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Abstract

In this paper we characterize the Laplace transform of functions with
power growth square averages and study several multi-term Caputo and
Riemann-Liouville fractional integro-differential equations in this space of
functions.
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1. Introduction

Denote by £ and £~! the Laplace transform and its inverse transform
[9]

F(s) = (E0)(s) = [ e (e dn,
0 . (1.1)
t)=(LTIF)(t) == — F(s)e™ ds.
fO) = (CF)) = 5 | Fls)etds
The Laplace transform of functions with bounded growth averages, intro-

duced in [I0], has been characterized in [8]

THEOREM 1.1. [8] A function F(s) is the Laplace transform of f such
that
1 T
feBSARL) <= sup —— |f(V))? dt < oo, (1.2)
>0 T'+1Jg
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if and only if F(s) is holomorphic in the right-half plane Re s > 0, and

x o N
su F(x+1 dy < 0. 1.3
sup o [P i)l dy (1.3

For the following Caputo and Riemann-Liouville fractional integro-
differential equations

COPF(t) +kf(2) +/0 gt —7)f(r)dr =h(t),  f0)=fo,  (14)

t
SLO+REO+ [ g=n) () = hO. T00) = fo G <asl

(1.5)
where 68?, D¢, , and I&;O‘ are the Caputo and Riemann-Liouville frac-
tional derivatives and the Riemann-Liouville fractional integral [4], it was
shown [§] that if g,h € L'(R,), and ||g||1 < k, then the Caputo frac-
tional integro-differential equation (1.4) and the Riemann-Liouville frac-
tional integro-differential equation ave unique solutions f from BSA(R,).
In this paper we will study multi-term Caputo and Riemann-Liouville
fractional integro-differential equations. The solutions as it turns out will
have some power growth at infinity. It is well known [9] that if f(¢) is locally
integrable and has a power growth, then F'(s) exists and is holomorphic in
the right-half plane Res > 0. The Tauberian theorem for the Laplace
transform [9)

p—1

fy~ S
I'(p)
says that, moreover, if f(t) grows as tP~! at infinity, then F(s) grows as
s~P at 0.

The converse question is if F'(s) is holomorphic in the right-half plane
Re s > 0, and has a power growth at 0, whether it is the Laplace transform
of a power growth function. The answer turns out affirmative if we con-
sider functions of square average power growth instead of functions with
pointwise power growth.

A
t—o0 — F(S)N—p s—0+ p>0, (1.6
s

2. Functions with Square Average Power Growth
We now generalize the class of functions investigated in [§] to functions

with square average power growth on Ry = (0;00).

DEFINITION 2.1. By BSAp,(Ry), the linear space of functions with
square average power growth of order p > 0, we denote the set of locally
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integrable functions f on R, such that

1 T 5
;lili)) (T"‘l)p/o |f(t)]7dt < o0, (2.7)
and
BSAx(Ry) = | JBSA,Ry). (2.8)

p>0

We say f € BSAT™(Ry) if f, f,...., f(™) € BSA,(R).

Clearly, BSAg(Ry) = L*(Ry), and BSA,(R}) C BSA, (Ry) if p<p'.
It is readily seen that L*(Ry) U L*®°(Ry) C BSA,(R:),p > 1, and by
Hoélder’s inequality LY(R;) C BSAp(Ry), for 2 < ¢ < oo, p > 1. However,
note that, for p > 0, we have f(t) = t? € BSAy,11(Ry), and yet f(t) ¢
L9((R4)),0 < g < oo,

Functions with bounded square averages on the whole real line have
been studied first in [I0]. The special case p = 1 has been considered in
[7, 1§].

Now we characterize the Laplace transform of functions from BSA,(R,).

THEOREM 2.1. A function F(s) is the Laplace transform of f €
BSA,(R;) if and only if F(s) is holomorphic in the right-half plane Re s >
0, and

sup ( v )p/oo |F(z + iy)|? dy < oo. (2.9)

x>0 X + 1 —00

P roof The case p =0 is the Paley-Wiener theorem for the Laplace
transform [6, 9]

f(t) € L*(Ry) <= F(s) is holomorphic in Re > 0,

(o9}
sup / |F(z +iy)|? dy < co. (2.10)
x>0 J—0c0

For p > 0 we follow the proof in [8]. Let f € BSA,(Ry). Denote
f(T) = fOT f(t) dt. Integration by parts gives

T=oc0

F(s) = / Tt dt = T f(T)‘

T sty dt .
; o +s/0 e *f(t)dt, Re>0
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By the Holder inequality we have, for T > 0,

T T T T
M@naélvww<vu;ﬁﬁwﬂmwhnﬁ ALWWﬁ

< OVT(T +1)%.

