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Abstract. The aim of this paper is twofold. Firtsly, we show that if G is a smooth nilpotent group
acting on an algebraic variety V defined over an admissible valued field k and v ∈ V (k), then the Zariski

closedness of the geometric orbit G(k).v in V (k) is equivalent to the Hausdorff closedness of the rational
orbit G(k).v in V (k). Secondly, we provide some calculations for the fact that there is a bijection between
the set of G(k)-orbits and the kernel of the natural map in flat cohomology. These results are obtained
in the framework of studying the rational orbits.

Introduction

Let G be a linear algebraic group acting on an affine variety V , all defined over a field k, and let
v ∈ V (k) be a rational point. When k is a valued field (e.g., k = Qp,Fq((T )), or henselian valued
fields), we may endow G(k) and V (k) with the v-adic topology induced from that of the base field k.
As indicated in [7], we are interested in the relationship between the Zariski closedness of geometric
orbit G(k).v in V (k) (for short, we say the Zariski closedness of G(k).v) and the Hausdorff (or relative)
closedness (closed in the topology induced from that of k) of the rational orbit G(k).v in V (k) (for
short, we say the Hausdorff (or relative) closedness of G(k).v). We refer to [6], [7], and references
therein for the discusssion on several recent relationships between these two types of closedness. For
example, in [7, Theorem 4.1], we show a relative version of the Kostant-Rosenlicht Theorem saying
that if G = U is a unipotent group, then G(k).v is always relative closed in V (k) when k = (k, v) is
an admissible valued field. Furthermore, if G is commutative, then the Zariski closedness of G(k).v
implies the relative closedness of G(k).v (see [7, Theorem 4.3]). One of the main results of this note
(Theorem 2.4(a)) shows that this fact is also true if we consider the action of any smooth nilpotent
algebraic group G on a separated scheme of finite type defined over an admissible valued field k = (k, v).
Besides, if we restrict to the case that V is an affine variety, two above types of closedness for geometric
orbits and rational orbits are equivalent (see Theorem 2.4(b)). It is worth noticing that by considering
an example due to Gabber, Gille, and Moret-Bailly, Theorem 2.4(a) is false if we replace the nilpotency
of G by that of solvability (Remarks 2.5(b)).

On the other hand, we note that, the main issue appears when we consider the relationship between
two above types of closedness is that, generally, G(k).v ( (G.v) (k). Furthermore, if the stabilizer Gv
is a smooth subgroup scheme, then there is a bijection between the set of G(k)-orbits in (G.v) (k) and
the kernel Ker

(
H1(k,Gv)→ H1(k,G)

)
of the natural map between Galois cohomologies (see e.g. [2, p.

36]). In fact, this bijection was considered carefully to obtain some landmark results in the arithmetic of
hyperelliptic curves (see e.g. [1, 2]). In Section 3, we are interested in studying the case that the stabilizer
is not necessarily smooth. Here we need to replace the Galois cohomology by the flat cohomology and
lead to an analogue version (see Proposition 3.1) of the above bijection. Some calculations for this fact
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are provided. Section 3 can be considered as a complement to [2, Remark 2, p. 36] and [7, Example
2.4].

1. Preliminaries

1.1. Some basic notions and Gabber’s condition. We use standard notions of algebraic group
schemes and their actions on schemes as in [16]. An algebraic variety over k is a scheme of finite type
over k that is both separated and geometrically reduced. So the set of geometric points V (k) is a
variety defined over k in the sense of [4]. All group schemes that we consider are affine algebraic group
schemes, i.e. affine group schemes of finite type. We emphasize that for every affine group scheme G
over k, its base change Gk is the k-group scheme which is represented by k[G]⊗k k. If G is geometrically
reduced, i.e. the base change Gk is reduced, we say that G is a smooth k-group scheme. Similar to the

above, if G is a smooth k-group scheme, then G(k) is also a linear algebraic group over k in the sense
of [4]. We denote by Gm (resp., Ga) the k-group represented by k[T, T−1] (resp., k[T ]). Thoughout the
forthcoming, unless otherwise specified, algebraic groups are not assumed to be smooth.

