RINGS CHARACTERIZED VIA SOME CLASSES OF ALMOST-INJECTIVE MODULES

LE VAN THUYET, PHAN DAN, ADEL ABYZOV AND TRUONG CONG QUYNH

ABSTRACT. In this paper, we study rings with the property that every cyclic module is almost-injective (CAI). It is shown that R is an Artinian serial ring with $J(R)^2 = 0$ if and only if R is a right CAI-ring with the finitely generated right socle (or I-finite) if and only if every semisimple right R-module is almost injective, R_R is almost injective and has finitely generated right socle. Especially, R is a two-sisded CAI-ring if and only if every (right and left) Rmodule is almost injective. From this, we have the decomposition of a CAIring via an SV-ring for which Loewy (R) ≤ 2 and an Artinian serial ring whose squared Jacobson radical vanishes. We also characterize a Noetherian right almost V-ring via the ring for which every semisimple right R-module is almost injective.

1. INTRODUCTION

Throughout this paper, all rings R are associative with unit and all modules are right unital. Let M and N be right R-modules. The module M is said to be almost N-injective (or almost injective respect to N) if, for every submodule N_1 of N and for every homomorphism $f: N_1 \to M$, either there is a homomorphism $g: N \to M$ such that $f = g \circ \iota$, i.e., the diagram (1) commutes, or there is a nonzero idempotent $\pi \in \text{End}(N)$ and a homomorphism $h: M \to \pi(N)$ such that $h \circ f = \pi \circ \iota$, i.e., the diagram (2) commutes, where $\iota: N_1 \to N$ is the embedding of N_1 into N. The module M is said to be almost injective if it is almost injective with respect to every right R-module.

This concept was defined by Baba in many years ago, however, many related results were obtained in recent years, for examples, see [1], [2], [4], [5], [6], [11],

¹⁹⁹¹ Mathematics Subject Classification. 16D50, 16D70, 16D80.

Key words and phrases. almost-injective module, almost V-ring, V-ring, CAI-ring.

¹

 $[12], [21], \dots$ Of course, injective \Rightarrow almost injective, but the converse isn't true, in general. It is proved that a ring R is semisimple if and only if every right (left) R-module is injective and then a well-known result of Osofsky said that it is equivalent to every cyclic right (left) R-module is injective. In [5], the authors consider the structure of a ring R over which every module is almost injective. It is natural to ask how is the structure of a ring R for which every cyclic module is almost injective. We continue prove that the class of rings whose all cyclic right R-modules are almost injective contains the class of Artinian serian rings with squared Jacobson radical vanishes. So Theorem 1 and it's Corollaries from [5] are followed from our result, i.e., in cases of if $Soc(R_R)$ is finitely generated (or R is semiperfect, or R_R is extending, or R is of finite reduced rank), then two above classes and the class of the rings whose all right *R*-modules are almost injective coincide. Especially, a ring R is two-sided CAI if and only if every (right and left) R-module is almost injective. From this result, we have the decomposition of a CAI-ring via an SV-ring for which Loewy $(R) \leq 2$ and an Artinian serial ring whose squared Jacobson radical vanishes.

Recall that R is a right *V*-ring if every simple right R-module is injective. In [4], the authors consider a generalization of a V-ring, that is almost V-ring, i.e., if every simple right R-module is almost injective. A module M is called simple-extending (semisimple-extending, resp.) if the complement of any simple (semisimple, resp.) submodule of M is a direct summand of M. Now we write the class 1 stands for all rings R for which every simple module is almost injective, i.e., R is an almost V-ring, the class 2 stands for all rings R for which every semisimple module is almost injective, the class \Im stands for all rings R for which every module is simple-extending. In [4], the authors proved that the class 1 and class 3 coincides (see [4], Theorem 2.9). It is also proved that the intersection of the class 1 and the class of all right Noetherian rings is equal to the class 2 (see [6], Theorem 2.4). Our aim is to consider the weaker conditions of Noetherian, that are having finite Goldie dimesion or finitely generated right socle together the class 1 will be replaced by class 2 and we also obtain a characterization of a right Noetherian right almost V-ring. From this, we give back some characterizations of an Artinian serial ring with squared Jacobson radical vanishes via class 2.

