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Abstract. Understanding the role that subgradients play in various second-order variational analysis
constructions can help us uncover new properties of important classes of functions in variational anal-
ysis. Focusing mainly on the behavior of the second subderivative and subgradient proto-derivative of
polyhedral functions, functions with polyhedral epigraphs, we demonstrate that choosing the underlying
subgradient, utilized in the definitions of these concepts, from the relative interior of the subdifferential
of polyhedral functions ensures stronger second-order variational properties such as strict twice epi-
differentiability and strict subgradient proto-differentiability. This allows us to characterize continuous
differentiability of the proximal mapping and twice continuous differentiability of the Moreau envelope
of polyhedral functions. We close the paper with proving the equivalence of metric regularity and strong
metric regularity of a class of generalized equations at their nondegenerate solutions.
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1 Introduction

Second-order variational constructions such as the second subderivative and subgradient proto-
derivative play an important role in parametric optimization and convergence analysis of im-
portant numerical algorithms such as the augmented Lagrangian method [7, 32]. Given an
extended-real-valued function f : IRn → IR := [−∞,∞], these second-order variational con-
structions are defined at a point (x, v) in the graph of the subgradient mapping of f . One may
wonder what impacts the selection of the subgradient v can have in these constructions. Our
main goal in this paper is to study the underlying role that the selection of a subgradient can
play for such constructions. To achieve this goal, we focus mainly on a particular class of convex
functions called polyhedral functions. Recall that a proper function g : IRm → IR is called
polyhedral if its epigraph is a polyhedral convex set. Given z̄ ∈ IRm with g(z̄) finite, consider a
subgradient λ̄ ∈ ∂g(z̄). It is well-known (cf. [33, Proposition 13.9]) that the polyhedral function
g is twice epi-differentiable at z̄ for λ̄, that the subgradient mapping ∂g is proto-differentiable
at z̄ for λ̄, and that its proximal mapping is directionally differentiable at z̄ + λ̄; see Sections 3
and 4 for the definitions of these concepts.

Should we expect further properties if, in addition, we assume that λ̄ ∈ ri ∂g(z̄)? This is the
main question that we are going to investigate for this class of convex functions. Note that such
a relative interior condition has been utilized in several studies related to different numerical
methods, including the partial smoothness [14] and the U-Lagrangian of convex functions [12].
Therefore understanding the role that is played by this condition in second-order variational
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analysis can lead to stronger stability properties for important classes of functions in variational
analysis as demonstrated in Sections 4 and 5.

Following this question, we uncover new second-order variational properties of polyhedral
functions, including strict twice epi-differentiability and strict subgradient proto-differentiability,
under this extra assumption. These findings allow us to achieve a useful characterization of
continuous differentiability of the proximal mapping and twice continuous differentiability of
the Moreau envelope of polyhedral functions. As an important application, we turn to study
stability properties of the solution mapping to the generalized equation

0 ∈ ψ(x) + ∂g(x), (1.1)

where ψ : IRm → IRm is a C1 mapping and g : IRm → IR is a polyhedral function. Our interest is
mainly in examining the relationship between metric regularity and strong metric regularity for
(1.1). The seminal work of Donchev and Rockafellar in [3] demonstrated that these properties
are equivalent for (1.1) when the polyhedral function g is the indicator function of a polyhedral
convex set. Employing our new developments under the relative interior condition, we are going
to show that if x̄ is a nondegenerate solution to the generalized equation (1.1), meaning that it
satisfies the condition

− ψ(x̄) ∈ ri ∂g(x̄), (1.2)

then metric regularity and strong metric regularity of (1.1) are equivalent. Furthermore, we
show that the solution mapping to the canonical perturbation of (1.1) has a Lipschitz continu-
ous single-valued localization, which is continuously differentiable. The latter smoothness of a
localization of solution mappings of generalized equations resembles a similar conclusion from
the classical inverse mapping theorem.

The rest of the paper is organized as follows. Section 2 contains definitions of important con-
cepts, used in this paper. We also establish some properties of polyhedral functions. Section 3
begins with a new proof of the reduction lemma for polyhedral functions and then we present
its important consequences in various second-order variational constructions. In particular, we
show that under the relative interior condition, the subgradient mappings of polyhedral functions
are strictly proto-differentiable. Section 4 is devoted to study strict twice epi-differentiablity of
polyhedral functions. As an important consequence, we characterize continuous differentiability
of the proximal mapping and twice continuous differentiability of the Moreau envelope of poly-
hedral functions. The final section, Section 5, concerns the equivalence of metric regularity and
strong metric regularity for the generalized equation (1.1) under (1.2). Using this equivalence,
we present sufficient conditions for a smooth single-valued localization of the solution map-
ping to the canonical perturbation of (1.1) as well as KKT systems of a subclass of composite
optimization problems.

2 Notation and Preliminary Results

In what follows, we denote by B the closed unit ball in the space in question and by Br(x) :=
x+rB the closed ball centered at x with radius r > 0. In the product space IRn×IRm, we use the
norm ‖(w, u)‖ =

√
‖w‖2 + ‖u‖2 for any (w, u) ∈ IRn× IRm. Given a nonempty set C ⊂ IRn, the

symbols intC, riC, coneC, and coC signify its interior, relative interior, conic hull, and convex
hull, respectively. For any set C in IRn, its indicator function is defined by δC(x) = 0 for x ∈ C
and δC(x) =∞ otherwise. We denote by PC the projection mapping onto C and by dist(x,C) the
distance between x ∈ IRn and a set C. For a vector w ∈ IRn, the subspace {tw| t ∈ IR} is denoted
by [w]. The domain and range of a set-valued mapping F : IRn ⇒ IRm are defined, respectively,
by domF := {x ∈ IRn

∣∣ F (x) 6= ∅} and rgeF = {u ∈ IRm| ∃w ∈ IRn with u ∈ F (x)}.
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In this paper, the convergence of a family of sets is always understood in the sense of Painlevé-
Kuratowski (cf. [33, Definition 4.1]). This means that the inner limit set of a parameterized
family of sets {Ct}t>0 in IRd, denoted lim inft↘0C

t, is the set of points x such that for every
sequence tk ↘ 0, x is the limit of a sequence of points xtk ∈ Ctk . The outer limit set of this
family of sets, denoted lim supt↘0C

t, is the set of points x such that there exist sequences

tk ↘ 0 and xtk ∈ Ctk such that xtk → x as k → ∞. A sequence {fk}k∈IN of functions
fk : IRn → IR is said to epi-converge to a function f : IRn → IR if we have epi fk → epi f
as k → ∞; see [33, Definition 7.1] for more details on the epi-convergence of a sequence of
extended-real-valued functions.

Given a nonempty set Ω ⊂ IRn with x̄ ∈ Ω, the tangent cone to Ω at x̄, denoted TΩ(x̄), is
defined by

TΩ(x̄) = lim sup
t↘0

Ω− x̄
t

. (2.1)

The regular/Fréchet normal cone N̂Ω(x̄) to Ω at x̄ is defined by N̂Ω(x̄) = TΩ(x̄)∗, the polar of
the tangent cone (2.1). The (limiting/Mordukhovich) normal cone NΩ(x̄) to Ω at x̄ is the set
of all vectors v̄ ∈ IRn for which there exist sequences {xk}k∈IN and {vk}k∈IN with vk ∈ N̂Ω(xk)
such that (xk, vk)→ (x̄, v̄). When Ω is convex, both normal cones boil down to that of convex
analysis. Given a function f : IRn → IR and a point x̄ ∈ IRn with f(x̄) finite, the subderivative
function df(x̄) : IRn → IR is defined by

df(x̄)(w) = lim inf
t↘0
w′→w

f(x̄+ tw′)− f(x̄)

t
.

A vector v ∈ IRn is called a subgradient of f at x̄ if (v,−1) ∈ Nepi f (x̄, f(x̄)) with epi f =
{(x, α) ∈ IRn × IR| f(x) ≤ α} being the epigraph of f . The set of all subgradients of f at
x̄ is denoted by ∂f(x̄). If f is a convex function, the latter set reduces to the well-known
subdifferential of convex functions.

As pointed earlier, a proper function g : IRm → IR is called polyhedral if epi g is a poly-
hedral convex set. According to [33, Theorem 2.49], this class of convex functions enjoys the
representation

g(z) =

max
j∈J

{
〈aj , z〉 − αj

}
if z ∈ dom g,

∞ otherwise,

where J = {1, . . . , l} for some l ∈ IN, aj ∈ IRm and αj ∈ IR for all j ∈ J , and where dom g =
{z ∈ IRm| g(z) <∞} is a polyhedral convex set with the representation

dom g =
{
z ∈ IRm

∣∣ 〈bi, z〉 ≤ βi, i ∈ I = {1, . . . , s}
}
, (2.2)

where s ∈ IN, and bi ∈ IRm and βi ∈ IR for all i ∈ I. Thus, we can equivalently express a
polyhedral function g as

g(z) = max
j∈J

{
〈aj , z〉 − αj

}
+ δdom g(z), z ∈ IRm. (2.3)

It was observed in [18, Proposition 3.2] that dom g can be expressed as the finite union of the
polyhedral convex sets Cj , j ∈ J , defined by

Cj =
{
z ∈ dom g

∣∣ g(z) = 〈aj , z〉 − αj
}

=
{
z ∈ dom g

∣∣ 〈ai − aj , z〉 ≤ αi − αj , i ∈ J}.
Pick z̄ ∈ dom g and define the sets of active indices at z̄ corresponding to the representation
(2.2) and to the partition of dom g via the sets Cj by

I(z̄) =
{
i ∈ I

∣∣ 〈bi, z̄〉 = βi
}

and J(z̄) =
{
j ∈ J

∣∣ z̄ ∈ Cj}. (2.4)
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These sets allow us to conclude from [18, Proposition 3.3] that the subdifferential of g at z̄ can
be calculated as

∂g(z̄) = co
{
aj
∣∣ j ∈ J(z̄)

}
+ cone

{
bi
∣∣ i ∈ I(z̄)

}
, (2.5)

which tells us that any λ̄ ∈ ∂g(z̄) can be written as λ̄ = λ̄1 + λ̄2, where

λ̄1 =
∑
j∈J(z̄)

σ̄ja
j and λ̄2 =

∑
i∈I(z̄)

τ̄ib
i with σ̄j , τ̄i ≥ 0 and

∑
j∈J(z̄)

σ̄j = 1. (2.6)

Taking into account these representations, define the sets of positive coefficients at z̄ for λ̄1 and
λ̄2, respectively, by

J+(z̄, λ̄1) =
{
j ∈ J(z̄)

∣∣ σ̄j > 0
}

and I+(z̄, λ̄2) =
{
i ∈ I(z̄)

∣∣ τ̄i > 0
}
. (2.7)

The next result presents an important observation about the graph of subgradient mappings
of polyhedral functions. A similar result was established in [18, Theorem 3.4] but the neighbor-
hood obtained therein depends on a chosen representation of the subgradient λ̄ as λ̄ = λ̄1 + λ̄2.
Next, we show that such a neighborhood can be chosen to be independent of a given decompo-
sition of λ̄. We also simplify the proof presented in [18] significantly.

Lemma 2.1. Assume that g : IRm → IR is a polyhedral function and that (z̄, λ̄) ∈ gph ∂g. Then
there exists r > 0 such that for any decomposition of λ̄ as λ̄ = λ̄1 + λ̄2 with λ̄1 and λ̄2 taken
from (2.6) and every (z, λ) ∈

(
gph ∂g

)
∩ Br(z̄, λ̄), we have

J+(z̄, λ̄1) ⊂ J(z) and I+(z̄, λ̄2) ⊂ I(z). (2.8)

Proof. Suppose by contradiction that for each k ∈ IN, there is a decomposition λ̄ = λ̄k1 + λ̄k2
with

λ̄k1 =
∑
j∈J(z̄)

σ̄kj a
j and λ̄k2 =

∑
i∈I(z̄)

τ̄ki b
i with σ̄kj , τ̄

k
i ≥ 0 and

∑
j∈J(z̄)

σ̄kj = 1, (2.9)

and (zk, λk) ∈ gph ∂g such that (zk, λk) → (z̄, λ̄) as k → ∞ with Jk+ 6⊂ J(zk) or Ik+ 6⊂ I(zk)
where Jk+ := J+(z̄, λ̄k1) and Ik+ := I+(z̄, λ̄k2) are defined via (2.7). Since zk → z̄ as k → ∞,
the inclusions J(zk) ⊂ J(z̄) and I(zk) ⊂ I(z̄) hold for all k sufficiently large. Passing to a
subsequence if necessary, we can assume that there exist subsets J̄ ⊂ J(z̄) and Ī ⊂ I(z̄) such
that

J(zk) = J̄ and I(zk) = Ī for all k ∈ IN,

which, together with (2.5), lead us to

∂g(zk) = co
{
aj | j ∈ J̄

}
+ cone

{
bi| i ∈ Ī

}
=: Ω for all k ∈ IN.

Since λk ∈ ∂g(zk) = Ω and λk → λ̄ as k →∞, we arrive at λ̄ ∈ Ω = ∂g(zk) for all k sufficiently
large. Fix such a k ∈ IN and deduce from λ̄ ∈ ∂g(zk) that

〈λ̄, z̄ − zk〉 ≤ g(z̄)− g(zk). (2.10)

By the decomposition λ̄ = λ̄k1 + λ̄k2 and (2.9), we obtain

〈λ̄, zk − z̄〉 =
∑
j∈J(z̄)

σ̄kj 〈aj , zk − z̄〉+
∑
i∈I(z̄)

τ̄ki 〈bi, zk − z̄〉

=
∑
j∈J(z̄)

σ̄kj
(
〈aj , zk〉 − αj − g(z̄)

)
+
∑
i∈I(z̄)

τ̄ki
(
〈bi, zk〉 − βi

)
,

≤
∑
j∈J(z̄)

σ̄kj
(
g(zk)− g(z̄)

)
, (2.11)
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where the second equality results from (2.4) and the last inequality comes from the fact that
zk ∈ dom g, combined with (2.2)–(2.3). If Jk+ 6⊂ J(zk), there exists j0 ∈ Jk+ such that zk /∈ Cj0 ,
meaning that

σ̄kj0
(
〈aj0 , zk〉 − αj0 − g(z̄)

)
< σ̄kj0

(
g(zk)− g(z̄)

)
.