Let G be an algebraic group acting on a separated algebraic scheme V . For v ∈ V (k), we denote
G.v the orbit of v. This is the image of the orbit map µv : G → G.v, g 7→ g.v equipped with the
structure of a reduced subscheme of V (see [16, Chap. 7, p. 139]). Furthermore, the geometric (resp.,
rational) orbit is denoted by G(k).v (resp., G(k).v). The stabilizer Gv is defined by the fibre of the
orbit map µv : G→ G.v over v. So Gv is an algebraic subgroup (not necessarily smooth) of G. When
G is smooth, by virtue of [16, Prop. 7.4], the orbit G.v is stable under the action of G and the orbit
map µv : G→ G.v is faithfully flat. It follows from [16, Prop. 7.11] that G.v is the quotient G/Gv of G
by the stabilizer Gv. Futhermore, since the smoothness of G, the induced canonical map G/Gv → V is
an immersion (see [16, Prop. 1.65(c)]). So in the case that G is smooth, the above notion of orbit G.v
is compatible with the one in the sense of [9, Chapter III, Section 3]. More precisely, in [9, Chapter III,
Section 3], the orbit is defined as the sheaf-image of G via the orbit map, which is also isomorphic to
the quotient G/Gv (see [9, Prop. 1.6, p.325]).

Remark 1.1. We refer to [7, Section 1.2] for a presentation on the notion of fppf G-torsors. Note that
in [16, Defn. 2.66], this notion is simply called G-torsor. As we have seen in the preceding paragraph,
if G is smooth, then G/Gv ∼= G.v. This implies that the orbit map µv : G → G.v ∼= G/Gv, g 7→ g.v is
also an fppf Gv-torsor (see e.g., [16, Corollary 5.27]).

To study the relations between the Zariski closedness of G(k).v in V (k) and the Hausdorff closedness
of G(k).v in V (k), we need to discuss the Gabber condition, sometimes called the (∗)-condition, for
the stabilizer. First, we recall the notion of largest smooth subgroup schemes. From [8, C.11], we note
that for any affine k-group scheme G, there is a unique largest smooth k-subgroup, denoted by G+. The
Gabber condition is defined as follows.

Definition 1.2. (Gabber’s condition, see [10], [11, Defn. 2.4.3]) We say that a k-group G satisfies the
(∗)-condition (or the Gabber condition) if all k-tori of Gk are contained in (G+)k.

Since an arbitrary unipotent k-group contains no nontrivial k-tori, all unipotent groups satisfy the
(∗)-condition. The conclusion is also true for all commutative groups (see a detailed proof in Section 2).

We say that a valued field k = (k, v) is called admissible if it is henselian and the completion k̂ of k
is separable over k, e.g. any local field (since such fields are complete) or the algebraic closure of Fp(t)
in Fp((t)). The following theorem is an important result due to Gabber, Gille and Moret-Bailly.

Theorem 1.3. (Cf. [11, 1.2, 1.4], [13, Theorem 7.2.1]) Suppose that k = (k, v) is an admissible valued
field, and let G be an affine algebraic k-group scheme. Let f : X → Y be a (fppf) G-torsor where
X,Y are separated k-schemes of finite type. If G satisfies the (∗)condition, then I = f(X(k)) is clopen
(closed and open) in Y (k)Top.
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Here, the notation Y (k)Top is used to denote the set of k-points equipped with the topology induced
from k, as mentioned above. It is worth noticing that in [11], the authors mean an algebraic k-variety
to be a separated k-scheme of finite type.

1.2. Nilpotent Groups. We refer to [9, Chap. 4, Section 4], [16, Sections 6.f, 16.f] for expositions of
nilpotent group schemes. Namely, we say that an algebraic group scheme is nilpotent if it has a central
normal series, i.e. a normal series

G = G0 D G1 D · · · D Gn = {e}

such that each quotient Gi/Gi+1 is contained in the centre of G/Gi+1. In particular, the last nontrivial
term in such series is contained in the (schematic) centre Z(G) of G. We know that a connected k-
group G is nilpotent if and only if the abstract group G(k) is also nilpotent (see [9, Corollary IV.4.1.5]).
Furthermore, we have

Proposition 1.4. (see [9, Chap. 4, IV.4.1.4]) Any k-group G is nilpotent if and only if Gk is also
nilpotent.

