈ [0, 1] such that
∫ t1

t0
ϕ
(
t, x̂(t), û(t), λ0(t)

)
dt ∈ τ

∫ t1

t0
ϕ
(
t, x̄(t), ū(t), λ0(t)

)
dt

+ (1 − τ)

∫ t1

t0
ϕ
(
t, x(t), u(t), λ0(t)

)
dt − intRm+.

The definition of I implies that I(ŵ, λ0) ∈ τI(w̄, λ0) + (1 − τ)I(w, λ0) − intRm+.
Combining this with (4), we have

I(ŵ, λ0) ∈ τ
(I(w, λ0) − R

m+ \ {0})+ (1 − τ)I(w, λ0) − intRm+
⊂ I(w, λ0) − intRm+. (5)

By the lower semicontinuity of K at λ0, for the element ŵ ∈ K (λ0), there exist vectors
ŵk ∈ K (λk) such that the sequence {ŵk} converges to ŵ. Due to wki = (xki , uki ) ∈
Eff(λki ), one has

I(ŵki , λki ) − I(wki , λki ) /∈ −R
m+ \ {0}.
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The continuity of I implies that I(ŵ, λ0) − I(w, λ0) /∈ − intRm+. This contradicts
(5), and hence the proof follows. 
�

Convexity conditions are considered as crucial conditions in studying the stability
for optimizationmodels. In [15, 29], the authors used generalized convexity conditions,
such as R

m+-quasi-convex and properly R
m+-quasi-convex, along with convergence

forms of sequences of functions and sets, to investigate the Painlevé-Kuratowski con-
vergence conditions for the sets of weak solutions, efficient solutions, and minimal
points to vector optimization problems. In this research direction, we relax the concept
of convexity into the concept of arcwise connected integrands and utilize them to study
the stability in the sense of the lower semicontinuity of the solution map of problem
(P).

Definition 4.2 Let A be a nonempty arcwise connected subset of Lr ([t0, t1],Rs). A
map f : [t0, t1]×R

s → R
m is said to be Rm+-quasi-arcwise connected integrand with

respect to A if for all ϑ ∈ R
m , and z1, z2 ∈ A,

∫ t1

t0
f
(
t, z1(t)

)
dt ≤R

m+ ϑ and
∫ t1

t0
f
(
t, z2(t)

)
dt ≤R

m+ ϑ

imply the existence of a continuous map ξ : [0, 1] → A, ξ(0) = z1, ξ(1) = z2 such
that

∫ t1
t0

f (t, ξ(τ )(t))dt ≤R
m+ ϑ for all τ ∈ [0, 1].

We now give an example to illustrate Definition 4.2.

Example 4.1 Let t0 = 0, t1 = 1,m = 2, A = A1 ∪ A2 where A1 and A2 are defined
by

A1 =

⎧⎪⎨
⎪⎩z : z(t) =

⎧⎪⎨
⎪⎩
at2 + bt + a if 0 ≤ t <

1

2
,

6b if
1

2
≤ t ≤ 1,

a ∈ [0, 1], b ∈ [1, 2]

⎫⎪⎬
⎪⎭ ,

A2 =

⎧⎪⎨
⎪⎩z : z(t) =

⎧⎪⎨
⎪⎩
at3 + bt + a if 0 ≤ t <

1

2
,

6b if
1

2
≤ t ≤ 1,

a ∈ [0, 1], b ∈ [1, 2]

⎫⎪⎬
⎪⎭ ,

and let f be a piecewise R2+-convex map from [0, 1] × R into R2 defined by

f (t, y) =
{

f1(t, y) if 0 ≤ y < 3,

f2(t, y) if y ≥ 3,

where the maps fi = ( f 1i , f 2i ) : [t0, t1]×R → R
2+ are continuous and f j

i : [t0, t1]×
R → R+ are convex such that for each t ∈ [0, 1], f j

i (t, ·) are increase monotone on
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[0, 12] for all i, j ∈ {1, 2}. It is clear that the sets A1, A2 and

A1 ∩ A2 =

⎧⎪⎨
⎪⎩z : z(t) =

⎧⎪⎨
⎪⎩

bt if 0 ≤ t <
1

2
,

6b if
1

2
≤ t ≤ 1,

b ∈ [1, 2]

⎫⎪⎬
⎪⎭

are convex, while the set A is not convex but it is arcwise connected. Moreover, for
all z ∈ Ai , we have z(t) ∈ [0, 3) for all t ∈ [0, 1

2 ) and z(t) ∈ [3, 12] for all t ∈ [ 12 , 1].
We will show that if fi areR2+-convex in the second component for all i ∈ {1, 2}, then
f is R2+-quasi-arcwise connected integrand with respect to A.
Indeed, for all ϑ = (ϑ1, ϑ2) ∈ R

2, for all z1, z2 ∈ A such that

∫ 1

0
f
(
t, z1(t)

)
dt ≤

R
2+ ϑ and

∫ 1

0
f
(
t, z2(t)

)
dt ≤

R
2+ ϑ,

we need to show that there exists a continuous map ξ : [0, 1] → A, ξ(0) = z1, ξ(1) =
z2 such that

∫ t1
t0

f
(
t, ξ(τ )(t)

)
dt ≤

R
2+ ϑ for all τ ∈ [0, 1]. We consider two distinct

cases.
Case 1 z1, z2 ∈ Ai , i = 1, 2.

Consider a continuous map ξ : [0, 1] → A defined by ξ(τ ) = τ z1 + (1 − τ)z2,
then for all τ ∈ [0, 1], we have ξ(τ ) ∈ Ai as z1, z2 ∈ Ai , i = 1, 2, and we also have

0 ≤ ξ(τ )(t) < 3, ∀t ∈
[
0,

1

2

)
and 3 ≤ ξ(τ )(t) ≤ 12, ∀t ∈

[1
2
, 1
]
.

Because fi areR2+-convex in the second component for all i ∈ {1, 2}, for all τ ∈ [0, 1],
we have

∫ 1

0
f
(
t, ξ(τ )(t)

)
dt =

∫ 1
2

0
f
(
t, ξ(τ )(t)

)
dt +

∫ 1

1
2

f
(
t, ξ(τ )(t)

)
dt

=
∫ 1

2

0
f1
(
t, ξ(τ )(t)

)
dt +

∫ 1

1
2

f2
(
t, ξ(τ )(t)

)
dt

≤
R
2+ τ

∫ 1
2

0
f1
(
t, z1(t)

)
dt + (1 − τ)

∫ 1
2

0
f1
(
t, z2(t)

)
dt+

+ τ

∫ 1

1
2

f2
(
t, z1(t)

)
dt + (1 − τ)

∫ 1

1
2

f2
(
t, z2(t)

)
dt

= τ

∫ 1

0
f
(
t, z1(t)

)
dt + (1 − τ)

∫ 1

0
f
(
t, z2(t)

)
dt

≤
R
2+ τϑ + (1 − τ)ϑ = ϑ.

