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ABSTRACT. Inspired by recent studies on the biharmonic equation ∆2u + u−q = 0 in3

R3, where q is a real number, we consider the higher-order analogous equation4

∆3u+ u−q = 0 in R3 .5

It is known that this equation admits positive classical solutions that are radially symmetric6

if, and only if, q > 1/2. Besides, under the restriction q > 1/2, it is also known that there7

is a branch of radially symmetric solutions to the equation having the growth at infinity as8

that of |x|4. In the first part of the paper, by a careful phase-plane analysis, we provide9

a complete description of possible growth at infinity for radially symmetric solutions to10

the equation. Having such a classification of growth, in the last part of the paper, we11

construct non-radial solutions to the equation via a fixed-point argument. To obtain these12

results, we borrow some ideas often used in the case of biharmonic equations. However,13

compared with the case of biharmonic equations, there are some differences leading to14

new difficulties. A typical example is that it is not clear if solutions to the equation enjoy15

the super polyharmonic property, which is often used to overcome the lack of maximum16

principles.17

1. INTRODUCTION18

In this paper, we are interested in positive C6-solutions u to the following geometric19

interesting equation20

∆3u+ u−q = 0 (1.1)21

in R3 with q being a real number. This equation can be rewritten in a traditional way as22

follows (−∆)3u = u−q . Later on we shall see that we must have q > 1/2 but now let23

us discuss the significance of studying (1.1) and the reason why we work on this equa-24

tion. Roughly speaking, the last three decades have witnessed the presence of significant25

advances in the theory of higher-order elliptic equations of the form26

(−∆)mu = fu−q in Rn
27

starting from the work [WX99] by Wei and Xu in the case of constant functions f . These28

equations have their root in various branches of pure and applied mathematics. While29

the second-order case is very classical and often appears in many textbooks, the fourth-30

order case is of interest because it arises in the theory of elasticity. Higher-order cases31

such as (1.1) are also of interest because they serve as a tool for many problems in pure32

mathematics, very often in conformal geometry and geometric analysis. In this direction,33

equations of the form (1.1) come from the problem of prescribing Q-curvature on S3,34

which is associated with the conformally covariant GJMS operator of order six with the35

principle part (−∆)3, discovered by Graham, Jenne, Mason, and Sparling in [GJMS92].36

This operator is a high-order elliptic operator analogue with the well-known conformal37

Laplacian which is of second order and with the Paneitz operator which is of fourth order.38

Let us discuss this sixth order GJMS operator more precise.39
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Suppose that f be a smooth function on the unit sphere S3 ⊂ R4 equipped with the40

standard metric gS3 . Let g̃ = v−4/3gS3 be a conformal metric, then one has the following41

equation with a critical exponent42 (
−∆gS3

− 21

4

)(
−∆gS3

− 5

4

)(
−∆gS3

+
3

4

)
v = fv−3 on S3. (1.2)43

The geometric meaning of the above equation is that if v > 0 is a solution to (1.2), then the44

conformal metric v−4/3gS3 has Q-curvature f . Via the stereographic projection π : S3 →45

R3, one should obtain from (1.2) the following equation46

(−∆)3u = (f ◦ π−1)u−3 in R3;47

see [Han07]. Limiting ourselves to the case of constant function f , one further arrive at48

the following model equation49

(−∆)3u = u−3 in R3 . (1.3)50

It appears that (1.3) is exactly (1.1) with q replaced by −3 after using a simple scaling.51

Instead of considering (1.2) let us now consider its non-critical cases, namely we consider52 (
−∆gS3

− 21

4

)(
−∆gS3

− 5

4

)(
−∆gS3

+
3

4

)
v = fv−q on S353

for arbitrary q ∈ R. Then still by the stereographic projection π : S3 → R3, one should54

arrive at55

(−∆)3u =
( 1

1 + |x|2
) 9−3q

2

(f ◦ π−1)u−q in R3 .56

Hence, upon an appropriate choice for f to cancel out the term involving 1+|x|2 one should57

arrive at (−∆)3u = u−q which is exactly our equation (1.1). It should be mentioned that58

instead of using the sixth order GJMS operator on S3 one can use the fourth order Paneitz59

operator on S3 to obtain the following biharmonic equations ∆2u = ±u−q in R3.60

Perhaps, we are motivated by the two works: first by Feng and Xu [FX13] and the other61

by Luo, Wei, and Zou [LWZ16] involving the triharmonic operator ∆3. While the work by62

Luo, Wei, and Zou focuses on solutions to the triharmonic Lane–Emden equation63

(−∆)3u = |u|p−1u64

in Rn with p > 1, the work of Feng and Xu focuses on non-negative solutions to65

(−∆)3u = −u−q (1.4)66

in R5 with q > 0. Clearly, equation (1.4) is different from equation (1.1) by a minus sign.67

In the work [FX13] this plays an important role because associated with (1.4) in R5 is the68

following integral equation69

u(x) =
1

64π2

∫
R5

|x− y|u(y)−qdy. (1.5)70

From this integral equation one can say more about non-negative, Lebesgue integrable71

solutions to (1.5); see [Li04, Xu05]. In fact, they are radially symmetric and therefore72

can be assumed u(x) = (1 + |x|2)1/2. If we have (1.1) in R5 in hand, then it does not73

make sense to consider similar integral equations. Very recently, the authors in [DF22]74

further investigate solutions to (1.4) in Rn for any n ≥ 2 and q > 0 and obtain various75

properties including the asymptotic behavior for radial solutions at infinity. Similar results76

were obtained earlier in [NNP18] under the condition n ≥ 1 and q ≥ −1. It is worth77

noting that there is no positive, C6 solution to (1.4) if q < −1; see [NNPY20]. Therefore,78

the picture of radial solutions to (1.4) in Rn with q ∈ R is quite understood. For the case79

of non-radial solutions, as shown in [NNPY20], (1.4) in Rn with n ≥ 1 admits solutions80

which are radial if, and only if, q ≥ −1. Using these radial solutions one can quickly81

conclude the existence of non-radial solutions to (1.4) in Rn with n ≥ 2 and q ≥ −1.82

Therefore, we have quite clear picture of existence and non-existence results for solutions83
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to (1.4). This motivates us to work on (1.1) in R3 since the existence of non-radial solutions84

is not obvious, see the paragraph after Theorem 1.5.85

Let us now discuss (1.1) in R3. Unlike (1.4) in R5, the corresponding integral equation86

of (1.1) in R3 is87

u(x) =
1

96π

∫
R3

|x− y|3u(y)−qdy. (1.6)88

From this, by the same beautiful classification of positive solutions to integral equations89

of the form (1.6), we deduce that q = 3 must hold and non-negative, Lebesgue integrable90

solutions to (1.6) are of the following form u(x) = (1 + |x|2)3/2, up to translations, di-91

lations, and scalings. Although non-negative integrable solutions to the integral equations92

(1.6) and (1.5) are easily classified, we cannot expect that the structure of the solution set93

of the differential equations (1.1) and (1.4) is simple. This can be easily seen by comparing94

(1.4) and (1.5).95

In the present paper, motivated by many interesting results for the case of biharmonic96

equations obtained in [CX09, Gue12], we initiate our study on the structure of solution set97

of (1.1) in Rn. In view of the geometric meaning described above, the two cases n = 398

and n = 5 are of interest although one can consider (1.1) in Rn for arbitrary n ≥ 2. By99

a general result of [NNPY20] we conclude that the equation (1.1) in Rn for any n ≥ 2100

admits one positive C6-solution if, and only if, q > 1/2. In addition, it is proved that101

(1.1) with q > 1/2 admits at least one positive radial solution; see [NNPY20, Proposition102

A]. Moreover, such a radial solution has a growth as that of |x|4 at infinity; see [KNS88].103

Based on this point, we are interested in the structure of radial and non-radial solutions104

to (1.1). To achieve this goal, we split our analysis into two parts. In the first part, we105

consider radial solutions to (1.1). Although their existence is clear, it is not clear how they106

behave near infinity. In the second part, we make use of the behavior of radial solutions to107

construct non-radial solutions.108

Let us discuss the two parts in details. In the first part of the paper, our aim is to obtain109

a complete description of the asymptotic behavior at infinity of radial solutions to (1.1) for110

all q > 1/2. Toward answering the above question completely, we start with a complete111

classification of exact growth of radial solutions to (1.1) for all q > 1/2.112

Theorem 1.1. Assume that u is a radial solution to (1.1). Then we have the following113

claims:114

(a) u grows at least cubically and at most quartically.115

(b) u grows either cubically or quartically if q > 1.116

(c) u grows either like r3
√
log r or quartically if q = 1.117

(d) u grows either like r6/(q+1) or quartically if 1/2 < q < 1.118

We prove Theorem 1.1 in section 3 below. This simply follows from Proposition 3.1119

whose proof is done by a careful examination of the limit of ∆2u at infinity. It is worth120

noting that although the method used is more or less standard to experts, a few new ideas121

is required.122

To be able to discuss our next result, one should notice that although Theorem 1.1123

provides us a complete picture of growth at infinity, it does not tell us the precise asymptotic124

behavior at infinity. For example, if we know that the radial solution u grows quartically125

at infinity, then Theorem 1.1 does not give us the value of |x|−4u(x) at infinity. In the next126

result, we are able to prove the existence of radial solutions with prescribed asymptotic127

behavior at infinity for any q > 1/2. This, in particular, provides an affirmative answer for128

the question of existence raised earlier. Let us state our next result.129

Theorem 1.2. We have the following claims:130
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(a) For q > 1 and given any κ > 0, there exists a radially symmetric solution u to131

(1.1) such that132

lim
|x|↗+∞

u(x)

|x|3
= κ.133

(b) For q = 1, there exists a radially symmetric solution u to (1.1) such that134

lim
|x|↗+∞

u(x)

|x|3(log |x|)1/2
=

1√
12

.135

(c) For 1/2 < q < 1, there exists a radially symmetric solution u to (1.1) such that u136

grows exactly between cubic and quartic in the sense that137

lim
|x|↗+∞

u(x)

|x|6/(q+1)
= (−K0)

− 1
q+1 ,138

where K0 is a negative constant given by139

K0 =
72(2q − 1)(q − 1)(q − 2)(q − 5)(q + 7)

(q + 1)6
.140

(d) For q > 1/2 and given any κ > 0, there exists infinitely many radial solution u to141

(1.1) such that142

lim
|x|↗+∞

u(x)

|x|4
= κ.143

We prove Theorem 1.2 in section 5 (for case (a)), in section 6 (for cases (b) and (c)),144

and in section 7 (for case (d)). The idea of proof is to make use of the ODE version of145

(1.1) obtained via the shooting method; see the initial value (2.10). Such an approach is146

often used when working on biharmonic equations. For interested readers, we refer to147

[Gue12, ND17a] and the references there in.148

Clearly, Theorem 1.2(d) indicates that (1.1) in the full range q > 1/2 always admits ra-149

dial solutions with quartic growth at infinity. However, parts (a)–(c) imply that (1.1) admits150

another branch of radial solutions whose growth at infinity is strictly less than quartic.151

Once we have radial solutions with the prescribing asymptotic behavior at infinity, see152

Theorem 1.2, we can compute lower order terms of the expansion at infinity. For simplicity,153

let us only treat radial solutions having either cubic or quartic growth at infinity. Let us154

consider radial solutions with cubic growth at infinity. Our next result concerns lower order155

terms in the expansion of these solutions.156

Theorem 1.3. Let κ > 0 be arbitrary and suppose that u is a radially symmetric solution157

with exactly cubic growth κ > 0 at infinity, namely,158

lim
|x|↗+∞

u(x)

|x|3
= κ.159

Then we have the following further asymptotic behavior.160

(a) For q > 4/3,161

lim
|x|↗+∞

u(x)− κ|x|3

|x|2
=

∆u(0)

6
− 1

12

∫ ∞

0

|x|3u−q(x)dx.162

(b) For q = 4/3,163

lim
|x|↗+∞

u(x)− κ|x|3

|x|2 log |x|
= − 1

12κ4/3
.164

(c) For 1 < q < 4/3,165

lim
|x|↗+∞

u(x)− κ|x|3

|x|6−3q
= χ166
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with167

χ =
1

12κq


1

2(3− 3q)
− 1

10(2− 3q)
− 1

4− 3q

− 1

2(6− 3q)
+

1

5− 3q
+

1

10(7− 3q)