If Ik+ 6⊂ I(zk), we find i0 ∈ Ik+ such that 〈bi0 , zk〉 < βi0 , which implies that

τ̄ki0
(
〈bi0 , zk〉 − βi0

)
< 0,

which tells us that in both cases the last inequality in (2.11) is strict. Thus, our assumption
that either Jk+ 6⊂ J(zk) or Ik+ 6⊂ I(zk), together with the last condition in (2.9), yields

〈λ̄, zk − z̄〉 <
∑
j∈J(z̄)

σ̄kj
(
g(zk)− g(z̄)

)
= g(zk)− g(z̄),

which contradicts (2.10) and therefore completes the proof.

We finish this section by recording some of first- and second-order variational properties
of polyhedral functions, important for our developments in this paper. Recall from [33, Exer-
cise 6.47] that for any polyhedral convex set C ⊂ IRn and x̄ ∈ C, we can find a neighborhood O
of x̄ for which we have

TC(x̄) ∩ O = (C − x̄) ∩ O. (2.12)

Proposition 2.2 (first-order variational properties). Assume that g : IRm → IR is a polyhedral
function and z̄ ∈ dom g. Then the following properties hold.

(a) The domain of the subderivative function dg(z̄) can be calculated by

dom dg(z̄) = Tdom g(z̄) =
⋃

j∈J(z̄)

TCj (z̄).

(b) If w ∈ TCj (z̄) for some j ∈ J(z̄), then we have dg(z̄)(w) = 〈aj , w〉. Moreover, there exists
r > 0 such that any w ∈ Tdom g(z̄) ∩ Br(0), the representation

g(z̄ + w) = g(z̄) + dg(z̄)(w) (2.13)

holds.

Proof. The first equality in (a) was established in [33, Proposition 10.21]. The second equality
results immediately from the fact that dom g =

⋃
j∈J Cj . The first claim in (b) can be found

again in [33, Proposition 10.21]. To prove (2.13), recall that for any j ∈ J(z̄), Cj is a polyhedral
convex set. Employing (2.12) for these sets, we can find r > 0 such that

TCj (z̄) ∩ Br(0) = (Cj − z̄) ∩ Br(0) for all j ∈ J(z̄).

Pick any w ∈ Tdom g(z̄) ∩ Br(0), and conclude from (a) that w ∈ TCj0 (z̄) ∩ Br(0) for some

j0 ∈ J(z̄) and from the first claim in (b) that dg(z̄)(w) = 〈aj0 , w〉. Thus, we get z̄ + w ∈ Cj0 ,
which, together with the definition of Cj0 and (2.4), leads us to

g(z̄ + w) = 〈aj0 , z̄ + w〉 − αj0 = g(z̄) + 〈aj0 , w〉 = g(z̄) + dg(z̄)(w),

and hence completes the proof.
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Given a function f : IRn → IR and a point x̄ ∈ IRn with f(x̄) finite, the critical cone of f at
x̄ for v̄ with v̄ ∈ ∂f(x̄) is defined by

Kf (x̄, v̄) =
{
w ∈ IRn

∣∣ 〈v̄, w〉 = df(x̄)(w)
}
.

If, in addition, f is convex and ∂f(x̄) 6= ∅, it follows from [33, Theorem 8.30] that its subderiva-
tive function is the support function of ∂f(x̄), that is

df(x̄)(w) = sup
{
〈v, w〉

∣∣ v ∈ ∂f(x̄)
}
,

which in turn allows us to equivalently describe the critical cone Kf (x̄, v̄) as

Kf (x̄, v̄) = N∂f(x̄)(v̄). (2.14)

The following equivalent description of the critical cone of a polyhedral function was estab-
lished in [20, Proposition 3.2].

Proposition 2.3 (critical cone of polyhedral functions). Assume that g : IRm → IR is a poly-
hedral function and (z̄, λ̄) ∈ gph ∂g. If λ̄ = λ̄1 + λ̄2 with λ̄1 and λ̄2 taken from (2.6), then
w ∈ Kg(z̄, λ̄) if and only if w satisfies the conditions

〈ai − aj , w〉 = 0, for i, j ∈ J+(z̄, λ̄1),

〈ai − aj , w〉 ≤ 0, for i ∈ J(z̄) \ J+(z̄, λ̄1) and j ∈ J+(z̄, λ̄1),

〈bi, w〉 = 0, for i ∈ I+(z̄, λ̄2),

〈bi, w〉 ≤ 0, for i ∈ I(z̄) \ I+(z̄, λ̄2).

3 Reduction Lemma for Polyhedral Functions and its Applica-
tions

We begin this section by providing an extension of the reduction lemma for polyhedral functions.
The reduction lemma, established first by Robinson in [26, Proposition 4.4] for polyhedral convex
sets, shows that the graph of the normal cone to a polyhedral convex set coincides locally with
that of the normal cone to its critical cone. Robinson’s proof of this result relies upon his sticky
face lemma, which was established in [25, Lemma 3.5] with a rather involved proof. A simpler
proof of this result was presented by Dontchev and Rockafellar in [2, Lemma 2E.4]. Recently,
the reduction lemma was extended for an important class of convex functions, called piecewise
linear-quadratic (cf. [33, Definition 10.20]), by the third author in [34, Theorem 2.3]. This class
of convex functions clearly encompasses polyhedral functions and thus the result below can be
derived from the recent result in [34]. However, the presented proof in [34] relies upon two major
results: 1) Robinson’s reduction lemma for polyhedral convex sets and 2) the fact that the graph
of subgradient mappings of convex piecewise linear-quadratic functions can be expressed as a
finite union of polyhedral convex sets (see the proof of [33, Theorem 11.14(b)]). Below, we
present a direct proof of the reduction lemma for polyhedral functions, which is solely based on
Lemma 2.1.

Theorem 3.1 (reduction lemma). Assume that g : IRm → IR is a polyhedral function and
(z̄, λ̄) ∈ gph ∂g. Then there exists r > 0 such that(

(gph ∂g)− (z̄, λ̄)
)
∩ Br(0, 0) =

(
gphNKg(z̄,λ̄)

)
∩ Br(0, 0). (3.1)
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Proof. Suppose that the polyhedral function g has the representation (2.3). We first show
that there is r > 0 for which the inclusion ‘⊃’ in (3.1) holds. To do so, using (2.12) for the
polyhedral convex set ∂g(z̄), we find r0 > 0 such that

T∂g(z̄)(λ̄) ∩ Br0(0) =
(
∂g(z̄)− λ̄

)
∩ Br0(0). (3.2)

Pick now a pair (w, u) from the right-hand side of (3.1) with r = r0 therein, which implies
that the conditions w ∈ Kg(z̄, λ̄) ∩ Br0(0), u ∈ Kg(z̄, λ̄)

∗ ∩ Br0(0), and 〈u,w〉 = 0 are satisfied.
Moreover, using (2.14) for the polyhedral function g, we get Kg(z̄, λ̄)

∗
= T∂g(z̄)(λ̄). Therefore u

belongs to the left-hand side of (3.2), and thus λ̄+u ∈ ∂g(z̄). We now show that (z̄+w, λ̄+u) ∈
gph ∂g. To this end, take z ∈ IRm and observe that

〈λ̄+ u, z − (z̄ + w)〉 = 〈λ̄+ u, z − z̄〉 − 〈λ̄, w〉 − 〈u,w〉 ≤ g(z)− g(z̄)− dg(z̄)(w), (3.3)

where the last inequality is deduced from the facts that λ̄ + u ∈ ∂g(z̄), w ∈ Kg(z̄, λ̄), and
〈u,w〉 = 0. Choosing a smaller radius r0 if necessary, we can assume that (2.13) is valid
on Tdom g(z̄) ∩ Br0(0). It follows from Proposition 2.2(a) and w ∈ Kg(z̄, λ̄) ∩ Br0(0) that w ∈
Tdom g(z̄)∩Br0(0), which in turn allows us to conclude via (2.13) that g(z̄)+dg(z̄)(w) = g(z̄+w).
Combining this and (3.3) leads us to

〈λ̄+ u, z − (z̄ + w)〉 ≤ g(z)− g(z̄ + w)

for any arbitrary z ∈ IRm, and thus to λ̄ + u ∈ ∂g(z̄ + w). This proves that (w, u) belongs to
the left-hand side of (3.1) with r = r0.

We now proceed with proving the inclusion ‘⊂’ in (3.1) for some r > 0. Decompose λ̄ into
λ̄ = λ̄1 + λ̄2 with λ̄1, λ̄2 taken from (2.6). Pick r0 from (3.2) and choose r ∈ (0, r0] such that
the inclusions in (2.8) hold for all (z, v) ∈

(
gph ∂g

)
∩ Br(z̄, λ̄). Pick now a pair (w, v) from the

left-hand side of (3.1), and conclude that (w, u) ∈ Br(0, 0) with λ̄+u ∈ ∂g(z̄+w). We are going
to show that u ∈ NKg(z̄,λ̄)(w), which amounts via [2, Proposition 2A.3] to the conditions

w ∈ Kg(z̄, λ̄), u ∈ Kg(z̄, λ̄)
∗
, and 〈u,w〉 = 0. (3.4)

Taking a smaller radius r if necessary, we can assume that ∂g(z̄ + w) ⊂ ∂g(z̄) (cf. [18, Propo-
sition 3.3(a)]). Thus, u ∈

(
∂g(z̄) − λ̄

)
∩ Br(0). Since r ≤ r0, we deduce from (3.2) that

u ∈ T∂g(z̄)(λ̄) = Kg(z̄, λ̄)
∗
, which justifies the second inclusion in (3.4). By shrinking r again if

necessary, we can derive from (z̄ + w, λ̄+ u) ∈
(
gph ∂g

)
∩ Br(z̄, λ̄) and (2.8) that

J+(z̄, λ̄1) ⊂ J(z̄ + w) ⊂ J(z̄) and I+(z̄, λ̄2) ⊂ I(z̄ + w) ⊂ I(z̄).

To prove that w ∈ Kg(z̄, λ̄), we use Proposition 2.3 in which an equivalent description of Kg(z̄, λ̄)
was given. We break this task into four cases as follows:

(i) i, j ∈ J+(z̄, λ̄1). In this case, we obtain from the inclusions above that i, j ∈ J(z̄ + w) ⊂
J(z̄). These inclusions bring us via (2.4) to

〈ai, z̄〉 − αi = 〈aj , z̄〉 − αj and 〈ai, z̄ + w〉 − αi = 〈aj , z̄ + w〉 − αj .

Combining these confirms that 〈ai − aj , w〉 = 0 for all i, j ∈ J+(z̄, λ̄1).
(ii) i ∈ J(z̄)\J+(z̄, λ̄1) and j ∈ J+(z̄, λ̄1). In this case, we arrive at i, j ∈ J(z̄) and j ∈ J(z̄+v),

which imply via (2.4) that

〈ai, z̄〉 − αi = 〈aj , z̄〉 − αj and 〈ai, z̄ + w〉 − αi ≤ 〈aj , z̄ + w〉 − αj .

Combining these confirms that 〈ai−aj , w〉 ≤ 0 for all i ∈ J(z̄)\J+(z̄, λ̄1) and j ∈ J+(z̄, λ̄1).
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(iii) i ∈ I+(z̄, λ̄2). In this case, we have i ∈ I(z̄) and i ∈ I(z̄ + w), which result in 〈bi, z̄〉 =
〈bi, z̄ + w〉 = βi. Combining these confirms that 〈bi, w〉 = 0 for all i ∈ I+(z̄, λ̄2).

(iv) i ∈ I(z̄) \ I+(z̄, λ̄2). In this case, we deduce from z̄ + w ∈ dom g and i ∈ I(z̄) that
〈bi, z̄ + w〉 ≤ βi = 〈bi, z̄〉, which in turn yields 〈bi, w〉 ≤ 0 for all i ∈ I(z̄) \ I+(z̄, λ̄2).

In summary, we showed that w satisfies the equivalent description of Kg(z̄, λ̄) from Propo-
sition 2.3, and so w ∈ Kg(z̄, λ̄). It remains to demonstrate that 〈w, u〉 = 0. Recall that
λ̄+ u ∈ ∂g(z̄ + w). Using (2.5), we can express λ̄+ w as

λ̄+ u =
∑

j∈J(z̄+w)

σja
j +

∑
i∈I(z̄+w)

τib
i with σj , τi ≥ 0 and

∑
j∈J(z̄+w)

σj = 1.

This and the decomposition λ̄ = λ̄1 + λ̄2 with λ̄1, λ̄2 taken from (2.6) allow us to conclude that

〈u,w〉 = 〈λ̄+ u,w〉 − 〈λ̄, w〉

=
∑

j∈J(z̄+w)

(σj − σ̄j)〈aj , w〉+
∑

i∈I(z̄+w)

(τi − τ̄i)〈bi, w〉

=
∑

j∈J(z̄+w)

(σj − σ̄j)
[
〈aj , z̄ + w〉 − αj − (〈aj , z̄〉 − αj)

]
+

∑
i∈I(z̄+w)

(τi − τ̄i)
[
〈bi, z̄ + w〉 − 〈bi, z̄〉

]
=
(
g(z̄ + w)− g(z̄)

) ∑
j∈J(z̄+w)

(σj − σ̄j) +
∑

i∈I(z̄+w)

(τi − τ̄i)(βi − βi)

= 0,

where the second equality results from the inclusions J+(z̄, λ̄1) ⊂ J(z̄ + w) and I+(z̄, λ̄2) ⊂
I(z̄+w), where the fourth equality comes from the definitions of the active index sets J(z̄+w)
and I(z̄ +w) as well as the inclusions J(z̄ +w) ⊂ J(z̄) and I(z̄ +w) ⊂ I(z̄), and where the last
equality follows from the assumption on σj and σ̄j . This proves the inclusion ‘⊂’ in (3.1) for
some r > 0 and thus completes the proof.

The rest of this section will be devoted to presenting several important consequences of
Theorem 3.1 for different second-order variational constructions of polyhedral functions. We
begin with a duality relation between critical cones of a polyhedral function and its (Fenchel)
conjugate in the sense of convex analysis. Both results in the following corollary were observed
by Rockafellar in [32, equations (3.23) & (3.29)]. Since an explicit proof was not presented
for (3.5) in [32] and since this result plays an important role in strict twice epi-differentiability
of polyhedral functions in the next section, we supply a short proof for readers’ convenience.
Let us recall two important results, used in the proof of next result. The first is that the
conjugate function g∗ of a polyhedral function g is again a polyhedral function due to [33,
Theorem 11.14(a)]. The second fact is that if C is a convex subset of IRn and x̄ ∈ C, then
NC(x̄) is a linear subspace if and only if x̄ ∈ riC; see [13, Proposition 2.2].