Here and throughout the paper C' denotes a universal constant that can be
distinct in different places. Hence

T=0c0

—sT ¢
| =0, ,
e Tf(T)| =0, Re>0
and
F(s) = 5/ e S f(t)dt, Res>0.
0
Since | f(t)| < C+/t(t + 1)P, the Laplace transform of f(t), i. Fg ), exists

and is holomorphic in the rlght half plane Re s > 0.
Integration by parts yields

[e'e) T
/ f%wuwﬁzeﬁﬂ/“uwﬁﬁ
0 0

0o T [e's)
+2x / e~ 2T / If(V)|)?dtdT < Cx / (T + 1)Pe= T dT
0 0 0

T=00

T=0

C@Qw 00 CeQ:v
— P,—T —
= Sorip /295 TPe”Tdr = 2p+1xpf(p—|— 1,2x) (2.11)

where I'(p + 1; 2z) is the upper incomplete Gamma function [I]. Using the
asymptotics of the upper incomplete Gamma function [1]

L(p,z) ~ aP~le™® 2 — o0,
I'(p,x) ~ T(p), x—0,

we see that the last expression of (2.11)) is bounded at infinity and ~ x~P
at 0. Consequently,

o r+1
Aeﬂ\ﬂnﬁ<c( ). (2.12)

Hence, e *!f(t) € L?*(R,) for any z > 0. Consequently, F(s) with Res >
x> 0 is the Laplace transform of e=*0!f(¢) € L?(R) at the point s — xq.
The Parseval formula for the Laplace transform in L?(R, ), see [9], gives

/ e 2 f (b)) dt = / F(z+iy)dy, z=>z0>0. (2.13)
0
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Since xo is an arbitrary positive constant, formula (2.13|) holds for any
x > 0. Combining formulas (2.12]) and (2.13|) we obtain

[ee] p
| ipar i Pay < S

oo T

that yields ({2.9)).

Conversely, assume that F'(s) is holomorphic in the right-half plane
Re s > 0 and formula (2.9) holds. Then

(o9}
sup / |F(z 4 iy)2dy < o0, x> 0.

x>x0 J —0c0

By the Paley-Wiener theorem [6, 9] function F'(z¢+ s) is the Laplace trans-
form of a function, say, f.,(t) € L*(R.)

F(zo+s) = / e fr(t)dt, Res>0.
0
Thus

Fzg+x1+s) = / elmTISItp () dt
0

= /0 e(_xo_s)tfml(t)dt, Res, zg,z1 > 0.

Consequently, et f, (t) = e~ ®tf, (t). Denote f(t) = e®™!f, (t). It is
clear that f(t) is independent of zy > 0 and F is the Laplace transform of

f
F(s):/ooeStf(t)dt, Res > zg + 1.
0

As e @t f(t) = fi (1) € L2(R,), the Parseval formula for the Laplace
transform [9] yields

%s) 1 0o C 1)P
/ e f()]* dt = 2/ Flao +ig) Py < CE D gy
0 TJ—oo o

Let g be a bounded function on R;. Then

/-oo e*2xtg<672xt)’f<t)‘2dt§ ‘gHOO/OO 6721t|f(t)‘2dt
i 0 (2.14)
_Clat1y

< S gl 7> 0.

Take

.5
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Then ||g||co = €2, and (2.14) becomes

1/1‘ 1)P
[ swpa s UL s
0

Replacing x by % we arrive at

1 T
(T+1)P/0 If®)?dt <C, T >0.
Thus f € BSA,(Ry), and Theorem is proved. O

3. Special cases

COROLLARY 3.1. Let F(s) be holomorphic in the right half plane
Res > 0 and |F(s)| < C|s|™®, o > 3. Then F is the Laplace transform of
a function f € BSAy_1(Ry).

P roof Because a > i, F(z +ie) € L*(R), and

x2a—1 00 5 C$2a_1 00 5 5
R — F )| “dy < —— —d
@+ 12 /_OO\ (z +1y)["dy < @ o /_Oo(w +y7) dy
_ CyrT (o — %) c
[(a)(z +1)2-! ’
hence, formula (2.9) holds, i.e., f € BSAoq—1(R4). O

The following result explains the importance of BSA, (R, ) in studying
fractional calculus.

THEOREM 3.1. Let g € L'(R4) with ||g||; < k, 0 < a < 1. Then

1 4k
<
sa+k‘+G(s)‘ k—llglly

Is| 7%, Res>0. (3.15)

If, moreover, % < « < 1, then the inverse Laplace transform

— -1 L
f=°C (sa F TG (3.16)
is from BSAgq—1(R4).