 . (1.7)168

We prove Theorem 1.3 in section 5. For radial solutions with quartic growth at infinity,169

our result concerning lower order terms of these solutions is as follows.170

Theorem 1.4. Let κ > 0 be arbitrary and suppose that u is a radially symmetric solution171

with exactly quartic growth κ > 0 at infinity, namely172

lim
|x|↗+∞

u(x)

|x|4
= κ.173

Then we have the following further asymptotic behavior.174

(a) For q > 3/4,175

lim
|x|↗+∞

u(x)− κ|x|4

|x|3
=

1

24

∫ ∞

0

|x|2u−q(x)dx.176

(b) For q = 3/4,177

lim
|x|↗+∞

u(x)− κ|x|4

|x|3 log |x|
=

1

24κ3/4
.178

(c) For 1/2 < q < 3/4,179

lim
|x|↗+∞

u(x)− κ|x|4

|x|6−4q
= χ180

with181

χ =
1

12κq


1

2(3− 4q)
− 1

10(2− 4q)
− 1

4− 4q

− 1

2(6− 4q)
+

1

5− 4q
+

1

10(7− 4q)

 . (1.8)182

We prove Theorem 1.4 in section 7. Let us sketch how to prove Theorem 1.3 and183

Theorem 1.4. In fact, the proof of these two theorems simply follows from integral repre-184

sentations (5.4) and (7.1).185

Motivated by a classification result due to [CX09] for biharmonic equations, it would186

be interesting to know the set of entire solutions to (1.1) when q = 3. In this scenario,187

by a direct calculation, it is easy to verify that the function u(x) = 315−1/4(1 + |x|2)3/2188

solves (1.3). We expect that up to dilations and translations, the only entire solutions to189

(1.3), which has an exact asymptotic behavior at infinity, is that above; see [GW07] for a190

similar case of lower order. Due to the limit of length, we leave this issue here and shall191

address it in a forthcoming paper.192

Finally, let us discuss our last result, which is also the second part of the paper. So193

far we have discussed the existence of radial solutions to (1.1) as well as the their growth194

at infinity. From this one can ask whether or not a non-radial solution actually exists. In195

the context of biharmonic equations of the form ∆2u + u−q = 0 in R3, it is proved in196

[HW19] that such a non-radial solution indeed exists. Motivated by this interesting result,197

we establish a similar result in the context of triharmonic equation of the form (1.1). Our198

result, which is also the last, reads as follows.199

Theorem 1.5. Let q > 1/2, there exists a non-radial, positive, C6 solution to (1.1).200
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There is a simple trick to prove the existence of non-radial solutions. In the case of201

(1.1), it is proved in [NNPY20] that (1.1) in Rn with n ≥ 3 and q > 1/2 always admits202

solutions. Therefore, any radial solution to (1.1) in Rn immediately becomes a non-radial203

solution to (1.1) in Rn+1. This proves the existence of non-radial solutions to (1.1) in Rn
204

with n ≥ 4. However, it is also worth noting that (1.1) in R2 with arbitrary q ∈ R does not205

admit any C6-solution; see [NNPY20], which makes the existence of non-radial solutions206

to (1.1) in R3 is of interest and non-trivial. To prove Theorem 1.5, we adopt the method207

used in [HW19], which is based on a fixed-point argument. However, to be able to handle208

the higher-order case, a few new idea is introduced.209

From the above discussion, one can also consider the equation in (1.1) in R5. However,210

due to the limit of length, we leave this for future research. As the last comment, we211

should mention that an earlier version of this work is already available, see [ND17b]. The212

existence of non-radial solutions to (1.1) in Theorem 1.5 is the major difference between213

this version and the previous one.214

Before closing this section, we briefly mention the organization of the present paper.215
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2. PRELIMINARIES241

In this section, we collect some useful results. First we discuss spherical averages of242

functions in subsection 2.1. Then, we study growth of radial solutions to (1.1) in subsection243

2.2. Finally, we spend a large portion of this section to study the initial value problem (2.10)244

obtained via the shooting method. These play an important role in our analysis.245

2.1. Spherical average and a comparison principle for radial functions. To understand246

the structure of solutions to (1.1), we often rewrite (1.1) as the following system247 
∆u = v in R3,

∆v = w in R3,

∆w = −u−q in R3 .

(2.1)248

For each function f , we denote by fx0
(r) the spherical average of f centered at some point249

x0 ∈ R3 with radius r, that is250

fx0
(r) =

∫
--
∂B(x0,r)

fdσ.251

For simplicity, if either x0 is the origin or no confusion occurs, we simply write fx0
(r) as252

f(r). The spherical average has the following nice property ∆f = ∆f which is easy to253

verify. By the Jensen inequality, there holds254

f
−q

x0
(r) ≤ f−q

x0 (r)255

for all r. Keep in mind that the following rule256

∆kf(r) = r−2k(r2kf (2k−1))′, (2.2)257

which holds only in R3, will be used frequently throughout the paper. Throughout this258

paper, we frequently apply the following well-known comparison principle for solutions259

of poly-harmonic equations; see [FF16, Proposition A.2].260

Lemma 2.1. Let p ∈ N with p ≥ 1 and assume that f : R → R is locally Lipschitz261

continuous and monotonically increasing. Let also u, u ∈ C2p([0, R)) be such that262

∆pu(r)− f(u(r)) ≥ ∆pu(r)− f(u(r))263

for all r ∈ [0, R) and that264 {
u(0) ≥ u(0), u′(0) ≥ u′(0),

∆ku(0) ≥ ∆ku(0), (∆ku)′(0) ≥ (∆ku)′(0) for all k = 1, 2, ..., p− 1.
265

Then for any r ∈ [0, R) and for all k = 1, 2, ..., p− 1, we have266 {
u(r) ≥ u(r), u′(r) ≥ u′(r),

∆ku(r) ≥ ∆ku(r), (∆ku)′(r) ≥ (∆ku)′(r).
267

Moreover, the initial point 0 can be replaced by any initial point ρ > 0 if all the 2p initial268

data are weakly ordered and a strict inequality in one of these initial data at ρ or in the269

differential inequality in (ρ,R) implies a strict ordering of u, u′, ∆ku, (∆ku)′ and u, u′,270

∆ku, (∆ku)′ on (ρ,R) for any k ∈ {1, 2, ..., p− 1}.271
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2.2. A super poly-harmonic property and growth of radial solutions. Now let u > 0272

solve (1.1). Then we take the spherical average of (2.1) centered at some point x0 ∈ R3 to273

be specified later to get274

∆u = v, ∆v = w, and ∆w ≤ −u−q in R3 . (2.3)275

(As mentioned earlier, we simply write u instead of ux0
.) Since the underlying equation is276

higher order, it is common to determine the sign of v and w. In the following lemma, we277

show that w has a sign, which is important in the rest of analysis.278

Lemma 2.2. If u > 0 is a C6 positive solution in R3, then we necessarily have w > 0.279

This type of result is well-known for solutions to the biLaplace equation ∆2u = −u−q280

in Rn with n ≥ 3; see [CX09, Lemma 2.2] for the case n = 3 and [LY16, Lemma 4.1]281

for the case of arbitrary n. In the case of the triLaplace equation ∆3u = −u−q in R3, we282

simply mimic the proof provided in [CX09, LY16]. Therefore, we omit it here and leave283

the detail for interested readers.284

In the previous result, we have shown that w has a sign, which is good to control the sign285

of w and higher order derivatives of u. To overcome the lacking of the maximum principle286

since the underlying equation is of higher order, it is commonly to make use of the sign287

of w and v; see [WX99]. Unfortunately, it seems to be difficult to capture the sign of v.288

Without having any sign control of v but w, we refer to the partially super polyharmonic289

property for solutions to (1.1); see [NY22] for further information.290

Fortunately, inspire by [CX09, Lemma 2.3], in the following step, we can control the291

sign of derivatives of w and v. We note that the result below is independent of the center292

x0 that we are using to compute the average.293

Lemma 2.3. We have the following claims:294

w′(r) < 0, (2.4)295

and296

v′(r) > 0, v′′(r) > 0, v(3)(r) < 0 (2.5)297

for all r > 0.298

Proof. Recall that w > 0. Using ∆w ≤ −u−q in (2.3) we obtain299

r2w′(r) ≤ −
∫ r

0

s2u−q(s)ds;300

hence w′(r) < 0 for any r > 0. This proves (2.4). Now we use ∆v = w in (2.3) to get301

r2v′(r) =

∫ r

0

s2w(s)ds > 0302

which implies v′(r) > 0 for r > 0. To estimate higher order derivatives of v, we note from303

(2.2) and ∆2v = −u−q that304

r4v(3)(r) ≤ −
∫ r

0

s4u−q(s)ds.305

Therefore, v(3)(r) < 0 for r > 0. Consequently, v′′ is monotone decreasing. Suppose306

v′′(r) = 0 at some r = r1 > 0. Fix some r2 > r1. Then there exists some δ > 0 such that307

v′′(r) ≤ −δ for all r ≥ r2. Integrating both sides of the preceding inequality gives308

v′(r) ⩽ v′(r2)− δ(r − r2)309

for all r ≥ r2. Sending r ↗ +∞, we deduce that v′ < 0 for some large r, which310

contradicts to the fact that v′(r) > 0 for r > 0. Thus, (2.5) is proved. □311
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Up to this position, we are left with the sign of v as well as the sign of derivatives of u.312

In the following result, we show how to control the sign of higher order derivatives of u.313

Lemma 2.4. We have the following claims:314

u(3)(r) > 0, u(4)(r) > 0, u(5)(r) < 0 (2.6)315

for all r > 0.316

Proof. First, by using ∆2u = r−4(r4u(3))′ > 0, see (2.2), we obtain u(3)(r) > 0. Sim-317

ilarly, still by (2.2), namely ∆3u = r−6(r6u(5))′ < 0, we obtain u(5)(r) < 0. Conse-318

quently, u(4)(r) is strictly decreasing. Suppose that u(4)(r) = 0 at some r = r3 > 0. Fix319

some r4 > r3. Then there exists some δ > 0 such that320

u(4)(r) ⩽ −δ321

for all r ≥ r4. Integrating both sides of the preceding inequality gives322

u(3)(r) ⩽ u(3)(r4)− δ(r − r4)323

for all r ≥ r4. From this we deduce that u(3)(r) < 0 for large r, which is a contradiction;324

thus showing u(4)(r) > 0. This finishes the proof of (2.6). □325

An immediate consequently of Lemma 2.4 is the following.326

Proposition 2.5. Growth of any radial solution to (1.1) is at least cubic and at most quartic327

at infinity.328

Proof. Suppose that u is a radial solution to (1.1) about some point x0 ∈ R3. As always,329

by u, we mean the spherical average of u centered at the x0. To bound the growth of u330

at infinity, it suffices to bound the growth of u at infinity. Since u(4)(r) > 0, we obtain331

u(3)(r) ≥ u(3)(1) > 0 for any r ≥ 1. From this we get332

u′′(r) ≥ u(3)(1)(r − 1) + u′′(1) (2.7)333

for all r ≥ 1. From this, simply integrating twice, we deduce that u grows at least cubic at334

infinity. To obtain the greatest growth at infinity for u, we observe from (2.4) that335

∆v(r) = w(r) ≤ w(0),336

which by integration implies337

u(r) ≤ u(0) +
v(0)

12
r2 +

w(0)

120
r4 (2.8)338

and this is enough to conclude the assertion. □339

Up to this point, we have not mention the sign of v as well as u′ and u′′. The next340

lemma addresses this which will be used in the proof of Lemma 3.9.341

Lemma 2.6. There hold342

u′(r) > 0, u′′(r) > 0, and v(r) > 0343

provided r > 0 is large enough.344

Proof. First in view of (2.7) we quickly conclude that u′′(r) > 0 if r > 0 is large enough.345

If we integrate both sides of (2.7) over [1, r], then we get346

u′(r) ≥ (u(3)(1)/2)(r − 1)2 + u′′(1)r + u′(1)347

for all r ≥ 1. In particular, u′(r) > 0 if r > 0 is large enough. For the function v, making348

use of (2.5) yields v′(r) ≥ v′(1) > 0 for all r ≥ 1. From this we deduce that349

v(r) ≥ v′(1)(r − 1) + v(1) (2.9)350
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for all r ≥ 1. In particular, v(r) > 0 provided r is large enough. The proof is now351

completes. □352

We conclude this section by the following remarks which give us some information on353

the sign of v for any r ≥ 0.354

Remark 2.7. Although it is not clear whether or not v(r) > 0 for any r ≥ 0. However,355

we can easily conclude that there is a point x0 ∈ R3 such that vx0
(r) > 0 for all r ≥ 0.356