Corollary 3.2 (polar relation of critical cones). Assume that g : IRm → IR is a polyhedral
function and (z̄, λ̄) ∈ gph ∂g. Then Kg(z̄, λ̄) enjoys the duality relationship

Kg(z̄, λ̄) = Kg∗(λ̄, z̄)
∗. (3.5)

Consequently, we have
λ̄ ∈ ri ∂g(z̄) if and only if z̄ ∈ ri ∂g∗(z̄). (3.6)
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Proof. Let r > 0 be such that (3.1) holds. Then, we conclude from (2.14) that

w ∈ Kg(z̄, λ̄) ⇐⇒ (w, 0) ∈ gphNKg(z̄,λ̄)

⇐⇒ ∃ r′ > 0 : t(w, 0) ∈
(
gphNKg(z̄,λ̄)

)
∩ Br(0, 0) for all t ∈ [0, r′)

⇐⇒ ∃ r′ > 0 : (z̄ + tw, λ̄) ∈
(
gph ∂g

)
∩ Br(z̄, λ̄) for all t ∈ [0, r′)

⇐⇒ ∃ r′ > 0 : λ̄ ∈ ∂g(z̄ + tw) for all t ∈ [0, r′)

⇐⇒ ∃ r′ > 0 : z̄ + tw ∈ ∂g∗(λ̄) for all t ∈ [0, r′)

⇐⇒ w ∈ T∂g∗(λ̄)(z̄) =
(
N∂g∗(λ̄)(z̄)

)∗
= Kg∗(λ̄, z̄)

∗,

where the third equivalence follows from (3.1) and the last one relies on the polyhedrality of
∂g∗(λ̄). To justify (3.6), it follows from Kg(z̄, λ̄) = N∂g(z̄)(λ̄) that Kg(z̄, λ̄) is a linear subspace
if and only if λ̄ ∈ ri ∂g(z̄). A similar observation can be made for Kg∗(λ̄, z̄), which together with
(3.5) completes the proof of (3.6).

We proceed with presenting two important results for critical cones of polyhedral functions,
which allow us to draw an important conclusion about the points in the graph of their subgradient
mappings.

Theorem 3.3. For a polyhedral function g : IRm → IR and (z̄, λ̄) ∈ gph ∂g, the following
properties hold.

(a) There exists r > 0 such that for all (z, λ) ∈
(
gph ∂g

)
∩ Br(z̄, λ̄) the following inclusions

hold:

Kg(z, λ) ⊂ Kg(z̄, λ̄)−Kg(z̄, λ̄), (3.7a)

Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄) ⊂ Kg(z, λ). (3.7b)

(b) If, in addition, λ̄ ∈ ri ∂g(z̄), then there exists r > 0 such that for all (z, λ) ∈
(
gph ∂g

)
∩

Br(z̄, λ̄), we have λ ∈ ri ∂g(z) and

Kg(z, λ) = Kg(z̄, λ̄). (3.8)

Proof. We begin with proving (3.7a) for any (z, λ) ∈ gph ∂g sufficiently close to (z̄, λ̄). Since
the critical cone Kg(z̄, λ̄) is a polyhedral convex cone, the latter inclusion is equivalent to the
inclusion

Kg(z, λ)∗ ⊃
(
Kg(z̄, λ̄)−Kg(z̄, λ̄)

)∗
= Kg(z̄, λ̄)

∗ ∩ −Kg(z̄, λ̄)
∗
,

which, by virtue of the relationships Kg(z, λ)∗ = (N∂g(z)(λ))∗ = T∂g(z)(λ), amounts to

T∂g(z)(λ) ⊃ T∂g(z̄)(λ̄) ∩ −T∂g(z̄)(λ̄).

Pick an arbitrary vector w from the right-hand side of this inclusion. For (z, λ) ∈ gph ∂g
sufficiently close to (z̄, λ̄), we can assume that

∂g(z) ⊂ ∂g(z̄) and T∂g(z̄)(λ̄) ⊂ T∂g(z̄)(λ),

which imply that λ ∈ ∂g(z̄) and w ∈ T∂g(z̄)(λ), respectively. Employing (2.12) for the polyhedral
convex set ∂g(z̄), we find a neighborhood Oλ of 0 ∈ IRm such that

T∂g(z̄)(λ) ∩ Oλ =
(
∂g(z̄)− λ

)
∩ Oλ,

which, together with w ∈ T∂g(z̄)(λ), ensures the existence of tz̄,λ > 0 such that λ + tw ∈ ∂g(z̄)
for any t ∈ [0, tz̄,λ]. Choosing (z, λ) ∈ gph ∂g sufficiently close to (z̄, λ̄), we conclude from
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Theorem 3.1 that (z − z̄, λ − λ̄) ∈ gphNKg(z̄,λ̄). This clearly yields z − z̄ ∈ Kg(z̄, λ̄), which

together with w ∈ Kg(z̄, λ̄)
∗ ∩ −Kg(z̄, λ̄)

∗
leads us to 〈w, z − z̄〉 = 0. We now claim that

λ+tw ∈ ∂g(z) for any t ∈ [0, tz̄,λ]. To justify it, for any z′ ∈ IRm, we deduce from λ+tw ∈ ∂g(z̄)
and λ ∈ ∂g(z) that

〈λ+ tw, z′ − z〉 = 〈λ+ tw, z′ − z̄〉+ 〈λ, z̄ − z〉+ t〈w, z̄ − z〉
≤ g(z′)− g(z̄) + g(z̄)− g(z) + 0

= g(z′)− g(z),

which proves our claim. It clearly follows from the latter claim that w ∈ T∂g(z)(λ) = Kg(z, λ)∗.
This completes the proof of (3.7a).

We now proceed to justify the inclusion (3.7b) for all (z, λ) ∈ gph ∂g sufficiently close to
(z̄, λ̄). As mentioned before, the conjugate function g∗ is a polyhedral function. Applying (3.7a)
for g∗ gives us the inclusion

Kg∗(λ, z) ⊂ Kg∗(λ̄, z̄)−Kg∗(λ̄, z̄)

for all (λ, z) ∈ gph ∂g∗ sufficiently close to (λ̄, z̄). This inclusion, the polyhedrality of the critical
cone of a polyhedral function, and (3.5) bring us to

Kg(z, λ) = Kg∗(λ, z)
∗ ⊃

(
Kg∗(λ̄, z̄)−Kg∗(λ̄, z̄)

)∗
= Kg∗(λ̄, z̄)

∗ ∩ −Kg∗(λ̄, z̄)
∗ = Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄),

which proves (3.7b).
To justify (b), it follows from λ̄ ∈ ri ∂g(z̄) and Kg(z̄, λ̄) = N∂g(z̄)(λ̄) that Kg(z̄, λ̄) is a linear

subspace. This and the inclusions (3.7a) and (3.7b) tell us that

Kg(z̄, λ̄) = Kg(z̄, λ̄)−Kg(z̄, λ̄) ⊃ Kg(z, λ) ⊃ Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄) = Kg(z̄, λ̄)

for all (z, λ) ∈ gph ∂g sufficiently close to (z̄, λ̄), which in turn confirms that Kg(z, λ) is a linear
subspace. This, together with Kg(z, λ) = N∂g(z)(λ) taken from (2.14), results in λ ∈ ri ∂g(z)
and hence completes the proof of (b).

Both inclusions in Theorem 3.3(a) were perviously established in [2, Proposition 2E.10] for
polyhedral convex sets without appealing to the reduction lemma, an important tool used in our
proof. Note that while the observation in Theorem 3.3(b) is a simple and direct consequence
of the inclusions (3.7a)-(3.7b), it plays an indispensable role in the next two sections in which
we are going to study strict twice epi-differentiability of polyhedral functions. In fact, this
result reveals that when we are converging in the graph of subgradient mappings of polyhedral
functions to a given point therein under the extra relative interior condition, all those points,
used in this convergence, enjoy this relative interior condition. This has a major implication
for second-order variational constructions such as limiting coderivatives and strict subgradient
graphical derivatives; see Theorem 3.6(c) and Theorem 3.7(c).

One can proceed further to characterize critical cones of polyhedral functions for points
nearby a given point in the graph of their subgradient mappings. Such a result for polyhedral
convex sets can be found in [2, Lemma 4H.2]. Using a similar proof, we extend the latter
observation for polyhedral functions. Recall that a closed face F of a polyhedral convex cone
C ⊂ IRd is defined by

F = C ∩ [v]⊥ for some v ∈ C∗.
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Proposition 3.4. Assume that g : IRm → IR is a polyhedral function and (z̄, λ̄) ∈ gph ∂g. Then
there exists r > 0 such that for all (z, λ) ∈

(
gph ∂g

)
∩ Br(z̄, λ̄) the corresponding critical cone

Kg(z, λ) enjoys the following representation

Kg(z, λ) = F1 − F2,

for some faces F1, F2 of Kg(z̄, λ̄) with F2 ⊂ F1. Conversely, for any pair of faces F1, F2 of
Kg(z̄, λ̄) with F2 ⊂ F1 and any sufficiently small real number r > 0, there exists (z, λ) ∈(
gph ∂g

)
∩ Br(z̄, λ̄) with Kg(z, λ) = F1 − F2.

Proof. Let r > 0 be such that (3.1) holds. Choosing a smaller radius r if necessary, we can
assume without loss of generality that the inclusions ∂g(z) ⊂ ∂g(z̄) and N∂g(z̄)(λ) ⊂ N∂g(z̄)(λ̄)
hold for any (z, λ) ∈

(
gph ∂g

)
∩ Br(z̄, λ̄), which can be guaranteed by g being a polyhedral

function. We first show that for any (z, λ) ∈
(
gph ∂g

)
∩ Br(z̄, λ̄), we have

Kg(z, λ) = Kg(z̄, λ̄) ∩ [λ− λ̄]⊥ + [z − z̄]. (3.9)

To this end, pick (z, λ) ∈
(
gph ∂g

)
∩ Br(z̄, λ̄) and observe that the inclusion

N∂g(z)(λ) ⊂ N∂g(z)(λ̄) (3.10)

holds. To justify it, it is not hard to see ∂g(z) = ∂g(z̄) ∩ D with D := {v ∈ IRm| 〈v, z − z̄〉 =
g(z) − g(z̄)}. It follows from λ ∈ ∂g(z) ⊂ D and λ − λ̄ ∈ NKg(z̄,λ̄)(z − z̄) that λ̄ ∈ D. This,

together with the definition of D, leads us to ND(λ) = ND(λ̄) = [z − z̄]. Since both ∂g(z̄) and
D are polyhedral, we conclude from the intersection rule for normal cones, holding without any
constraint qualification for polyhedral convex sets, that

N∂g(z)(λ) = N∂g(z̄)∩D(λ) = N∂g(z̄)(λ) +ND(λ)

⊂ N∂g(z̄)(λ̄) +ND(λ̄) = N∂g(z̄)∩D(λ̄) = N∂g(z)(λ̄),

proving our claimed inclusion. Since g∗ is a polyhedral function as well, using Lemma 2.1 for
g∗ at (λ̄, z̄) ∈ gph ∂g∗ and shrinking r, if necessary, ensure that z̄ ∈ ∂g∗(λ). Moreover, it results
from (3.10) that N∂g∗(λ)(z) ⊂ N∂g∗(λ)(z̄), which in combination with (2.14) leads us to

Kg∗(λ, z) = N∂g∗(λ)(z) = N∂g∗(λ)(z̄) ∩ [z − z̄]⊥ = Kg∗(λ, z̄) ∩ [z − z̄]⊥.

Using this and (3.5) brings us to

Kg(z, λ) = Kg∗(λ, z)
∗ =

(
Kg∗(λ, z̄) ∩ [z − z̄]⊥

)∗
= Kg(z̄, λ) + [z − z̄]. (3.11)

Similarly, by (2.14) and the definition of the normal cone to the polyhedral convex set ∂g(z̄),
we obtain

Kg(z̄, λ) = N∂g(z̄)(λ) = N∂g(z̄)(λ̄) ∩ [λ− λ̄]⊥ = Kg(z̄, λ̄) ∩ [λ− λ̄]⊥,

which, together with (3.11), proves (3.9).
After these preparations, we are in a position to justify the claimed descriptions of critical

cones of g. Pick (z, λ) ∈
(
gph ∂g

)
∩ Br(z̄, λ̄) and set F1 := Kg(z̄, λ̄) ∩ [λ− λ̄]⊥, which is clearly

a face of Kg(z̄, λ̄). Because λ − λ̄ ∈ NKg(z̄,λ̄)(z − z̄), resulting from (3.1), we conclude that
z − z̄ ∈ F1. Since the relative interiors of nonempty faces of F1 form a partition of this set
(cf. [28, Theorem 18.2]), we find a face of F1, denoted by F2, that z− z̄ ∈ riF2. This tells us that
F2 ⊂ F1. Moreover, F2 is a face of Kg(z̄, λ̄) as well. By (3.9), the inclusion Kg(z, λ) ⊂ F1 − F2
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clearly holds. To get the opposite inclusion, pick xi ∈ Fi for i = 1, 2. It follows from z− z̄ ∈ riF2

and [28, Theorem 6.4] that there is t > 0 such that (1 + t)(z − z̄)− tx2 ∈ F2 ⊂ F1, which yields

t(x1 − x2) = tx1 + (1 + t)(z − z̄)− tx2 − (1 + t)(z − z̄) ∈ F1 + [z − z̄], (3.12)

which confirms via (3.9) that the inclusion F1−F2 ⊂ Kg(z, λ) holds. This shows that Kg(z, λ) =
F1 − F2.