For a submodule N of M, we use $N \leq M$ (N < M) to mean that N is a submodule of M (respectively, proper submodule), and we write $N \leq^{e} M$ to indicate that N is an essential submodule of M. A module is called a *CS-module*, or *extending*, provided every complement submodule is a direct summand. A module is called *uniform* if the intersection of any two nonzero submodules is nonzero. A ring R is called *I-finite* if it contains no infinite orthogonal family of idempotents. Let M be an arbitrary module. Recall that $Z(M) = \{m \in$ $M| \operatorname{ann}(m) \leq^{e} R_{R}\}$ is called the *singular submodule* of M, and if Z(M) =M (Z(M) = 0, resp.), then M is called *singular (nonsingular*. resp.). The Goldie torsion (or second singular) submodule of M denoted by $Z_2(M)$ satisfies $Z(M/Z(M)) = Z_2(M)/Z(M)$. The (Goldie) reduced rank of M is the uniform dimension of $M/Z_2(M)$. Every module of finite uniform dimension is of finite reduced rank. Let M, N be arbitrary modules. M is called essentially N-injective if for every embedding $\iota : A \to N$ and every homomorphism $f : A \to M$ such that $\operatorname{Ker} f \leq^e A$, there exists a homomorphism $g : N \to M$ such that $\iota \circ g = f$. The module M is said to be essentially injective if it is essentially N-injective with each $N \in \operatorname{Mod} - R$. Moreover, R is a right SC-ring if every singular R-module is continuous. M is called an uniserial module, if the set of submodules of M is linear ordered. A ring R is called semiperfect in case R/J(R) is semisimple and idempotents lift modulo J(R). It is equivalent to every its finitely generated right (left) R-module has a projective cover. A ring R is called a right perfect ring in case R/J(R) is semisimple and J(R) is right T-nilpotent. It is equivalent to every its right R-module has a projective cover.

By the Loewy series of a module M_R we mean the ascending chain

$$0 \le \operatorname{Soc}_1(M) = \operatorname{Soc}(M) \le \dots \le \operatorname{Soc}_{\alpha}(M) \le \operatorname{Soc}_{\alpha+1}(M) \le \dots,$$

where

$$\operatorname{Soc}_{\alpha}(M)/\operatorname{Soc}_{\alpha-1}(M) = \operatorname{Soc}(M/\operatorname{Soc}_{\alpha-1}(M))$$

for every nonlimit ordinal α and

$$\operatorname{Soc}_{\alpha}(M) = \bigcup_{\beta < \alpha} \operatorname{Soc}_{\beta}(M)$$

for every limit ordinal α . Denote by L(M) the submodule of the form $\operatorname{Soc}_{\xi}(M)$, where ξ stands for the least ordinal for which $\operatorname{Soc}_{\xi}(M) = \operatorname{Soc}_{\xi+1}(M)$. A module M is semiartinian if and only if M = L(M). In this case, ξ is called the *Loewy length* of the module M and is denoted by Loewy (M). A ring R is said to be *right semiartinian* if the module R_R is semiartinian. In this case, every nonzero (principal) right R-module has a nonzero socle and a ring R is right perfect if and only if it is left semiartinian and I-finite. The class of right semiartinian right V-rings, which we call *right SV-rings*. A ring R is called right *nonsingular* if $Z(R_R) = 0$, right *serial* if R_R is a direct sum of uniserial modules. In this paper, we denote by $\operatorname{Rad}(M)$, $\operatorname{Soc}(M)$, E(M), and $\operatorname{length}(M)$ the Jacobson radical, the socle, the injective hull and the composition length of M, respectively. The full subcategory of Mod-R whose objects are all R-modules subgenerated by M is denoted by $\sigma[M]$.

Left-sided for these above notations are defined similarly. All terms such as "artinian", "serial", ... when applied to a ring will apply all both sided. For any terms not defined here the reader is referred to [3], [10] and [23].

2. On rings with cyclic almost-injective modules

Firstly, we include the following known result related to finite decomposition of almost-injective modules for the sake of completeness.

Lemma 2.1 ([21, Lemma 1.14]). Let N, V_1, V_2, \ldots, V_n be a family of modules over a ring R. Then $M = \bigoplus_{i=1}^{n} V_i$ is almost N-injective if and only if every V_i is almost N-injective.

The third author gave the following problem in [1]: Describe the rings over which every cyclic right R-module is almost-injective. In this section, we will study on this problem and give some characterizations of rings for which every cyclic right R-module is almost-injective.

