
TSUJI’S ITERATION ON PSEUDOCONVEX DOMAINS

TAT DAT TÔ

Abstract. We give an alternative proof of Tsuji’s theorem on the construction of
Kähler-Einsteins on strongly pseudoconvex domain, adapting the method of Berndts-
son in the compact case.

1. Introduction

Let Ω be a bounded strongly pseudoconvex domain in Cn with C∞-boundary. In
[CY82], Cheng-Yau proved the existence of a complete Kähler-Einstein metric ωKE on
Ω (see also [MY83] for its generalization on pseudoconvex domains). In [Tsu13], Tsuji
showed that this metric is the limit of a sequence of Bergman metrics. This is the
non-compact version of his earlier result on compact Kähler manifolds [Tsu10] (see also
Song-Weinkove [SW10] and Berntdsson [Ber09b] for other proofs of this result with
uniform convergence).

The aim of this note is to give an alternative proof of the result in [Tsu13] by adapting
and refining the method of Berndtsson [Ber09b] in the case of compact Kähler manifolds.
The main idea is to use a uniform asymptotic of Bergman kernel.

When Ω is a bounded domain in Cn, then KΩ is a trivial bundle, so we work on
the space of holomorphic functions instead of holomorphic (n, 0)-forms. We recall the
definition of weighted Bergman kernels which will be used later. Let φ be a continuous
plurisubharmonic function, then we can define a L2 norm with respect to the weight φ

‖u‖2
φ,µ =

∫
Ω

|u|2e−φµ

where µ is a positive measure. Define

L2(Ω, φ, µ) = {u | ‖u‖φ < +∞},
and

Hφ,µ = {u ∈ O(Ω)| ‖u‖φ,µ < +∞} = L2(Ω, φ, µ) ∩ O(Ω).

The projection from L2(Ω, φ, µ) to Hφ,µ is called the Bergman projection. Its kernel
K(z, w) is given by

Kφ,µ(z, w) =
∑

uj(z)uj(w),

where {uj} is any orthonormal basis for Hφ,µ. Let Kφ,µ be its associated Bergman
kernel, defined by

Kφ,µ(z) := Kφ,µ(z, z) =
∑
j

|uj|2(z).
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We also have the extremal characterization

Kφ,µ(z) = sup
u∈Hφ,µ

|u(z)|2

‖u‖2
φ,µ

.

Consider the complex Monge-Ampère equation on Ω:

(ddcφ)n = eφν, (1.1)
where ν is a smooth volume form. With a special choice of Ω, the solution φ of (1.1)
gives us a complete Kähler-Einstein metric on Ω (cf. [CY82]). The corresponding Tsuji’s
iteration [Tsu10, Tsu13] can be defined as the following (see also [Ber09b]). Denote by
Kkφ the weighted Bergman kernel with respect to the weight kφ and µ = eφν, and
define

βk(φ) =
1

k
(logKkφ − log dk),

where
dk = (k/2π)n.

Starting from any plurisubharmonic function φ1 on Ω, we define the sequence of function
φk by φk+1 = βk(φk).

Remark 1.1. In [Ber09b], for a compact Kähler manifold X, the number dk was the
dimension of H0(X, kKX).

Then our main result is the following.

Theorem 1.2. Let φ∞ be a solution of (1.1) such that (Ω, ddcφ∞) has bounded geome-
try. Let φ1 is any continuous plurisubharmonic function on Ω such that supΩ |φ1−φ∞| <
∞. Let {φk}k∈N∗ be the sequence defined by Tsuji’s iteration above, then

sup
Ω
|φk − φ∞|

uniformly converges to zero at the rate 1/k.

The main idea of the proof is to use a uniform asymptotic of Bergman kernel for Käh-
ler manifolds of bounded geometry as in the compact case due to Berdtsson [Ber09b].

Theorem 1.3. [MM07, Problem 6.1] Let φ is a smooth strictly psh function on Ω such
that (Ω, ωφ) has bounded geometry, then

Kkφ,ωnφe
−kφ =

(
k

2π

)n(
1 +

b1

2k
+O

(
1

k2

))
, (1.2)

where b1(z, z) = Sωφ, Sωφ is the scalar curvature of ωφ, and O
(

1
k2

)
denotes a quan-

tity dominated by C/k−2 on Ω with a uniform constant C depending on the bounded
geometry of (Ω, ωφ) (see Definition 2.1).