P roof. Since g € L*(R}), its Laplace transform G(s) is holomorphic
in the right half-plane, and from

1G(s)] < / e~ Bet1g) dt < ||gl, <k, Re(s®) >0, for Res>0,
0
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we deduce that Re(s*+k+ G(s)) > 0 when Res > 0. Consequently,

a—i—k——i—G() is also holomorphic in the right half-plane. Let us denote by
s S

h(s) = k+ G(s),
then h(s) is clearly holomorphic in the right half-plane, and for Res > 0,

0<k—|gll; <Reh(s) (3.17)

and also |h(s)| < 2k.
For |s|* > 4k, Res >0, we have

k—llglly

1
|s® + h(s)| > |s|* — |h(s)] > |s|* — 2k > §|s|a > ik |s|*. (3.18)
For |s|* <4k, Res >0, we have
o e _ k— HgH1 e
|s* + h(s)| > Re(s“ + h(s)) >k — gl > BRVTAN |s]*. (3.19)
Combining (3.18) and (3.19) we obtain (3.15). Statement (3.16]) follows
from Corollary [3.1] 0

Combining Corollary 3.1] and Theory [3.1] we arrive at

COROLLARY 3.2. Let ||g||; <k,0<a<1,8<a-— 1%, then

B
1 S
_— BSA Ry). 2
£ <5a+k‘—|—G(s)> € BSAz(a-p)-1(R+) (3.20)

As an example consider the two-parametric Mittag-Leffler function [3]

o0

Zj
Evp(z) =) ——, a>0.
‘]_
We have [3]
a—p
9 By 5(—kt®))(s) = ———.
£ B p(—H)) = o

Consequently, by Corollary if k >00<a<1,and g > %, then
tP 1By (—ktY) € BSAzs_1(Ry).

THEOREM 3.2. Let g € L'(Ry) with ||g|l; < k, 0 < ap < ... < a1 <
apg <1, and ay,as,...,a, > 0. Then

7
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1 o

< L |s|7®, Res>0, (3.21)
820 + 3711 ajsY —i—k—i—G(s)‘ k= llglly

where

C) = max {[(n +2)ay] T, [2k(n + 2)150} | (3.22)

If, moreover, % < «ag < 1, then the inverse Laplace transform

1 1
BSAs,,—1(Ry). 2
£ <s°‘0 + Z?:1 a;js% + k+ G(s) € BSAz0,-1(Ry) (323)

Proof. As in the proof of Theory G(s) is holomorphic in the
right half-plane Res > 0, and there Re(k + G(s)) > k — ||g||; > 0. Since
0 < aj <1, then Re(s%) > 0,5 =0,1,2,...,n, in Res > 0. Together with
ai, as, ...a, > 0 we arrive at

Re (sao + zn:ajso‘f +k+ G(s)) >0,
j=1

in Re s > 0. Consequently,

1 . ..
FCTES S ey is also holomorphic in the

right half-plane. For |s| > Cj,Res > 0, we have

S s >0, j=1,2.3 S G >0
—ajls , =1,2,3,...,n, —k—1|G(s
n+2 J - J n 4+ 2
Consequently,

570 4 Zajsaj +k+ G(s)’ > [s|* — Zaj]s]aj —k—|G(s)| (3.24)

j=1 i=1
> I +zn:(|5|ao s1%9) + ( Gl Y ) > o1
—_— —aj|s —k—|G(s .
T n+42 e n—+2 J n 42 n—+ 2

For |s| < Cq, Res >0,
%0 + Z a;s“ +k+ G(s)‘ > Re (so‘o + Z a;s +k+ G(s)) (3.25)
=1 =1

k— H9H1
Cye

> Re(k + G(s)) > k — |lgll, >

|5
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Since C7° > 2k(n + 2) we have

ol k1
CY®  ~2k(n+2) n+2

Combining (3.24) and (3.25) we obtain (3.21)). Statement (3.23)) follows
from Corollary O

LEMMA 3.1. Let f € BSA,(R;) and g € L*(R;). Then their Laplace
convolution

h(t) = (f * g)(t) := /0 f(t ) g(r)dr (3.26)

belongs to BSA,(Ry).