Definition 2.2. A ring R is called *right CAI*, if every cyclic right R-module is almost-injective. If R is a right and left CAI-ring, then R is called a CAI-ring.

Example 2.3. (1) Every semisimple ring is CAI.

(2) Let F be a field. Then, the ring
$$R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$$
 is a right CAI-ring.

Firstly, we give the following key lemma:

Lemma 2.4. Let R be a right CAI-ring. If M is a right R-module, then M/A is a semisimple module for every essential submodule A of M.

Proof. Let A be an essential submodule of M. We show that M/A is a semisimple module. By [10, Corollary 7.14], it is necessary to prove that every cyclic right R-module in the category $\sigma[M/A]$ is M/A-injective. In fact, let N be a cyclic right R-module (in the category $\sigma[M/A]$) and $f: A'/A \to N$ be a homomorphism from an arbitrary submodule A'/A of M/A to N. We show that f is extended to M/A. Call $\pi_1: A' \to A'/A, \pi_2: M \to M/A$ the natural projections and $\iota_1: A' \to M, \, \iota_2: A'/A \to M/A$ the inclusions. We consider the homomorphism $f \circ \pi_1: A' \to N$. We show that $f \circ \pi_1$ is extended to M. Otherwise, since N is almost-injective, there exist an idempotent π of End(M) and a homomorphism $h: N \to \pi(M)$ such that $\pi \circ \iota_1 = h \circ (f \circ \pi_1)$.

$$\begin{array}{c|c} A' & \stackrel{\iota_1}{\longrightarrow} & M \\ f \circ \pi_1 & & \pi \\ & & & \pi \\ N & \stackrel{h}{\longrightarrow} & \pi(M) \end{array}$$

Then, we have

$$\pi(A) = (\pi \circ \iota_1)(A) = (h \circ f)(\pi_1(A)) = 0.$$

It means that $A \leq \text{Ker}(\pi) = (1 - \pi)(M)$, and so $(1 - \pi)(M)$ is essential in M. This gives a contradiction. Thus, there is a homomorphism $g: M \to N$ such that $g \circ \iota_1 = f \circ \pi_1$.

We have

$$g(A) = (g \circ \iota_1)(A) = (f \circ \pi_1)(A) = 0$$

It shows that there is a homomorphism $g': M/A \to N$ such that $g = g' \circ \pi_2$. From this gives

$$f \circ \pi_1 = g \circ \iota_1 = (g' \circ \pi_2) \circ \iota_1 = g' \circ (\pi_2 \circ \iota_1) = g' \circ (\iota_2 \circ \pi_1)$$

It follows that $f = g' \circ \iota_2$. Thus, N is M/A-injective.

Corollary 2.5. Every right CAI-ring is a right SC-ring.

From Lemma 2.4 and [20], we have the following fact:

Fact 2.6. If R is a right CAI-ring, then

(1) $J(R) \leq \operatorname{Soc}(R_R)$.

(2)
$$J(R)^2 = 0.$$

(3) $R/Soc(R_R)$ is a right Noetherian ring.

Theorem 2.7. The following statements are equivalent for a ring R:

- (1) R is an Artinian serial ring with $J(R)^2 = 0$.
- (2) R is a right CAI-ring and R/J(R) is I-finite.
- (3) R is a I-finite right CAI-ring.
- (4) R is a right CAI-ring with the finitely generated right socle.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$ Suppose that R is a I-finite right CAI-ring. Then there exist primitive idempotents $e_1, e_2 \dots, e_n$ such that $1 = e_1 + e_2 + \dots + e_n$. Note that all $e_i R$ are indecomposable modules. Since R is a right CAI-ring, by [12, Lemma 3.1, Theorem 3.5], then $e_i R$ is uniform and $\operatorname{End}(e_i R)$ is local for all $i \in \{1, 2, \dots, n\}$. It follows that R is a semiperfect ring. We deduce, from Fact 2.6, that R is a semiprimary ring with $J(R)^2 = 0$. Moreover, inasmuch as $e_i R$ is uniform which implies that $\operatorname{Soc}(e_i R)$ is simple for all $i \in \{1, 2, \dots, n\}$. Thus, $\operatorname{Soc}(R_R)$ is finitely generated.