This result can be seen as a uniform version of the asymptotic of weighted Bergman
kernels due to Engliš [Eng00]. In this note, we give a simple proof for this result. We
follow some ideas from the asymptotic of Bergman kernels on compact Kähler manifolds
in [Lu00, Cha15].
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As in [Tsu10, Tsu13], an interesting corollary of Theorem 1.2 is the subharmonicity
properties on the variation of Kähler-Einstein metrics on peseudoconvex domains (see
Theorem 3.4).

2. Geometry of strongly pseudoconvex domains

We first recall the definition of bounded geometry for Kähler manifolds.

Definition 2.1. Suppose (M,ω) is a complete Kähler manifold. We say that (M,ω)
has bounded geometry if there exists r > 0, c > 0, Ak, k = 1, 2, . . . such that for any
p ∈M there is a domain U in Cn and a holomorphic maps φ : BCn(0, r)→M which is
biholomorphic onto its image, satisfying

(1) BCn(0, r) ⊂ U and ψ(0) = p;
(2) On U we have

c−1ωCn ≤ φ∗ω ≤ cωCn ;

(3) for any k and any multi-indices α, β with |α|+ |β| ≤ k

sup
x∈BCn (0,r)

∣∣∣∣∂|α|+|β|gij̄(x)

∂zα∂z̄β

∣∣∣∣ ≤ Ak,

where gij̄ is the component of ψ∗ω on U in terms of natural coordinates (z1, . . . zn).

As consequence, we have the following normal coordinates for Kähler manifold of
bounded geometry.

Lemma 2.2. Suppose (M,ω) is a Kähler manifold of bounded geometry. Then there
exists ε > 0, c > 0, Ak > 0, k = 1, 2, . . . such that for any point p ∈ M we can choose
a holomorphic chart ψ : V = BCn(0, ε)→ M with ψ(0) = p satisfies condition (2), (3)
in Definition 2.1 and ω = ddcϕ with ϕij̄(0) = δij and ϕij̄k(0) = ϕij̄k̄(0) = ϕij̄k̄l̄(0) =
ϕijkl̄(0) = 0.

Proof. For any p ∈ M we choose the local chart (U = B(0, r), ψ) at p as in Definition
2.1. By complex linear transformation we can assume that ψ∗ω = ddcφ on U with
φij̄(0) = 0. Consider a biholomorphic map ψ̃ : B(0, ε(p)) → U with zi = ψ̃(z)i =
wiAik`w

kw` +Bi
mnpw

mwnwp where Aik`, Bi
mnp will be chosen hereafter.

On B(0, ε), we have the pull-back metric ψ̃∗(ψ∗ω) = ddcϕ with

ϕab̄ = φab̄+2Aiakφib̄w
k+2Ajb`φaj̄w

`+3Bi
amnw

mwnφib̄+3Bj
bpqφaj̄w

pwq+4AiakA
j
b`φij̄wkw`+O(|w|3)

Therefore we have

ϕab̄c(0) = φab̄c(0) + 2Abac;φab̄c̄ = φab̄c̄ + 2Abac;ϕab̄cd = φab̄cd + 6Bb
acd.

By choosing Abac = −1
2
φab̄(0) and Bb

acd = −φab̄cd(0) we get the local canonical coordi-
nates for any p ∈M . In particular, Aabc and Ba

bcd are uniformly bounded for any p ∈M
by the definition of bounded geometry. Since ε(p) depends only on Aabc and Ba

bcd we can
choose a uniform ε > 0 as required. �
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We recall some properties of pseudoconvex domains (cf. [CY82]). Let Ω be a strongly
pseudoconvex domain in Cn. Let ρ be a smooth defining function for Ω. We define
ϕΩ = −(n+1) log(−ρ), which is a strictly plurisubharmonic function on Ω and ϕΩ(z)→
+∞ as z → ∂Ω. It follows from [CY82] that (Ω, ωϕΩ

) is a complete Kähler manifold,
where ωϕΩ

= ddcϕΩ. Since

det((ϕΩ)j̄i) = (n+ 1)n
(
−1

ρ

)n+1

det(ρj̄i)(−ρ+ |dρ|2),

we have the Ricci curvature

Ric(ωϕΩ
) = −(ϕΩ)j̄i + ∂i∂j̄F,

where F = − log[det(ρj̄i)(−ρ+ |dρ|2)] is a smooth function on Ω̄.

As explained in [CY82] that (Ω, ωϕΩ
) has bounded geometry. The following theorem

is due to Cheng-Yau [CY82].