We recall that the class of nilpotent groups contains the class of commutative groups, as well as the
class of unipotent groups, whereas it is contained in the class of solvable groups (the groups can be
constructed from commutative algebraic groups by successive extensions). The following result provides
some important properties of nilpotent group schemes.

Theorem 1.5. (cf. [16, Theorem 16.47]) Let G be a connected nilpotent group scheme over k. Then

(a) The semisimple part Z(G)s of the centre Z(G) is the largest subgroup of multiplicative type of
G and G/Z(G)s is unipotent.

(b) If G is smooth, then Z(G)s is a torus.

Since each torus is of multiplicative type, it follows directly that

Corollary 1.6. Any subtorus T over k of a given connected nilpotent k-group scheme G is contained
in the centre Z(G).

In the next section, we will show that Gabber’s condition is also valid for all nilpotent groups (see
Proposition 2.2).

1.3. Flat cohomology. To study the problem of parametrization the set of rational points G(k).v ∩
V (k), we need to take into account the non-smoothness of the stabilizer Gv. For nonsmooth group
schemes, the Galois cohomology is not good enough so we need in the sequel several facts concerning
flat cohomology of affine algebraic groups (Cf. [15], [17], [18]). Let R be a commutative ring with
identity, S a faithfully flat R-algebra, and let G be an algebraic group scheme over R. We consider two
natural maps d0, d1 : S → S ⊗R S given by

d0 : S → S ⊗R S, a 7→ 1⊗ a,
d1 : S → S ⊗R S, a 7→ a⊗ 1.

The functoriality of G implies two induced maps d0, d1 : G(S)→ G(S ⊗R S). Similarly, we still use the
above notation for the following natural maps

d0 : S ⊗R S → S ⊗R S ⊗R S, a⊗ b 7→ 1⊗ a⊗ b,
d1 : S ⊗R S → S ⊗R S ⊗R S, a⊗ b 7→ a⊗ 1⊗ b,
d2 : S ⊗R S → S ⊗R S ⊗R S, a⊗ b 7→ a⊗ b⊗ 1,

and they induce the corresponding maps d0, d1, d2 : G (S ⊗R S)→ G (S ⊗R S ⊗R S).
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Definition 1.7. We define the 0-th flat cohomology of G with respect to S/R is

H0
flat(S/R,G) = {λ ∈ G(S) | d0λ = d1λ}(= G(R)).

The first flat cohomology of G with respect to S/R is defined by

H1
flat(S/R,G) = Z1

flat(S/R,G)/ ∼,
= {ϕ ∈ G

(
S ⊗R S | d1ϕ = (d0ϕ)(d2ϕ)

)
}/ ∼ .

Here the equivalence relation ∼ is given by ϕ ∼ ψ if and only if ψ = (d0λ)ϕ(d1λ)−1 for some λ ∈ G(S).
For the extension k/k, the flat cohomology H1

flat(k/k,G) is often simply denoted by H1
flat(k,G).

Remark 1.8. Let R = k, S = k. Then k ⊗k k is a k-algebra with the k-structure given by the
commutative diagram

k� _

��

� � // k

d0

��

k
d1 // k ⊗k k

Since the tensor product is taken over k, we have d0
∣∣∣
k
= d1

∣∣∣
k
. Thus for i = 1, 2 the induced maps

G(k)
id
↪→ G(k)

di→ G(k ⊗ k)

satisfy that d0(gk) = d1(gk) = gk⊗k for any k-point g ∈ G(k). Here we denote gk (resp., gk⊗k) the

image of g ∈ G(k) in G(k) (resp., in G(k⊗k)). In particular, G(k) ⊆ H0
flat(k/k,G). Furthermore, since

any algebraic group scheme G over a field k is faithfully flat and quasi-compact, the 0-th cohomology
is exactly G(k).

2. Actions of nilpotent groups

2.1. Gabber’s condition for nilpotent group schemes. The following fact is well-known (see
e.g. [11, Lemme 2.4.5]). Nevertheless, for the sake of completeness and self-containedness, we write
down the proof in more detail.

Proposition 2.1. Let G be a commutative algebraic group over k. Then G satisfies the Gabber condi-
tion.