Indeed, by way of contradiction, we know that with respect to origin O ∈ R3, there holds357

vO(r) < 0 for all r ≥ 0. However, this contradicts (2.9) if we choose r large enough;358

hence proving the existence of some point x0.359

Remark 2.8. In view of Remark 2.7 above, we easily deduce that u′
x0
(r) > 0 and that360

u′′
x0
(r) > 0 for any r ≥ 0.361

2.3. An initial value problem. Since we are only interested in radial solutions to (1.1),362

it is necessary to study the radial version of (1.1). In view of the shooting method, we363

shall keep u(0) fixed. Therefore, suppose β > 0, we consider the following initial value364

problem:365 
∆3U = −U−q, U > 0, r ∈ (0, Rmax(β)),

U(0) = 1, ∆U(0) = β, ∆2U(0) = β,

U ′(0) = 0, (∆U)′(0) = 0, (∆2U)′(0) = 0,

(2.10)366

where [0, Rmax(β)) is the maximal interval of existence of solutions. (Such an existence of367

solutions for (2.10) follows from standard ODE theory.) The main result of this subsection368

is Proposition 2.11. To obtain such a result, we follow closely the arguments used in369

[KR03] for radially symmetric solutions for the equation ∆2u+ u−q = 0 in R3; see also370

[GW08] and [Gue12]. However, our analysis is rather involved due to the fact that we are371

dealing with higher order equations.372

By the l’Hôpital rule, it is not hard to see that (∆u)(0) = 3u′′(0), (∆u)′(0) = 2u(3)(0),373

(∆2u)(0) = 5u(4)(0), and (∆2u)′(0) = 3u(5)(0). Therefore, the initial value problem374

(2.10) can be rewritten as follows375 
∆3U = −U−q, U > 0, r ∈ (0, Rmax(β)),

U(0) = 1, U ′′(0) =
β

3
, U (4)(0) =

β

5

U ′(0) = 0, U (3)(0) = 0, U (5)(0) = 0.

(2.11)376

We note that although a local solution of (2.10) always exists for any given β > 0, such a377

solution may not entire in the sense that its maximum interval of existence could be finite.378

The statement Proposition 2.11(b) below indicates that whenever q > 1/2 we successfully379

obtain an entire solution of (2.10) if the parameter β is chosen appropriately. Consequently,380

we do have an existence result for entire solutions to (1.1) in R3.381

In the sequel, we frequently apply Lemma 2.1 in the following way: Suppose two posi-382

tive C6-functions u(r) and u(r) are given with383 
∆3u+ u−q ≤ 0,

u(0) ≤ 1, u′(0) = 0, u′′(0) ≤ δ,

u(3)(0) = 0, u(4)(0) ≤ δ, u(5)(0) = 0

384

and385 
∆3u+ u−q ≥ 0,

u(0) ≥ 1, u′(0) = 0, u′′(0) ≥ δ,

u(3)(0) = 0, u(4)(0) ≥ δ, u(5)(0) = 0.

386
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Then u and u are called sub- and super-solutions relative to the initial value problem387 
∆3u+ u−q = 0,

u(0) = 1, u′(0) = 0, u′′(0) = δ,

u(3)(0) = 0, u(4)(0) = δ, u(5)(0) = 0.

388

Lemma 2.1 applied to u, u, u yields the conclusion that u ≤ u ≤ u, u′ ≤ u′ ≤ u′ on389

their common interval of existence. Moreover, strict inequality holds as soon as one strict390

inequality holds in the initial conditions for the function or its derivatives.391

First, analogue to [KR03, Lemma 3.3], we prove that solutions to (2.11) cannot be entire392

if β is small.393

Lemma 2.9. There exists some β > 0 such that for all β ≤ β, any solution u to (2.11)394

with395

u(0) = 1, ∆u(0) = β, ∆2u(0) = β396

has compact support.397

Proof. Our aim is to construct a super-solution U to (2.11), which has compact support.398

Indeed, thanks to q > 1/2 we easily verify that (2/3)(1 + 1/q) < 2. Therefore, we can399

select a τ ∈ (2/3, 1) such that τ < (2/3)(1 + 1/q) and fix it. Now consider the following400

function401

U(r) = εr2(ε−τ − r4 + r2) + 1402

for some ε > 0 to be specified later. Clearly U is positive on (0, 1/2 +
√
1 + 4ε−τ/2)1/2)403

and U(r) ≤ 1 for any r ≥ (1/2 +
√
1 + 4ε−τ/2)1/2. A direct calculation shows that404

∆3U(r) = −720ε405

and that U(0) = 1, U ′(0) = 0, U ′′(0) = 2ε1−τ , U (3)(0) = 0, U (4)(0) = 24ε, and406

U (5)(0) = 0. It is to determine ε in such a way that ∆3U ≥ −U−q . We observe that the407

maximum of U over (0, (1/2 +
√
1 + 4ε−τ/2)1/2) is obtained at408

r =

√
3 + 3

√
1 + 3ε−τ

3
.409

In addition, the maximum value of U at this point is410

1

27

[
(6ε−τ + 2)

√
1 + 3ε−τ + 9ε−τ + 2

]
ε+ 1.411

Therefore, to fulfill the differential inequality in (0, (1/2+
√
1 + 4ε−τ/2)1/2), we require412 (

(6ε−τ + 2)
√
1 + 3ε−τ + 9ε−τ + 2

)
ε+ 1 ≤ (720ε)−1/q. (2.12)413

To find some suitable ε > 0 satisfying (2.12), we rewrite (2.12) as the following414

6ε1−3τ/2
√
ετ + 3 + 2

√
ε2 + 3ε2−τ + 9ε1−τ + 2ε+ 1 ≤ (720ε)−1/q. (2.13)415

Clearly, all three terms 2
√
ε2 + 3ε2−τ , 2ε, and ε1−τ converge to 0 as ε → 0. From416

our choice for τ , it is clear that 0 > 1 − 3τ/2 > −1/q. From this we know that417

ε1−3τ/2
√
ετ + 3 grows slower than ε−1/q as ε → 0. Hence, by choosing ε > 0 suffi-418

ciently small, the key estimate (2.13) is satisfied, which proves that419

∆3U(r) ≥ −U(r)−q
420

for all 0 < r < (1/2 +
√
1 + 4ε−τ/2)1/2. For r ≥ (1/2 +

√
1 + 4ε−τ/2)1/2, recall that421

U(r) ≤ 1 which implies −U(r)−q ≤ −1. Hence by selecting ε even smaller, if necessary,422

we also obtain423

∆3U(r) ≥ −U(r)−q
424
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for all r > 0. Finally, choose425

β < min
{
(2/3)ε1−τ , (24/5)ε

}
426

we set U = U . Thus, we have just proved that U to (2.11) with U(0) = 1, ∆U(0) = β,427

∆2U(0) = β is a super-solution which has compact support. □428

Then analogue to [KR03, Lemma 3.5], we prove that any solution to (2.11) is entire if429

β is large.430

Lemma 2.10. There exists some β > 0 such that for all β ≥ β, there exists at least one431

entire solution of (2.11) satisfying432

u(0) = 1, ∆u(0) = β, ∆2u(0) = β.433

Proof. The idea of proof is to construct an entire sub-solution U to (2.11) with the initial434

conditions U(0) = 1, ∆U(0) = β, and ∆2U(0) = β. Indeed, let m ∈ R be fixed and set435

U(r) = (1 + r2)m.436

It is easy to verify that437

∆3U(r) =
∑

3≤k≤6

Ak(m)(1 + r2)m−k,
438

where439 
A3(m) = 8m(m− 1)(m− 2)(2m+ 1)(2m− 1)(2m− 3),

A4(m) = −48m(m− 1)(m− 2)(m− 3)(2m− 1)(2m− 3),

A5(m) = 96m(m− 1)(m− 2)(m− 3)(m− 4)(2m− 3),

A6(m) = −64(m− 5)(m− 4)(m− 3)m(m− 1)(m− 2).

440

For m ∈ (3/2, 2), it is not hard to see that A3(m) < 0, A4(m) < 0, A5(m) < 0, and441

A6(m) < 0. Hence ∆3U(r) < 0 provided m ∈ (3/2, 2). Now we let b > 0 and set442

U(r) = U(br).443

Clearly, ∆3U(r) = b6∆3U(br) and U(0) = 1, U ′′(0) = 2mb2, U (4)(0) = 12m(m−1)b4,444

U ′(0) = 0, U (3)(0) = 0, and U (5)(0) = 0. Therefore, because 0 < (1 + b2r2)−mq < 1,445

there holds446

∆3U(r) + U−q(r) = b6(∆3U)(br) + (1 + b2r2)−mq < 0447

provided we choose b large enough. Hence, for b large enough and fix it, we have shown448

that U is an entire sub-solution to (2.11) with U(0) = 1, ∆U(0) = (2/3)mb2, and449

∆2U(0) = (12/5)m(m− 1)b4. Now we set450

β = max{(2/3)mb2, (12/5)m(m− 1)b4}451

and the proof follows. □452

In view of Lemmas 2.9–2.10, it is possible to conclude the existence of a threshold for453

β, denoted by β⋆, similar to a threshold obtained in [KR03, Theorem 3.1]; see also [Gue12,454

Proposition 2.1].455

Proposition 2.11. Assume that q > 1/2 and β > 0. Let Uβ be the unique local solution456

of (2.10) above. Then there is a unique β⋆ > 0 such that:457

(a) If β < β⋆ then Rmax(β) < ∞.458

(b) If β ≥ β⋆ then Rmax(β) = ∞.459

(c) If β ≥ β⋆ then460

lim
r↗+∞

∆2Uβ(r) ≥ 0.461
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(d) We have β = β⋆ if and only if462

lim
r↗+∞

∆2Uβ(r) = 0.463

Proof. First, we prove the uniqueness of β⋆. Indeed, we shall prove that Uβ⋆ is the unique464

solution such that465

lim
r↗+∞

∆2Uβ(r) = 0.466

By way of contradiction, we suppose that there are 0 < β⋆ < β⋆⋆ such that467

lim
r↗+∞

∆2Uβ⋆(r) = lim
r↗+∞

∆2Uβ⋆⋆(r) = 0.468

By the comparison principle, we know that Uβ⋆⋆ > Uβ⋆ on (0,+∞). Therefore,469

−(U−q
β⋆⋆ − U−q

β⋆ ) = r−2
(
r2(∆2)′(Uβ⋆⋆ − Uβ⋆)

)′
> 0470

on (0,+∞), which implies that (∆2)′(Uβ⋆⋆ −Uβ⋆) > 0 on (0,+∞). From this we obtain471

a contradiction since472

lim
r↗+∞

∆2(Uβ⋆⋆ − Uβ⋆)(r) = 0.473

Part (a). By Lemma 2.9, there is a β > 0 such that any solution u to (2.11) with u(0) = 1,474

∆u(0) = β, and ∆2u(0) = β has compact support. Using the comparison principle we see475

that for any β < β any solution u to (2.11) with u(0) = 1, ∆u(0) = β, and ∆2u(0) = β476

also has compact support. Therefore, we may define477

β⋆ = sup

{
β

∣∣∣∣∣ any solution u of (2.11) with u(0) = 1,∆u(0) = β,

and ∆2u(0) = β has compact support

}
.478

Thanks to Lemma 2.10, we deduce that β⋆ is finite and positive. Consequently, any so-479

lution u to (2.11) with u(0) = 1, ∆u(0) = β, and ∆2u(0) = β > β⋆ is entire. This480

establishes Part (a).481

Part (b). It suffices to prove that any solution u to (2.11) with u(0) = 1, ∆u(0) = β⋆,482

and ∆2u(0) = β⋆ is entire. Indeed, let R(β) be the first zero of the solution u to (2.11)483

with u(0) = 1, ∆u(0) = β, and ∆2u(0) = β < β⋆. Since β < β⋆, the number R(β)484

exists and is finite. By the comparison principle, the function R(β) is non-decreasing in485