P r oo f. In fact, applying the Laplace transform to (3.26)), we obtain
H(s) = F(s)G(s), therefore, |H(s)| < |F(s)| |gll1, and

z \p [ .2
H d
i§%<x+1) /OOI (z +iy)|” dy

o0

T \P
< 2 su <7> / F(x+1 2 dy < .
<lglly sup (57 |F(x +iy)|” dy

—00

(3.27)

4. Multi-Term Riemann-Liouville Fractional integro-differential
equation

Consider now the following multi-term Riemann-Liouville fractional
integro-differential equation

n t
DY P+ a; DSLF (1) +hf (1) + /0 g(t—m)f(r)dr = h(t), TL;°0f(0+4) = fo,
=1
’ (4.28)
%<a0§1, O<a, <..<a <a,

where k, a1, as, ...,a, € Ry, g,h € L*(R,) are given, and f is the unknown.
Here Df, is the Riemann-Liouville fractional derivative [4]

dr o T)n—a—l

t
D3+f(t)=% S (O I (t):/0 (tr( f(r)dr, a<n.

(4.29)

n—a)
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Special cases of (4.28) have been considered in [4].
It is well known [4] that
n—1
L (Dg, f) (s) = s*F(s) — Z s”_k_lDS“ikfnf(Ol—), n—1<a<n.

k=0
(4.30)

THEOREM 4.1. Let k > 0, fo € R, g,h € L'(R,), be given, and
llglli < k. Then the multi-term Riemann-Liouville fractional integro-differential
equation (4.28) has a unique solution f from BSAsq,—1(R4).

Proof Since I&;aof(O—i—) = fo,and 1—ay < 1—ay, then Ié;ajf((]—k) =
0,7 =1,2,...,n. Applying the Laplace transform to equation (4.28) and
taking into account | we obtain

SOF(s) — fo + Z a;s% F(s) + kF(s) + G(s)F(s) = H(s).  (4.31)
j=1
Solving for F'(s) yields
fo+ H(s)
820 + 301 ajsY +k+G(s)

F(s) = (4.32)

Denote
1

M(s) =
() 520 4+ 3701 ajsY + k4 G(s)’

then according to Theory its inverse Laplace transform, namely m(t),
belongs to BSAsq,—1(Ry4), and

f(@t) = fom(t) / m(t — 7)h(T)dr. (4.34)

Since m € BSAs,_1(Ry) and h € L*(R,), by Lemma [3.1] m their Laplace
convolution mx*h belongs to BSAsa,—1(R4). Hence, f, defined by (4.34), is
from BSAzq,—1(R4+). Using the Tauberian theorem for the Laplace trans-
form [9] we have

1 tao—l

M(S)NSTO, s =00 = m(t)fvm, t—=0+. (4.35)

Consequently, I&;aom(t) ~ 1, t — 0+4. Together with (4.34)) it yields
L f(0+) = fo-
Conversely, let f be given by -, where m is defined as the Laplace

inverse of (.33). Then f € BSAs,,—1(R;) and I;; Lf(0+) = fo. Ap-
plying the Laplace transform to (4.34) and taking mto account (4.33) we

(4.33)
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arrive at (4.32)). Hence, (4.31)) holds. The Laplace inverse of (4.31)) yields
@29). 0

5. Multi-Term Caputo Fractional integro-differential equation
Consider the following Caputo fractional integro-differential equation
n t
O 1)+ 32 0O () + kI (W) + [ ale-r)f(0)dr =h(D), F0+) = fo
j=1 0
(5.36)
1
§<a0§1, O<a, <...<a <ap,

where a;,k € Ry,j =1,2,...,n, and g,h € L'(R;) are given, and f is the
unknown. Here €99 is the Caputo fractional derivative [4]

t _ ~\n—a—1
ors) = [ UL wan n-t<a<n, op = 1)
(5.37)
It is well known [4] that
n—1
L (Caf‘f) (s) = s*F(s) — Z k1), n—l<a<n  (5.38)
k=0

THEOREM 5.1. Let k > 0, fo € R, g,h € LY(R,), be given, and
llglli < k. Then the Caputo fractional integro-differential equation ([5.36))
has a unique solution f from BSAy(qg—a,)+1(R+)-

P r o o f. Applying the Laplace transform to equation ([5.36)) and taking
into account (5.38)) we obtain

(s*™F(s) —sao_lfo)—i—z a;(s* F(s)—s* " fo)+kF(s)+G(s)F(s) = H(s).

j=1
(5.39)
Solving for F'(s) yields
s o+ fo X0 a9 + H(s)
F(s) = — e (5.40)
820 + 301 ajsY + k4 G(s)
Denote
L st i =0,1
ﬂ(S) - 3a0+2?:1ajsaj+k+G($)’ J=U1L-n,
1
M(s) = (5.41)