Case 2 z1 ∈ Ai \ A j and z2 ∈ A j \ Ai , for i, j ∈ {1, 2}.
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Without loss of generality, we can assume that i = 1, j = 2. Then, there exist real
numbers a1, a2 ∈ (0, 1] and b1, b2 ∈ [1, 2] such that

z1(t) =

⎧⎪⎨
⎪⎩

a1t
2 + b1t + a1 if 0 ≤ t <

1

2
,

6b1 if
1

2
≤ t ≤ 1,

and z2(t) =

⎧⎪⎨
⎪⎩

a2t
3 + b2t + a2 if 0 ≤ t <

1

2
,

6b2 if
1

2
≤ t ≤ 1.

Choosing z̄1, z̄2 ∈ A1 ∩ A2 with

z̄1(t) =

⎧⎪⎨
⎪⎩

b1t if 0 ≤ t <
1

2
,

6b1 if
1

2
≤ t ≤ 1,

and z̄2(t) =

⎧⎪⎨
⎪⎩

b2t if 0 ≤ t <
1

2
,

6b2 if
1

2
≤ t ≤ 1.

Because z̄i (t) ≤ zi (t) for all t ∈ [0, 1] and f j
i are increase monotone in the second

component on [0, 12] for i, j ∈ {1, 2}, we obtain
∫ 1

0
f
(
t, z̄1(t)

)
dt =

∫ 1
2

0
f1
(
t, z̄1(t)

)
dt +

∫ 1

1
2

f2
(
t, z̄1(t)

)
dt

=
(∫ 1

2

0
f 11
(
t, z̄1(t)

)
dt,

∫ 1
2

0
f 21
(
t, z̄1(t)

)
dt

)

+
(∫ 1

1
2

f 12
(
t, z̄1(t)

)
dt,

∫ 1

1
2

f 22
(
t, z̄1(t)

)
dt

)

≤
R
2+

(∫ 1
2

0
f 11
(
t, z1(t)

)
dt,

∫ 1
2

0
f 21
(
t, z1(t)

)
dt

)

+
(∫ 1

1
2

f 12
(
t, z1(t)

)
dt,

∫ 1

1
2

f 22
(
t, z1(t)

)
dt

)

=
∫ 1

2

0
f1
(
t, z1(t)

)
dt +

∫ 1

1
2

f2
(
t, z1(t)

)
dt

=
∫ 1

0
f
(
t, z1(t)

)
dt ≤

R
2+ ϑ,

and

∫ 1

0
f
(
t, z̄2(t)

)
dt =

∫ 1
2

0
f1
(
t, z̄2(t)

)
dt +

∫ 1

1
2

f2
(
t, z̄2(t)

)
dt
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≤
R
2+

∫ 1
2

0
f1
(
t, z2(t)

)
dt +

∫ 1

1
2

f2
(
t, z2(t)

)
dt

=
∫ 1

0
f
(
t, z2(t)

)
dt ≤

R
2+ ϑ.

Consider a continuous map ξ : [0, 1] → A defined by

ξ(τ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − 3τ)z1 + 3τ z̄1 if 0 ≤ τ <
1

3
,

(2 − 3τ)z̄1 + (3τ − 1)z̄2 if
1

3
≤ τ <

2

3
,

(3 − 3τ)z̄2 + (3τ − 2)z2 if
2

3
≤ τ ≤ 1.

Then, we can check that ξ(0) = z1, ξ( 13 ) = z̄1, ξ( 23 ) = z̄2, ξ(1) = z2,

ξ(τ ) ∈ A1, ∀τ ∈
(
0,

1

3

)
∪
(1
3
,
2

3

)
,

and

ξ(τ ) ∈ A2, ∀τ ∈
(2
3
, 1
)
.

By direct computations, we obtain

∫ 1

0
f (t, ξ(τ )(t))dt ≤

R
2+ ϑ, ∀τ ∈ [0, 1].

Therefore, f is R2+-quasi-arcwise connected integrand with respect to A.

To exploit the Rm+-quasi-arcwise connected integrand property defined in Definition
4.2, we investigate the upper semicontinuity in the sense of Hausdorff for the level set
of the multiobjective function of the problem (P), detailed as follows.

For ϑ ∈ R
m, we consider the following lower level set

Lev≤ϑ

(I, λ
) :=

{
w ∈ K (λ) : I(w, λ) ≤R

m+ ϑ
}

.

Lemma 4.1 Let λk, λ0 ∈ � with λk → λ0 and ϑk, ϑ0 ∈ R
m with ϑk → ϑ0. Assume

that the Hypotheses (H1) − (H4) are fulfilled and assume further that

(i) U is arcwise connected, and for each t ∈ [t0, t1], ϕ(t, ·, ·, λk(t)) is Rm+-quasi-
arcwise connected integrand with respect to K (λk) for each k ∈ N;

(ii) Lev≤ϑ0

(I, λ0
)
is nonempty.
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Then, for all ε > 0, it holds that

Lev≤ϑk

(I, λk
) ⊂ Lev≤ϑ0

(I, λ0
)+ εBW , (6)

for k large enough, where BW stands for the closed unit ball in the space W.

Proof Suppose on the contrary that one can find a real number ε0 > 0 and a
subsequence {ϑki } of the sequence {ϑk} such that for each ki , there exists a point
wki ∈ Lev≤ϑki

(I, λki
)
but

wki /∈ Lev≤ϑ0 (I, λ0) + ε0BW .

Then, for a fixed vector e ∈ intRm+ and for any real number α > 0, due to ϑki → ϑ0,
we have ϑki ∈ ϑ0 − R

m+ + αe for i large enough. This together with the fact that
wki ∈ Lev≤ϑki

(I, λki
)
yields that I(wki , λki ) ∈ ϑ0 − R

m+ + αe for i large enough,
i.e.,

wki ∈ Lev≤ϑ0+αe
(I, λki

)
. (7)

Now, taking arbitrary w̄ ∈ Lev≤ϑ0 (I, λ0), then w̄ ∈ K (λ0) and

I(w̄, λ0) ∈ ϑ0 − R
m+. (8)

From the lower semicontinuity of K at λ0, there exists w̄ki ∈ K (λki ) such that {w̄ki }
converges to w̄. By Theorem 3.3, we have I(w̄ki , λki ) → I(w̄, λ0). Because α > 0
and e ∈ intRm+, (8) implies that the set ϑ0 −R

m+ + αe is a neighborhood of I(w̄, λ0).
Therefore, I(w̄ki , λki ) ∈ ϑ0 − R

m+ + αe for i large enough, i.e.,

w̄ki ∈ Lev≤ϑ0+αe
(I, λki

)
. (9)

For each i , because U is arcwise connected, by Theorem 3.1, K (λki ) is arcwise con-
nected. Then, from (7), (9) and Condition (i), for each i large enough, there exists
a continuous map ξki : [0, 1] → K (λki ) with ξki (0) = wki , ξki (1) = w̄ki such that
ξki (τ ) ∈ Lev≤ϑ0+αe