β. Moreover, for two solutions u1 and u2 of (2.11) with ui(0) = 1, ∆ui(0) = β with486

i = 1, 2, and487

∆2u1(0) = β1 < β2 = ∆2u2(0),488

we find that489

∆2u1(r) < ∆2u2(r)490

in their common interval of existence. From this we deduce that (u1 − u2)
(3)(r) < 0.491

In particular, this implies that (u1 − u2)
′(r) < 0; hence the gap between two solutions492

is increasing. Consequently, R(β) is strictly increasing in β. This and the continuous493

dependence of the solution on initial values tell us that R(β) is in fact continuous. Now we494

assume for contradiction that R(β) → R for some finite number R as β ↗ β⋆. However,495

this is impossible due to the continuous dependence of the solution on initial values. This496

proves Part (b).497

Part (c). Let β ≥ β⋆. Suppose that498

lim
r↗+∞

∆2Uβ(r) < 0.499

Integrating gives500

Uβ(r) ≤ −C1r
4 + C2r

3 + C3r
2 + C4r + C5501

for all r ≥ 0 with C1 > 0, which is impossible; so Part (c) follows.502
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Part (d). Suppose that503

lim
r↗+∞

∆2Uβ(r) > 0.504

It is easy to see that Uβ(r) ≥ cr4, U ′
β(r) ≥ cr3, U ′′

β (r) ≥ cr2, and U ′′′
β (r) ≥ cr for all505

r > 0 and for some constant c > 0. Using r−2(r2(∆2Uβ)
′(r))′ = −U−q

β , we deduce that506

(∆2Uβ)
′(r) ≥ −c


r−2 if q > 3/4,

r−2 log r if q = 3/4,

r1−4q if q < 3/4,

507

for all r ≥ 2 and for some new constant c > 0. Let m ∈ (3/2, 2) to be fixed and set508

U(r) = (1 + r2)m.509

Recall from the proof of Lemma 2.10 that510

∆3U(r) =
∑

3≤k≤6

Ak(m)(1 + r2)m−k,
511

where Ak(m) < 0 for all 3 ≤ k ≤ 6 whenever m ∈ (3/2, 2). Let b > 0 and set512

U(r) = U(br).513

Also as in the proof of Lemma 2.10, if we choose b large enough, then we have ∆3U +514

U
−q ≤ 0. In addition, there exists some r0 such that515 {

Uβ(r0) > U(r0), ∆Uβ(r0) > ∆U(r0), ∆2Uβ(r0) > ∆2U(r0),

U ′
β(r0) > U

′
(r0), (∆Uβ)

′(r0) > (∆U)′(r0), (∆2Uβ)
′(r0) > (∆2U)′(r0).

516

By the continuous dependence of solutions and Lemma 2.1, there is β1 < β such that517

Uβ1 ≥ U for all r ≥ r0. This shows that Uβ1 exists for all r ≥ 0; hence β1 ≥ β⋆. From518

this we deduce that β > β⋆. Now we suppose that β > β⋆. Then there holds519

(∆2Uβ)
′(r) > (∆2Uβ⋆)′(r)520

for all r ≥ 0. Using the initial data and by integration by parts, we obtain521

lim
r↗+∞

∆2Uβ(r)− β ≥ lim
r↗+∞

∆2Uβ⋆(r)− β⋆,522

which implies523

lim
r↗+∞

∆2Uβ(r) ≥ β − β⋆.524

The proof of Part (d) is complete. □525

3. CLASSIFICATION OF GROWTH AT INFINITY FOR RADIAL SOLUTIONS TO (1.1):526

PROOF OF THEOREM 1.1527

In this section, we are interested in the exact growth at infinity for radial solutions to528

(1.1). We observe from Lemma 2.2 and (2.4) the limit limr↗+∞ ∆2u(r) exists and is529

non-negative. The main result of this section is the following:530

Proposition 3.1. Let u be a radial solution to (1.1). Then we have the following claims:531

(I) If532

lim
r↗+∞

∆2u(r) > 0, (3.1)533

then u(r) ≈ r4 for any q > 1/2.534

(II) If535

lim
r↗+∞

∆2u(r) = 0, (3.2)536

then u(r) = o(r4) at infinity. Furthermore, we have the following possibilities:537



RADIAL AND NON-RADIAL SOLUTIONS TO ∆3u + u−q = 0 IN R3 15

(a) u(r) ≈ r3 if p > 1;538

(b) u(r) ≈ r3
√
log r if p = 1; and539

(c) u(r) ≈ r6/(q+1) if 1/2 < p < 1.540

Clearly, Theorem 1.1 follows from Proposition 3.1 above. Hence, in the rest of this541

section, we prove this proposition. From our point of view, the most difficult part is (IIc);542

to handle this case, new arguments are introduced, see the proof of Lemma 3.10.543

3.1. Solutions with quartic growth. Now we prove Part (I) of Proposition 3.1. For sim-544

plicity, set545

℘ = lim
r↗+∞

∆2u(r) > 0.546

In view of (2.4), there holds ∆2u(r) ≥ ℘ for any r ≥ 0. Integrating this differential547

inequality as in the preceding subsection, we deduce that u grows at least quartically at548

infinity and this is enough to conclude that u(r) ≈ r4. In the next two subsections, we549

prove Part (II) of Proposition 3.1.550

3.2. Solutions with non-quartic growth. We start by observing that whenever551

lim
r↗+∞

∆2u(r) = 0552

there holds u(r) = o(r4) at infinity. This is elementary because the zero limit implies that553

lim
r↗+∞

r−4(r4u(3)(r))′ = 0,554

which then implies, by the l’Hôpital rule, that555

u(3)(r) = o(r), u′′(r) = o(r2), u′(r) = o(r3), u(r) = o(r4) (3.3)556

at infinity. We now examine the growth of u at infinity more closely because u(r) = o(r4)557

is not what we need.558

3.2.1. Proof of Proposition 3.1(IIa). We now consider Part (II) under the case q > 1. By559

integration by parts, we obtain from ∆w = −u−q the following560

w(r) = w(0) +
1

r

∫ r

0

s2u−qds−
∫ r

0

su−qds. (3.4)561

Since u grows at least cubic at infinity and q > 1, it is easy to see that r2u−q → 0 as562

r ↗ +∞. In (3.4), we send r to +∞ to obtain563

w(0) =

∫ +∞

0

su−qds < +∞.564

Still by integration by parts, we obtain from (3.4) and ∆2u = w the identity565

u(r) =u(0) +
∆u(0)

6
r2 +

r4

120

∫ +∞

r

su(s)−qds− r2

12

∫ r

0

s3u(s)−qds

− 1

24

∫ r

0

s5u(s)−qds+
r3

24

∫ r

0

s2u(s)−qds

+
r

12

∫ r

0

s4u(s)−qds+
1

120r

∫ r

0

s6u(s)−qds

(3.5)566
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in R3. It is worth noting that the representation (3.5) is valid for all q > 1. Let us denote567

by Ξ all terms in (3.5) involving integrals, that is568

Ξ(r) =
r4

120

∫ +∞

r

su(s)−qds− r2

12

∫ r

0

s3u(s)−qds− 1

24

∫ r

0

s5u(s)−qds

+
r3

24

∫ r

0

s2u(s)−qds+
r

12

∫ r

0

s4u(s)−qds+
1

120r

∫ r

0

s6u(s)−qds.

569

Our aim is to show that Ξ(r) has cubic growth at infinity. To achieve that goal, we use the570

l’Hôpital rule to see that571

lim
r↗+∞

Ξ′′′(r) =
1

4

∫ +∞

0

s2u(s)−qds > 0.572

Note that the preceding limit is also finite, thanks to q > 1. From this we conclude that u573

has exactly cubic growth at infinity.574

Remark 3.2. Concerning Proposition 3.1(IIa), it is worth noticing that the reserve case also575

holds, that is, if u is a positive solution to (1.1) having cubic growth (uniformly) at infinity,576

then q > 1. The argument is similar to the one used in [CX09].577

Next we consider Part (II) under the case 1/2 < q ≤ 1, which shows that radial so-578

lutions to (1.1) satisfying (3.2) grow between cubic and quartic at infinity. To obtain the579

desired result, we exploit several ODE techniques used in [DFG10] and in [Lai14]. The580

idea is to transform (1.1) into a high order ODE via the following change of variable581

W (t) = emtu(et)582

where m = −6/(q + 1) and t = log r. By direct computation, we observe the following.583

Lemma 3.3. Let q > 1/2. If u(r) is a positive radial solution to (1.1), then W (t) solves584

Q6(m− ∂)W = −W−q, (3.6)585

where we formally define586

Q6(m− ∂) =
∏

1≤k≤6

(∂ −m− 5 + k)587

with ∂ = d/dt.588

For simplicity, we put λk = m+5−k with 1 ≤ k ≤ 6, namely λ1 = 2(2q−1)/(q+1),589

λ2 = 3(q− 1)/(q+ 1), λ3 = 2(q− 2)/(q+ 1), λ4 = (q− 5)/(q+ 1), λ5 = −6/(q+ 1),590

and λ6 = −(q + 7)/(q + 1). By the variation of parameters formula, the solution W (t) to591

(3.6) has an integral representation given as follows.592

Lemma 3.4. Let W (t) be a solution to (3.6). Given any t0, then there exist constants αi593

such that594

W (t) =

6∑
i=1

(
αie

λit − di

∫ t

t0

eλi(t−s)W−qds
)
, (3.7)595

where596

di =

6∏
j=1, j ̸=i

(λi − λj)
−1.597

More precisely, we have d1 = 1/120, d2 = −1/24, d3 = 1/12, d4 = −1/12, d5 = 1/24,598

and d6 = −1/120.599
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We note that we also have an expansion form for (3.6) given by600

W (6) +

5∑
i=0

KiW
(i) = −W−q,601

where602 

K0 =
72(2q − 1)(q − 1)(q − 2)(q − 5)(q + 7)

(q + 1)6
< 0,

K1 =
12(q − 3)(2q4 − 10q3 − 249q2 + 512q − 223)

(q + 1)5
,

K2 = −2(13q4 + 187q3 − 2217q2 + 4777q − 2552)

(q + 1)4
,

K3 = −15(q − 3)(q2 − 34q + 37)

(q + 1)3
> 0,

K4 =
5(5q2 − 44q + 59)

(q + 1)2
> 0,

K5 = −9(q − 3)

q + 1
> 0.

603

Note that in the range (1/2, 1], the sign of K1 and K2 is not constant. The constant K0 is604

already appeared in the statement of Theorem 1.2(c) and in terms of Q6, we can express605

K0 = Q6(m). With all ingredients above, we are now in position to prove Theorem 1.2(b,606

c).607

3.2.2. Proof of Proposition 3.1(IIb). In this subsection, we restrict ourselves to the case608

q = 1, which leads to K0 = 0 and m = −3. For clarity, we split our proof of Part (d) into609

three steps as follows.610

Lemma 3.5. W (t) is unbounded.611

Proof. We prove by way of contradiction. Indeed, suppose that W (t) is bounded, then612

there exists A > 0 and t0 > 0 such that613 (
W (5) +

5∑
i=1

KiW
(i−1)

)′
= −W−q ≤ −A614

for all t ≥ t0. Integrating both sides gives615 (
W (4) +

5∑
i=2

KiW
(i−2)

)′ ≤ −A(t− t0) +A1616

for all t ≥ t0. By continuing this process, we shall obtain the following estimate617

W (t) ≤ −A

6!
(t− t0)

6 + o((t− t0)
6)618

as t ↗ +∞. This contradicts to the fact that W (t) > 0 for all t. Hence W (t) is unbounded619

on any [t0,+∞) as claimed. □620

Lemma 3.6. There holds W (t) ↗ +∞ as t ↗ +∞.621

Proof. For q = 1, (3.6) becomes622

(∂ + 4)(∂ + 3)(∂ + 2)(∂ + 1)(∂ − 1)W ′ = −W−1 < 0.623

Multiplying by e4s and integrating over (−∞, s), we get624

e4s(∂ + 3)(∂ + 2)(∂ + 1)(∂ − 1)W ′ ≤ 0625
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since W−1(s) → 0 as s → −∞. Therefore626

(∂ + 3)(∂ + 2)(∂ + 1)(∂ − 1)W ′ ≤ 0.627

Performing a similar argument, we eventually obtain
(
e−sW ′(s)