Assume now that F1 and F2 are faces of Kg(z̄, λ̄) with F2 ⊂ F1. Pick r > 0 from Theorem
3.1 and choose u ∈ Kg(z̄, λ̄)

∗
with ‖u‖ < r/2 such that F1 = Kg(z̄, λ̄) ∩ [u]⊥. Since u ∈

Kg(z̄, λ̄)
∗

= NKg(z̄,λ̄)(0), it follows from Theorem 3.1 that λ̄ + u ∈ ∂g(z̄). Pick now w ∈ riF2

with ‖w‖ < r/2 and observe from w ∈ F1 that (w, u) ∈ gphNKg(z̄,λ̄). By Theorem 3.1, we arrive

at (z̄ + w, λ̄+ u) ∈ gph ∂g. Since w ∈ riF2, as in (3.12), we can show that F1 − F2 = F1 + [w].
Employing this and (3.9) leads us to

F1 − F2 = F1 + [w] = Kg(z̄, λ̄) ∩ [u]⊥ + [w] = Kg(z̄ + w, λ̄+ u),

which completes the proof.

We proceed with two other important applications of the established reduction lemma for
polyhedral functions in calculating the proto-derivative and coderivative of subgradient map-
pings of this class of functions. To this end, consider a set-valued mapping F : IRn ⇒ IRm.
According to [33, Definition 8.33], the graphical derivative of F at x̄ for ȳ with (x̄, ȳ) ∈ gphF
is the set-valued mapping DF (x̄, ȳ) : IRn ⇒ IRm defined via the tangent cone to gphF at (x̄, ȳ)
by

u ∈ DF (x̄, ȳ)(w) ⇐⇒ (w, u) ∈ TgphF (x̄, ȳ),

or, equivalently, gphDF (x̄, ȳ) = TgphF (x̄, ȳ). Using the definition of the tangent cone, we can
present an alternative definition of DF (x̄, ȳ) in terms of graphical limits as

gphDF (x̄, ȳ) = lim sup
t↘0

gphF − (x̄, ȳ)

t
. (3.13)

The set-valued mapping F is said to be proto-differentiable at x̄ for ȳ if the outer graphical limit
in (3.13) is actually a full limit. If F is proto-differentiable at x̄ for ȳ, its graphical derivative
DF (x̄, ȳ) is called the proto-derivative of F at x̄ for ȳ. When F (x̄) is a singleton consisting
of ȳ only, the notation DF (x̄, ȳ) is simplified to DF (x̄). It is easy to see that for a single-
valued function F , which is differentiable at x̄, the graphical derivative DF (x̄) boils down to the
Jacobian matrix of F at x̄, denoted by ∇F (x̄). Recall from [33, Definition 9.53] that the strict
graphical derivative of a set-valued mapping F at x̄ for ȳ with (x̄, ȳ) ∈ gphF , is the set-valued
mapping D∗F (x̄, ȳ) : IRn ⇒ IRm, defined by

gphD∗F (x̄, ȳ) = lim sup
t↘0

(x,y)
gphF−−−→(x̄,ȳ)

gphF − (x, y)

t
. (3.14)

The set-valued mapping F is said to be strictly proto-differentiable at x̄ for ȳ if the outer
graphical limit in (3.14) is a full limit. When F is strictly proto-differentiable at x̄ for ȳ, its
strict graphical derivative D∗F (x̄, ȳ) is called the strict proto-derivative of F at x̄ for ȳ.

Remark 3.5 (comparison of proto-derivative and strict proto-derivative). It is important to
remind our readers that if a set-valued mapping F : IRn ⇒ IRm is strictly proto-differentiable
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at x for y with (x, y) ∈ gphF , then it is proto-differentiable at x for y and its proto-derivative
and strict proto-derivative coincide, namely we have

D∗F (x, y) = DF (x, y). (3.15)

The latter claim results directly from the definitions of the outer and inner limits of a sequence
of sets, which subsequently bring us to the inclusions

lim inf
t↘0

(x′,y′)
gphF−−−→(x,y)

gphF − (x′, y′)

t
⊂ lim inf

t↘0

gphF − (x, y)

t
,

lim sup
t↘0

gphF − (x, y)

t
⊂ lim sup

t↘0

(x′,y′)
gphF−−−→(x,y)

gphF − (x′, y′)

t
.

These, combined with the definitions of proto-differentiability and strict proto-differentiability,
justifies (3.15).

As Remark 3.5 demonstrates, strict proto-differentiability of a set-valued mapping has far-
reaching consequences. In fact, it allows us to evaluate the strict proto-derivative of a set-valued
mapping, which can be utilized to characterize its strong metric regularity; see [2, Theorem 4D.1]
and Section 5 for more details on this application. The intriguing question is whether strict
proto-differentiability holds for any class of set-valued mappings, important for constrained and
composite optimization problems. In the next theorem, we are going to show that subgradient
mappings of polyhedral functions enjoy this property when a relative interior condition is satis-
fied for subgradients under consideration. Furthermore, we will prove that such a relative interior
condition, indeed, characterizes strict proto-differentiability of these set-valued mappings. While
it is not easy to study strict proto-differentiability of set-valued mappings, its weaker version,
namely proto-differentiability, has been well understood for many important classes of functions
that are important for various applications; see [15,16,31,33] for more details and examples. In
particular, it is well-known (cf. [33, Corollary 13.41] ) that subgradient mappings of polyhedral
functions are always proto-differentiable. Below, we also give another proof of this result via the
reduction lemma, established in Theorem 3.1.

In what follows, we say that a sequence of set-valued mappings F k : IRn ⇒ IRm, k ∈ IN,
graph-converges to F : IRn ⇒ IRm if the sequence {gphF k}k∈IN is convergent to gphF in the
sense of Painlevé-Kuratowski.

Theorem 3.6. For a polyhedral function g : IRm → IR and (z̄, λ̄) ∈ gph ∂g, the following
properties hold.

(a) The tangent cone to gph ∂g at (z̄, λ̄) can be obtained by

Tgph ∂g(z̄, λ̄) = gphNKg(z̄,λ̄). (3.16)

Consequently, there exists ε > 0 such that the equality

Tgph ∂g(z̄, λ̄) ∩ Bε(0, 0) =
(
gph ∂g − (z̄, λ̄)

)
∩ Bε(0, 0) (3.17)

holds.
(b) ∂g is proto-differentiable at z̄ for λ̄.
(c) If, in addition, λ̄ ∈ ri ∂g(z̄), then there is a neighborhood O of (z̄, λ̄) such that for any

(z, λ) ∈ O ∩ gph ∂g, ∂g is strictly proto-differentiable at z for λ and its proto-derivative
and strict proto-derivative coincide, namely

D∗(∂g)(z, λ) = D(∂g)(z, λ). (3.18)
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Proof. Using the equality (3.1) and the definition of the tangent cone to gph ∂g at (z̄, λ̄), we
immediately arrive at (3.16). The claimed identity (3.17) results from (3.1) together with (3.16).

To justify (b), it suffices to prove the inclusion

Tgph ∂g(z̄, λ̄) = gphD(∂g)(z̄, λ̄) ⊂ lim inf
t↘0

gph ∂g − (z̄, λ̄)

t
.

To justify it, take (w, u) ∈ Tgph ∂g(z̄, λ̄) and assume tk ↘ 0. We can assume without loss of
generality that tk‖(w, u)‖ ≤ ε, where ε is taken from part (a). Appealing now to (3.17) tells us
that

(w, u) ∈ gph ∂g − (z̄, λ̄)

tk
for all k ∈ IN.

This, combined with the definition of the inner limit set, proves that

(w, u) ∈ lim inf
t↘0

gph ∂g − (z̄, λ̄)

t
,

and thus completes the proof of (b). Finally, we proceed with the proof of (c). By Theo-
rem 3.3(b), we find r > 0 such that for any (z, λ) ∈ Br(z̄, λ̄) ∩ gph ∂g, the property Kg(z, λ) =
Kg(z̄, λ̄) holds. Take any such a pair (z, λ) and conclude from part (b) that ∂g is proto-
differentiable at z for λ and from part (a) that gphD(∂g)(z, λ) = gphNKg(z,λ) = gphNKg(z̄,λ̄).

This clearly tells us that D(∂g)(z, λ) graph-converges to NKg(z̄,λ̄) as (z, λ)→ (z̄, λ̄) with (z, λ) ∈
gph ∂g. Appealing now to [23, Corollary 4.3] (see also Proposition 4.2) and the fact that g is
convex ensures that the latter conclusion amounts to strict proto-differentiability of g at z̄ for λ̄.
To achieve a similar conclusion for any pair (z, λ) ∈ gph ∂g sufficiently close to (z̄, λ̄), observe
from Theorem 3.3(b) that for any such a pair, we have λ ∈ ri ∂g(z). A similar argument as
the one, presented above for (z̄, λ̄), shows that g is strictly proto-differentiable at z for λ when-
ever (z, λ) ∈ gph ∂g is sufficiently close to (z̄, λ̄). Finally, (3.18) results from the discussion in
Remark 3.5, which finishes the proof of (c).

Note that the observation in Theorem 3.6(c) has several major consequences in sensitivity
analysis of generalized equations, which will be pursued in the final section of this paper. It is
tempting to ask whether strict proto-differentiability can be justified for subgradient mappings
of polyhedral functions without the relative interior assumption in Theorem 3.6(c). We will
demonstrate in the next section that this relative interior condition is, indeed, equivalent to
strict proto-differentiability of ∂g, which implies that strict proto-differentiability for subgradient
mappings of polyhedral functions does not hold in the absence of the relative interior condition.

We continue with one more direct application of the reduction lemma for polyhedral functions
in finding the regular and limiting normal cones to gph ∂g.

Theorem 3.7 (regularity of subgradient mappings of polyhedral functions). For a polyhedral
function g : IRm → IR and (z̄, λ̄) ∈ gph ∂g, the following properties hold.

(a) The regular normal cone to gph ∂g at (z̄, λ̄) can be calculated by

N̂gph ∂g(z̄, λ̄) = Kg(z̄, λ̄)
∗ ×Kg(z̄, λ̄). (3.19)

(b) The (limiting) normal cone to gph ∂g at (z̄, λ̄) can be calculated by

Ngph ∂g(z̄, λ̄) =
⋃

F1,F2⊂FKg(z̄,λ̄)

F2⊂F1

(F1 − F2)∗ × (F1 − F2), (3.20)

where FKg(z̄,λ̄) is the collection of all faces of Kg(z̄, λ̄).
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(c) The condition λ̄ ∈ ri ∂g(z̄) is equivalent to

Ngph ∂g(z̄, λ̄) = N̂gph ∂g(z̄, λ̄). (3.21)

Proof. We begin with the proof of (a). Using the polar representation of the regular normal
cone via the tangent cone and the relation in (3.16), we can rewrite (3.19) equivalently as(

gphNKg(z̄,λ̄)

)∗
=
(
Tgph ∂g(z̄, λ̄)

)∗
= Kg(z̄, λ̄)

∗ ×Kg(z̄, λ̄). (3.22)

To prove it, assume that (w, u) is taken from the left-hand side of (3.22). We next show that
w ∈ Kg(z̄, λ̄)

∗
and u ∈ Kg(z̄, λ̄). To this end, take any w̃ ∈ Kg(z̄, λ̄) and ũ ∈ Kg(z̄, λ̄)

∗
and

observe that (w̃, 0) ∈ gphNKg(z̄,λ̄) and (0, ũ) ∈ gphNKg(z̄,λ̄), since Kg(z̄, λ̄)
∗

= NKg(z̄,λ̄)(0). The

latter conditions, together with (w, u) ∈
(
gphNKg(z̄,λ̄)

)∗
, give us

〈w, w̃〉 = 〈(w, u), (w̃, 0)〉 ≤ 0, and 〈u, ũ〉 = 〈(w, u), (0, ũ)〉 ≤ 0,

which in turn justify that (w, u) ∈ Kg(z̄, λ̄)
∗ ×Kg(z̄, λ̄).

Pick now arbitrary pairs (w, u) from the right-hand side of (3.22) and (w̃, ũ) from gphNKg(z̄,λ̄).

We then obtain in particular that w̃ ∈ Kg(z̄, λ̄) and ũ ∈ Kg(z̄, λ̄)
∗
. Combining these yields

〈(w, u), (w̃, ũ)〉 = 〈w, w̃〉+ 〈u, ũ〉 ≤ 0,

which verifies that (w, u) ∈
(
gphNKg(z̄,λ̄)

)∗
, and thus completes the proof of (3.19).

To justify (b), observe that (u,w) ∈ Ngph ∂g(z̄, λ̄) if and only if there are sequences (zk, λk)→
(z̄, λ̄) with (zk, λk) ∈ gph ∂g and (uk, wk) → (u,w) with (uk, wk) ∈ N̂gph ∂g(z

k, λk). Using the
definition of the regular normal cone and (3.1), we conclude for any k sufficiently large that

(uk, wk) ∈ N̂gph ∂g(z
k, λk) ⇐⇒ (uk, wk) ∈ N̂gph ∂g−(z̄,λ̄)(z

k − z̄, λk − λ̄)

⇐⇒ (uk, wk) ∈ N̂gphNKg(z̄,λ̄)
(zk − z̄, λk − λ̄).

The last inclusion yields (u,w) ∈ NgphNKg(z̄,λ̄)
(0, 0) and thus justifies the inclusionNgph ∂g(z̄, λ̄) ⊂

NgphNKg(z̄,λ̄)
(0, 0). A similar argument via (3.1) can be used to justify the opposite inclusion

and obtain
Ngph ∂g(z̄, λ̄) = NgphNKg(z̄,λ̄)

(0, 0).

Recall that Kg(z̄, λ̄) is a polyhedral convex cone. Employing the representation of the limit-
ing normal cone to the normal cone to the graph of a polyhedral convex set, obtained in the
proof of [3, Theorem 2], we arrive at the representation on the right-hand side of (3.20) for
NgphNKg(z̄,λ̄)

(0, 0), which completes the proof of (b).