Proof. Since G is commutative, the base change Gk contains a unique maximal k-torus T . On the other
hand, if we choose a maximal k-torus T1 of G, by [16, Lemma C.4.4], its base change (T1)k is also a
maximal torus of Gk. Since the uniqueness of the maximal torus T , we have T = (T1)k. Moreover,
any torus is geometrically reduced, the torus T1 is smooth, it means that T1 ⊆ G+. This implies that
T = (T1)k is a torus of (G+)k. Therefore, every commutative group scheme G satisfies the Gabber
condition. �

Now we show that the above result also holds true for nilpotent group schemes.

Proposition 2.2. Let G be a nilpotent group scheme over k. Then G satisfies the Gabber condition.

Proof. Without loss of generality, we may assume that G is connected. Indeed, assume that the desired
conclusion holds for all connected nilpotent groups. We consider a torus T which is contained in

Gk. Since T is connected, it is contained in the connected component
(
Gk
)0

. Since the formation of
connected component commutes with the base change (see [16, Propositions 1.34, 2.37(c)]), we have

T ≤
(
Gk
)0

=
(
G0
)
k
.

Hence, by virtue of the assumption that the conclusion holds for all connected nilpotent groups, we

have T ≤
((
G0
)+)

k
. This implies that T ≤ (G+)k as desired.
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For a connected nilpotent group scheme G, we consider the following diagram

(1) (G+)k
� � // Gk

G+ � � // G

Here G+ is the largest smooth subgroup scheme over k, and (G+)k is its base change. Let T be an

arbitrary k-torus in Gk. By Proposition 1.4, Gk is still connected and nilpotent. Thus, by Corollary 1.6,
T is contained in the centre Z(Gk). On the other hand, the formation of centralizer commutes with
extensions of the base field (see e.g. [16, pages 34, 379]), particularly, Z(Gk) = Z(G)k. Therefore, we
have

T ≤ Z(Gk) = Z(G)k.

Applying Proposition 2.1 for the commutative group scheme Z(G) yields T ≤ (Z(G)+)k. This implies
that T ≤ (G+)k. Therefore, G satisfies the Gabber condition. �

Remark 2.3. We note that Proposition 2.2 is false if we only assume that G is solvable. An example
is implied from the work of Gabber, Gille and Moret-Bailly (see [11, Example 7.1, p. 605]). More
precisely, we choose

G = {x, y) | xp + (y − 1)pT = 0} ≤ Ga oGm.

Then by the discusssion in [7, Remark 4.4], G+ is trivial, but the base change Gk contains its reduced

part
(
Gk
)
red

which is a nontrivial torus
(
Gk
)
red

k∼= Gm. Hence, G is solvable and does not satisfy the
Gabber condition.

2.2. Main result.

Theorem 2.4. Let k = (k, v) be an admissible valued field, and let G be a smooth nilpotent group
acting on a separated k-scheme of finite type V , all defined over k. Assume that v ∈ V (k). Then

(a) The geometric orbit G(k).v is Zariski closed in V (k) implies that G(k).v is Hausdorff closed in
V (k).

(b) If V is an affine k-variety, then G(k).v is Zariski closed in V (k) if and only if G(k).v is Hausdorff
closed in V (k).

Proof. (a): Since G is a nilpotent group, its subgroup Gv is also nilpotent (see [9, Chapter 4, Section
4.1.2]). It follows from Proposition 2.2 that Gv satisfies the Gabber condition. On the other hand, by
Remark 1.1, the orbit map µv : G→ V , g 7→ g.v, is a Gv-torsor. Since G is an algebraic group, it is also
separated of finite type (see [16, Prop. 1.22]). Combining with Theorem 1.3 yields G(k).v is closed in
(G.v)(k) = (G.v)(k)∩ V (k) = G(k).v ∩ V (k). By the assumption that G(k).v is Zariski closed in V (k),
the set (G.v)(k) = G(k).v ∩ V (k) is closed in V (k). The desired implication follows.

If we assume further that G is connected, we may argue directly as follows. First, we have the
following diagram

(2) (G+
v )k

� � // (Gv)k
� � // Gk

G+
v

� � // Gv
� � // G

Let T be a k-torus in (Gv)k. Since G is connected and nilpotent, so is its base change Gk by Proposi-

tion 1.4. Hence, it follows from Corollary 1.6 that T ≤ Z(Gk). Therefore, it implies that T ≤ Z
(
(Gv)k

)
.