(I, λki
)
for every τ ∈ [0, 1], i.e., I(ξki (τ ), λki ) ∈ ϑ0 −R

m+ + αe
for every τ ∈ [0, 1]. We now show that, for each i large enough, there exists a number
τki ∈ [0, 1] such that

ξki (τki ) ∈ bd
(
Lev≤ϑ0(I, λ0) + ε0BW

)
, (10)

where bd(E) stands for the boundary of E . Indeed, as w̄ki → w̄ and w̄ ∈
Lev≤ϑ0 (I, λ0), one has w̄ki ∈ Lev≤ϑ0(I, λ0) + ε0BW , for i large enough, while
wki /∈ Lev≤ϑ0(I, λ0)+ε0BW due to the contrary assumption. Because of the continu-
ity of ξki and the compactness of Lev≤ϑ0(I, λ0)+ε0BW , the intersection of ξki ([0, 1])
and bd

(
Lev≤ϑ0(I, λ0) + ε0BW

)
must be nonempty, and so we obtain (10). Setting
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ŵki = (x̂ki , ûki ) := ξki (τki ). Taking into account (H4), by Lemma 2.3, the sequence
{ûki } has a subsequence (still denoted {ûki } for simplification) converging to some
û ∈ U . Applying Lemma 3.1, one has x̂ki → x̂ and (x̂, û) ∈ K (λ0). Therefore, we
have

ŵki → ŵ = (x̂, û) ∈ bd
(
Lev≤ϑ0(I, λ0) + ε0BW

)
. (11)

Theorem 3.3 leads to I(ŵki , λki ) → I(ŵ, λ0) and I(ŵ, λ0) ∈ ϑ0 − R
m+ + αe as

I(ŵki , λki ) ∈ ϑ0 −R
m+ + αe. Since α is arbitrary, we conclude I(ŵ, λ0) ∈ ϑ0 −R

m+,
i.e., ŵ ∈ Lev≤ϑ0(I, λ0), which contradicts (11). The proof follows. 
�

Weneed the followingHypothesis onϕ to study the lower semicontinuity of efficient
solution maps.

(H6) U is arcwise connected, and for each λ0 ∈ �, there exists a neighborhood N of λ0
such that for all λ ∈ N and for each t ∈ [t0, t1], ϕ(t, ·, ·, λ(t)) isRm+-quasi-arcwise
connected integrand with respect to K (λ).

In [15], the authors employed the condition of strict quasi-convexity at the reference
point λ0, which is stronger than the condition of quasi-arcwise connected integrand
defined inDefinition 4.2, to study convergence criteria for the sets of efficient solutions
andminimal points of vector optimization problems. Also, they showed that under this
strict quasi-convexity condition, the efficient solution set at λ0 is not a singleton in
general, and the inverse image set of each minimal point contains a unique element.

Theorem 4.2 Assume that the Hypotheses (H1)−(H6) are fulfilled. Then, the efficient
solution map Eff is lsc on �.

Proof For any λ ∈ �, by the Hypotheses (H2)−(H4), Theorem 3.1 implies that K (λ)

is compact. Thank to the Hypothesis (H1) and Theorem 3.3, we obtain the continuity
of the multiobjective map I. Then, by applying Lemma 2.2, we conclude that Eff is
nonempty valued on �. Taking arbitrary λ0 ∈ � and w0 = (x0, u0) ∈ Eff(λ0). For
any sequence {λk} ⊂ � with λk → λ0, we prove that there exists a sequence {wk}
with wk ∈ Eff(λk) such that {wk} converges to w0. Let ϑ0 = I(w0, λ0) ∈ Min(λ0)
and consider the lower level set Lev≤ϑ0(I, λ0). We now show that

Lev≤ϑ0(I, λ0) = {w0}. (12)

Suppose on the contrary that there is w ∈ Lev≤ϑ0(I, λ0) such that w �= w0. By
Hypothesis (H5), there exists a vector w̄ = (x̄, ū) ∈ K (λ0) and τ ∈ [0, 1] such that

∫ t1

t0
ϕ(t, x̄(t), ū(t), λ0(t))dt ∈ τ

∫ t1

t0
ϕ(t, x0(t), u0(t), λ0(t))dt+

+ (1 − τ)

∫ t1

t0
ϕ(t, x(t), u(t), λ0(t))dt − intRm+.
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Combining this with the definition of I and the fact that w0, w ∈ Lev≤ϑ0(I, λ0), we
have the following evaluations

I(w̄, λ0) <R
m+ τI(w0, λ0) + (1 − τ)I(w, λ0) ≤R

m+ τϑ0 + (1 − τ)ϑ0 = ϑ0.

This is impossible as ϑ0 ∈ Min(λ0). So, we achieve the conclusion (12). On the
other hand, for the vector w0 ∈ K (λ0), by the lower semicontinuity of K at λ0,
there exists a sequence {ŵk} with ŵk ∈ K (λk) such that the sequence {ŵk} converges
to w0. Applying Theorem 3.3, we get I(ŵk, λk) → I(w0, λ0) = ϑ0, and hence
for a fixed vector e ∈ intRm+, we can find a sequence {αk} with αk ↘ 0 such that
I(ŵk, λk) ∈ ϑ0 + αke − R

m+ for k large enough, i.e., ŵk ∈ Lev≤ϑ0+αke (I, λk) for k
large enough. Using Lemma 4.1, for all ε > 0, for k large enough, one has

Lev≤ϑ0+αke (I, λk) ⊂ Lev≤ϑ0(I, λ0) + εBW . (13)

For each k large enough, we consider the auxiliary problem as follows

(P̂k): minRm+ I(w, λk) subject to w ∈ Lev≤ϑ0+αke (I, λk).

Denote by Êff(λk) the set of all efficient solutions of (P̂k). By the Hypotheses (H1)−
(H4), the map I is continuous and the set K (λk) is compact. Consequently, we have
Lev≤ϑ0+αke (I, λk) is nonempty and compact, and hence Êff(λk) �= ∅ for each k.
Choosing wk ∈ Êff(λk), then we also have

wk ∈ Lev≤ϑ0+αke (I, λk) . (14)

If wk /∈ Eff(λk), there exists w̃k ∈ K (λk) such that

I(w̃k, λk) ∈ I(wk, λk) − R
m+ \ {0}. (15)

On the other hand, by (14), one has

I(wk, λk) ∈ ϑ0 + αke − R
m+. (16)

Combining (15) and (16), we obtain

I(w̃k, λk) ∈ ϑ0 + αke − R
m+ − R

m+ \ {0} ⊂ ϑ0 + αke − R
m+.

It follows that w̃k ∈ Lev≤ϑ0+αke (I, λk) , and hence (15) implies that wk /∈ Êff(λk),
which is a contradiction. Therefore, we obtainwk ∈ Eff(λk).Moreover, by combining
(12), (13) and (14), we have, for all ε > 0,

wk ∈ Lev≤ϑ0(I, λ0) + εBW = w0 + εBW ,

for k large enough, or equivalently wk → w0. The proof is complete. 
�
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In the case that the map ϕ does not satisfy the above quasi-arcwise connected inte-
grand properties, we introduce a key hypothesis concerning epi-convergence to study
the lower semicontinuity of the efficient solution map. Motivated by Rockafellar and
Wets [37], we recall the following definition and characterization of epi-convergence.