Theorem 2.3. There exists a unique complete Kähler-Einstein metric ωKE = ddcφKE
with

Ric(ωKE) = −ωKE,
where φKE is smooth plurisubharmonic function satisfying

(ddcφKE)n = eφKE−φΩ+FωnϕΩ
, (2.1)

and |∇k
ϕΩ

(φKE − ϕΩ)| ≤ Ck for any k ∈ N . Moreover (Ω, ωKE) has bounded geometry.

Then the following is straightforward from Theorem 1.2.

Theorem 2.4. Let ρ and ϕΩ = −(n + 1) log(−ρ) as above. Let φ1 is any continuous
plurisubharmonic function on Ω such that supΩ |φ1 − ϕΩ| < ∞. The the sequence
{φk}k∈N∗ defined by Tsuji’s satisfies

sup
Ω
|φk − φKE|

uniformly converges to zero at the rate 1/k.

3. Asymptotic of Bergman kernel and the main theorem

3.1. A uniform asymptotic of Bergman kernel. We first prove a uniform asymp-
totic of Bergman kernel on pseudoconvex domain which will be used in the proof of the
main theorem. We refer to [Eng00] and references therein for the local version of this
result.

Theorem 3.1. Let φ is a smooth strictly psh function on Ω such that (Ω, ωφ) has
bounded geometry, then

Kkφ,ωnφe
−kφ =

(
k

2π

)n(
1 +

b1

2k
+O

(
1

k2

))
, (3.1)

where b1(z) = Sωφ, Sωφ is the scalar curvature of ωφ, and O
(

1
k2

)
denotes a quantity

dominated by C/k2 on Ω with a uniform constants C depending on the bounded geometry
of (Ω, ωφ).
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We need the following Laplace approximation.

Lemma 3.2. [Hor90, Thm 7.7.5] Let K ⊂ Rn be a compact set and U an open neigh-
borhood of K. If u ∈ C2k(K) and f ∈ C3k+1(U) then we have∣∣∣∣∣
∫
u(x)eλf(x)dx− eλf(x0)

| −Hf (x0)|−1/2

(
2π

λ

)n/2∑
j<k

λ−jLju

∣∣∣∣∣ ≤ Cλk
∑
|α|≤2k

sup |Dαu|

for a constant C depending on ‖f‖C3k+1(U), where

Lju =
∑
s−r=j

∑
2s≥3r

2−s
〈
−Hf (x0)−1D,D

〉s
(grx0

u)(x0)/r!s!,

with

gx0(x) = f(x)− f(x0)− 1

2
〈Hf (x0)(x− x0), x− x0〉 .

In particular, L0u = u(x0) and

L1u =
1

2
[u{−fik`fjrs(

1

4
f ijfk`f rs +

1

6
f ijfksf r`) +

1

4
f ijfklfijkl} (3.2)

+f sqf rpfsrqup − Tr(HuH
−1
f )]x=x0 . (3.3)

Proof of Theorem 3.1. The proof uses the method of peak sections due to [Tia90] (see
also [Lu00, SW10]) and the approach using the Laplace approximation (cf. [Hor90]) by
[Cha15] for compact Kähler manifolds.

For any p ∈ Ω, we take (U, z = (z1, . . . , zn)) the local canonical coordinates in
Lemma 2.2 centered at p. Choose a holomorphic function g such that φ̃ = φ− log |g|2
has minimum at p = (0, . . . , 0) and

φ̃(z) =
n∑
j=1

|zj|2 + φij̄k ¯̀ziz j̄zkz
¯̀
+O(|z|5) (3.4)

Here for example, we can choose ai, bjk, clmn, dpqrs for g(z) = φ(0) + aiz
i + bjkz

jzk +
clmnz

mzlzn + dpqrsz
pzqzrzs to have (3.4).

Let η : [0,∞) be a cut-off function satisfying η(t) = 1 for t ≤ 1/2, η(t) = 0 for ≥ 1,
|η′(t)| ≤ 4 and |η′′(t)| ≤ 8. Define a (1, 0) form

α = ∂̄

[
η

(
k|z|2

(log k)2

)]
gk,

which vanishes outside Ak := {z|(log k)2/(2k) ≤ |z| ≤ (log k)2/k} ⊂ U . It follows from
the definition of bounded geometry that the weight ψ := kφ+ log(ωnφ/dV ) satisfies

ddcψ = kωφ −Ric(ωφ) ≥ k

C
ωφ,

for a constant C > 0.
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Applying Hömander’s L2 estimate (cf. [Hor73]) with the weight ψ: there exists a
smooth function u on Ω such that ∂̄u = α, u(0) = 0 and∫

Ω

|u|2e−kφωnφ ≤
C

k

∫
Ω

|α|2ωφe
−kφωnφ (3.5)

≤ C
1

(log k)2

∫
Ak

|g|2ke−kφωnφ (3.6)

= C
1

(log k)2

∫
Ak

e−kφ̃ωnφ , (3.7)

here we used |α|2ωφ = |η′
(

k|z|2
(log k)2

)
|2 k2

(log k)4φ
ij̄ziz̄j|g|2k ≤ C k|g|2k

(log k)2 on Ak, otherwise α = 0.