On the other hand, the formation of centralizer commutes with extensions of the base field, we have

T ⊆ Z
(
(Gv)k

)
= (Z(Gv))k .
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Applying Proposition 2.1 for the commutative group scheme Z(Gv), we have

T ≤
(
Z(Gv)

+
)
k
.

So T ≤ (G+
v )k. Then Gv satisfies the Gabber condition. So combining Theorem 1.3 and Remarks 1.1,

it completes this implication.

(b): (⇒:) This is a special case of part (a).

(⇐:) If the action of G on V is linear, i.e. V is a vector space over k and the action is given by a
k-linear representation ρ : G → GL(V ), we use a result due to Birkes (see [3, Prop. 9.10]) and argue
as in [5, Section 3] to get the implication. In fact, this part is true for any valued field which is not
necessarily admissible. For a general action of G on an affine k-variety V , by using the exsistence of
equivariant k-embeddings (see [4, Proposition 1.12]), we may take a closed k-embedding ϕ : V ↪→ E and
a k-morphism µ : G → GL(E) such that ϕ(g.v) = µ(g) (ϕ(v)) for all g ∈ G(k) and v ∈ V (k). Now we

assume the contrary that G(k).v is not closed in V (k). Then Y := G(k).v \G(k).v 6= ∅ is a closed G(k)-

stable subset of G(k).v. Since ϕ : V ↪→ E is a closed k-embedding, ϕ(Y ) = G(k).ϕ(v) \G(k).ϕ(v) 6= ∅.
By Birkes’ result (see [3, Prop. 9.10]), there exist y1 ∈ ϕ(Y ) ∩ E(k) and a k-cocharacter λ : Gm → G
such that λ(α).ϕ(v) → y1 as α → 0. Put y := ϕ−1(y1) ∈ Y . By this choice, since G(k).v is Hausdorff
closed, y ∈ G(k).v ⊆ G(k).v. This is a contradiction since Y ∩ G(k).v = ∅. It implies that G(k).v is
closed as required. �

Remarks 2.5. (a) Theorem 2.4(b) is an extension of an our previous result in [5, Theorem, p. 1062]
saying that the assertion holds for groups of multiplicative type defined over local function fields.
Furthermore, [7, Remark 4.4(a)] shows that Theorem 2.4 does not hold if we only assume that
k is henselian.

(b) Theorem 2.4 also provides an answer for the question proposed in [7, Remark 4.4(c)]. This
result is optimal in the sense that if we replace the nilpotency by the solvability of G, then
each implication in Theorem 2.4(b) should be false (see [7, Example 2.4, parts (1), (2)] and [5,
Example 5.2]).

(c) As indicated in the proof, Theorem 2.4(a) also holds for the case that Gv is nilpotent (G is
not necessarily nilpotent). Naturally, when the stabilizer Gv is nilpotent, we may consider the
converse statement of Theorem 2.4(a). Nevertheless, this statement is not true by reconsidering
the Example [5, Example 5.2]. Here we choose

G = B =
{(

a b
0 d

)
| ad = 1

}
acting on A3 via the representation

ρ :

(
a b
0 d

)
7→

a2 ab b2

0 ad 2bd
0 0 d2

 ,

and let v = (1, 0, 1). Then

G.v = {(a2 + b2, 2bd, d2) | ad = 1},
= {(x, y, z) | 4xz = y2 + 4} \ {z = 0}.

By a direct computation, we see that G(k).v is not Zariski closed in V (k) but G(k).v is Hausdorff
closed in V (k) if k = R or k = Qp with p = 2 or p ≡ 3 (mod 4). In this case, the stabilizer

Gv =
{(

a 0
0 d

)
| a2 = 1, ad = 1

}
∼= Z/2

is a commutative (in particular, nilpotent) smooth group scheme. Hence, this implies that the
converse statement of Theorem 2.4(a) is not true. Furthermore, since the Hausdorff closedness
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of G(k).v, this example also shows that G(k).v contains all limits limα→0 λ(α).v corresponding

to k-cocharacters λ : Gm → G. Thus for the closed G(k)-stable subset Y := G(k).v \G(k).v of
V (k), the set Y (k) does not contain any limit limα→0 λ(α).v of the above form. It means that
Property (A) mentioned in Birkes’ paper [3] is also false if we only assume the nilpotency of Gv.