Definition 4.3 [37, Definition 7.1] Let f , fk : R
n → R be given functions. The

sequence { fk} is said to epi-converge to f , denoted by fk
epi→ f , if

lim inf (epi fk) = lim sup (epi fk) = epi f .

Lemma 4.2 [37, Proposition 7.2] Let f , fk : R
n → R be given functions. Then,

fk
epi→ f if and only if at each point ϑ ∈ R

n one has

{
lim inf fk (ϑk) ≥ f (ϑ) for every sequence ϑk → ϑ,

lim sup fk (ϑk) ≤ f (ϑ) for some sequence ϑk → ϑ.

Motivated by the above lemma, we suggest the following generalized epi-convergence
concept.

Definition 4.4 Let f , fk : Rn → R be given functions. The sequence { fk} is said to

pseudo epi-converge to f at ϑ , denoted by fk
pepi−→ f , if there exists a sequence {ϑk}

converging to ϑ such that

lim sup fk (ϑk) ≤ f (ϑ).

Let e ∈ intRm+ be a given vector, and let Ẽff : � × R+ ⇒ W be the set-valued
maps defined as

Ẽff(λ, ε) :=
{
w ∈ K (λ) :

(
I(K (λ), λ) + εe − I(w, λ)

)
∩
(

− R
m+ \ {0}

)
= ∅

}
.

It is called the ε-solution maps and we have Ẽff(λ, 0) = Eff(λ). We now propose the
key hypothesis as follows.

(H7): For a given element λ ∈ � and for each sequence {λk} ⊂ � converging to

λ, there exist functions h, hk : R+ → R+ with h(0) = 0 and hk
pepi−→ h at 0 such that

for each {εk} ⊂ R+ converging to 0, then for k large enough,

d
(
wk,Eff(λk)

) ≤ hk(εk), ∀wk ∈ Ẽff(λk, εk). (17)

In the geometrical sense, the hypothesis (H7) means that the excess of the approx-
imate efficient solution set beyond the efficient solution set is bounded from above by
the function of the approximate variable having the limsup equal to 0. In the analytical
sense, this hypothesis is closely related to the upper Hausdorff semicontinuity property
of the approximate efficient solution map as (17) can be rewritten in the form of

Ẽff(λk, εk) ⊂ Ẽff(λk, 0) + hk(εk)BW .

123



Journal of Optimization Theory and Applications            (2025) 204:3 Page 19 of 32     3 

Now, we employ the Hypotheses (H1)− (H4) to formulate a property closely related
to the lower semicontinuity of the approximate efficient solution map of the problem
(P).

Lemma 4.3 For each λ ∈ �, and for each {λk} ⊂ � converging to λ, assume that
the Hypotheses (H1) − (H4) are fulfilled. Then, for any w ∈ Eff(λ), there exists a
sequence {wk} with wk ∈ K (λk) such that wk → w and furthermore

∀ε > 0, ∃k̄(ε) ∈ N,∀k ≥ k̄(ε), wk ∈ Ẽff(λk, ε). (18)

Proof For w ∈ Eff(λ) ⊂ K (λ), by the lower semicontinuity of K at λ, there exists
a sequence {wk}, wk ∈ K (λk), converging to w. We now prove (18). Suppose on the
contrary that there exists ε0 > 0 such that for all j ∈ N, there is k j ≥ j satisfying
wk j /∈ Ẽff(λk j , ε0). Then, for each j ∈ N, there exists w̄k j = (x̄k j , ūk j ) ∈ K (λk j )

such that

I (w̄k j , λk j
)− I (wk j , λk j

)+ ε0e ∈ −R
m+ \ {0}. (19)

From the Hypothesis (H4), using Lemma 2.3, we can assume that the subsequence
{ūk j } converges to ū ∈ U . Applying Lemma 3.1, we obtain w̄k j → w̄ = (x̄, ū) ∈
K (λ). It follows from (19) and the continuity of I that

I (w̄, λ0) − I (w, λ) + ε0e ∈ −R
m+,

or equivalently I (w̄, λ0) − I (w, λ) ∈ −ε0e−R
m+. Combining this with the fact that

−ε0e ∈ − intRm+, we have

I (w̄, λ) − I (w, λ) ∈ − intRm+ ⊂ −R
m+ \ {0}.

This is impossible as w ∈ Eff(λ), and hence (18) holds. 
�
Theorem 4.3 Assume that the Hypotheses (H1)−(H4) are fulfilled. Then, the efficient
solution map Eff is lower semicontinuous on � if the Hypothesis (H7) is satisfied on
�.

Proof Taking arbitrary λ0 ∈ �, w0 = (x0, u0) ∈ Eff(λ0) and {λk} ⊂ � converging
to λ0, we will show that there exist vectors wk ∈ Eff(λk) such that the sequence {wk}
converges to w0. By the Hypothesis (H7), there exist functions h, hk : R+ → R+
with h(0) = 0 and hk

pepi−→ h at 0 such that for all {εk} ⊂ R+ converging to 0, then

d
(
w̃k,Eff(λk)

) ≤ hk(εk), ∀w̃k ∈ Ẽff(λk, εk), (20)

for k large enough. Since hk
pepi−→ h at 0, there exists a sequence {ε̂k} ⊂ R+ converging

to 0 such that

lim sup hk(ε̂k) ≤ h(0) = 0.
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For the vector w0 ∈ Eff(λ0) and the sequence {ε̂i }, applying Lemma 4.3, there exists
a sequence {ŵk} with ŵk ∈ K (λk) such that ŵk → w0 and for each i , one has

∃k̂(ε̂i ) ∈ N,∀k ≥ k̂(ε̂i ), ŵk ∈ Ẽff(λk, ε̂i ), (21)

where the map i �→ k̂(ε̂i ) can be assumed to be increasing. For every k ≥ k̂(ε̂1), there
exists a unique i(k) ∈ N such that

k̂(ε̂i(k)) ≤ k < k̂(ε̂i(k)+1). (22)

By setting ε̄k := ε̂i(k) for k = k̂(ε̂1), k̂(ε̂1)+ 1, . . ., and it is obvious that the sequence
{ε̄k} converges to 0 and

lim sup hk(ε̄k) ≤ 0. (23)

Then, for every k ≥ k̂(ε̂1) satisfying (22), we have k ≥ k̂(ε̄k). Therefore, from (21),
we obtain ŵk ∈ Ẽff(λk, ε̄k). Combining this with (20), we have

d
(
ŵk,Eff(λk)

) ≤ hk(ε̄k),

or equivalently inf zk∈Eff(λk ) d(ŵk, zk) ≤ hk(ε̄k). From the definition of infimum, for
each k ≥ k̂(ε̂1), there exists wk ∈ Eff(λk) such that

d(ŵk, wk) ≤ inf
zk∈Eff(λk )

d(ŵk, zk) + 1

k
≤ hk(ε̄k) + 1

k
.