To prove (c), observe that it follows from λ̄ ∈ ri ∂g(z̄) and Theorem 3.3(b) that there exists
a neighborhood O of (z̄, λ̄) such that for any (z, λ) ∈ O ∩ gph ∂g, we have Kg(z, λ) = Kg(z̄, λ̄).
This and (3.19) bring us to

N̂gph ∂g(z, λ) = N̂gph ∂g(z̄, λ̄) for all (z, λ) ∈ O ∩ gph ∂g, (3.23)

which, together with the definition of the limiting normal cone, justifies the claimed equality in
(3.21). Conversely, suppose that (3.21) holds. We are going to show that Kg(z̄, λ̄) is a linear
subspace. To this end, it suffices to show that if w ∈ Kg(z̄, λ̄), then −w ∈ Kg(z̄, λ̄). Pick
w ∈ Kg(z̄, λ̄) and conclude from (3.16) that there is u ∈ IRm such that (w, u) ∈ Tgph ∂g(z̄, λ̄).
Appealing now to [33, Theorem 13.57] implies that (u,−w) ∈ Ngph ∂g(z̄, λ̄). This, together with
(3.21) and (3.19), tells us that −w ∈ Kg(z̄, λ̄). Remember that Kg(z̄, λ̄) = N∂g(z̄)(λ̄). Since
Kg(z̄, λ̄) is a linear subspace, we arrive at λ̄ ∈ ri ∂g(z̄), which completes the proof of (c).
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The description (3.19) of the regular normal cone to gph ∂g in terms of the critical cone of g
was established in [18, Theorem 4.3(i)] using a different approach. Our current proof relies upon
the reduction lemma, which allows us to simplify the proof of this result. We should mention that
a similar result was established for polyhedral convex sets using Robinson’s reduction lemma for
polyhedral convex sets in the proof of [3, Theorem 2]. A similar expression of the limiting normal
cone to gph ∂g was achieved in [18, Theorem 5.1] via a lengthy direct argument. Our proof,
which heavily uses Theorem 3.1, reduces the calculation to the case of a polyhedral convex cone
and then utilizes the available result for this setting. Thus, Theorem 3.7 can be considered as a
generalization of Dontchev and Rockafellar’s result, obtained in [3, Theorem 2], for polyhedral
convex sets. Note that part (c) of Theorem 3.7 offers a new piece of information about gph ∂g,
which has not been observed before to the best of our knowledge. Indeed, it tells us that gph ∂g
is regular at (z̄, λ̄) ∈ gph ∂g in the sense of [33, Definition 6.4] if and only if the subgradient λ̄
is taken from the relative interior of ∂g(z̄).

Recall that for a polyhedral function g with (z̄, λ̄) ∈ gph ∂g, the coderivative mapping of ∂g
at z̄ for λ̄, denoted D∗(∂g)(z̄, λ̄), is defined by

u ∈ D∗(∂g)(z̄, λ̄)(w) ⇐⇒ (u,−w) ∈ Ngph ∂g(z̄, λ̄).

It is well-known (cf. [33, Theorem 13.57]) that the inclusion D(∂g)(z̄, λ̄)(w) ⊂ D∗(∂g)(z̄, λ̄)(w),
for any w ∈ IRm, always holds for a polyhedral function g. Below, we show that this inclusion
becomes equality provided that the subgradient λ̄ is taken from the relative interior of ∂g(z̄).

Corollary 3.8. Assume that g : IRm → IR is a polyhedral function and that (z̄, λ̄) ∈ gph ∂g.
Then λ̄ ∈ ri ∂g(z̄) if and only if

D(∂g)(z̄, λ̄)(w) = D∗(∂g)(z̄, λ̄)(w) for all w ∈ IRm. (3.24)

Proof. Suppose that λ̄ ∈ ri ∂g(z̄). Thus the critical cone Kg(z̄, λ̄) is a linear subspace. By

Theorem 3.6(a), we have Tgph ∂g(z̄, λ̄) = gphNKg(z̄,λ̄) = Kg(z̄, λ̄) × Kg(z̄, λ̄)
⊥

. Moreover, we

conclude from Theorem 3.7(c) that Ngph ∂g(z̄, λ̄) = Kg(z̄, λ̄)
⊥×Kg(z̄, λ̄). Combining these with

the definitions of coderivative and proto-derivative justifies (3.24).
Assume now that (3.24) holds. We are going to show that Kg(z̄, λ̄) is a linear subspace.

To this end, it suffices to show that if w ∈ Kg(z̄, λ̄), then −w ∈ Kg(z̄, λ̄). Pick w ∈ Kg(z̄, λ̄)
and conclude from (3.16) that there is u ∈ IRm such that u ∈ D(∂g)(z̄, λ̄)(w) = NKg(z̄,λ̄)(w),

which yields that (w, u) ∈ Kg(z̄, λ̄) × Kg(z̄, λ̄)
∗
. This, combined with (3.20), tells us that

(u,w) ∈ Kg(z̄, λ̄)
∗ × Kg(z̄, λ̄) ⊂ Ngph ∂g(z̄, λ̄). Employing the definition of coderivative and

(3.24), we obtain u ∈ D∗(∂g)(z̄, λ̄)(−w) = D(∂g)(z̄, λ̄)(−w) = NKg(z̄,λ̄)(−w), which clearly

confirms that −w ∈ Kg(z̄, λ̄). Since Kg(z̄, λ̄) = N∂g(z̄)(λ̄) and Kg(z̄, λ̄) is a linear subspace, we
obtain λ̄ ∈ ri ∂g(z̄), which completes the proof.

We close this section with an application of (3.20) to calculate D∗(∂g)(z̄, λ̄)(0) for a polyhe-
dral function g with (z̄, λ̄) ∈ gph ∂g, important for stability analysis of composite optimization
problems. By definition, we know that u ∈ D∗(∂g)(z̄, λ̄)(0) if and only if (u, 0) ∈ Ngph ∂g(z̄, λ̄).
Now, we claim that

(u, 0) ∈ Ngph ∂g(z̄, λ̄) ⇐⇒ u ∈
(
Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄)

)⊥
. (3.25)

To justify this claim, pick u ∈
(
Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄)

)⊥
. Observe that Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄)

is a closed face of Kg(z̄, λ̄). Letting F1 = F2 = Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄) in (3.20) shows that
(u, 0) ∈ Ngph ∂g(z̄, λ̄). Conversely, suppose (u, 0) ∈ Ngph ∂g(z̄, λ̄). By (3.20), we find closed faces
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F1 and F2 of Kg(z̄, λ̄) with F2 ⊂ F1 that u ∈ (F1 − F2)∗. Since Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄) is the
smallest closed face of Kg(z̄, λ̄), we get Kg(z̄, λ̄)∩−Kg(z̄, λ̄) ⊂ F1 and Kg(z̄, λ̄)∩−Kg(z̄, λ̄) ⊂ F2,
which bring us to

u ∈ (F1 − F2)∗ ⊂
(
Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄)

)∗
=
(
Kg(z̄, λ̄) ∩ −Kg(z̄, λ̄)

)⊥
and thus finish the proof of (3.25). If we assume further that g has the representation (2.3), it
is not hard to see that (3.25) amounts to

u ∈ span
{
ai − aj | i, j ∈ J(z̄)

}
+ span

{
bi | i ∈ I(z̄)

}
. (3.26)

Indeed, employing the description of Kg(z̄, λ̄) from Proposition 2.3, we obtain(
Kg(z̄, λ̄)∩−Kg(z̄, λ̄)

)⊥
= span

{
ai− aj | i ∈ J(z̄), j ∈ J+(z̄, λ̄1)

}
+ span

{
bi | i ∈ I(z̄)

}
, (3.27)

for any decomposition λ̄ = λ̄1 + λ̄2 as in (2.6). Pick an arbitrary j0 ∈ J+(z̄, λ̄1) and note that
for any i, j ∈ J(z̄) we have ai − aj = (ai − aj0)− (aj − aj0). Thus, we can replace j ∈ J+(z̄, λ̄1)
in (3.27) with j ∈ J(z̄), which proves (3.26).

4 Strict Twice Epi-Differentiability of Polyhedral Functions

In this section, we study another important second-order variational property, called strict twice
epi-differentiability, for polyhedral functions and its applications in continuous differentiability
of proximal mappings for this class of functions. Once again, our results rely heavily on our
extension of the reduction lemma for polyhedral functions. To achieve our goal, consider a
function f : IRn → IR with x̄ ∈ IRn with f(x̄) finite and define the parametric family of second-
order difference quotients of f at x̄ for v̄ ∈ ∂f(x̄) by

∆2
t f(x̄, v̄)(w) =

f(x̄+ tw)− f(x̄)− t〈v̄, w〉
1
2 t

2

for any w ∈ IRn and t > 0. The second subderivative of f at x̄ for v̄, denoted d2f(x̄, v̄), is an
extended-real-valued function defined by

d2f(x̄, v̄)(w) = lim inf
t↘0
w′→w

∆2
t f(x̄, v̄)(w′), w ∈ IRn.

Following [33, Definition 13.6], f is said to be twice epi-differentiable at x̄ for v̄ if the func-
tions ∆2

t f(x̄, v̄) epi-converge to d2f(x̄, v̄) as t ↘ 0. Further, we say that f is strictly twice
epi-differentiable at x̄ for v̄ if the functions ∆2

t f(x, v) epi-converge to a function as t ↘ 0,
(x, v)→ (x̄, v̄) with f(x)→ f(x̄) and (x, v) ∈ gph ∂f . If this condition holds, the limit function
is then the second subderivative d2f(x̄, v̄). Twice epi-differentiability of extended-real-valued
functions, introduced by Rockafellar in [29], has been investigated for important classes of func-
tions appearing in constrained and composite optimization problems in [15, 16, 30]. Its strict
version, introduced in [22], was only studied in [21] for nonlinear programming and minimax
problems and so it is tempting to ask when this property holds and to explore its applications
in parametric optimization. To this end, we define the strict second subderivative of f at x̄ for
v̄ with v̄ ∈ ∂f(x̄) at w ∈ IRn by

d2
sf(x̄, v̄)(w) = lim inf

t↘0, w′→w

(x,v)
gph ∂f−−−−→(x̄,v̄)

f(x)→f(x̄)

∆2
t f(x, v)(w′).
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When f is subdifferentially continuous at x̄ for v̄ in the sense of [33, Definition 13.28], we can
drop the requirement f(x)→ f(x̄) in the definition of the strict second subderivative. According
to [33, Example 13.30], convex functions are always subdifferentialy continuous. Clearly, we
always have d2

sf(x̄, v̄)(w) ≤ d2f(x̄, v̄)(w) for any w ∈ IRn. If f is strictly twice epi-differentiable
at x̄ for v̄, the latter inequality becomes equality. Being able to calculate the strict second
subderivative of a function and comparing with its second subderivative can tell us when strict
twice epi-differentiability should be expected for such a function. Note also that the second
subderivative was exploited to characterize the quadratic growth condition for extended-real-
valued functions in [33, Theorem 13.24(c)]. Similarly, we can use the strict second subderivative
to achieve a characterization of the uniform quadratic growth condition (cf. [1, Definition 5.16]),
which plays an important role in parametric optimization. This is beyond the scope of this
paper and so we postpone it to our future research. Below, we use the characterization of the
faces of the critical cone of a polyhedral function in Proposition 3.4 to find its strict second
subderivative.

Proposition 4.1. For a polyhedral function g : IRm → IR and (z̄, λ̄) ∈ gph ∂g, its strict second
subderivative can be calculated by

d2
sg(z̄, λ̄)(w) = δKg(z̄,λ̄)−Kg(z̄,λ̄)(w) for all w ∈ IRm. (4.1)

Proof. We first prove that d2
sg(z̄, λ̄)(w) = 0 for all w ∈ Kg(z̄, λ̄)−Kg(z̄, λ̄). First, observe that

the convexity of g yields d2
sg(z̄, λ̄)(w) ≥ 0 for all w ∈ IRm. To obtain the opposite inequality,

pick w ∈ Kg(z̄, λ̄) − Kg(z̄, λ̄). By Proposition 3.4, we find a sequence (zk, λk) → (z̄, λ̄) such
that (zk, λk) ∈ gph ∂g and Kg(z

k, λk) = Kg(z̄, λ̄)−Kg(z̄, λ̄). This implies that w ∈ Kg(z
k, λk),

which is equivalent to saying that dg(zk)(w) = 〈λk, w〉. Employing Proposition 2.2(b), we find
a sequence tk ↘ 0 such that g(zk + tkw) − g(zk) = dg(zk)(tkw) = tkdg(zk)(w). By definition,
we get ∆2

tk
g(zk, λk)(w) = 0, which results in

d2
sg(z̄, λ̄)(w) ≤ lim

k→∞
∆2
tk
g(zk, λk)(w) = 0.

This confirms that d2
sg(z̄, λ̄)(w) = 0 for any w ∈ Kg(z̄, λ̄)−Kg(z̄, λ̄). To obtain (4.1), it suffices to

to justify that dom d2
sg(z̄, λ̄) ⊂ Kg(z̄, λ̄)−Kg(z̄, λ̄). Taking any w ∈ IRm with d2

sg(z̄, λ̄)(w) <∞,
we can find sequences tk ↘ 0, wk → w, and (zk, λk)→ (z̄, λ̄) with (zk, λk) ∈ gph ∂g such that

lim
k→∞

g(zk + tkw
k)− g(zk)− tk〈λk, wk〉

1
2 t

2
k

<∞.

This, together with the convexity of g, allows us to find a constant M > 0 such that

0 ≤ g(zk + tkw
k)− g(zk)− tk〈λk, wk〉

tk
≤Mtk

for all k sufficiently large and therefore to obtain

lim
k→∞

g(zk + tkw
k)− g(zk)− tk〈λk, wk〉

tk
= 0. (4.2)

Take an arbitrary

u ∈
(
Kg(z̄, λ̄)−Kg(z̄, λ̄)

)⊥
= Kg(z̄, λ̄)

∗ ∩ −Kg(z̄, λ̄)
∗

= T∂g(z̄)(λ̄) ∩ −T∂g(z̄)(λ̄),
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where the last equality results from (2.14). We now show that 〈u,w〉 = 0, which in turn yields
w ∈ Kg(z̄, λ̄)−Kg(z̄, λ̄). To this end, by (2.12), we find α > 0 such that λ̄± αu ∈ ∂g(z̄). This
clearly implies that

〈λ̄± αu, zk + tkw
k − z̄〉 ≤ g(zk + tkw

k)− g(z̄). (4.3)

Employing Theorem 3.1, we can conclude that (zk− z̄, λk−λ̄) ∈ gphNKg(z̄,λ̄) for all k sufficiently

large. This tells us that zk − z̄ ∈ Kg(z̄, λ̄) = N∂g(z̄)(λ̄) for all k sufficiently large. Moerover,

Lemma 2.1 confirms that λ̄ ∈ ∂g(zk) for all k sufficiently large. Combining these, we can
conclude that

〈u, zk − z̄〉 = 0 and 〈λ̄, zk − z̄〉 = g(zk)− g(z̄).