3. Decomposition of the rational points of G(k).v into G(k)-orbits

Let G be a smooth algebraic group acting on a variety V defined over k. In this section, we intro-
duce an analogue version of the bijection between the set of G(k)-orbits in (G.v) (k) and the kernel
Ker

(
H1(k,Gv)→ H1(k,G)

)
(see [2, Proposition 1, p. 36]) when Gv is not necessarily smooth.

Proposition 3.1. There exists a bijection between the set of G(k)-orbits that lies in G(k).v∩V (k) and
the kernel of the map

(3) γ : H1
flat(k,Gv)→ H1

flat(k,G)

in flat cohomology.

Remark 3.2. In fact, Proposition 3.1 is a special case of [14, Chapter III, 3.2.3, p. 160] as well as [12,
Prop. 2.4.3]. So we do not present the proof. Nevertheless, in the rest of the paper, we provide some
concrete calculations illustrating this fact.

Now we go back to the example due to Gabber, Gille, and Moret-Bailly (see [11, Example 7.1, p.
605]) and investigate the behavior of the above bijection in this situation. The following computation
is also a complement to [2, Remark, p. 35] and [7, Example 2.4].

Example 3.3. Let k = Fq((T )) be the imperfect local function field with T -adic topology, i.e. the basis
of open neighbourhoods of 0 is given by the sequence of ideals {〈Tn〉}∞n=1. Assume that G = Ga oGm

is the semidirect product with the operation (x, y) · (x′, y′) = (x+ yx′, yy′), and let G act on the affine
line V = A1 by (x, y) · z = xp + ypz.

(1) Assume that v = T ∈ k \ kp is a rational point of A1. Then we have the following that:

(a) G(k).v = k
p

+ (k
×p

)v = k and then G(k).v ∩ V (k) = k.

(b) Now we consider the kernel of the natural map H1
flat(k,Gv)

γ→ H1
flat(k,G). From the short

exact sequence

1→ Ga → G = Ga oGm → Gm → 1,

and from the triviality of H1(k,Ga) and H1(k,Gm) (the Hilbert 90 Theorem), we have
H1
flat(k,G) = 1. This implies the bijection between the set of G(k)-orbits that lies in

G(k).v ∩ V (k) and the first cohomology set H1
flat(k,Gv). Next, the stabilizer of v is given

by

Gv = {(x, y) ∈ Ga oGm | xp + ypT = T}
= {(x, y) ∈ Ga oGm | xp + (y − 1)pT = 0}.

(4)

Then the reduced stabilizer (Gv)k,red = {(x, y) ∈ Ga o Gm | x + (y − 1)T
1
p = 0} is not

defined over k = Fq((T )). Let C be a representative set of the disjoint union

G(k).v ∩ V (k) = k =
⊔
w∈C

G(k).w

=
⊔
w∈C

(
kp + k×pw

)
.

The set C is infinite since we may choose a subfamily of representatives as follows

T, T + T 2, T + T 2 + T 3, . . . , T + T 2 + · · ·+ T p−1, T + T 2 + · · ·+ T p−1 + T p+1, . . . ,



8 DAO PHUONG BAC AND VU TUAN HIEN

or in other words, the set of sum
∑

i∈{1,...,N},p - i T
i with N = 1, 2, . . .. Consequently, the

set H1
flat(k,Gv) is infinite.

(2) If we choose v′ = 0, then (x, y).v′ = xp+ypv′ = xp. Thus G(k).v′ = k
p

= k, and G(k).v∩V (k) =
k. Besides, the stabilizer

Gv′ = {(x, y) ∈ Ga oGm | xp = 0}
= αp oGm.

It follows from the short exact sequence

1→ αp → αp oGm → Gm → 1

that

H1
flat(k,Gv′) = H1

flat(k, αp oGm) = H1
flat(k, αp) = k/kp.

Applying Proposition 3.1, we have a bijection between the set of G(k)-orbits that lies in G(k).v′∩
V (k) = k and H1

flat(k,Gv′) = k/kp. It implies that there are infinite G(k)-orbits in k and

furthermore, there is a bijection between the above set C and k/kp. Since k = Fq((T )), the set
k/kp is uncountable. So the cohomological set H1

flat(k,Gv) where Gv is given in (4), and the

set of G(k)-orbits in k are not only infinite, but also uncountable.
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