 $(4) \Rightarrow (1)$ Assume that R is a right CAI-ring with the finitely generated right socle. Then, R is a right Noetherian by Fact 2.6. We can write $R = e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R$, where $e_1, e_2 \ldots, e_n$ are primitive idempotents such that $1 = e_1 + e_2 + \cdots + e_n$ and all right ideals $e_i R$ are uniform. By the proof of $(3) \Rightarrow (4)$,

R is a semiprimary ring with $J(R)^2 = 0$. We deduce that R is a right Artinian ring. Note that $(R \oplus R)_R$ is an extending right R-module by [12, Remark 3.2]. It follows that $E(R_R)$ is a projective right R-module by [22, Theorem 3.3].

Next, we show that e_iR is either simple or injective with the length of two. In fact, for any nonzero submodule U of e_iR , then e_iR/U is a semisimple module by Lemma 2.4. Moreover, e_iR/U is an indecomposable module. We deduce that e_iR is either simple or length of two. On the other hand, we have that $E(e_iR)$ is a uniform projective module and obtain that $E(e_iR) \cong e_jR$ for some $j \in \{1, 2, \ldots, n\}$. Now, we assume that e_iR is the module with length of two. Then E(eR) is indecomposable and projective. Therefore length $(E(eR)) \leq 2$, and so E(eR) = eR, i.e., eR is injective. Thus, R is an Artinian serial ring with $J(R)^2 = 0$ by [10, 13.5].

Corollary 2.8. The following statements are equivalent for a ring R.

- (1) R is an Artinian serial ring with $J(R)^2 = 0$.
- (2) R is a right CAI-ring with $Soc(R_R)/J(R)$ is finitely generated.

Example 2.9. Consider the ring R consisting of all eventually constant sequences of elements from \mathbb{F}_2 . Clearly, R is a CAI-ring and $\operatorname{Soc}(R)$ is not finitely generated.

Lemma 2.10. If R is a right CAI-ring, then

- (1) $R/Soc(R_R)$ is semisimple.
- (2) R is a right semi-Artinian ring.

Proof. (1) Assume that R is a right CAI-ring. One can check that $R/\operatorname{Soc}(R_R)$ is also a right CAI-ring. From Fact 2.6 and Theorem 2.7 gives that $R/\operatorname{Soc}(R_R)$ is a right Artinian ring. Note that $R/\operatorname{Soc}(R_R)$ is a right V-ring by [4, Proposition 2.3]. We deduce that $R/\operatorname{Soc}(R_R)$ is semisimple.

(2) is followed from (1).

Proposition 2.11. Let R be a right CAI-ring. Then the followings hold:

- (1) Every direct sum of uniform right R-modules is extending.
- (2) Every uniform right R-module has length at most 2.
- (3) $R_R = (\bigoplus_{i \in I} L_i) \oplus N$, where L_i is a local injective module of length two for every $i \in I$, J(N) = 0 and End(N) is a right SV-ring.

Proof. (1) From Lemma 2.10, R is a right semiartinian ring. By [10, 13.1], we need to prove that $H_1 \oplus H_2$ is an extending module for any uniform modules H_1 and H_2 . In fact, let H_1 and H_2 are uniform right R-module. Since H_1 and H_2 are uniform with essential socles, $Soc(H_1 \oplus H_2)$ is finitely generated and essential in $H_1 \oplus H_2$. Inasmuch as R is a right CAI-ring, we have every simple right R-module is almost-injective, and so $H_1 \oplus H_2$ is extending by [4, Theorem 2.9, Corollary 2.13.]. (2) is followed by (1) and [10, 13.1].

(3) By Zorn's Lemma, there is a maximal independent set of submodules $\{L_i\}_{i\in I}$ of R_R such that L_i is a local injective module of length two for every $i \in I$. Since by Fact 2.6(3), $R/\operatorname{Soc}(R_R)$ is a right Noetherian ring, then I is a finite set. Then, we have a decomposition $R_R = (\bigoplus_{i\in I} L_i) \oplus N$ for some right ideal N of R. Suppose that $J(N) \neq 0$. From Lemma 2.10(2) gives J(N) containing a simple submodule S. Let N_0 be a complement of the submodule S in the module N. It follows that N/N_0 is a uniform nonsimple module whose socle is isomorphic to the module S. Thus, it follows from (1) and [4, Theorem 3.1] that N/N_0 is a projective module and length of N/N_0 is equal to two. Hence $N = N_0 \oplus L$, where L is a local injective module of length two, which contradicts the choice of the set $\{L_i\}_{i\in I}$. We deduce that J(N) = 0. One can check that the module N can be considered as a projective R/J(R)-module. By [4, Proposition 2.3] and Lemma 2.10, we have R/J(R) is a right SV-ring. It follows from [8, Theorem 2.9] that End(N) is a right SV-ring.