Since on Ak, e−kφ̃ = (1−
∑n

j=1 |zj|2)k +O(|z|3), hence

e−kφ̃ωnφ ≤ (1− 1

2
|z|2)kdV.

We infer that ∫
Ω

|u|2e−kφωnφ ≤ C(log k)2n−2k− log k/2−n. (3.8)

It follows that the holomorphic function f := ηgk − u satisfies |f(0)|2 = e−kφ(0) and

‖f‖2
kφ =

∫
Ω

|f |2e−kφωnφ =

∫
Uk

|g|2ke−kφωnφ +O(k−n−2), (3.9)

where Uk = {z : |z|2 ≤ (log k)2/k}. On Uk we have (ωφ)n = (1 + φkj̄jl̄z
kz̄l + o(|z|3))dV .

Applying the Laplace approximation (Lemma 3.2), we have∫
Uk

|g|2ke−kφωnφ =

∫
Uk

e−kφ̃(1 + φkj̄jl̄z
kz̄l + o(|z|3))dV

=

(
2π

k

)n(
1 +

1

2k
φīijj̄ +O(k−2)

)
=

(
2π

k

)n(
1− 1

2k
Sωφ(0) +O(k−2)

)
,

where O
(

1
k2

)
dominated by C/k−2 on Ω with a uniform constant C depending only on

the bound of |Dαφ| on U with |α| ≤ 7. Therefore

Kkφ,ωnφ (0) ≥ |f(0)|2

‖f‖2
kφ

≥
(
k

2π

)n
e−kφ(0)

(
1 +

1

2k
Sωφ(0) +O(k−2)

)
, (3.10)

hence we get a lower bound for Kkφ.

We now obtain an upper bound for Kkφ following the strategy in [Cha15]. Let f be
any holomorphic function on Ω. Since |f/gk| is subharmonic function on U , we have

|f(0)/gk(0)|2 ≤
∫

∆R
|f/gk|2e−kφ̃0ρdV∫
∆R

e−kφ̃0ρdV
, (3.11)
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where φ̃0 =
∑
|zj|2 + φij̄k ¯̀ziz j̄zkz

¯̀, ρ = 1 + φkj̄jl̄z
kz̄l and ∆R ⊂ U is a polydisc with

radius R. Choosing R = k−2/3, we have

−kφ̃0 ≤ −kφ̃+ Ck−7/3

and
ρdV ≤ (1 + Ck−2)ωnφ

hence ∫
∆R

|f/gk|2e−kφ̃0ρdV ≤ (1 + Ck−2)

∫
∆R

|f/gk|2e−kφ̃ωnφ (3.12)

= (1 + Ck−2)

∫
∆R

|f |2e−kφωnφ . (3.13)

Using the Laplace approximation again we have∫
∆R

e−kφ̃0ρdV =

(
2π

k

)n(
1− 1

2k
Sωφ(0) +O(k−2)

)
. (3.14)

Therefore we get

|f(0)/gk(0)|2 ≤
∫

∆R
|f/gk|2e−kφ̃0ρdV∫
∆R

e−kφ̃0ρdV
(3.15)

=

(
k

2π

)n(
1 +

1

2k
Sωφ(0) +O(k−2)

)∫
∆R

|f |2e−kφωnφ .

Since |g(0)|2 = e−φ(0), we imply

|f(0)|2 ≤ ekφ(0)

(
k

2π

)n(
1 +

1

2k
Sωφ(0) +O(k−2)

)∫
∆R

|f |2e−kφωnφ ,

hence we get the upper bound for Kkφ. �

3.2. Proof of the main Theorem. We have the following lemma which is a local
version of [Ber09b, Lemma 3].

Lemma 3.3. Let φ∞ be the solution of (ddcφ∞)n = eφ∞ν such that (Ω, ωφ∞) has bounded
geometry. Suppose that C1, C2 are two real numbers satisfying C1 ≤ φ−φ∞ ≤ C2. Then
we have

βk(φ) ≥ φ∞ +
k − 1

k
C1 − εk (3.16)

and
βk(φ) ≤ φ∞ +

k − 1

k
C2 + εk, (3.17)

where εk depends on φ∞, k and tends to zero at rate 1/k2.