These, together with (4.3), yield

〈λ̄± αu, tkwk〉 ≤ g(zk + tkw
k)− g(zk),

and therefore we get

〈λ̄− λk ± αu,wk〉 ≤ g(zk + tkw
k)− g(zk)− tk〈λk, wk〉

tk
.

Passing to the limit as k → ∞ and employing (4.2), we arrive at ±α〈u,w〉 ≤ 0, meaning
〈u,w〉 = 0. This confirms that w ∈ Kg(z̄, λ̄)−Kg(z̄, λ̄) and hence completes the proof.

The established formula for the strict second subderivative of a polyhedral function in (4.1)
suggests a path forward in the study of strict twice epi-differentiability of this class of functions.
As pointed out earlier, strict twice epi-differentiability requires that the second subderivative
and strict second subderivative coincide. For polyhedral functions, Proposition 4.1 immediately
suggests that the given subgradient λ̄ must belong to ri ∂g(z̄); see the proof of the implication
(a) =⇒ (c) in Theorem 4.3 for a detailed proof. One may wonder whether the opposite holds as
well, namely the relative interior condition λ̄ ∈ ri ∂g(z̄) implies strict twice epi-differentiability
of polyhedral functions. Our next goal is to indeed demonstrate that this is true. In doing so,
we rely heavily upon the reduction lemma, obtained in Theorem 3.1, as well as a characteri-
zation of strict twice epi-differentiablity of prox-regular functions from [23]. The next result is
a simplified version of [23, Corollary 4.3], and presents a useful characterization of strict twice
epi-differentiability of convex functions, which comprise an important subclass of prox-regular
functions according to [33, Example 3.30].

Proposition 4.2 (characterization of strict twice epi-differentiability). Assume that f : IRn →
IR, x̄ ∈ IRn with f(x̄) finite, and v̄ ∈ ∂f(x̄) and that f is a convex function. Then there is
a neighborhood O of (x̄, v̄) such that for any (x, v) ∈ O ∩ gph f , the following properties are
equivalent:

(a) f is strictly twice epi-differentiable at x for v;
(b) ∂f is strictly proto-differentiable at x for v;
(c) d2f(x′, v′) epi-converges (to something) as (x′, v′) → (x, v) in the set of pairs (x′, v′) ∈

gph ∂f for which f is twice epi-differentiable;
(d) D(∂f)(x′, v′) graph-converges (to something) as (x′, v′)→ (x, v) in the set of pairs (x′, v′) ∈

gph ∂f for which ∂f is proto-differentiable.

The next result is an immediate consequence of Theorem 3.3(b) and reveals that polyhedral
functions are always strictly twice epi-differentiable under a relative interior condition.

Theorem 4.3 (strict twice epi-differentiability of polyhedral functions). Assume that g : IRm →
IR is a polyhedral function and that (z̄, λ̄) ∈ gph ∂g. Then the following properties are equivalent:
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(a) there is a neighborhood O of (z̄, λ̄) such that for any (z, λ) ∈ O∩ gph ∂g, g is strictly twice
epi-differentiable at z for λ;

(b) there is a neighborhood O of (z̄, λ̄) such that for any (z, λ) ∈ O ∩ gph ∂g, ∂g is strictly
proto-differentiable at z for λ;

(c) λ̄ ∈ ri ∂g(z̄).

Proof. Since g is convex, the equivalence of (a) and (b) falls out of Proposition 4.2. It follows
from Theorem 3.6(c) that (c) yields (b). Using a similar argument presented in Theorem 3.6(c),
one can show directly the implication (c) =⇒ (a). Indeed, for any (z, λ) ∈ gph ∂g, we infer
from [33, Proposition 13.9] that g is twice epi-differentiable at z for λ and

d2g(z, λ) = δKg(z,λ). (4.4)

It follows from Theorem 3.3(b) and λ̄ ∈ ri ∂g(z̄) that for any (z, λ) ∈ gph ∂g sufficiently close to
(z̄, λ̄), the equality Kg(z, λ) = Kg(z̄, λ̄) holds, which together with (4.4) brings us to d2g(z, λ) =
δKg(z̄,λ̄). Using [33, Proposition 7.4(f)], we conclude that d2g(z, λ) epi-coverges to d2g(z̄, λ̄) as

(z, λ) → (z̄, λ̄) with (z, λ) ∈ gph ∂g. This, combined with Proposition 4.2, demonstrates that
g is strictly twice epi-differentiable at z̄ for λ̄. To achieve a similar conclusion for any pair
(z, λ) ∈ gph ∂g sufficiently close to (z̄, λ̄), observe from Theorem 3.3(b) that for any such a pair,
we have λ ∈ ri ∂g(z). A similar argument as the one, presented above for (z̄, λ̄), shows that g is
strictly twice epi-differentiable at z for λ whenever (z, λ) ∈ gph ∂g is sufficiently close to (z̄, λ̄),
which proves (a).

Finally, we show the implication (a) =⇒ (c). Suppose that (a) holds. As pointed out earlier,
when strict twice epidifferentiablity holds for a function, its second subderivative and strict
second subderivative coincide. Strict twice epi-differentiability of g at z̄ for λ̄, together with
(4.1) and (4.4), tells us that

δKg(z̄,λ̄)−Kg(z̄,λ̄) = d2
sg(z̄, λ̄) = d2g(z̄, λ̄) = δKg(z̄,λ̄).

This implies that Kg(z̄, λ̄) − Kg(z̄, λ̄) = Kg(z̄, λ̄), meaning that Kg(z̄, λ̄) is a linear subspace.
By (2.14), we get λ̄ ∈ ri ∂g(z̄), which completes the proof.

Combining the obtained characterization of strict twice epi-differentiability of polyhedral
functions with (3.6) allows us to conclude that strict twice epi-differentiablity is preserved under
the Fenchel conjugate for polyhedral functions, as shown below.

Corollary 4.4. Assume that g : IRm → IR is a polyhedral function and that (z̄, λ̄) ∈ gph ∂g.
Then the following properties are equivalent:

(a) there is a neighborhood O of (z̄, λ̄) such that for any (z, λ) ∈ O∩ gph ∂g, g is strictly twice
epi-differentiable at z for λ;

(b) there is a neighborhood U of (λ̄, z̄) such that for any (λ, z) ∈ U ∩ gph ∂g∗, g∗ is strictly
twice epi-differentiable at λ for z;

(c) λ̄ ∈ ri ∂g(z̄);
(d) z̄ ∈ ri ∂g∗(λ̄).

Proof. We know from [33, Theorem 11.14(a)] that g∗ is a polyhedral function. We obtain the
equivalence of (a) and (c) and of (b) and (d) from Theorem 4.3. Corollary 3.2 also tells us that
(c) and (d) are equivalent, which completes the proof.

We close this section with a major consequence of the established characterization in Theo-
rem 4.3 about smoothness of the Moreau envelope and proximal mapping for polyhedral func-
tions. To this end, recall that for a function f : IRn → IR and parameter value r > 0, the Moreau
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envelope function erf and the proximal mapping proxrf are defined, respectively, by

erf(x) = inf
w∈IRn

{
f(w) +

1

2r
‖w − x‖2

}
,

and

proxrf (x) = argmin
w∈IRn

{
f(w) +

1

2r
‖w − x‖2

}
.

When f is convex, the subdifferential sum rule from convex analysis implies that

proxrf (x) =
(
I + r∂f

)−1
(x), x ∈ IRn, (4.5)

where I stands for the n×n identity matrix. Furthermore, it is known that the envelope function
erf is continuously differentiable (cf. [33, Theorem 2.26]) for any convex function f . If, in addi-
tion, f is a polyhedral function, we deduce from [33, Proposition 13.9] and [33, Exercise 13.45]
that the proximal mapping proxrf is semidifferentiable. According to [2, Proposition 2D.1],
the latter is equivalent to directional differentiability of proxrf . Below, we present a simple
but useful characterization of continuous differentiability of the proximal mapping of polyhedral
functions.

Theorem 4.5. Assume that g : IRm → IR is a polyhedral function and that (z̄, λ̄) ∈ gph ∂g.
Then the following properties are equivalent:

(a) λ̄ ∈ ri ∂g(z̄);
(b) for any r > 0, the envelope function erg is C2 in a neighborhood of z̄ + rλ̄;
(c) for any r > 0, the proximal mapping proxrg is C1 in a neighborhood of z̄ + rλ̄.

Furthermore, if λ̄ ∈ ri ∂g(z̄) and r > 0, then for any x sufficiently close to z̄ + rλ̄, the Jacobian
matrix ∇(proxrg)(x) and the Hessian matrix ∇2(erg)(x) can be calculated, respectively, by

∇(proxrg)(x) = PKg(z̄,λ̄) and ∇2(erg)(x) =
1

r

(
I − PKg(z̄,λ̄)

)
=

1

r
PKg∗ (λ̄,z̄).

Proof. Set ϕ(z) = g(z) − 〈λ̄, z〉 for any z ∈ IRm. Since λ̄ ∈ ∂g(z̄), we get 0 ∈ ∂ϕ(z̄). This,
together with the convexity of ϕ, yields z̄ ∈ argminϕ, where argminϕ stands for the set of
global minimizers of ϕ over IRm. Observe also that the condition λ̄ ∈ ri ∂g(z̄) is equivalent to
0 ∈ ri ∂ϕ(z̄) and that

proxrϕ(z) = proxrg(z + rλ̄) for all z ∈ IRm. (4.6)

Picking r > 0 and employing [23, Theorem 4.4] imply that proxrϕ is C1 in a neighborhood of z̄
if and only if ϕ is strictly twice epi-differentiable at z for v for all (z, v) ∈ gph ∂ϕ sufficiently
close to (z̄, 0) (the parameter r in [23, Theorem 4.4] should be chosen sufficiently small since
the function under consideration in [23] is prox-regular. It is, however, well-known that such
a restriction on r for convex functions is not necessary). By Theorem 4.3, the latter property
of ϕ amounts to the condition 0 ∈ ri ∂ϕ(z̄). It is not hard to see that ϕ is strictly twice epi-
differentiable at z for v for any (z, v) ∈ gph ∂ϕ sufficiently close to (z̄, 0) if and only if g enjoys
the same property at z for λ for any (z, λ) ∈ ∂g sufficiently close to (z̄, λ̄). Combining these with
(4.6) and Theorem 4.3, we conclude the equivalence of (a) and (c). To obtain the equivalence
of (a) and (b), one can see that

erϕ(z) = erg(z + rλ̄)− 〈λ̄, z〉 − r

2
‖λ̄‖2 for all z ∈ IRm.

This, combined with a similar argument via [23, Theorem 4.4], confirms that (a) and (b) are
equivalent.
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Finally, pick r > 0 and suppose that λ̄ ∈ ri ∂g(z̄). By (b) and (c), there exists a neighborhood
U of z̄ + rλ̄ such that proxrg is C1 and erg is C2 on U . Take x ∈ U and set y = proxrg(x). By
(4.5), we get v := r−1(x− y) ∈ ∂g(y). It also follows from (4.5) and the definition of graphical
derivative that

D(proxrg)(x)(w) =
(
I + rD(∂g)(y, v)

)−1
(w) for all w ∈ IRm,

which, together with (3.16), brings us to

D(proxrg)(x)(w) =
(
I + rNKg(y,v)

)−1
(w) =

(
I +NKg(y,v)

)−1
(w) = PKg(y,v)(w)

for any w ∈ IRm. By (c), the proximal mapping proxrg is differentiable at x and thus we get
D(proxrg)(x) = ∇(proxrg)(x). Combining these confirms the claimed formula for the Jacobian
matrix ∇(proxrg)(x). Recall also from [33, Theorem 2.26] that ∇(erg)(x) = r−1(x− proxrg(x))
for any x ∈ IRm. By (b), the envelope function erg is twice differentiable at x and thus we have

∇2(erg)(x) =
1

r
(I −∇(proxrg)(x)

)
=

1

r

(
I − PKg(y,v)

)
=

1

r
PKg∗ (v,y),

where the last equality comes from the identity PKg(y,v) + PKg(y,v)∗ = I together with (3.5).
Now, we claim that Kg(y, v) = Kg(z̄, λ̄) whenever x ∈ U . This can be accomplished via
Theorem 3.3(b) provided that we show (y, v) ∈ gph ∂g is sufficiently close to (z̄, λ̄). Since the
proximal mapping is nonexpansive and since proxrg(z̄ + rλ̄) = z̄, we get

‖y − z̄‖ = ‖proxrg(x)− proxrg(z̄ + rλ̄)‖ ≤ ‖x− z̄ − rλ̄‖.

Moreover, we have

‖v − λ̄‖ = ‖r−1(x− y)− λ̄‖ ≤ r−1‖x− z̄ − rλ̄‖+ r−1‖y − z̄‖ ≤ 2r−1‖x− z̄ − rλ̄‖.

Using these estimates and shrinking U , if necessary, confirm our claim and hence prove the
claimed formulas for the Jacobian matrix ∇(proxrg)(x) and the Hessian matrix ∇2(erg)(x).

We should mention that smoothness of projection mapping onto a closed convex set was first
studied by Holmes in [8] in Hilbert spaces. His main result, [8, Theorem 2], states that if C ⊂ IRd

is a closed convex set, x ∈ IRd, the boundary of C is a C2 smooth manifold (cf. [33, Example 6.8])
around y = PC(x), then the projection mapping PC is C1 in a neighborhood of the open normal
ray {y + t(x − y)| t > 0}. As pointed out by Hiriart-Urruty in [9], when the projection point
y is a corner point, Holmes’s result can not be utilized to study smoothness of the projection
mapping because the boundary of C fails to be a C2 smooth manifold around y. In contrast,
Theorem 4.5 goes beyond the projection mapping and provides a characterization of smoothness
of the proximal mapping of a polyhedral function via a verifiable condition. While our result is
limited to polyhedral functions, our approach via second-order variational analysis opens a new
door to study smoothness of projection mappings of convex sets. It is important to emphasize
that our approach to characterize smoothness of proximal mappings demonstrates that instead
of expecting smoothness of the boundary of the convex set under consideration, we should look
for a second-order regularity condition, which seems to be the driving force for such a result.

Corollary 4.6. Assume that C ⊂ IRm is a polyhedral convex set and x ∈ IRm. Then PC is C1

in a neighborhood of x if and only if x− z ∈ riNC(z), where z = PC(x).