Therefore, we have the following estimations

0 ≤ d(wk, w0) ≤ d(wk, ŵk) + d(ŵk, w0) ≤ hk(ε̄k) + 1

k
+ d(ŵk, w0).

Then, by (23) and the fact ŵk → w0, we have

0 ≤ lim sup d(wk, w0) ≤ lim sup

[
hk(ε̄k) + 1

k
+ d(ŵk, w0)

]
= 0.

Consequently, the sequence {wk} converges to w0. The proof is complete. 
�
Remark 4.1 In [3], the authors used the following assumptions:

(A1) for any ζ > 0, ψ is continuous on [t0, t1] × ζBRn × � × �;
(A2) for any ζ > 0, there exists �ζ ∈ L1([t0, t1],R) such that

|ψ(t, y1, v, μ)−ψ(t, y2, v, μ)| ≤ �ζ (t)|y1 − y2|
a.e. t ∈ [t0, t1],∀(y1, v, μ), (y2, v, μ) ∈ ζBRn × � × �;
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(A3)(κ) there exist a constant κ ∈ N and a function �κ ∈ L1([t0, t1],R) such that

|y|2κ |〈y, ψ(t, y, v, μ)〉| ≤ �κ(t)
(
1 + |y|2κ+2

)

a.e. t ∈ [t0, t1],∀(y, v, μ) ∈ R
n × � × �.

Then, they established the uniform boundedness of the solution set of the Eq. (1) for
all measurable function u, that is, there exists a constant ρ with

ρ2κ+2 :=
(
|x(t0)|2κ+2 + 2(κ + 1)‖�κ‖1

)
e2(κ+1)‖�κ‖1

such that for eachψ satisfying the conditions (A1)−(A3)(κ) and for eachmeasurable
function u, the Eq. (1) has a unique solution x(t) ∈ ρBRn for all t ∈ [t0, t1]. The
Assumptions (A1) and (A2) are very common in optimal control problems.

Now, we discuss about the Assumption (A3)(κ): Frankowska and Rampazzo [21]
used the following sublinear growth condition

(A31) there exists a function �1 ∈ L1([t0, t1],R), such that

|ψ(t, y, v, μ)| ≤ �1(t)(1 + |y|) a.e. t ∈ [t0, t1],∀(y, v, μ) ∈ R
n × � × �

to obtain the relative compactness of the set of solutions of a the differential inclusion,
a generalization of the Eq. (1). Also, Tammer [38], and Ekeland and Temam [20]
employed a bounded condition via the inner product, that is

(A32) there exists a constant �2 such that

|〈y, ψ(t, y, v, μ)〉| ≤ �2(1 + |y|2) ∀(t, y, v, μ) ∈ [t0, t1] × R
n × � × �,

to study the relative compactness of the set of trajectories to (1). Noting that when
κ = 0, the condition (A3)(0) is a unified form of (A31) and (A32), and furthermore
if a mapψ satisfies the Assumption (A3)(κ̂), then it satisfies the Assumption (A3)(κ)

for all κ ≥ κ̂ .
In this special case, if � ≡ ρBRn , then the condition (ii) of the admissible control

set U is immediately satisfied for all u ∈ Lp([t0, t1],Rl). Moreover, if � and � are
bounded, then the set [t0, t1] × � × � × � is compact. Then, if the maps ϕ and ψ are
continuous on [t0, t1] × � × � × �, then they are uniformly continuous on this set,
and therefore, the Hypotheses (H1) and (H4) can be restated as follows.

(H1′) For a.e. t ∈ [t0, t1], ϕ(t, ·, ·, ·) is continuous on � × � × � and for each fixed
(y, v, μ) ∈ � × � × �, ϕ(·, y, v, μ) is measurable on [t0, t1].

(H4′) U is equimeasurable on [t0, t1], and � and � are bounded.

For the trajectory set � of the Eq. (1), which is given as in Remark 4.1, by using
Theorems 4.1, 4.2 and 4.3, we have the following results on the semicontinuity of the
efficient solution map.
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Corollary 4.1 Assume that the Assumptions (A1) − (A3)(κ), (H1′) and (H4′) are
fulfilled. Then, the following statements hold true.

(a) If the Hypothesis (H5) is satisfied, then the efficient solution map Eff is upper
semicontinuous on �.

(b) If the Hypothesises (H5) and (H6) are satisfied, then the efficient solution map
Eff is continuous on �.

(c) If the Hypothesis (H7) is satisfied on�, then the efficient solution mapEff is lower
semicontinuous on �.

5 Applications

5.1 Glucose Model

This model is used by Eisen [19], also in [30, Lab 10], in an effort to enhance the
regulation of blood glucose levels in individuals with diabetes.

Denote the concentration of blood glucose by x (1), the net hormonal concentration
by x (2) and the desired constant glucose level by β0. Consider parameters λ(1), λ(2),
λ(3) and λ(4) as follows:

• λ(1): the rate of removal of glucose above the initial (fasting) level due to its own
excess above the initial level,

• λ(2): the rate of removal of glucose above the initial level due to blood-hormone
concentrations above the initial level,

• λ(3): the rate of removal of hormone above the initial (fasting) level due to its own
excess above the initial level,

• λ(4): represents various factors such as physical activity (e.g., light exercise, mod-
erate exercise, level of fitness/training), eating habits (e.g., carbohydrate quantity,
carbohydrate type, caffeine intake, meal timing), biological factors (e.g., insuffi-
cient sleep, stress, illness, allergies).

The target of this model is to find the insulin injection level, u, which minimizes the
difference between x (1) and β0, while considering the cost of the treatment, i.e., find
a control u ∈ Lp([0, t1],R) and a state (x (1), x (2)) to minimize the functions I(1) and
I(2) with

I(1)(x (1), x (2), u, λ) =
∫ t1

0

[
f (1)(λ(t)

)(
x (1)(t) − β0

)2 + g(1)(λ(t)
)]

dt

and I(2)(x (1), x (2), u, λ) =
∫ t1

0

[
f (2)(λ(t)

)(
u(t)

)2 + g(2)(λ(t)
)]

dt,

subject to

⎧⎪⎨
⎪⎩
ẋ (1)(t) = −λ(1)(t)x (1)(t) − λ(2)(t)x (2)(t) − φ(2)(λ(4)(t)

)
, x (1)(0) = x01,

ẋ (2)(t) = −λ(3)(t)x (2)(t) + φ(1)(λ(4)(t)
)
u(t), x (2)(0) = 0,

u(t) ∈ [−c, c] t ∈ [0, t1].
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Here, λ := (
λ(1), λ(2), λ(3), λ(4)

)
is an element of parameter space L∞([0, t1],R4)

satisfying λ(t) ∈ � := [0, b1] × [0, b2] × [0, b3] × [a4, b4] for all t ∈ [0, t1], and the
functions f (i) : � → R++, g(i) : � → R and φ(i) : [a4, b4] → R+ with i ∈ {1, 2}
are continuous, where R++ := {a ∈ R : a > 0}. Setting

� := {λ ∈ L∞([0, t1],R4) : λ(t) ∈ �, ∀t ∈ [0, t1]}, � := [−c, c],
x := (x (1), x (2))T , x0 := (x01, 0)

T ,

ψ(t, x(t), u(t), λ(t)) :=
(−λ(1)(t) −λ(2)(t)

0 −λ(3)(t)

)
x(t) +

(
0

φ(1)
(
λ(4)(t)

)
)
u(t)

+
(−φ(2)

(
λ(4)(t)

)
0

)
.