For two-sided CAI-rings, we have:

Theorem 2.12. The following statements are equivalent for a ring R:

- (1) Every *R*-module is almost injective.
- (2) Every finitely generated R-module is almost injective.
- (3) R is a CAI-ring.
- (4) R is a direct product of an SV-ring for which Loewy $(R) \leq 2$ and an Artinian serial ring whose squared Jacobson radical vanishes.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$ By Proposition 2.11, there exists an idempotent $e \in R$ such that $R_R = eR \oplus (1-e)R$, where $eR = \bigoplus_{i \in I} L_i$, L_i is a local injective module of length two for every $i \in I$, J((1-e)R) = 0 and (1-e)R(1-e) is a right SV-ring. One can check that $\operatorname{Hom}(eR, (1-e)R) = 0$ and $J(R) = J(\bigoplus_{i \in I} L_i)$. Then eR(1-e) is a submodule of $_RR$ and $eR(1-e) \leq J(R)$. It follows, from the left-sided analogue of Proposition 2.11(3), that there exists a set of orthogonal idempotents $\{f_1, \ldots, f_n\}$ such that $eR(1-e) = J(Rf_1 \oplus \ldots \oplus Rf_n)$ and Rf_i is a local injective module of length two for every $1 \leq i \leq n$. Consider the two-sided Peirce decomposition of the ring R corresponding to the decomposition 1 = e + (1-e)

$$R = \begin{pmatrix} eRe & eR(1-e) \\ 0 & (1-e)R(1-e) \end{pmatrix}.$$

Then for every $1 \leq i \leq n$ the following equalities hold

$$f_i = \begin{pmatrix} er_i e & em_i(1-e) \\ 0 & (1-e)s_i(1-e) \end{pmatrix},$$
$$(er_i e)^2 = er_i e, ((1-e)s_i(1-e))^2 = (1-e)s_i(1-e)$$

and

$$em_i(1-e) = er_i em_i(1-e) + em_i(1-e)s_i(1-e)$$

Let S := (1-e)R(1-e) and $g_i := (1-e)s_i(1-e)$ for every $1 \le i \le n$. Fix an arbitrary index $1 \le i \le n$. We have that

$$J(R)f_i = \begin{pmatrix} eJ(R)e & eR(1-e) \\ 0 & 0 \end{pmatrix} \begin{pmatrix} er_ie & em_i(1-e) \\ 0 & g_i \end{pmatrix} \le \begin{pmatrix} 0 & eR(1-e) \\ 0 & 0 \end{pmatrix}$$

and obtain $eJ(R)er_ie = 0$. On the other hand, for every $j \in J(R)$ and $m \in eR(1-e)$ we have

$$\begin{pmatrix} eje & em(1-e) \\ 0 & 0 \end{pmatrix} \begin{pmatrix} er_ie & em_i(1-e) \\ 0 & g_i \end{pmatrix} = \begin{pmatrix} 0 & ejem_i(1-e) + emg_i \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & eje(er_iem_i(1-e) + em_ig_i) + emg_i \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & e(jem_i + m)g_i \\ 0 & 0 \end{pmatrix}$$

We deduce that $J(R)f_i \leq \begin{pmatrix} 0 & eRg_i \\ 0 & 0 \end{pmatrix}$. Since $J(R)f_i \neq 0$, then $g_i \neq 0$. Inasmuch as the idempotent $f_i + J(R) \in R/J(R)$ is primitive and $J(R)^2 = 0$ we have $er_i e = 0$ and eJ(R)eR(1-e) = 0. Consequently,

$$\begin{pmatrix} 0 & eR(1-e) \\ 0 & 0 \end{pmatrix} = \bigoplus_{i=1}^{n} J(R)f_i = \bigoplus_{i=1}^{n} \begin{pmatrix} 0 & eR(1-e)g_i \\ 0 & 0 \end{pmatrix}$$