Proof. Applying Theorem 4.5 to the polyhedral function g = δC proves the claimed equiva-
lence.
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Note that a characterization of differentiability at a point, but not continuous differentiability
around a point, of the projection mapping PC , C being a polyhedral convex set, via the same
relative interior condition as in Corollary 4.6 can be found in [4, Corollary 4.1.2]. Not only is
our proof different from the one in [4], also Corollary 4.6 improves the latter result by showing
that differentiability of the projection mapping at a given point can be strengthened to the C1

property of this mapping in a neighborhood of that point.

5 Regularity Properties of Variational Systems

In this section, we aim to explore the relationship between important regularity properties of
the solution mapping to the generalized equation (1.1). When g = δC with C being a polyhedral
convex set, the generalized equation (1.1) will be an example of variational inequalities. In this
case, the seminal paper [3] revealed for the first time that strong metric regularity and metric
regularity of the solution mapping to the canonical perturbation of (1.1) are equivalent; see
below for the definitions of both concepts. The given proof in [3] for the latter equivalence relied
heavily on Robinson’s results in [27] and did not utilize second-order generalized differentiation
tools that we are going to exploit in this section. We aim to present a proof of a similar
result for the generalized equation (1.1), which is based upon our development of strict proto-
differentiability of polyhedral functions. This forces us to restrict our analysis to the so-called
nondegenerate solutions to (1.1), meaning solutions that satisfy the condition (1.2). Appealing
to Theorem 4.5, we immediately arrive at the following equivalent descriptions of nondegenerate
solutions to (1.1). Note that proxg stands for the proximal mapping of the polyhedral function
g with the parameter value r = 1.

Proposition 5.1. Assume that x̄ is a solution to the generalized equation (1.1). Then the
following properties are equivalent:

(a) x̄ is a nondegenerate solution to (1.1);
(b) the critical cone Kg(x̄,−ψ(x̄)) is a linear subspace;
(c) the proximal mapping proxg is C1 in a neighborhood of x̄− ψ(x̄).

To explore regularity properties of nondegenerate solutions to (1.1), define the set-valued
mapping G : IRm ⇒ IRm by

G(x) := ψ(x) + ∂g(x), x ∈ IRm, (5.1)

and then consider the solution mapping S : IRm ⇒ IRm to the canonical perturbation of the
generalized equation (1.1) by

S(y) := G−1(y) =
{
x ∈ IRm

∣∣ y ∈ ψ(x) + ∂g(x)
}
, y ∈ IRm. (5.2)

Recall that a set-valued mapping F : IRn ⇒ IRm is called metrically regular at x̄ for ȳ ∈ F (x̄)
if there exist κ ≥ 0 and neighborhoods U of x̄ and V of ȳ such that the distance estimate

dist
(
x, F−1(y)

)
≤ κdist

(
y, F (x)

)
(5.3)

holds for all (x, y) ∈ U × V . When the estimate (5.3) holds for any (x, y) ∈ IRn × IRm, we call
F globally metrically regular. It is known (cf. [10, Theorem 5.9(a)]) that when F is positively
homogeneous and metrically regular at x̄ for ȳ, it is globally metrically regular. The mapping is
called strongly metrically regular at x̄ for ȳ if F−1 admits a Lipschitz continuous single-valued
localization around ȳ for x̄, which means that there exist neighborhoods U of x̄ and V of ȳ such
that the mapping y 7→ F−1(y) ∩ U is single-valued and Lipschitz continuous on V . According
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to [2, Proposition 3G.1], strong metric regularity of F at x̄ for ȳ amounts to F being metrically
regular at x̄ for ȳ and its inverse F−1 admitting a single-valued localization around ȳ for x̄.

Our main goal in the rest of this section is to show that if x̄ is a nondegenerate solution to the
generalized equation (1.1), then metric regularity and strong metric regularity of the mapping
G from (5.1) at x̄ for 0 are equivalent. Since strong metric regularity of G translates as its
inverse mapping G−1 = S having a Lipschitz continuous single-valued localization and since S
is the solution mapping to the canonical perturbation of the generalized equation (1.1), we will
be able to find verifiable conditions for single-valuedness and Lipschitz continuity of the solution
mapping S. To this end, we begin with understanding metric regularity of G from (5.1) using a
characterization of this property via the graphical derivative, established in [2, Theorem 4B.1]:
a set-valued mapping F : IRn ⇒ IRm whose graph is locally closed around (x̄, ȳ) ∈ gphF is
metrically regular at x̄ for ȳ if and only if the condition

lim sup

(x,y)
gphF−−−→(x̄,ȳ)

|DF (x, y)−1|− <∞ (5.4)

is satisfied, where the inner norm |DF (x, y)−1|− is calculated by

|DF (x, y)−1|− = sup
‖u‖≤1

inf
w∈DF (x,y)−1(u)

‖w‖ (5.5)

with the convention infw∈∅ ‖w‖ = ∞. For any (x, y) ∈ gphF , we deduce from (5.5) that the
condition |DF (x, y)−1|− <∞ yields DF (x, y)−1(u) 6= ∅ for all u ∈ IRm. The latter is equivalent
to saying that for any u ∈ IRm, there exists w ∈ IRm such that u ∈ DF (x, y)(w), meaning that

rgeDF (x, y) =
{
u ∈ IRm| ∃w ∈ IRn with u ∈ DF (x, y)(w)

}
= IRm.

This tells us that the condition |DF (x, y)−1|− <∞ implies that the graphical derivative mapping
DF (x, y) : IRn ⇒ IRm is surjective. To get the opposite conclusion, we conclude from [2,
Proposition 4A.6] that if gphDF (x, y) = TgphF (x, y) is convex, the surjectivity of DF (x, y) is
necessary and sufficient for the condition |DF (x, y)−1|− <∞.

Next, we demonstrate that a point-based counterpart of (5.4) can be used to characterize
metric regularity of the mapping G from (5.1) for nondegenerate solutions to (1.1).

Theorem 5.2 (point-based criteria for metric regularity). Assume that x̄ is a nondegenerate so-
lution to the generalized equation (1.1) and set K = Kg(x̄,−ψ(x̄)). Then the following properties
are equivalent:

(a) the mapping G from (5.1) is metrically regular at x̄ for 0;
(b) |DG(x̄, 0)−1|− <∞;
(c) DG(x̄, 0) is surjective;
(d) DG(x̄, 0) is globally metrically regular;

(e)
(
∇ψ(x̄)K

)
+K

⊥
= IRm;

(f) {w ∈ IRm| ∇ψ(x̄)∗w ∈ K⊥
}
∩K = {0}.

Proof. By the definition of G from (5.1), the sum rule for the graphical derivative from [33,
Exercise 10.43(b)], and Theorem 3.6(a), we obtain for any (x, y) ∈ gphG and w ∈ IRm that

DG(x, y)(w) = ∇ψ(x)w +D(∂g)(x, y − ψ(x))(w)

= ∇ψ(x)w +NKg(x,y−ψ(x))(w).
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Since x̄ is a nondegenerate solution to (1.1), we deduce from Theorem 3.3(b) that there exists
r > 0 such that for any (x, y) ∈ Br(x̄, 0)∩ gphG, we have Kg(x, y−ψ(x)) = Kg(x̄,−ψ(x̄)) = K.
Combing these with K being a linear subspace brings us to

u ∈ DG(x, y)(w) ⇐⇒ u ∈ ∇ψ(x)w +K
⊥
, w ∈ K. (5.6)

This clearly tells us that gphDG(x̄, 0) is a convex set and thus proves the equivalence of (b)
and (c) using our discussion prior to this theorem. Also, we can conclude from (5.6) that

rgeDG(x̄, 0) = (∇ψ(x̄)K) +K
⊥
, (5.7)

which implies that DG(x̄, 0) is surjective if and only if IRm = rgeDG(x̄, 0) = ∇ψ(x̄)K + K
⊥

.
This justifies that (c) and (e) are equivalent. Furthermore, the surjectively of DG(x̄, 0) means
rgeDG(x̄, 0) = IRm, which amounts to the condition 0 ∈ int rgeDG(x̄, 0) due to the fact that
the graphical derivative mapping DG(x̄, 0) is positively homogeneous (cf. [2, page 216]). This,
combined with 0 ∈ DG(x̄, 0)(0) and [2, Theorem 5B.4], implies that (c) is equivalent to the fact
that the mapping DG(x̄, 0) is metrically regular at 0 for 0. According to [10, Theorem 5.9(a)],
the latter amounts to (d), confirming that (c) and (d) are equivalent. The equivalence of (e)
and (f) results from taking the orthogonal complement from both sides of either (e) or (f) and
observing by [33, Corollary 11.25(c)] that(

∇ψ(x̄)K
)⊥

=
{
w ∈ IRm| ∇ψ(x̄)∗w ∈ K⊥

}
.

Suppose now that (a) holds. By (5.4), we obtain (b). To justify the implication (c) =⇒ (a),
suppose that (a) fails. By (5.4), there exists a sequence {(xk, yk)}k∈IN ⊂ gphG, converging
to (x̄, 0), such that |DG(xk, yk)−1|− > k for any k ∈ IN. It follows from (5.5) that for any k
sufficiently large, we find uk with ‖uk‖ ≤ 1 and wk ∈ DG(xk, yk)−1(uk) such that ‖wk‖ > k.
Thus, by (5.6), we arrive at the conditions

uk

‖wk‖
− ∇ψ(xk)

wk

‖wk‖
∈ K⊥ and

wk

‖wk‖
∈ K.

Passing to a subsequence, if neccessary, we get −∇ψ(x̄)w̄ ∈ K⊥ for some 0 6= w̄ ∈ K. We are

going to show that |DG(x̄, 0)−1|− = ∞. To do so, let s = dimK and observe that dimK
⊥

=
m − s and dim

(
∇ψ(x̄)K

)
≤ s. If ∇ψ(x̄)w̄ = 0, the classical rank-nullity theorem from linear

algebra leads us to dim
(
∇ψ(x̄)K

)
< s. Otherwise, we have 0 6= ∇ψ(x̄)w̄ ∈ (∇ψ(x̄)K) ∩K⊥,

which confirms that dim
(
(∇ψ(x̄)K) ∩K⊥

)
> 0. Combining these with (5.7) results in

dim
(
rgeDG(x̄, 0)

)
= dim

(
(∇ψ(x̄)K) +K

⊥)
< s+ (m− s) = m,

which means that DG(x̄, 0) is not surjective, a contradiction of (c). This proves the implication
(c) =⇒ (a) and hence completes the proof.

When g = 0 in the generalized equation (1.1), Theorem 5.2 boils down to the classical result
for strictly differentiable functions (cf. [17, Theorem 1.57]). The latter result states that metric
regularity for such a function amounts to surjectivity of its Jacobian matrix.

We have one more step to take before proving the main result of this section, which is to
show that strict proto-differentiability is preserved for the sum of two functions.
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Proposition 5.3 (sum rule for strict proto-derivative). Let f : IRn → IRm be C1 around x̄ and
let F : IRn ⇒ IRm with ȳ ∈ F (x̄). Then we have

D∗(f + F )(x̄, f(x̄) + ȳ)(w) = ∇f(x̄)w +D∗F (x̄, ȳ)(w) for all w ∈ IRn.

Moreover, F is strictly proto-differentiable at x̄ for ȳ if and only if f + F is strictly proto-
differentiable at x̄ for f(x̄) + ȳ.

Proof. The given formula for D∗(f + F )(x̄, f(x̄) + ȳ) was already established in [33, Ex-
ercise 10.43(b)]. To justify the second claim, suppose that F is strictly proto-differentiable
at x̄ for ȳ. Let (w, u) ∈ gphD∗(f + F )(x̄, ȳ + f(x̄)) and take arbitrary sequences tk ↘ 0,
and (xk, zk) → (x̄, ȳ + f(x̄)) with {(xk, zk)}k∈IN ⊂ gph (f + F ). The latter tells us that
(xk, yk)→ (x̄, ȳ) with yk := zk − f(xk). By the sum rule for the strict graphical derivative, we
get (w, u−∇f(x̄)w) ∈ gphD∗F (x̄, ȳ). Since F is strictly proto-differentiable at x̄ for ȳ, we find
a sequence (wk, vk)→ (w, u−∇f(x̄)w) such that yk + tkv

k ∈ F (xk + tkw
k) for all k ∈ IN, which

in turn implies for any k ∈ IN that

zk + tku
k ∈ (f + F )(xk + tkw

k) with uk :=
f(xk + tkw

k)− f(xk)

tk
+ vk.

Since {(wk, uk)}k∈IN converges to (w, u), we conclude that f + F is strictly proto-differentiable
at x̄ for f(x̄) + ȳ.

Assume now that f + F is strictly proto-differentiable at x̄ for f(x̄) + ȳ. By the argument
above, we can conclude that F = f + F + (−f) is strictly proto-differentiable at x̄ for ȳ, which
completes the proof.

To present the main result of this section, let us recall a result, established in [2, Theo-
rem 4D.1] in which sufficient conditions for strong metric regularity of a set-valued mapping
were obtained: a set-valued mapping F : IRn ⇒ IRm is strongly metrically regular at x̄ for
ȳ ∈ F (x̄) provided that it has a closed graph and the conditions

0 ∈ D∗F (x̄, ȳ)(w) =⇒ w = 0 (5.8)

and
x̄ ∈ lim inf

y→ȳ
F−1(y) (5.9)

hold.

Theorem 5.4 (equivalence between metric regularity and strong metric regularity). Assume
that x̄ is a nondegenerate solution to the generalized equation (1.1). Then the mapping G, taken
from (5.1), is metrically regular at x̄ for 0 if and only if it is strongly metrically regular at x̄ for
0.

Proof. As mentioned in the paragraph after (5.3), strong metric regularity always implies
metric regularity. To justify the opposite conclusion for the mapping G, suppose that G is
metrically regular at x̄ for 0. By the definition of G, gphG is closed. Moreover, the estimate
(5.3), adopted for metric regularity of G at x̄ for 0, clearly confirms the validity of (5.9). To
prove (5.8), suppose that 0 ∈ D∗G(x̄, 0)(w). It follows from (1.2) and Theorem 3.6(c) that ∂g is
strictly proto-differetiable at x̄ for −ψ(x̄), which, together with Proposition 5.3, tells us that G is
strictly proto-differetiable at x̄ for 0. By (3.15), we get D∗G(x̄, 0)(w) = DG(x̄, 0)(w). Combining

this with (5.6) indicates that the condition 0 ∈ D∗G(x̄, 0)(w) amounts to −∇ψ(x̄)w ∈ K⊥ and
w ∈ K, where K = Kg(x̄,−ψ(x̄)). According to Proposition 5.1, the critical cone K is a linear
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subspace of IRm of dimension s ≤ m. Let B ∈ IRm×s be a matrix whose columns form a basis

for K. Thus, we obtain K = rgeB, which amounts to the condition K
⊥

= kerB∗. So, the

conditions −∇ψ(x̄)w ∈ K⊥ and w ∈ K tell us that there exists µ ∈ IRs such that w = Bµ and

0 = B∗∇ψ(x̄)w = B∗∇ψ(x̄)Bµ.