)′ ≤ 0. Therefore, the628

function e−sW ′(s) is monotone decreasing. Thanks to (3.3), we deduce that629

e−sW ′(s) = −3e−4su(es) + e−3su′(es) → 0630

as s ↗ +∞. Thus, there must hold W ′(s) > 0. Combining with the fact that W (s) is631

unbounded, we obtain lims↗+∞ W (s) = +∞ as claimed. □632

Lemma 3.7. There holds633

lim
r↗+∞

u(r)

r3(log r)1/2
=

1√
12

.634

Proof. Note that when q = 1, we have m = 3, λ1 = 1, λ2 = 0, λ3 = −1, λ4 = −2,635

λ5 = −3, and λ6 = −4. Thanks to (3.3), in this case, e−tW (t) = r−4u(r) = o(1) at636

infinity. Thus, multiplying both side of (3.7) by e−t and sending t ↗ +∞ in the resulting637

equation gives638

α1 = d1

∫ +∞

t0

e−sW−1ds.639

Hence,640

W (t) =d1

∫ +∞

t

e(t−s)W−1ds+

6∑
i=2

(
αie

λit − di

∫ t

t0

eλi(t−s)W−1ds
)
.641

By direct computing and using the relation
∑6

i=1 di = 0, we easily get642

W ′(t) = d1

∫ +∞

t

e(t−s)W−1ds+

6∑
i=3

λi

(
αie

λit − di

∫ t

t0

eλi(t−s)W−1ds
)
.643

Hence, by the Hôpital rule, we easily verify W ′(t) = o(1) at infinity. Furthermore, making644

use of the Hôpital rule, we can estimate645

lim
t↗+∞

W ′(t)W (t) = lim
t↗+∞

d1W (t)

∫ +∞

t

e(t−s)W−1ds646

+ lim
t↗+∞

6∑
i=3

λi

(
αiW (t)eλit − diW (t)

∫ t

t0

eλi(t−s)W−1ds
)

647

=d1 +

6∑
i=3

di = −d2 =
1

24
,648

649

which immediately implies that650

lim
t↗+∞

W 2(t)

t
= 2 lim

t↗+∞
W ′(t)W (t) =

1

12
.651

From this it is easy to obtain652

lim
r↗+∞

u(r)

r3(log r)1/2
= lim

t↗+∞

W (t)√
t

=
1√
12

.653

The present proof is complete. □654
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3.2.3. Proof of Proposition 3.1(IIc). We need a few steps to prove this part. First, we need655

a lemma which essentially says that W is bounded.656

Lemma 3.8. Let W (t) be solution of (3.6). Then, the following assertions hold.657

(i) It cannot happen that W (t) ↗ +∞ as t ↗ +∞.658

(ii) If the limit limt↗+∞ W (t) = L exists, then659

L = (−K0)
−1/(q+1).660

Proof. For 1/2 < q < 1, we have λ1 > 0 and λi < 0 for 2 ≤ i ≤ 6. Recall that661

λ1 = 2(2q − 1)/(q + 1), which implies that e−λ1tW (t) = u(r)/r4 = o(1) at infinity.662

Suppose that limt↗+∞ W (t) = +∞. By multiplying both side of (3.7) by e−λ1t and663

sending t ↗ +∞ in the resulting equation, we obtain664

α1 = d1

∫ +∞

t0

e−λ1sW−qds.665

Hence, it is not hard to verify that666

W (t) = d1

∫ +∞

t

eλ1(t−s)W−qds+

6∑
i=2

(
αie

λit − di

∫ t

t0

eλi(t−s)W−qds
)
.667

Using the l’Hôpital rule, we can easily check that W (t) → 0 as t ↗ +∞, which contra-668

dicts the assumption limt↗+∞ W (t) = +∞. Therefore, W (t) cannot diverge to +∞ as669

t ↗ +∞. This establishes part (i).670

We now prove part (ii). Assume that the limit limt↗+∞ W (t) = L exists with L ̸=671

(−K0)
−1/(q+1). Then672

α := lim
t↗+∞

(
−K0W (t)−W−q(t)

)
̸= 0.673

Therefore, there exist two constants M,T > 0 such that either674

−K0W (t)−W−q(t) < −M for all t ≥ T675

if α < 0 or676

−K0W (t)−W−q(t) > M for all t ≥ T677

if α > 0. Putting678

δ = sup
t≥T

|W (t)−W (T )| < +∞.679

Upon using the relation680 (
W (5) +

5∑
i=2

KiW
(i−1) +K1W

)′
= −K0W −W−q

681

we obtain682

W (5) +

5∑
i=2

KiW
(i−1) < −M(t− T ) + |K1|δ + C for all t ≥ T683

if α < 0 and684

W (5) +

5∑
i=2

KiW
(i−1) > M(t− T )− |K1|δ + C for all t ≥ T685

if α > 0. Here C = C(T ) is a constant containing all the terms W (i)(T ) with 1 ≤ i ≤ 5.686

Repeating the above process, we get687

W (t) ≤ −M

6!
(t− T )6 +O(t5)688
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if α < 0 and689

W (t) ≥ M

6!
(t− T )6 +O(t5)690

if α > 0. This contradicts to our assumption that L is finite. Hence, there holds L =691

(−K0)
−1/(q+1) as claimed. □692

Next, we rule out the case W (t) approaching zero, which is important because our693

equation (3.6) involves a negative exponent.694

Lemma 3.9. Let W (t) be a solution to (3.6). Then,695

lim inf
t↗+∞

W (t) > 0.696

Proof. We adopt the method used in [DFG10]. However, there is some improvement due697

to the fact that solutions to (1.1) only enjoys the partially super polyharmonic property, see698

Lemma 2.2. First we observe from Lemma 3.8(ii) and the inequality W (t) > 0 that699

lim sup
t↗+∞

W (t) > 0.700

Suppose by contradiction that lim inft↗+∞ W (t) = 0. Then, there is a sequence (tk)k701

such that tk ↗ +∞, tk+1 ≥ tk + 1, W (tk) → 0, W ′(tk) = 0, and W ′′(tk) ≥ 0. Put702

Rk = etk and define703

Uk(r) =
u(Rk+1r)

W (tk+1)R
−m
k+1

.704

Keep in mind that m = −6/(q + 1). Then Uk satisfies705 
(−∆)3Uk = W (tk+1)

−q−1U−q
k ,

Uk(1) = 1,

Uk

( Rk

Rk+1

)
=

u(Rk)

u(Rk+1)
.

(3.8)706

Since u′(r) > 0 and Rk+1 > Rk, we conclude that Uk(Rk/Rk+1) < 1. Besides, as707

∆2Uk(r) =
Rm+4

k+1

W (tk+1)
(∆2u)(Rk+1r), ∆Uk(r) =

Rm+2
k+1

W (tk+1)
(∆u)(Rk+1r)708

and with help of Lemma 2.6, we deduce that709

∆Uk(1) =
Rm+2

k+1

W (tk+1)
(∆u)(Rk+1) ≥ 0,

∆2Uk(1) =
Rm+4

k+1

W (tk+1)
(∆2u)(Rk+1) ≥ 0,

∆Uk

( Rk

Rk+1

)
=

Rm+2
k+1

W (tk+1)
(∆u)(Rk) ≥ 0,

∆2Uk

( Rk

Rk+1

)
=

Rm+4
k+1

W (tk+1)
(∆2u)(Rk) ≥ 0,

710

for large k. Putting711

Dk = B1(0) \BRk/Rk+1
(0), D = B1/2(0) \B1/e(0).712

Since Rk/Rk+1 < 1/e, D is a proper subset of Dk for all k. Let λ be the first eigenvalue713

of the operator −∆ with the zero Dirichlet boundary condition in the annulus D and let714

φ > 0 be its associated eigenfunction, that is,715 {−∆φ = λφ in D,

φ = 0 on ∂D.
716
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Since φ is smooth up to the boundary ∂D and D ⊂ Dk, we extend φ smoothly to the717

whole Dk by setting φ ≡ 0 in Dk \D. Then we know that718

(−∆)2φ = λ2φ, (−∆)3φ = λ3φ in D719

and720

φ = ∆φ = ∆2φ = 0, ∂nφ = ∂n∆φ = ∂n∆
2φ = 0 on Dk \D.721

Multiplying both side of (3.8) by φ and integrating the resulting equation by parts to get722

W (tk+1)
−q−1

∫
Dk

U−q
k φdx =−

∫
Dk

φ∆3Ukdx723

=−
∫
Dk

Uk∆
3φdx−

∫
∂Dk

[
φ
∂∆2Uk

∂n
−∆2Uk

∂φ

∂n

]
724

−
∫
∂Dk

[
∆φ

∂∆Uk

∂n
−∆Uk

∂∆φ

∂n

]
725

−
∫
∂Dk

[
∆2φ

∂Uk

∂n
− Uk

∂∆2φ

∂n

]
726

=λ3

∫
Dk

Ukφdx.727

728

Thanks to Uk ∈ (0, 1) and q > 0, we get Uk ≤ U−q
k . Consequently,

∫
D
U−q
k φdx ≥729 ∫

D
Ukφdx. Therefore,730

W (tk+1)
−q−1 ≤ λ3

731

for all k. This contradicts to our contradiction assumption that W (tk+1) → 0 as k ↗ +∞.732

Thus, lim inft↗+∞ W (t) > 0 as claimed. □733

Lemma 3.10. There holds734

lim
t↗+∞

W (t) = (−K0)
−1/(q+1).735

Proof. Our proof consists of two parts. First we prove that W (t) is bounded on [0,+∞).736

For q ∈ (1/2, 1), we observe that λ1 > 0 and that λj < 0 for 2 ≤ j ≤ 6. Set737 {
v1(t) = (∂ − λ1)W (t),

vj(t) = (∂ − λj)vj−1(t), 2 ≤ j ≤ 5.
(3.9)738

Then (3.6) becomes (∂ − λ6)v5(t) = −W−q(t) which implies739

v5(t) = eλ6tv5(0) +

∫ t

0

eλ6(t−s)(−W−q(s))ds. (3.10)740

By Lemma 3.9, W−q(t) is bounded on [0,+∞). Combining this property with λ6 < 0,741

we easily see that v5(t) is bounded on [0,+∞). Repeating the above argument we deduce742

that the functions vi for 1 ≤ i ≤ 4 are also bounded on [0,+∞). Now integrating the743

differential equation of W in the system (3.9) we obtain744

W (t) = eλ1t
[
W (0) +

∫ t

0

e−λ1sv1(s)ds
]
.745

On the other hand, as in the first paragraph of the proof of Lemma 3.8, we deduce that746

W (t) = o(eλ1t) at infinity. This leads us to747

W (0) = −
∫ +∞

0

e−λ1sv1(s)ds.748

In other words, there holds749

W (t) = −eλ1t

∫ +∞

t

e−λ1sv1(s)ds, (3.11)750
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which immediately implies that W (t) is bounded on [0,+∞). Next we prove that W (t)751

has limit at infinity. Indeed, the boundedness of W (t) allows us to set752

lim inf
t→+∞

W (t) = B, lim sup
t→+∞

W (t) = A,753

which are positive and finite. From this, given ε > 0, we exists some T ≫ 1 such that754

B − ε < W (t) < A+ ε755

for all t ≥ T . Similar to (3.10), we use the equation for v5 in (3.10) to get756

v5(t) = eλ6(t−T )v5(T ) +

∫ t

T

eλ6(t−s)(−W−q(s))ds,757

which implies that758

−(B + ε)−q 1− eλ6(t−T )

−λ6
≤ v5(t)− v5(T )e

λ6(t−T ) ≤ −(A+ ε)−q 1− eλ6(t−T )

−λ6
759

for all t ≥ T . First appropriately sending t to infinity then sending ε down to zero, we760

deduce that761

−B−q

−λ6
≤ lim inf

t→+∞
v5(t) ≤ lim sup

t→+∞
v5(t) ≤

−A−q

−λ6
.762

Repeating this process for the functions v5−i with 1 ≤ i ≤ 4, we eventually obtain763