It means that $eR(1-e) = \bigoplus_{i=1}^{n} eR(1-e)g_i$ and $eR(1-e)(1-\sum_{i=1}^{n}g_i) = 0$. If, for some primitive idempotent g_0 of the ring S, the condition $g_0S \cong g_iS$ holds, where $1 \le i \le n$, then it can readily be seen that $Mg_0 \ne 0$. Thus the right ideals

$$\bigoplus_{i=1}^{n} g_i S \text{ and } ((1-e) - \sum_{i=1}^{n} g_i) S$$

of S do not contain isomorphic to simple right S-submodules. Since S is a semiartinian regular ring, then $g = \sum_{i=1}^{n} g_i$ is a central idempotent of S and the ring R is isomorphic to the direct product of the regular ring (1 - e - g)S and the ring

$$R' = \begin{pmatrix} eRe & eR(1-e) \\ 0 & gR \end{pmatrix}.$$

Inasmuch as eR = eRe + eR(1-e) is a module of finite length and for every $1 \leq i \leq n$, the idempotent $g_i \in (1-e)R(1-e)$ is primitive, we obtain that the ring R' is Artinian. Thus the ring R' is Artinian serial and $J(R')^2 = 0$ by

Theorem 2.7. From Proposition 2.11, we have (1 - e - g)S is an *SV*-ring. Thus, the ring *R* is a direct product of an *SV*-ring for which Loewy $(R) \leq 2$ and an Artinian serial ring whose squared Jacobson radical vanishes.

 $(4) \Rightarrow (1)$ is followed by Theorem 2.7 and [5, Proposition 2.6].

Theorem 2.13. The following statements are equivalent for a ring R:

- (1) R is a right hereditary CAI-ring.
- (2) R is a right nonsingular CAI-ring.
- (3) R is a direct product of an SV-ring for which Loewy $(R) \leq 2$ and a finite direct product of rings of the following form:

$$\begin{bmatrix} \mathbb{M}_{n_1}(T) & \mathbb{M}_{n_1 \times n_2}(T) \\ 0 & \mathbb{M}_{n_2}(T) \end{bmatrix},$$

where T is a skew-field.

Proof. $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (3)$ is followed by Theorem 2.12 and [14, Theorem 8.11].

 $(3) \Rightarrow (1)$ is followed by [9, Proposition 9.6].

Corollary 2.14. Any I-finite right nonsingular right CAI-ring R is isomorphic to a finite direct product of rings of the following form:

$$\begin{bmatrix} \mathbb{M}_{n_1}(T) & \mathbb{M}_{n_1 \times n_2}(T) \\ 0 & \mathbb{M}_{n_2}(T) \end{bmatrix},$$

where T is a skew-field.

For two-sided CAI-rings, we obtain the important result, that is, they are also the rings for which every (right and left) R-module is almost injective. So, it is natural to ask the following question:

Question. Does the class of rings whose all right *R*-module are almost-injective and class of all right CAI-rings coincide?

It is well-known that if M a non-singular indecomposable almost-injective right R-module, then End(M) is an integral domain and every nonzero endomorphism of M is a monomorphism. Moreover, if M is a cyclic module over a right Artinian ring, then End(M) is a skew-field. The following result is obvious.

Lemma 2.15. Let R be a right Artinian ring and e be a primitive idempotent of R. If eR is a non-singular almost-injective right R-module, then eRe is a skew-field.

Lemma 2.16. Let R be a I-finite right nonsingular right CAI-ring and e, e' be any two primitive idempotents in R with D = eRe and D' = e'Re'.

- (1) Then eRe' is a left vector space over D with the dimension less than or equal to 1.
- (2) If z is a non-zero element of eRe', there exists embedding $\sigma : D' \to D$ satisfying the property $ze'be' = \sigma(e'be')z$ for all $e'be' \in D'$.
- (3) If $\dim_D(eRe') = 1$, then σ is an isomorphism.