It is easy to see that the functionψ satisfies the Assumptions (A1), (A2) in Remark
4.1. Moreover, due to the continuity of φ(i) on [a4, b4], there exist αi > 0 such
that φ(i)(μ) ≤ αi for all μ ∈ [a4, b4] and i ∈ {1, 2}. Then, for all (t, y, v, μ) ∈
[0, t1] × R

2 × � × �, we have

|〈y, ψ(t, y, v, μ)〉| ≤ |y||ψ(t, y, v, μ)| ≤ |y| (max{b1, b2, b3}|y| + α1|v| + α2)

≤ max{b1, b2, b3, α1c, α2}
(
|y|2 + 2|y|

)

≤ 2max{b1, b2, b3, α1c, α2}
(
|y|2 + |y|

)

≤ 4max{b1, b2, b3, α1c, α2}
(
|y|2 + 1

)
.

Therefore, ψ satisfies the Assumption (A3)(0) with �0 = 4max{b1, b2, b3, α1c, α2}.
Hence, this glucose model is a special case of the problem (P) with n = 2,m = 2, l =
1, r = 1,

ϕ(t, x(t), u(t), λ(t)) :=
(
f (1)(λ(t)

)(
x (1)(t) − β0

)2 + g(1)(λ(t)
)
,

f (2)(λ(t)
)(
u(t)

)2 + g(2)(λ(t)
))

,

I(w, λ) :=
( ∫ t1

0

[
f (1)(λ(t)

)(
x (1)(t) − β0

)2 + g(1)(λ(t)
)]

dt,

∫ t1

0

[
f (2)(λ(t)

)(
u(t)

)2 + g(2)(λ(t)
)]

dt
)
,

and K (λ) :=
{
w = (x, u) ∈ X × U : x(t) = x0 +

∫ t

0
ψ(s, x(s), u(s), λ(s))ds

}
.
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Then, the above problem can be cast as the following form:

min I(w, λ) subject to w ∈ K (λ).

The following result is obtained from Corollary 4.1.

Corollary 5.1 If U is convex and equimeasurable on [0, t1], then the efficient solution
map of the glucose model, Eff(GM), is continuous on �.

Proof It is clear that the Hypotheses (H1′) and (H4′) of Corollary 4.1 are satisfied.
So, in order to apply Corollary 4.1, we now check the Hypotheses (H5) and (H6) of
Corollary 4.1. For each (t, y, v, μ) ∈ [0, t1] × ρBR2 × � × � and y = (y(1), y(2)),
we set

ϕ(1)(y, μ) := f (1)(μ)
(
y(1) − β0

)2 + g(1)(μ), and

ϕ(2)(v, μ) := f (2)(μ)v2 + g(2)(μ),

where ρ = (|x01|2 + 2�0t1
)
e2�0t1 . Then, we have ϕ(t, y, v, μ) = (

ϕ(1)(y, μ),

ϕ(2)(v, μ)
)
. Obviously, the functions ϕ(1) and ϕ(2) are strictly convex in the first

component on convex subsets ρBR2 and �, respectively.
We now show that K (λ) is convex for any λ ∈ �. Let w1 = (x1, u1), w2 =

(x2, u2) ∈ K (λ) and τ ∈ [0, 1] be arbitrary, we have

d

dt
(τ x1(t) + (1 − τ)x2(t)) = τ ẋ1(t) + (1 − τ)ẋ2(t)

= τ

(−λ(1)(t) −λ(2)(t)
0 −λ(3)(t)

)
x1(t) + τ

(
0

φ(1)(λ(4)(t)
)
)
u1(t) + τ

(−φ(2)(λ(4)(t)
)

0

)

+ (1 − τ)

(−λ(1)(t) −λ(2)(t)
0 −λ(3)(t)

)
x2(t) + (1 − τ)

(
0

φ(1)(λ(4)(t)
)
)
u2(t)

+ (1 − τ)

(−φ(2)(λ(4)(t)
)

0

)

=
(−λ(1)(t) −λ(2)(t)

0 −λ(3)(t)

) (
τ x1(t) + (1 − τ)x2(t)

)

+
(

0
φ(1)(λ(4)(t)

)
) (

τu1(t) + (1 − τ)u2(t)
)+

(−φ(2)(λ(4)(t)
)

0

)
. (24)

Due to the convexity of U , one gets τu1 + (1 − τ)u2 ∈ U . This together with (24)
implies that τw1 + (1 − τ)w2 ∈ K (λ). So, K (λ) is convex.

Now, let ϑ ∈ R
2, and w1 = (x1, u1), w2 = (x2, u2) ∈ K (λ) such that

∫ t1

0
ϕ
(
t, x1(t), u1(t), λ(t)

)
dt ≤

R
2+ ϑ and

∫ t1

0
ϕ
(
t, x2(t), u2(t), λ(t)

)
dt ≤

R
2+ ϑ.

(25)
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Then, for all τ ∈ [0, 1], we have τw1 + (1 − τ)w2 ∈ K (λ) and

ϕ
(
t, τw1(t) + (1 − τ)w2(t), λ(t)

)
=
(
ϕ(1)(τ x1(t) + (1 − τ)x2(t), λ(t)

)
, ϕ(2)(τu1(t) + (1 − τ)u2(t), λ(t)

))

<
R
2+

(
τϕ(1)(x1(t), λ(t)

)+ (1 − τ)ϕ(1)(x2(t), λ(t)
)
,

τϕ(2)(u1(t), λ(t)
)+ (1 − τ)ϕ(2)(u2(t), λ(t)

))

= τ
(
ϕ(1)(x1(t), λ(t)

)
, ϕ(2)(u1(t), λ(t)

))

+ (1 − τ)
(
ϕ(1)(x2(t), λ(t)

)
, ϕ(2)(u2(t), λ(t)

))

= τϕ
(
t, x1(t), u1(t), λ(t)

)+ (1 − τ)ϕ
(
t, x2(t), u2(t), λ(t)

)
. (26)

We now consider the continuous map ξ : [0, 1] → K (λ) defined by ξ(τ ) = τw1 +
(1 − τ)w2. Then, ξ(0) = w2, ξ(1) = w1 and for all τ ∈ [0, 1], it follows from (26)
that

∫ t1

0
ϕ(t, ξ(τ )(t), λ(t))dt ≤

R
2+ τ

∫ t1

0
ϕ(t, x1(t), u1(t), λ(t))dt

+ (1 − τ)

∫ t1

0
ϕ(t, x2(t), u2(t), λ(t))dt .