90+ 3771 a5 +k+ G(s)
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then according to Theorem their inverse Laplace transforms, namely
lj(t) and m(t), belong to BSAsny—a;)+1(R+) C BSAyag—a,)+1(R4), and
BSAsn,—1(R4), respectively. Moreover,

n t
f@&) = folo(t) + fo Zajlj(t) + /0 m(t — 7)h(T) dr. (5.42)
j=1

Since m € BSAg,—1(Ry) and h € LY(R,), by Lemma their Laplace
convolution mxh belongs to BS Aza,-1(R4) C BSAyng—a,)+1(R+). Hence,
f, defined by , is from BSAg(qg—a,)+1(Ry). Using the Tauberian the-
orem for the Laplace transform [9] we have

1
Lo(s)wg, s—o00 = lg(t)~1, t— 0+,

Consequently, f(04) = fo.
Conversely, let f be given by (5.42)), where [;, m are defined as the

Laplace inverse transforms of (5.41). Then f € BSAyay—a,)+1(R4) and
f(0+) = fo. Applying the Laplace transform to (5.42) and taking into

account (5.41]) we arrive at ((5.40]). Hence, (5.39) holds. The Laplace inverse
transform of ([5.39)) yields ([5.36)). O

REMARK 5.1. If fo =0, then f € BSAq,—1(Ry).
REMARK 5.2. Although g, h € L' (R, ), in general f ¢ L*(R,). In fact,

if f € LY(Ry), then |F(s)| < |/f]l; for Res > 0. But if fo # 0, then from
(5.40) we have

F(s) ~ Cs ™1 — oo,

as s — 0+ . Consequently, f ¢ L*(R,).
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6. Mixed Caputo Riemann-Liouville Fractional
integro-differential equation

Now we consider the following mixed Caputo Riemann-Liouville frac-
tional integro-differential equation with a dominant Caputo fractional de-
rivative

t
Corf(t) +Zajca TF(t +Zb DY F(t) + kf() + /Og(t—T)f(T)dT:h(t),
7j=1

f(0+) = fo,

1
§<a0§1, O<ap,<..<ar<ap 0<pfn<..<pB1<ap (6.43)

where g,h € LY(Ry),a1, -+ ,an, b1, ,bm, k € Ry, are given, and f is
the unknown.

THEOREM 6.1. Let k > 0, fo € R, g,h € L'(R,), be given, and
llglli < k. Then the mixed Caputo Riemann-Liouville fractional integro-
differential equation (6.43) has a unique solution f from BSAs(qy—a,)+1(R+).

Proof. Since f(0+) = fo, then ISJ:B"(O—F) =0,j=1,---,m, and
applying the Laplace transform to equation (6.43)) and taking into account
(4.28]) and (5.38]), we obtain

(5“0 F(s) — s*71fy) + Zaj(sajF(S) )

=1

- (6.44)
+ b F(s) + kF(s) + G(s)F(s) = H(s).
Solving for F'(s) yields
sl 4 " ajs% T+ H(s
F(s) = fo _ J O_folm’ | &) (6.45)
s%0 + 3701 ajs® 4+ Y5 bisPi k4 G(s)
Denote
Saj—l
Li(s) = ) .:0717"'7(”7
() 90 + 30 ajs® + Y5t bisPi + k4 G(s) J
1
M(s) = (6.46)

s + 370 ags® 4+ 30 bjsPi +k+ G(s)’
then according to Theorem [3.2] their inverse Laplace transforms, namely
lj(t) and m(t), belong to BSAsng—a;)+1(R+) C BSAyag—a,)+1(R4), and
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BSAsy,—1(Ry), respectively. Moreover,
n t
f@&) = folo(t) + fo Z a;l;(t) + / m(t —7)h(T)dr. (6.47)
=1 0

Since m € BSAgy,—1(Ry), and h € LY(R,), by Lemma their Laplace
convolution mxh belongs to BS Aga,—1(R1) C BSAy(qg—a,)+1(R4). Hence,
h

[, defined by (6.47)), is from BSAyq;—q,)+1(R4). From (6.45) we have
Jo

F(s)~=, s— o0.
s

Using the Tauberian theorem for the Laplace transform [9] we obtain
f@t)~ fo, t—0+.

Consequently, f(0+) = fo.

Conversely, let f be given by , where [;,m are defined as the
inverse Laplace transforms of . Then f € BSAy(ag—ayn)+1(R+) and
f(0+) = fo. Applying the Laplace transform to and taking into
account (6.46|) we arrive at . Hence, holds. The inverse Laplace
transform of yields . O
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