−B−q

−
∏6

j=2 λj

≤ lim inf
t→+∞

v1(t) ≤ lim sup
t→+∞

v1(t) ≤
−A−q

−
∏6

j=2 λj

.764

We now use (3.11) to deduce that765

−B−q

−
∏6

j=1 λj

≤ lim inf
t→+∞

(−W (t)) ≤ lim sup
t→+∞

(−W (t)) ≤ −A−q

−
∏6

j=1 λj

.766

Keep in mind that
∏6

j=1 λj = K0 < 0. Hence767

−B−q

−K0
≤ −A ≤ −B ≤ −A−q

−K0
.768

From the above inequalities we obtain A = B = (−K0)
−1/(q+1). This completes the769

present proof. □770

Clearly, Theorem 1.1 follows from Propositions 2.5 and 3.1 above. Hence we omit its771

proof.772

4. AN AUTONOMOUS 6-DIMENSIONAL SYSTEM773

To study the asymptotic behavior of (2.1), we follow the ideas in [HV96]. First, by the774

Emden–Fowler transformation we set775

x1(t) =
ru′(r)

u(r)
, x2(t) =

rv′(r)

v(r)
, x3(t) =

rw′(r)

w(r)
,

x4(t) =
r2v(r)

u(r)
, x5(t) =

r2w(r)

v(r)
, x6(t) =

r2u−q(r)

w(r)
,

776
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with t = log r. Clearly, the system (2.1) is transformed into a 6-dimensional system of the777

form778 

x′
1 = x1(−1− x1) + x4,

x′
2 = x2(−1− x2) + x5,

x′
3 = x3(−1− x3)− x6,

x′
4 = x4(2− x1 + x2),

x′
5 = x5(2− x2 + x3),

x′
6 = x6(2− qx1 − x3),

(4.1)779

where we denote ′ = d/dt. The linearization of (4.1) at the point (x1, x2, x3, x4, x5, x6) is780

given by the following matrix781 
−1− 2x1 0 0 1 0 0

0 −1− 2x2 0 0 1 0
0 0 −1− 2x3 0 0 −1

−x4 x4 0 2− x1 + x2 0 0
0 −x5 x5 0 2− x2 + x3 0

−qx6 0 −x6 0 0 2− qx1 − x3

 .782

The following proposition is the main result of this section.783

Proposition 4.1. Let784

℘ = lim
r↗+∞

w(r).785

Suppose that r2u−q(r) → 0 as r ↗ +∞. Then we have the following identities786

1

x1
=

u(r)

ru′(r)
=

u(0)

r−1
∫ r

0
s2v(s)ds

+
r
∫ r

0
sv(s)ds∫ r

0
s2v(s)ds

− 1, (4.2)787

1

x2
=

v(r)

rv′(r)
=

v(0)

r−1
∫ r

0
s2w(s)ds

+
r
∫ r

0
sw(s)ds∫ r

0
s2w(s)ds

− 1, (4.3)788

1

x3
=

w(r)

rw′(r)
= − ℘r∫ r

0
s2u−qds

−
r
∫ +∞
r

su−qds∫ r

0
s2u−qds

− 1, (4.4)789

1

x4
=

u(r)

r2v(r)
=

u(0)

r2v(r)
− 1

r3v(r)

∫ r

0

s2v(s)ds+
1

r2v(r)

∫ r

0

sv(s)ds, (4.5)790

791

and792

1

x5
=

v(r)

r2w(r)
=

v(0)

r2w(r)
− 1

r3w(r)

∫ r

0

s2w(s)ds+
1

r2w(r)

∫ r

0

sw(s)ds. (4.6)793

794

Proof. In view of (3.4) and the fact that r2u−q(r) → 0 as r ↗ +∞, after sending r ↗795

+∞, we obtain796

w(0) = ℘+

∫ +∞

0

su−qds < +∞,797

which implies that798

w(r) = ℘+
1

r

∫ r

0

s2u−qds+

∫ +∞

r

su−qds.799

Now an easy computation shows thatw(r)/(rw′(r)) has the representation provided by800

(4.4). To obtain (4.6), we observe from ∆v = w that801

v(r) = v(0)− 1

r

∫ r

0

s2w(s)ds+

∫ r

0

sw(s)ds.802
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From this, it is not hard to realize (4.6). To obtain (4.3), we combine the representation for803

v and804

v′(r) =
1

r2

∫ r

0

s2w(s)ds.805

Finally, (4.5) can be obtained through806

u(r) = u(0)− 1

r

∫ r

0

s2v(s)ds+

∫ r

0

sv(s)ds,807

while (4.2) follows from the preceding identity and808

u′(r) =
1

r2

∫ r

0

s2v(s)ds.809

The proof is complete. □810

In view of Proposition 2.11, we shall easily see that if β > β⋆ then the radial solution811

u = Uβ to the ODE (2.10) grows at least quartically at infinity. Therefore, in view of812

Proposition 2.5, we must consider u = Uβ⋆ in proof of Theorem 1.2(a, b, c).813

5. EXISTENCE OF RADIAL SOLUTIONS OF CUBIC GROWTH AT INFINITY: PROOF OF814

THEOREMS 1.2(A) AND 1.3815

This section is devoted to a proof of the existence of radial solutions to (1.1) having a816

prescribed cubic growth at infinity. Following the last paragraph in the previous section,817

we examine the entire radial solution u = Uβ∗ to the ODE (2.10) as a candidate.818

5.1. Asymptotic behavior of the transformed system (4.1). In the first part of the proof,819

we study the asymptotic behavior of solution (x1, x2, x3, x4, x5, x6) to (4.1) at infinity.820

For clarity, we divide our proof into several claims as follows. First, because821

℘ = lim
r↗+∞

∆2Uβ⋆ = 0,822

(4.4) becomes823

w(r)

rw′(r)
= −

r
∫ +∞
r

su−qds∫ r

0
s2u−qds

− 1.824

First, we study x3 and x6. We establish the following:825

Claim 1. There holds w(r)/(rw′(r)) → −1 and (r2u−q)/w(r) → 0 as r ↗ +∞. In826

other words, x3(t) → −1 and x6(t) → 0 as t ↗ +∞.827

Proof of Claim 1. Since q > 1 we apply the l’Hôpital rule to get828

lim
r↗+∞

r

∫ +∞

r

su−qds = lim
r↗+∞

r3u−q = 0829

This helps us to conclude that w(r)/(rw′(r)) → −1 as r ↗ +∞. Thus, we obtain830

lim
r↗+∞

r2u−q

w(r)
= lim

r↗+∞
− r2u−q

rw′(r)
= lim

r↗+∞

r3u−q∫ r

0
s2u−qds

= 0.831

The proof of Claim 1 is complete. □832

Next we study x2 and x5. We prove the following:833

Claim 2. There holds v(r)/(r2w(r)) → 1/2 and v(r)/(rv′(r)) → 1 as r ↗ +∞. In834

other words, x5(t) → 2 and x2(t) → 1 as t ↗ +∞.835
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Proof of Claim 2. Recall r2w(r) = r
∫ r

0
s2u−qds + r2

∫ +∞
r

su−qds which implies that836

r2w(r) ↗ +∞ as r ↗ +∞. Therefore, by the l’Hôpital rule, we obtain837

lim
r↗+∞

1

r3w(r)

∫ r

0

s2w(s)ds = lim
r↗+∞

1

3 + rw′(r)/w(r)
=

1

2
838

and839

lim
r↗+∞

1

r2w(r)

∫ r

0

sw(s)ds = lim
r↗+∞

1

2 + rw′(r)/w(r)
= 1.840

In view of (4.6), we know that v(r)/(r2w(r)) → 1/2 as r ↗ +∞. On the other hand, we841

use the representation (4.3) to get v(r)/(rv′(r)) → 1 as r ↗ +∞. The claim follows. □842

Finally we study x1 and x4. We show the following:843

Claim 3. There holds u(r)/(r2v(r)) → 1/12 and u(r)/(ru′(r)) → 1/3 as r ↗ +∞. In844

other words, x4(t) → 12 and x1(t) → 3 as t ↗ +∞.845

Proof of Claim 3. From v(r)/(r2w(r)) → 1/2 and r2w(r) ↗ +∞ as r ↗ +∞, we846

obtain v(r) ↗ +∞ as r ↗ +∞. Therefore, by the l’Hôpital rule, we get847

lim
r↗+∞

1

r3v(r)

∫ r

0

s2v(s)ds = lim
r↗+∞

1

3 + rv′(r)/v(r)
=

1

4
848

and849

lim
r↗+∞

1

r2v(r)

∫ r

0

sv(s)ds = lim
r↗+∞

1

2 + rv′(r)/v(r)
=

1

3
.850

Again by (4.5), we have v(r)/(r2w(r)) → 1/12 as r ↗ +∞. On the other hand, it851

follows from (4.2) that u(r)/(ru′(r)) → 1/3 as r ↗ +∞. □852

From Claims 1, 2, and 3 above we see that the solution (x1, x2, x3, x4, x5, x6) corre-853

sponding to the radially symmetric solution u is attracted to the fixed point854

p3 := (3, 1,−1, 12, 2, 0)855

at infinity. Therefore, the asymptotic behavior is obtained by analyzing the asymptotic856

behavior of solutions about fixed point p3 of the system (4.1). At p3, the linearized matrix857

is858 
−7 0 0 1 0 0
0 −3 0 0 1 0
0 0 1 0 0 −1

−12 12 0 0 0 0
0 −2 2 0 0 0
0 0 0 0 0 3− 3q

859

which has the following eigenvalues λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4, λ5 = 3−3q,860

and λ6 = 1. Since these eigenvalues are non-zero whenever q > 1, we conclude that there861

exists a constant cq ̸= 0 such that the following asymptotic behavior occurs: For q > 4/3862

ru′(r)

u(r)
= 3 + cqe

−t + o(e−t)t↗+∞ (5.1)863

while for q = 4/3864

ru′(r)

u(r)
= 3 + cqte

−t + o(te−t)t↗+∞ (5.2)865

due to λ1 = λ5, and for 1 < q < 4/3866

ru′(r)

u(r)
= 3 + cqe

−(3q−3)t + o(e−(3q−3)t)t↗+∞. (5.3)867
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5.2. Proof of Theorem 1.2(a). Put h(t) = log u(r) with r = et. Then we obtain h′(t) =868

(ru′(r))/u(r). Integrating both sides of (5.1), (5.2), and (5.3) gives869

u(r)

r3
=



u(1) exp

∫ t

0

(
cqe

−s + o(e−s)
)
ds if q > 4/3

u(1) exp

∫ t

0

(
cqse

−s + o(se−s)
)
ds if q = 4/3

u(1) exp

∫ t

0

(
cqe

−(3q−3)s + o(e−(3q−3)s)
)
ds if 1 < q < 4/3.

870

From this, it is easy to see that the following limit lim|x|↗+∞ u(x)/|x|3 = κ exists for871

some κ > 0. Given ϖ > 0, we scale the function u found in the preceding step as follows872

ω(r) =
(ϖ
κ

) 2
1−q

u
((ϖ

κ

) q+1
3q−3 r

)
.873

It is not hard to see that ω is also a solution of (1.1) and lim|x|↗+∞ ω(x)/|x|3 = ϖ. The874

proof is complete.875

5.3. Proof of Theorem 1.3. Using the presentation (3.5), it is not hard to verify that876

u(r) ≈ r3. To be more precise, we get877

κ = lim
r↗+∞

u(r)

r3
=

1

24

∫ +∞

0

s2u(s)−qds.878

Therefore,879

u(r)− κr3 =u(0) +
∆u(0)

6
r2 − r3

24

∫ +∞

r

s2u(s)−qds+
r4

120

∫ +∞

r

su(s)−qds

− r2

12

∫ r

0

s3u(s)−qds− 1

24

∫ r

0

s5u(s)−qds

+
r

12

∫ r

0

s4u(s)−qds+
1

120r

∫ r

0

s6u(s)−qds.