Combining this with (25), we have

∫ t1

0
ϕ(t, ξ(τ )(t), λ(t))dt ≤

R
2+ τϑ + (1 − τ)ϑ = ϑ.

So, for each t ∈ [t0, t1], ϕ(t, ·, ·, λ(t)) is Rm+-quasi-arcwise connected integrand with
respect to K (λ). Therefore, the Hypothesis (H6) of Corollary 4.1 is satisfied.

Furthermore, let w̄ = (x̄, ū), ¯̄w = ( ¯̄x, ¯̄u) ∈ K (λ) be arbitrary with w̄ �= ¯̄w. Then,
we have also 1

2 w̄(t) + 1
2

¯̄w(t) ∈ K (λ) and

ϕ
(
t,
1

2
w̄(t) + 1

2
¯̄w(t), λ(t)

)
<

R
2+
1

2
ϕ(t, x̄(t), ū(t), λ(t)) + 1

2
ϕ(t, ¯̄x(t), ¯̄u(t), λ(t)).

Equivalently,

ϕ
(
t,
1

2
w̄(t) + 1

2
¯̄w(t), λ(t)

)− 1

2
ϕ(t, x̄(t), ū(t), λ(t))

− 1

2
ϕ(t, ¯̄x(t), ¯̄u(t), λ(t)) ∈ − intR2+.
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It follows that

∫ t1

0
ϕ
(
t,
1

2
w̄(t) + 1

2
¯̄w(t), λ(t)

)
dt − 1

2

∫ t1

0
ϕ(t, x̄(t), ū(t), λ(t))dt

− 1

2

∫ t1

0
ϕ(t, ¯̄x(t), ¯̄u(t), λ(t))dt ∈ − intR2+.

So, for each t ∈ [0, t1], ϕ(t, ·, ·, λ(t)) is strictly natural Rm+-quasi-convex-like inte-
grandwith respect to K (λ), andhence theHypothesis (H5)ofCorollary 4.1 is satisfied.
According to Corollary 4.1, the efficient solution map Eff(GM) is continuous on �.


�
We will finalize this work with considering an important special case of our multi-

objective optimal control problem discussed in the second section.

5.2 Epidemic Model

This model uses optimal control techniques to establish a vaccination schedule for
managing an epidemic disease, specifically focusing on a micro-parasitic infectious
disease (see [30, Lab 7]).

Consider x (1)(t), x (2)(t) and x (3)(t) as representing the number of susceptible,
infectious, and recovered individuals at time t . Themodel accommodates an incubation
period for the disease within the host, during which an infected individual remains in a
latent state before transitioning to infectious, thereby forming an exposed category. Let
x (4)(t) denote the number of latent or exposed individuals at time t and x (5)(t) denote
the overall population size, such that x (5)(t) = x (1)(t) + x (2)(t) + x (3)(t) + x (4)(t)
and x (5)(t) ≤ ρ for all t ∈ [0, t1] and for some ρ ∈ R+. Define u(t) as the control
variable representing the percentage of susceptible individuals being vaccinated per
unit of time. Consider parameters λ(1), λ(2), λ(3), λ(4), λ(5), λ(6) and λ(7) as follows:

• λ(1): the death rate among infectious individuals due to the disease,
• λ(2): the natural exponential birth rate of the population,
• λ(3): the incidence of the disease,
• λ(4): the natural exponential death rate,
• λ(5): the rate at which exposed individuals transition to the infectious state,
• λ(6): the rate at which infectious individuals recover,
• λ(7): represents various factors affect an epidemic in differentways such asweather
information, incoming and outgoing population of the area, agent density in the
area, etc.

The target of this model is to find the percentage of susceptible individuals being
vaccinated, which minimizes both the number of infectious individuals and the overall
vaccine cost over a fixed time period, i.e., find a control u ∈ Lp([0, t1];R) and a state(
x (1), x (2), x (3), x (4), x (5)

)
to minimize the functions I(1) and I(2) with

I(1) =
∫ t1

0

[
f (1)(λ(t)

)
x (2)(t) + g(1)(λ(t)

)]
dt

123



Journal of Optimization Theory and Applications            (2025) 204:3 Page 27 of 32     3 

and I(2) =
∫ t1

0

[
f (2)(λ(t)

)(
u(t)

)2 + g(2)(λ(t)
)]

dt,

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ (1)(t) = λ(2)(t)x (5)(t) − λ(4)(t)x (1)(t) − λ(3)(t)x (1)(t)x (2)(t) − u(t)x (1)(t)

+ φ(1)(λ(7)(t)
)
, x (1)(0) = x01 ≥ 0,

ẋ (2)(t) = λ(5)(t)x (4)(t) −
(
λ(6)(t) + λ(1)(t) + λ(4)(t)

)
x (2)(t) + φ(2)(λ(7)(t)

)
,

x (2)(0) = x02 ≥ 0,

ẋ (3)(t) = λ(6)(t)x (2)(t) − λ(4)(t)x (3)(t) + u(t)x (1)(t) + φ(3)(λ(7)(t)
)
,

x (3)(0) = x03 ≥ 0,

ẋ (4)(t) = λ(3)(t)x (1)(t)x (2)(t) −
(
λ(4)(t) + λ(5)(t)

)
x (4)(t) + φ(4)(λ(7)(t)

)
,

x (4)(0) = x04 ≥ 0,

ẋ (5)(t) =
(
λ(2)(t) − λ(4)(t)

)
x (5)(t) − λ(1)(t)x (2)(t) + φ(5)(λ(t)

)
, x (5)(0) = x05,

0 ≤ u(t) ≤ 0.9.

Herein, λ = (
λ(1), λ(2), λ(3), λ(4), λ(5), λ(6), λ(7)

)
is an element of the parameter space

L∞([0, t1],R7) satisfying λ(t) ∈ � := [0, b1]×[0, b2]×[0, b3]×[0, b4]×[0, b5]×
[0, b6] × [a7, b7] for all t ∈ [0, t1], and the functions f (i), g(i), φ(5) : � → R with
i ∈ {1, 2} and the functions φ( j) : [a7, b7] → R with j ∈ {1, 2, 3, 4} are continuous.

Then, this model is also a special case of (P) with n = 5,m = 2, and let

X := C([0, t1],R5), � := [0, 0.9],� := ρB
R5 ,

� :=
{
λ ∈ L∞([0, t1],R7) : λ(t) ∈ �, ∀t ∈ [0, t1]

}
,

x :=
(
x(1), x(2), x(3), x(4), x(5)

)T
, x0 := (x01, x02, x03, x04, x05)

T ,

ψ(t, x(t), u(t), λ(t))

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ(2)(t)x(5)(t) − λ(4)(t)x(1)(t) − λ(3)(t)x(1)(t)x(2)(t) − u(t)x(1)(t) + φ(1)(λ(7)(t)
)

λ(5)(t)x(4)(t) −
(
λ(6)(t) + λ(1)(t) + λ(4)(t)

)
x(2)(t) + φ(2)(λ(7)(t)

)
λ(6)(t)x(2)(t) − λ(4)(t)x(3)(t) + u(t)x(1)(t) + φ(3)(λ(7)(t)

)
λ(3)(t)x(1)(t)x(2)(t) −

(
λ(4)(t) + λ(5)(t)

)
x(4)(t) + φ(4)(λ(7)(t)

)
(
λ(2)(t) − λ(4)(t)

)
x(5)(t) − λ(1)(t)x(2)(t) + φ(5)(λ(t)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

ϕ(t, x(t), u(t), λ(t))

:=
(
f (1)(λ(t)

)
x(2)(t) + g(1)(λ(t)

)
, f (2)(λ(t)

)(
u(t)

)2 + g(2)(λ(t)
))

,

I(x, u, λ) :=
∫ t1

0
ϕ(t, x(t), u(t), λ(t))dt,
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and

K (λ) :=
{
w = (x, u) ∈ X × U : x(t) = x0 +

∫ t

0
ψ(s, x(s), u(s), λ(s))ds

}
.