In [Ber09b, Lemma 3], the author used the asymptotic of Bergman kernel for the
Kähler-Einstein metric with the coefficient of 1/k is the scalar curvature of the metric.
We give here a refined proof of this Lemma using only zero order asymptotic

Kkφ,ωnφe
−kφ =

(
k

2π

)n(
1 +O

(
1

k

))
.
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Proof. Since (ddcφ∞)n = eφ∞ν, using the first order asymptotic of Bergman kernels for
the weight φ∞ ( cf. Theorem 3.1), we have

Kkφ∞,eφ∞νe
−kφ∞ = Kkφ∞,ωnφ∞e

−kφ∞ (3.18)

= (k/2π)n
(

1 +O

(
1

k

))
. (3.19)

By definition dk = (k/2π)n then

Kkφ∞e−kφ∞/dk = 1 +O

(
1

k

)
. (3.20)

This implies

βk(φ∞) =
1

k
log(Kkφ∞/dk) = φ∞ + εk (3.21)

where εk depends on φ∞, k and tends to zero at rate 1/k2.

Next, it follows from the fact that φ ≥ C1 + φ∞ for some constant C1 > 0, the
extremal characterization of Bergman kernel implies that

Kkφ ≥ e(k−1)C1Kkφ∞ . (3.22)

Therefore, combining with (3.21) we have

βk(φ) ≥ k − 1

k
C1 + φ∞ − εk

Similarly, we have

βk(φ) ≤ k − 1

k
C2 + φ∞ + εk

as required. �

Proof of Theorem 1.2. We define by recurrence φk+1 = βk(φk). For any k ≥ 1, denote
Ck the best constant in the inequality

φk ≥ Ck + φ∞. (3.23)

Lemma 3.3 thus implies that

Ck+1 ≥
k − 1

k
Ck − εk.

Since εk is of order 1/k2, this implies that kCk+1 = O(1), hence Ck = O(1/k). By the
same way, the last part of Lemma 3.3 gives a similar estimate that C̃k = O(1/k) where
C̃k is the best constant such that

φk ≤ φ∞ + C̃k

So we get the desired convergence. �
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3.3. Variation of Kähler–Einstein metrics. Let π : Cn ×Cm → Cm be the second
projection and Ω be a smooth domain in Cn+m such that Ωt := Ω∩π−1(t) is a bounded
pseudoconvex domain with smooth boundary. It follows from [CY82, MY83] that on
each slice Ωt there exists a unique complete Kähler-Einstein metric φ(z, t) := φt(z), i.e

Ric(ωφt) = −ωφt ,
where ωφt = i∂zk∂z̄lφt(z)dzk ∧ z̄l.

Theorem 3.4. [Cho15a, Cho15b, Tsu13] If Ω ⊂ Cn+m is a bounded (strongly) pseudo-
convex domain, the function φ(z, t) constructed above is a (strictly) plurisubharmonic
function on Ω.

The result was proved in [Cho15a, Cho15b] using the boundary behavior of the
geodesic curvature which satisfies a certain elliptic equation, and in [Tsu13] using Tsuji’s
construction of Kähler-Einstein metrics. For the reader’s convenience we sketch the
Tsuji’s approach here.

Proof. Suppose first Ω is a bounded strongly pseudoconvex domain. Fix φ1 a continuous
plurisubharmonic function on Ω such that supΩ |φ1−ϕΩ| <∞. Denote φ1,t the restric-
tion of φ1 on Ωt, i.e φ1,t(z) := φ1(z, t). Let φk,t be the weights constructed by Tsuji’s
iteration above starting from φ1,t on Ωt. It follows from [Ber06] and the induction on
k that (z, t) 7→ logKkφk,t(z) is psh on Ω, hence (z, t) 7→ φk,t(z) is psh on Ω. Letting
k → ∞ and using Theorem 1.2, we imply that φ(z, t) = limk→∞ φk,t(z) is strictly psh
on Ω.

In general when Ω is bounded pseudoconvex, the existence of complete Kähler-
Einstein metric was constructed in [CY82, MY83] as the limit of Kähler-Einstein met-
rics on relatively compact subdomains. By this standard approximation process we also
imply that φ(z, t) is psh on Ω. �
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