(5.4)880

Keep in mind that q > 1 and u has cubic growth at infinity. To prove the theorem, we make881

use of (5.1)–(5.3) plus the l’Hôpital rule to conclude the theorem. Indeed, when q > 4/3,882

there holds883

lim
r↗+∞

u(r)− κr3

r2
=

∆u(0)

6
− 1

12

∫ +∞

0

s3u(s)−qds884

due to the contribution of the second term and the third integral in (5.4). When q = 4/3,885

lim
r↗+∞

u(r)− κr3

r2 log r
= − 1

12κ4/3
886

due to the contribution of the third integral in (5.4) while in the case 1 < q < 4/3, we887

obtain888

lim
r↗+∞

u(r)− κr3

r6−3q
= χ889

due to the contribution of all six integrals in (5.4). (Here the constant χ is given in (1.7).)890

So, Theorem 1.3 is proved.891

6. EXISTENCE OF RADIAL SOLUTIONS OF GROWTH BETWEEN CUBIC AND QUARTIC892

AT INFINITY: PROOF OF THEOREM 1.2(B,C)893

This section is devoted to a proof of the existence of radial solutions to (1.1) having a894

prescribed growth between cubic and quartic at infinity. Following the last paragraph in895

the previous section, we examine the entire radial solution u = Uβ∗ to the ODE (2.10) as896

a candidate.897
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Indeed, in view of Proposition 2.11(c), the radial solution u satisfies ∆2u(r) ↘ 0 as898

r ↗ +∞. Therefore, we can apply Proposition 3.1(II) to get u(r) ≈ r3
√
log r at infinity899

when q = 1 while u(r) ≈ r6/(1+q) at infinity when 1/2 < q < 1. In fact, we can say900

more. This is because by Lemma 3.7 there holds901

lim
r↗+∞

u(r)

r3(log r)1/2
=

1√
12

902

when q = 1 and by Lemma 3.10 we know that903

lim
t↗+∞

W (t) = (−K0)
−1/(1+q)

904

when 1/2 < q < 1. The proof of Theorem 1.2(b,c) is complete.905

7. EXISTENCE OF RADIAL SOLUTIONS OF QUARTIC GROWTH AT INFINITY: PROOF OF906

THEOREM 1.2(D) AND 1.4907

In view of Proposition 3.1(II), we have to consider q in the whole range, that is, q > 1/2.908

In this section, we are interested in radial solutions of quartic growth at infinity. Let β > β⋆909

be arbitrary but fixed. Consider the solution u = Uβ to the ODE (2.10), which immediately910

yields that911

℘ := lim
r↗+∞

∆2u(r) > 0.912

Therefore, u grows at least quartically at infinity and limr↗+∞ r2u−q = 0. Then, (4.4)913

becomes914

w(r)

rw′(r)
= − γr∫ r

0
s2u−qds

−
r
∫ +∞
r

su−qds∫ r

0
s2u−qds

− 1.915

Now we study the asymptotic behavior of the point (x1, x2, x3, x4, x5, x6) at infinity As916

always, we split our proof into several steps.917

Claim 4. There holds w(r)/(rw′(r)) → −∞ and w(r)/(r2u−q) ↗ +∞ as r ↗ +∞. In918

other words, x3(t) → 0 and x6(t) → 0 as t ↗ +∞.919

Proof of Claim 4. We observe that if
∫ +∞
0

s2u−qds converges, then w(r)/(rw′(r)) →920

−∞ as r ↗ +∞. Otherwise, we should have921

lim
r↗+∞

γr∫ r

0
s2u−qds

= lim
r↗+∞

γ

r2u−q
= +∞.922

Hence w(r)/(rw′(r)) → −∞ as r ↗ +∞. On the other hand, we also have923

w(r)

r2u−q
=

γ

r2u−q
+

1

r2u−q

∫ +∞

r

su−qds+
1

r3u−q

∫ r

0

s2u−qds.924

Therefore, w(r)/(r2u−q) ↗ +∞ as r ↗ +∞. □925

By the same arguments as in the proof of Claims 2, 3 in the previous section, we easily926

obtain the following claims.927

Claim 5. There holds v(r)/(r2w(r)) → 1/6 and v(r)/(rv′(r)) → 1/2 as r ↗ +∞. In928

other words, x5(t) → 6 and x2(t) → 2 as t ↗ +∞.929

Claim 6. There holds u(r)/(r2v(r)) → 1/20 and u(r)/(ru′(r)) → 1/4 as r ↗ +∞. In930

other words, x4(t) → 20 and x1(t) → 4 as t ↗ +∞.931

From Claims 4, 5, and 6 above we know that the solution (x1, x2, x3, x4, x5, x6) corre-932

sponding to the radially symmetric solution u is attracted to the fixed point933

p4 := (4, 2, 0, 20, 6, 0)934
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at infinity. Therefore, the asymptotic behavior is obtained by analyzing the asymptotic935

behavior of solutions about fixed point p4 of the system (4.1). At p4, the linearized matrix936

is937 
−9 0 0 1 0 0
0 −5 0 0 1 0
0 0 −1 0 0 −1

−20 20 0 0 0 0
0 −6 6 0 0 0
0 0 0 0 0 2− 4q

938

which has the following eigenvalues λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4, λ5 = −5,939

and λ6 = 2− 4q. So, these eigenvalues are non-zero whenever q > 1/2.940

7.1. Proof of Theorem 1.2(d). Simply repeating the argument used in Section 5, the fol-941

lowing limit lim|x|↗+∞ u(x)/|x|4 = κ exists for some κ > 0. Given ϖ > 0, we scale the942

function u found in the previous step as follows943

ω(r) =
(ϖ
κ

) 3
1−2q

u
((ϖ

κ

) q+1
4q−2 r

)
.944

Then, ω is also a solution of (1.1) with lim|x|↗+∞ ω(x)/|x|4 = ϖ. The proof is complete.945

7.2. Proof of Theorem 1.4. Thanks to (3.5), we have946

u(r) =u(0) +
∆u(0)

6
r2 +

℘

120
r4

+
r4

120

∫ +∞

r

su(s)−qds− r2

12

∫ r

0

s3u(s)−qds− 1

24

∫ r

0

s5u(s)−qds

+
r3

24

∫ r

0

s2u(s)−qds+
r

12

∫ r

0

s4u(s)−qds+
1

120r

∫ r

0

s6u(s)−qds

947

in R3 where948

℘ = (∆2u)(0)−
∫ +∞

0

su(s)−qds,949

which is finite since q > 1/2 and u is of exactly quartic growth at infinity by our assump-950

tion. From the presentation above, we get951

κ = lim
r↗+∞

u(r)

r4
=

℘

120
.952

Therefore,953

u(r)− κr4 =u(0) +
∆u(0)

6
r2 +

r4

120

∫ +∞

r

su(s)−qds− r2

12

∫ r

0

s3u(s)−qds

− 1

24

∫ r

0

s5u(s)−qds+
r3

24

∫ r

0

s2u(s)−qds

+
r

12

∫ r

0

s4u(s)−qds+
1

120r

∫ r

0

s6u(s)−qds

(7.1)954

The next, we use the l’Hôpital rule to conclude the theorem. Indeed, when q > 3/4, there955

holds956

lim
r↗+∞

u(r)− κr4

r3
=

1

24

∫ +∞

0

s2u(s)−qds957

due to the contribution of the fourth integral in (7.1). When q = 3/4 we have958

lim
r↗+∞

u(r)− κr4

r3 log r
=

1

24κ3/4
959
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due to the contribution of the fourth integral in (7.1) while in the case 1/2 < q < 3/4 we960

obtain961

lim
r↗+∞

u(r)− κr4

r6−4q
= χ962

due to the contribution of all six integrals in (7.1). (Here the constant χ is given in (1.8).)963

So, Theorem 1.4 is proved.964

8. EXISTENCE OF NON-RADIAL SOLUTIONS TO (1.1): PROOF OF THEOREM 1.5965

This section is devoted to proof of Theorem 1.5. As mentioned in Introduction, we966

adopt the method used in [HW19], see also [Alb21], namely, we look for a non-radial967

solution to (1.1) of the form u = v + P0 where P0 ≥ 1 is a polynomial of degree 4. Note968

that u = v + P0 satisfies (1.1) if, and only if, v satisfies v + P0 > 0 and969

∆3v = −(v + P0)
−q in R3 .970

Note that in R3 the fundamental solution of the triharmonic equation ∆3w = 0 is nothing971

but −|x|3/(96π). Hence, it suffices to find v solving the following integral equation972

v(x) =
1

96π

∫
R3

|x− y|3(
P0(y) + v(y)

)q dy in R3,973

namely, our desired solution to (1.1) satisfies974

u(x) =
1

96π

∫
R3

|x− y|3u(y)−qdy + P0(x) in R3;975

see Lemma 8.2 below. Compared with the work [HW19], our analysis is more involved976

because our polynomial P0 has higher order and the kernel of the above inequality equation977

is |x|3. To look for solutions to the above integral equation, we shall make use of the978

Schaefer Fixed Point Theorem. Let979

Xev = {v ∈ C0(R3) : v(x) = v(−x)}.980
981

Then, the space Xev, endowed with the norm ∥ · ∥ given by982

∥v∥ := sup
x∈R3

|v(x)|
1 + |x|3

,983

is a well-defined Banach space. At the first glance, it is not clear why we need the the sym-984

metry in the definition of Xev. We shall soon see this in the proof of following proposition.985

We start with the following crucial result.986

Proposition 8.1. Let q > 0 and P be a smooth function on R3 such that P (x) ≥ 1 and987

P (x) = P (−x) for any x, and988 ∫
R3

|y|3

P (y)q
dy < +∞. (8.1)989

Then there exists some function v ∈ Xev satisfying minR3 v = v(0) = 0 and990

v(x) =
1

96π

∫
R3

|x− y|3 − |y|3(
P (y) + v(y)

)q dy in R3 . (8.2)991

Moreover, there holds992

lim
|x|↗+∞

v(x)

|x|3
=

1

96π

∫
R3

dy(
P (y) + v(y)

)q . (8.3)993
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Proof. We start our proof by observing994 ∣∣|x− y|3 − |y|3
∣∣ = ∣∣|x− y| − |y|

∣∣(|x− y|2 + |x− y||y|+ |y|2)
≤ |x|(3|x|2 + |x||y|+ 3|y|2).

(8.4)995

This and the integrability condition (8.1) tells us that the function v̂ defined by996

v̂(x) =
1

96π

∫
R3

|x− y|3 − |y|3(
P (y) + |v(y)|

)q dy997

is well-defined everywhere in R3. Besides, if v ∈ C0(R3), then v̂ is of class C5(R3).998

In addition, thanks to the symmetry P (x) = P (−x) in R3 we can also conclude that if999

v(x) = v(−x), then v̂(x) = v̂(−x) everywhere. This allows us to define the following1000

operator1001

T : Xev → Xev,1002

v 7→ v̂.1003
1004

Our aim is to show that T has a fixed point in Xev. First we show that T is well-defined.1005

To see this, it remains to verify ∥v̂∥ < +∞. Thanks to (8.4), we can estimate1006

|v̂(x)| ≤ 3|x|3

96π

∫
R3

dy

P (y)q
+

|x|2

96π

∫
R3

|y|dy
P (y)q

+
3|x|
96π

∫
R3

|y|2dy
P (y))q

.1007

Under the integrability (8.1) we deduce that the above three integrals are finite. Hence1008

there is some C > 0 such that1009

|v̂(x)| ≤ C(|x|3 + |x|2 + |x|),1010

which is enough to guarantee |v̂(x)| ≤ 3C(1 + |x|3), namely ∥v̂∥ < +∞. Differentiating1011

under the integral sign gives1012

|∇v̂(x)| ≤ 1

32π

∫
R3

|x− y|2(
P (y) + |v(y)|

)q dy in R3 .1013

Now we show that T is continuous. Indeed, let (vk)k ⊂ Xev be such that vk → v in1014

(Xev, ∥ · ∥). In particular, vk → v in R3 in the pointwise sense. Thanks to (8.4) we can1015

argue as before to obtain1016

∥vk − v∥ ≤ C

∫
R3

(3 + |y|+ 3|y|2)
∣∣∣ 1(
P (y) + |vk(y)|

)q − 1(
P (y) + |v(y)|

)q ∣∣∣dy1017

for some C > 0. Hence, to conclude the continuity of T , it suffices to show that the right1018

hand side of the preceding inequality goes to zero as k ↗ +∞. But this simply follows1019

from dominated convergence, thanks to the integrability condition (8.1).1020

Now we show that T is compact. Let (vk)k ⊂ Xev be an arbitrary sequence, we must1021

show that (T (vk))k has a convergent subsequence. The idea is to use the Arzelà–Ascoli1022

Theorem on the sequence (Tk)k with1023

Tk :=
T (vk)