Then, the above problem can be cast as the following form:

min I(w, λ) subject to w ∈ K (λ).

In this model, the feasible solution set K (λ) is nonconvex, even though it is arcwise
connectedwhen the admissible control setU is arcwise connected, as stated inTheorem
3.1. However, the multiobjective function I(x, u, λ) is linear in the first component,
and hence the strictly quasi-arcwise connected integrand condition at the original point
as required in the Hypothesis (H6) is not true in general. Therefore, we will consider
the lower semicontinuity property of the efficient solution map of this model by using
Theorem 4.3 instead of Theorem 4.2.

Corollary 5.2 Assume that U is equimeasurable on [0, t1]. Then, the efficient solution
map of the epidemic model, Eff(EM), is lower semicontinuous on� if the Hypothesis
(H7) is satisfied on �.

Proof Because themapsϕ andψ are continuous on the compact set [t0, t1]×�×�×�,
they are uniformly continuous on this set. So, the Hypotheses (H1), (H2) and (H4)
are satisfied as U is equimeasurable on [0, t1]. Now, we check the Hypothesis (H3).
For all (t, y, v, μ), (t, ŷ, v, μ) ∈ [t0, t1] × � × � × �, where

y =
(
y(1), y(2), y(3), y(4), y(5)

)
,

ŷ =
(
ŷ(1), ŷ(2), ŷ(3), ŷ(4), ŷ(5)

)
,

and μ =
(
μ(1), μ(2), μ(3), μ(4), μ(5), μ(6), μ(7)

)
,

by setting

β1 = μ(2)
(
y(5) − ŷ(5)

)
− μ(4)

(
y(1) − ŷ(1)

)
− μ(3)

(
y(1)y(2) − ŷ(1) ŷ(2)

)

− v
(
y(1) − ŷ(1)

)
,

β2 = μ(5)
(
y(4) − ŷ(4)

)
−
(
μ(6) + μ(1) + μ(4)

) (
y(2) − ŷ(2)

)
,

β3 = μ(6)
(
y(2) − ŷ(2)

)
− μ(4)

(
y(3) − ŷ(3)

)
+ v

(
y(1) − ŷ(1)

)
,

β4 = μ(3)
(
y(1)y(2) − ŷ(1) ŷ(2)

)
−
(
μ(4) + μ(5)

) (
y(4) − ŷ(4)

)
,

β5 =
(
μ(2) − μ(4)

) (
y(5) − ŷ(5)

)
− μ(1)

(
y(2) − ŷ(2)

)
,
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we have the following estimations

|β1| =
∣∣∣μ(2)

(
y(5) − ŷ(5)

)∣∣∣+
∣∣∣μ(4)

(
y(1) − ŷ(1)

)∣∣∣+
∣∣∣μ(3)

(
y(1)y(2) − ŷ(1) ŷ(2)

)∣∣∣
+
∣∣∣v
(
y(1) − ŷ(1)

)∣∣∣
≤ b2

∣∣∣y(5) − ŷ(5)
∣∣∣+ b4

∣∣∣y(1) − ŷ(1)
∣∣∣

+ b3
∣∣∣y(1)

(
y(2) − ŷ(2)

)
+ ŷ(2)

(
y(1) − ŷ(1)

)∣∣∣
+ 0.9

∣∣∣y(1) − ŷ(1)
∣∣∣

≤ (b2 + b4 + 2ρb3 + 0.9)
∣∣y − ŷ

∣∣ ,
|β2| =

∣∣∣μ(5)
(
y(4) − ŷ(4)

)
−
(
μ(6) + μ(1) + μ(4)

) (
y(2) − ŷ(2)

)∣∣∣
≤ (b5 + b6 + b1 + b4)

∣∣y − ŷ
∣∣ ,

|β3| =
∣∣∣μ(6)

(
y(2) − ŷ(2)

)
− μ(4)

(
y(3) − ŷ(3)

)
+ v

(
y(1) − ŷ(1)

)∣∣∣
≤ (b6 + b4 + 0.9)

∣∣y − ŷ
∣∣ ,

|β4| =
∣∣∣μ(3)

(
y(1)y(2) − ŷ(1) ŷ(2)

)
−
(
μ(4) + μ(5)

) (
y(4) − ŷ(4)

)∣∣∣
≤ (2ρb3 + b4 + b5)

∣∣y − ŷ
∣∣ ,

|β5| =
∣∣∣
(
μ(2) − μ(4)

) (
y(5) − ŷ(5)

)
− μ(1)

(
y(2) − ŷ(2)

)∣∣∣
≤ (b2 + b4 + b1)

∣∣y − ŷ
∣∣ .

Then, we obtain

∣∣ψ(t, y, v, μ) − ψ(t, ŷ, v, μ)
∣∣ = max

i
|βi | ≤ �|y − ŷ|,

where � := max{b2 + b4 + 2ρb3 + 0.9, b5 + b6 + b1 + b4, b6 + b4 + 0.9, b3 + b4 +
b5, b2 + b4 + b1}, and hence the Hypothesis (H3) is satisfied. Applying Theorem 4.3,
the efficient solution map of the epidemic model is lower semicontinuous on �. 
�

6 Concluding Remarks

In this paper, by using the concept of equimeasurability and its properties given in
Chang [12] of the admissible control set, we established the compactness and arcwise
connectedness of the feasible solution set. Combining these results with the concept
of convex integrand introduced by Rockafellar [36], we proposed concepts of the
quasi-arcwise connected integrand and employed them to study the semicontinuity
of efficient solution map. In the case that the multiobjective function did not satisfy
these properties, picking up ideas of Zhao [42] and Kien [24] about the estimation
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conditions of approximate solutions, we introduced a key hypothesis concerning the
epi-convergence condition introduced by Rockafellar and Wets [37], and we used it
to formulate the lower semicontinuity of efficient solution map. To the best of our
knowledge, the results obtained in this paper are the pioneering ones about continu-
ous conditions for the parametric nonlinear nonconvex multiobjective optimal control
problems without assuming any condition related to the differential of multiobjective
function. Therefore, the techniques and approaches of this work have genuine potential
in studying solution properties for optimal control models.
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