We claim that B∗∇ψ(x̄)B is an s× s nonsingular matrix. This immediately yields w = Bµ = 0
and hence proves (5.8) for G. To justify the claim, we conclude from metric regularity of G
at x̄ for 0 and Theorem 5.2 that DG(x̄, 0) is surjective, meaning that for any u ∈ IRm there
exists w ∈ IRm such that u ∈ DG(x̄, 0)(w). By (5.6), the latter condition is equivalent to

u −∇ψ(x̄)w ∈ K⊥ and w ∈ K. Since K = rgeB and K
⊥

= kerB∗, we find q ∈ IRs such that
w = Bq and that u − ∇ψ(x̄)Bq ∈ kerB∗, or equivalently, B∗u = B∗∇ψ(x̄)Bq. Since u ∈ IRm

was taken arbitrary, the latter equality leads us

rge
(
B∗∇ψ(x̄)B

)
= B∗IRm = rgeB∗ = IRs,

where the last equality comes from B having full column rank. This confirms that B∗∇ψ(x̄)B
is an s× s nonsingular matrix and thus completes the proof.

As pointed earlier in this section, the equivalence of metric regularity and strong metric
regularity for the generalized equation (1.1) with g = δC , where C is a polyhedral convex set,
was established by Donchev and Rockafellar in [3, Theorem 3] without the extra assumption
(1.2) using a different approach; see also [10, Corollary 9.7] for another proof of this result.
Theorem 5.4 presents an extension of Donchev and Rockafellar’s seminal result in [3] under the
condition (1.2) with a proof relying heavily on second-order generalized differentiation. As we
will show in our subsequent paper, our approach can be applied to any prox-regular functions
that is strictly proto-differentiable. This allows us to obtain a similar result for a broader class
of generalized equations.

Remark 5.5. Note that one can argue via [2, Corollary 3F.5] that (strong) metric regularity
of the mapping G from (5.1) at x̄ for ȳ ∈ G(x̄) is equivalent to that of the mapping x 7→
ψ(x̄)+∇ψ(x̄)(x−x̄)+∂g(x) at x̄ for ȳ. Employing then Theorem 3.1 tells us that (strong) metric
regularity of the latter amounts to the same property of the mapping Φ(w) := ∇ψ(x̄)w+NK(w)
with K = Kg(x̄,−ψ(x̄)) and w ∈ IRm at 0 for 0. Since Φ fits into the framework of [3], one
can conclude via [3, Theorem 3] (or [10, Corollary 9.7]) that metric regularity and strong metric
regularity are equivalent for Φ, which implies that these properties are equivalent for G as
well without the assumption (1.2). It is, however, important to emphasis that our approach is
different from both [3] and [10] and relies upon the characterization of strong metric regularity
via the strict graphical derivative. We will show in our subsequent paper that the approach
in this section can be extended to any prox-regular function g in (1.1) that is strictly proto-
differentiable under the same relative interior condition (1.2). In contrast, both approaches in [3]
and [10] depend on the particular properties of polyhedral convex sets and do not seem to be
applicable to other classes of functions. While finishing this paper, we came across the recent
results in [6, Corollary 7.3] in which a characterization of strong metric regularity of set-valued
mappings that are graphically Lipschitzian manifold in the sense of [33, Definition 9.66] was
obtained. It is not clear, however, whether the latter Lipschitzian assumption does hold for the
mapping G from (5.1).

Next, we present conditions under which the solution mapping S from (5.2) admits a Lips-
chitz continuous single-valued localization, which is continuously differentiable. To do so, recall
from [29, page 173] that a set C ⊂ IRd is called smooth at x̄ ∈ C if the tangent cone TC(x̄) is a
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linear subspace of IRd and the “lim sup” in (2.1) is the “lim.” It is called strictly smooth at x̄ if
TC(x̄) is a linear subspace of IRd and

TC(x̄) = lim
x
C−→x̄,t↘0

C − x
t

.

It follows from [29, Proposition 3.1] that if f : IRn → IRm is Lipschitz continuous around x̄ ∈ IRn,
then gph f is (strictly) smooth at (x̄, f(x̄)) if and only if f is (strictly) differentiable at x̄.

Theorem 5.6. Assume that x̄ is a nondegenerate solution to the generalized equation (1.1).
Then the solution mapping S to (1.1) has a Lipschitz continuous single-valued localization σ
around 0 ∈ IRm for x̄ if and only if one of the equivalent properties (a)-(f ) in Theorems 5.2
holds. In this case, the function σ is C1 in a neighborhood of 0 and

∇σ(y) = B
(
B∗∇ψ(σ(y))B

)−1
B∗

for all y sufficiently close to 0, where B ∈ IRm×s is a matrix whose columns form a basis for the
linear subspace K = Kg(x̄,−ψ(x̄)).

Proof. The first part of this corollary results immediately from Theorems 5.2 and 5.4, the
definition of strong metric regularity of G at x̄ for 0, and the fact that S = G−1 with G is taken
from (5.1). Assume now that one of the equivalent properties (a)-(f ) holds, which implies that
G is strongly metrically regular at x̄ for 0. This confirms that S has a Lipschitz continuous
single-valued localization around 0 for x̄, so we find neighborhoods U of 0 and V of x̄ such
that the mapping y 7→ S−1(y) ∩ U is single-valued and Lipschitz continuous on V . Define the
function σ : V → U by σ(y) = S−1(y) ∩ U for any y ∈ V . Shrinking the neighborhoods U
and V , if necessary, we conclude from (5.6) that for any (x, y) ∈ (U × V ) ∩ gphG, the tangent
cone gphDG(x, y) = TgphG(x, y) is a linear subspace. Since gphσ = gphS locally around (0, x̄)
and since S = G−1, we conclude that Tgphσ(y, x) is a linear subspace as well. It follows from
the nondegeneracy condition (1.2) and Theorem 3.6(c) that ∂g is strictly proto-differentiable
at x for z whenever (x, z) ∈ gph ∂g is sufficiently close to (x̄,−ψ(x̄)), which, together with
Proposition 5.3, tells us that G is strictly proto-differentiable at x for y whenever (x, y) ∈
gphG is sufficiently close to (x̄, 0). Suppose without loss of generality that G is strictly proto-
differentiable at x for y whenever (x, y) ∈ (U×V )∩gphG. Choose a pair (x, y) ∈ (U×V )∩gphG
and observe that σ is strictly proto-differentiable at y for x. This, together with Tgphσ(y, x)
being a linear subspace, implies that gphσ is strictly smooth at (y, x). Since σ is Lipschitz
continuous on V , it follows from [29, Proposition 3.1] that σ is strictly differentiable at y. This
means that σ is strictly differentiable on V , a property equivalent to saying that σ is C1 on V
(cf. [2, Exercise 1D.8]).

Finally, to justify the claimed formula for the Jacobian matrix of σ, take y ∈ V . Thus, for
any u ∈ IRn we have w = ∇σ(y)u = Dσ(y)(u), which is equivalent to u ∈ DG(x, y)(w), where

x = σ(y). Appealing now to (5.6) brings us to the conditions u−∇ψ(x)w ∈ K⊥ and w ∈ K. By

the definition of B, we have K = rgeB , or equivalently, K
⊥

= kerB∗. Thus, we find q ∈ IRs

such that w = Bq and that u−∇ψ(x)Bq ∈ kerB∗, or equivalently, B∗u = B∗∇ψ(x)Bq. Similar
to the proof of Theorem 5.4, we can show that the matrix B∗∇ψ(x)B is nonsingular. This leads
us to

∇σ(y)u = w = Bq = B
(
B∗∇ψ(x)B

)−1
B∗u,

which confirms the claimed formula for ∇σ(y) and hence completes the proof.

Theorem 5.6 can be viewed as an extension of the classical inverse mapping theorem for
generalized equations. This well-known result ensures under the nonsingularity of the Jacobian
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matrix that the inverse of a C1 function has a Lipschitz continuous single-valued localization,
which is continuously differentiable. Robinson, in his landmark paper [24], showed that for gen-
eralized equations, one can expect under appropriate conditions that their solution mappings
have a Lipschitz continuous single-valued localization. Theorem 5.6 demonstrates that for non-
degenerate solutions to some particular class of generalized equations such a localization can be
continuously differentiable as well.

We should also add that one can show that the continuous differentiability of ψ from (1.1)
can be weakened to strict differentiability at a given solution x̄ to (1.1) in all the results in this
section with no harm. In such a case, we can only expect that the function σ in Theorem 5.6
be strictly differentiable at 0.

We close this section with an application of our main result in studying regularity properties
of the solution mapping to the KKT system of the composite minimization problem

minimize ϕ(x) +
(
g ◦ Φ

)
(x), subject to x ∈ IRn, (5.10)

where ϕ : IRn → IR and Φ : IRn → IRm are C2 functions and g : IRm → IR is a polyhedral
function. The KKT system associated with the composite problem (5.10) is given by

0 = ∇xL(x, λ), λ ∈ ∂g(Φ(x)), (5.11)

where L(x, λ) := ϕ(x) + 〈λ,Φ(x)〉 with (x, λ) ∈ IRn × IRm is the Lagrangian of (5.10). A pair
(x̄, λ̄) is called a KKT point of (5.10) provided that it satisfies the KKT system (5.11). Define
the mapping Ψ : IRn × IRm ⇒ IRn × IRm by

Ψ(x, λ) :=

[
∇xL(x, λ)
−Φ(x)

]
+

[
0

∂g∗(λ)

]
(5.12)

and observe that (x̄, λ̄) is a KKT point if and only if (0, 0) ∈ Ψ(x̄, λ̄). We aim at finding
conditions under which the solution mapping to the canonical perturbed of the KKT system
(5.11), defined by

S(p, q) := Ψ−1(p, q) =
{

(x, λ) ∈ IRn × IRm
∣∣ (p, q) ∈ Ψ(x, λ)

}
,

has a Lipschitz continuous single-valued localization. As shown below, this can be distilled from
Theorem 5.6.

Theorem 5.7. Let (x̄, λ̄) be a KKT point of (5.10) with λ̄ ∈ ri ∂g(Φ(x̄)). Then the following
properties are equivalent:

(a) the mapping Ψ is metrically regular at (x̄, λ̄) for (0, 0);
(b) the mapping Ψ is strongly metrically regular at (x̄, λ̄) for (0, 0);
(c) the solution mapping S has a Lipschitz continuous single-valued localization around (x̄, λ̄)

for (0, 0), which is C1 in a neighborhood of (x̄, λ̄);
(d) the implication{

∇2
xxL(x̄, λ̄)w +∇Φ(x̄)∗w′ = 0,

∇Φ(x̄)w ∈ Kg(Φ(x̄), λ̄), w′ ∈ Kg(Φ(x̄), λ̄)⊥
=⇒ (w,w′) = (0, 0)

holds.

Proof. Set

ψ(x, λ) :=

[
∇xL(x, λ)
−Φ(x)

]
and ĝ(x, λ) := g∗(λ), (x, λ) ∈ IRn × IRm,
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and observe that the KKT system (5.11) can be written as the generalized equation

(0, 0) ∈ Ψ(x, λ) = ψ(x, λ) + ∂ĝ(x, λ). (5.13)

It follows from [33, Theorem 11.14(a)] that g∗ is a polyhedral function and so is ĝ. Also,
we deduce from [33, Proposition 10.5] that ∂ĝ(x, λ) = {0} × ∂g∗(λ). Moreover, by (3.6), the
condition λ̄ ∈ ri ∂g(Φ(x̄)) is equivalent to Φ(x̄) ∈ ri ∂g∗(λ̄). Combining these tells us that λ̄ ∈
ri ∂g(Φ(x̄)) amounts to the condition −ψ(x̄, λ̄) ∈ ri ∂ĝ(x̄, λ̄). The equivalence of (a)-(c) comes
directly from Theorems 5.4 and 5.6. Part (d) is an adaptation of the property in Theorem 5.2(f)
for the generalized equation (5.13). To elaborate more, we can use [33, Proposition 10.5] to
conclude that dĝ(x̄, λ̄)(w,w′) = dg∗(λ̄)(w′) for any (w,w′) ∈ IRn× IRm. This, together with the
definition of the critical cone, shows that

Kĝ

(
(x̄, λ̄),−ψ(x̄, λ̄)

)
= IRn ×Kg∗(Φ(x̄), λ̄) = IRn ×Kg(Φ(x̄), λ̄)∗ = IRn ×Kg(Φ(x̄), λ̄)⊥.

This yields Kĝ

(
(x̄, λ̄),−ψ(x̄, λ̄)

)⊥
= {0} ×Kg(Φ(x̄), λ̄) and

∇ψ(x̄, λ̄)∗(w,w′) ∈ Kĝ

(
(x̄, λ̄),−ψ(x̄, λ̄)

)⊥ ⇐⇒ {
∇2
xxL(x̄, λ̄)w −∇Φ(x̄)∗w′ = 0,

∇Φ(x̄)w ∈ Kg(Φ(x̄), λ̄).

Combining this with Theorem 5.2 confirms that (d) and (a) are equivalent and hence completes
the proof.

For classical nonlinear programming problems (NLPs), it is well-known that metric regularity
and strong metric regularity of KKT systems are equivalent; see [2, Theorem 4I.2] and [11,
Section 7.5]. By using a new approach, Theorem 5.7 extends this result for the composite
problem (5.10) under an extra condition, called the strict complementarity condition. This
extra condition allows us to demonstrate further that the Lipschitz continuous single-valued
localization of the solution mapping to the KKT system of (5.10) is continuously differentiable.
This can be viewed as an extension of Fiacco and McCormick’s result in [5] for NLPs, which was
achieved under the classical second-order sufficient condition, strict complementarity condition,
and linear independence constraint qualification.
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