1 + |x|3
.1024

First by the above estimate we deduce that the sequence (Tk)k is uniformly bounded. Now,1025

for any x, y, z ∈ R3 and similar to (8.4) we observe that1026 ∣∣|x− z|3 − |y− z|3
∣∣ ≤ |x− y|(|x− z|+ |y− z|)2 ≤ 4(|x|2 + |y|2 +2|z|2)|x− y| (8.5)1027

and that1028 ∣∣|x− z||y| − |y − z||x|
∣∣ ≤ (2|x|+ 2|y|+ |z|)|x− y|1029
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we deduce that1030 ∣∣∣ |x− z|3

1 + |x|3
− |y − z|3

1 + |y|3
∣∣∣ ≤ ∣∣|x− z|3 − |y − z|3

∣∣
(1 + |x|3)(1 + |y|3)

+

∣∣|x− z|3|y|3 − |y − z|3|x|3
∣∣

(1 + |x|3)(1 + |y|3)
1031

≤ 4(|x|2 + |y|2 + 2|z|2)
(1 + |x|3)(1 + |y|3)

|x− y|1032

+
(2|x|+ 2|y|+ |z|)(|x− z||y|+ |y − z||x|)2

(1 + |x|3)(1 + |y|3)
|x− y|1033

≤ C(1 + |z|+ |z|2 + |z|3)|x− y|1034
1035

for some C > 0. This tells us that1036 ∣∣∣T (vk)(x)
1 + |x|3

− T (vk)(y)

1 + |y|3
∣∣∣ ≤ 1

96π

∫
R3

∣∣∣ |x− z|3

1 + |x|3
− |y − z|3

1 + |y|3
∣∣∣ 1(
P (z) + |v(z)|

)q dz1037

≤ C

96π

(∫
R3

1 + |z|+ |z|2 + |z|3(
P (z) + |v(z)|

)q dz
)
|x− y|1038

1039

for any x, y ∈ R3 and any k. Hence, the sequence (Tk)k is equicontinuous. By the Arzelà–1040

Ascoli Theorem, the sequence (Tk)k admits a subsequence which converges uniformly.1041

Thus, the sequence (T (vk))k admits a converging subsequence in (Xev, ∥·∥) and therefore1042

T is a compact operator.1043

Next, we prove that T has a fixed point by means of the Schaefer Fixed Point Theorem,1044

see [GT98, Theorem 11.6]. Let v ∈ Xev be such that1045

v = tT (v) for some t ∈ [0, 1],1046

namely1047

v(x) =
t

96π

∫
R3

|x− y|3 − |y|3(
P (y) + |v(y)|

)q dy in R3 .1048

Then by following the argument for v̂ we should arrive at1049

|v(x)| ≤ 1

96π

∫
R3

∣∣|x− y|3 − |y|3
∣∣(

P (y) + |v(y)|
)q dy ≤ C(1 + |x|3)1050

for some C > 0 independent of v. Consequently, ∥v∥ ≤ C. This means that the set1051

{v ∈ X : v = tT (v) for some t ∈ [0, 1]}1052

is bounded in (Xev, ∥ · ∥). Thus, T has a fixed point in Xev, still denoted by v.1053

Next, we verify minR3 v = v(0) = 0. As v(0) = 0 is trivial, it suffices to show v ≥ 0.1054

Indeed, by the symmetry of v we have1055

2v(x) = v(x) + v(−x) =
1

96π

∫
R3

|x− y|3 + |x+ y|3 − 2|y|3(
P (y) + |v(y)|

)q dy.1056

By the Jensen inequality we know that1057

|x− y|3 + |x+ y|3 ≥ 1

4
(|x− y|+ |x+ y|)3 ≥ 2|y|3.1058

Putting the above two facts together we arrive at v ≥ 0. This also implies (8.2).1059

Let us now verify the limit (8.3). Clearly the integral on the right hand side of (8.3)1060

converges and1061

lim
|x|↗+∞

v(x)

|x|3
=

1

96π
lim

|x|↗+∞

∫
R3

|x− y|3 − |y|3

|x|3
dy(

P (y) + |v(y)|
)q .1062

Under the integrability condition (8.1), we can apply the Lebesgue dominated convergence1063

to obtain (8.3). □1064
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Proposition 8.1 tells us that there is some continuous function v solving the integral1065

equation (8.2). In fact, we can say more.1066

Lemma 8.2. If v ∈ Xev solves (8.2), then v solves1067

∆3v = −(v + P )−q in R3 .1068

In fact, as P is smooth, v is smooth.1069

Proof. Let v ∈ Xev solve (8.2). In particular, v ∈ C0(R3). Unfortunately, this is not1070

enough because v ∈ C5,α(R3) for any α ∈ (0, 1) by elliptic estimates. However, it is not1071

hard to see that v is actually locally Lipschitz continuous. Indeed, thanks to (8.5) for any1072

x and y in any given compact set we can estimate1073

|v(x)− v(y)| ≤ 1

96π

∫
R3

∣∣|x− z|3 − |y − z|3
∣∣(

P (z) + v(z)
)q dz1074

≤ 1

24π

(∫
R3

|x|2 + |y|2 + 2|z|2(
P (z) + v(z)

)q dz
)
|x− y|.1075

1076

From this and the integrability condition (8.1) we obtain the locally Lipschitz continuity1077

of v. Now it follows from elliptic estimates that v ∈ C6,α(R3) for any α ∈ (0, 1). This1078

is enough to conclude that v solves the desired PDE. Finally, the smoothness of v can be1079

easily obtained, for example, by induction. □1080

We are now in position to prove the result. To do so, we first recall q > 1/2 (instead of1081

q > 0 as in the statement of Proposition 8.1). For any ε > 0 but fixed we let1082

Pε(x) = 1 + 3x4
1 + 4(x4

2 + x4
3) + ε|x|12, x = (x1, x2, x3) ∈ R3 .1083

Clearly, Pε is smooth, Pε ≥ 1 + |x|4, and Pε enjoys the symmetry property Pε(x) =1084

Pε(−x) for any x ∈ R3. Furthermore, it is easy to see that the condition (8.1) with P1085

replaced by Pε is fulfilled. Then, by Proposition 8.1 there is some vε ≥ 0 in Xev solving1086

(8.2), namely1087

vε(x) =
1

96π

∫
R3

|x− y|3 − |y|3(
Pε(y) + vε(y)

)q dy in R3 . (8.6)1088

By Lemma 8.2 we know that vε ∈ C∞(R3). Now we claim that the sequence (vε) is1089

bounded in C9
loc(R

3). Indeed, by differentiating under the integral sign, we obtain from1090

(8.6) the following1091

|Dβvε(x)| ≤ C

∫
R3

1

|x− y|
1(

Pε(y) + vε(y)
)q dy.1092

for some C > 0 and for any multi-index β with |β| = 4. For |x| ≤ 2 we can estimate1093

|Dβvε(x)| ≤ C
(∫

B3

+

∫
R3 \B3

) 1

|x− y|
1(

Pε(y) + vε(y)
)q dy1094

≤ C

∫
B3

dy

|x− y|
+ 3C

∫
R3 \B3

dy

|y|
(
Pε(y) + vε(y)

)q .1095

1096

Keep in mind that q > 1/2 and Pε(x) + vε(x) ≥ |x|4. Hence, the preceding estimate1097

yields a bound of |Dβvε|, which is independent of ε, in the region {x ∈ R3 : |x| ≤ 2}.1098

Let us now consider the region {x ∈ R3 : |x| > 2}. Initially, we decompose the integral1099 ∫
R3 as follows1100

|Dβvε(x)| ≤ C
(∫

{|y|≤ |x|
2 }

+

∫
{ |x|

2 ≤|y|≤2|x|}
+

∫
{|y|≥2|x|}

) 1

|x− y|
1(

Pε(y) + vε(y)
)q dy1101

= C(I1 + I2 + I3).1102
1103
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For the term I1, as |x− y| ≥ |x| − |y| ≥ |x|/2 we can bound1104

I1 ≤ 2

|x|

∫
{|y|≤ |x|

2 }

dy

(1 + |y|4)q
≤ C

|x|

∫
{|y|≤ |x|

2 }

dy

(1 + |y|)4q
.1105

1106

Note that1107 ∫
{|y|≤ |x|

2 }

dy

(1 + |y|)4q
= C

∫ |x|/2

0

r2dr

(1 + r)4q
≤ C

∫ |x|/2

0

dr

(1 + r)4q−2
.1108

1109

Thus we get1110

I1 ≤ C


1

|x|4q−2
if q ̸= 3/4,

log(1 + |x|)
|x|

if q = 3/4.

1111

1112

For the term I2, as Pε(y) + vε(y) ≥ |y|4 ≥ (|x|/2)4 we can bound1113

I2 ≤
( 2

|x|
)4q ∫

{ |x|
2 ≤|y|≤2|x|}

dy

|x− y|
≤ C

|x|4q−2
.1114

1115

Finally, for the term I3 as |x− y| ≥ |y| − |x| ≥ |y|/2 we can estimate as follows1116

I3 ≤ 4

∫
{|y|≥2|x|}

1

|y|
1

(1 + |y|4)q
dy ≤ C

|x|4q−2
.1117

1118

Thus, we have just shown that, for some C > 0, |Dβvε(x)| ≤ C in B2 and1119

|Dβvε(x)| ≤ C


1

|x|4q−2
if q ̸= 3/4,

log(1 + |x|)
|x|

if q = 3/4,

1120

1121

in R3 \B2. As q > 1/2, this also implies that |Dβvε(x)| with |β| = 4 is bounded. In fact,1122

this is true for any β with |β| ≤ 4. Hence, we have just shown that (vε) is bounded in1123

C4
loc(R

3). Using the integral equation (8.6) one can further show that (vε) is bounded in1124

C9
loc(R

3).1125

The boundedness in C9
loc(R

3) allows us to select a convergence subsequence via a1126

diagonal argument, namely for some εk ↘ 0 as k ↗ +∞ we have1127

vεk → v in C6
loc(R

3)1128

for some v ≥ 0 satisfying1129

∆3v = −(P0 + v)−q uniformly in R3,1130

where P0(x) = 1 + x4
1 + 2(x4

2 + x4
3). Indeed, this is standard and goes as follows.1131

By the Arzelà–Ascoli Theorem, there is a subsequence (v
ε
(1)
k

)k of (vε) and a function1132

v(1) ∈ C6(B1) such that1133

v
ε
(1)
k

⇒ v(1), ∆3v
ε
(1)
k

⇒ ∆3v(1) uniformly in B1.1134

Again by the Arzelà–Ascoli Theorem, there is a subsequence (ε
(2)
k )k of (ε

(1)
k )k and a1135

function v(2) ∈ C6(B2) such that1136

v
ε
(2)
k

⇒ v(2), ∆3v
ε
(2)
k

⇒ ∆3v(2) uniformly in B2.1137

It is important to note that v(2) ≡ v(1) in B1. Repeating this process, for each integer i > 11138

we obtain a subsequence (ε
(i)
k )k of (ε(i−1)

k )k and a function v(i) ∈ C6(Bi) such that1139

v
ε
(i)
k

⇒ v(i), ∆3v
ε
(i)
k

⇒ ∆3v(i) uniformly in Bi.1140
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and1141

v(i) ≡ v(i−1) in Bi−1.1142

From this we simply consider the pointwise limit of (v(i))i to get the desired function v1143

and the diagonal sequence (v
ε
(i)
i
)i of (v

ε
(i)
k

)k to get the desired convergence.1144

Hence, by passing to the limit, we conclude that the function u = P0 + v solves our1145

PDE. Moreover, thanks to (8.3) we know that v = o(|x|4) at infinity. Hence1146

lim inf
|x|↗+∞

u(x)

|x|4
= lim inf

|x|↗+∞

P0(x)

|x|4
= 3 < 4 = lim sup

|x|↗+∞

P0(x)

|x|4
= lim sup

|x|↗+∞

u(x)

|x|4
.1147

By the classification of growth in Theorem 1.1 we readily see that u cannot be radially1148

symmetric.1149

Remark 8.3. It can be seen from the above proof that we have chosen Pε precisely which1150

is enough to serve our purpose. However, arguing similarly one can show that given any1151

two constants κ2 > κ1 > 0 there is a solution u > 0 to (1.1) such that1152

lim inf
|x|↗+∞

u(x)

|x|4
= κ1, lim sup

|x|↗+∞

u(x)

|x|4
= κ2,1153

giving a result similar to that in [HW19].1154
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revisited, J. Math. Pures Appl. (9) 163 (2022), pp. 265–298.1209
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