Proof. (1) First we assume that eRe' is non-zero with D = eRe and D' = e'Re'. Take any non-zero element ere' in eRe'. We show that D(ere') = D(eRe'). In fact, let ese' be an arbitrary nonzero element of eRe'. Consider the mapping $\phi: e'R \to ere'R$ defined by $\phi(x) = erx$ for all $x \in e'R$. One can check that ϕ is a well-defined epimorphism. Since e'R is an indecomposable almost-injective right R-module, e'R is uniform. Assume that $\operatorname{Ker}(\phi)$ is nonzero. Then $e'R/\operatorname{Ker}(\phi)$ is a singular module. But, $\operatorname{Im}(\phi)$ is nonsingular by the nonsingularity of R, which gives a contradiction. It implies $\operatorname{Ker}(\phi) = 0$. It means that $ere'R \cong e'R$. Similarly, $ese'R \cong e'R$. We deduce that there exists an R-isomorphism σ : $ere'R \to ese'R$ satisfying $\sigma(ere') = ese'$. Call the homomorphism $\gamma: ere'R \to eR$ such that $\gamma(x) = \sigma(x)$ for all $x \in ere'R$.

Since R is a right CAI-ring, eR is almost eR-injective. Then, we have the following two cases for the homomorphism γ .

Case 1. σ is extended to an endmorphism of eR:

Take $\alpha : eR \to eR$ an endomorphism of eR which is an extension of σ . Then $ese' = \sigma(ere') = \alpha(ere') = e\alpha(e)e(ere') \in D(ere')$

Case 2. σ is not extended to an endmorphism of eR:

There is a homomorphism $\beta : eR \to eR$ such that $\beta \circ \gamma = \iota$ with $\iota : ere'R \to eR$ the inclusion. Then, we have $ere' = (\beta \circ \gamma)(ere') = \beta(ese') = e\beta(e)e(ese')$. Since D is a skew-field, $ese' = [e\beta(e)e]^{-1}ere' \in D(ere')$.

We deduce that D(ere') = D(eRe'). Thus, eRe' is a one-dimensional left vector space over D if $eRe' \neq 0$.

(2) Let z be a non-zero element of eRe'. Then, eRe' = Dz by (1). It means that for any $e'be' \in e'Re'$, we have ze'be' = uz for some $u \in D$. This defines a ring monomorphism $\sigma : D' \to D$ such that $\sigma(e'be') = u$. Thus, $\sigma(e'be')z = uz = ze'be'$ for all $e'be' \in D'$.

(3) Assume that R is a right serial ring and $\dim_D(eRe') = 1$. Take any two non-zero elements ere' and ese' in eRe'. By assumption, eR is uniserial, we may suppose $ese'R \leq ere'R$. There is e'ue' in e'Re' such that ese' = ere'ue'. We have that e'Re' is a skew-field and obtain ese'Re' = ere'Re'. It means that eRe' is a one-dimensional right vector space over D'. Then eRe' = Dz = zD', and so σ is an isomorphism.

Corollary 2.17. Any I-finite right nonsingular right CAI-ring R is isomorphic to

$M_{n_1}(e_1 R e_1)$	$\mathbb{M}_{n_1 \times n_2}(e_1 R e_2)$			$\mathbb{M}_{n_1 \times n_k}(e_1 R e_k)$	٦
0	$\mathbb{M}_{n_2}(e_2 R e_2)$			$\mathbb{M}_{n_2 \times n_k}(e_2 R e_k)$	
0	0	$\mathbb{M}_{n_3}(e_3 R e_3)$	•	$\mathbb{M}_{n_3 \times n_k}(e_3 R e_k)$	
		•	•	•	,
			•		
0	0			$\mathbb{M}_{n_k}(e_k R e_k)$	

where $e_i Re_i$ is a division ring, $e_i Re_i \cong e_j Re_j$ for each $1 \le i, j \le k$ and n_1, \ldots, n_k are any positive integers. Furthermore, if $e_i Re_j \ne 0$, then

 $\dim(_{e_iRe_i}(e_iRe_j)) = 1 = \dim((e_iRe_j)_{e_iRe_j}).$

3. On right noetherian right almost V-rings

Firstly, we list some known results related to almost V-ring for the sake of completeness.

Theorem 3.1 ([4, Theorem 3.1]). The following statements are equivalent for a ring R.

- (1) R is a right almost V-ring.
- (2) For every simple R-module S, either S is injective or E(S) is projective of length 2.

Theorem 3.2 ([4, Theorem 2.9]). A ring R is a right almost V-ring if and only if every right R-module is simple-extending.

Theorem 3.3 ([6, Theorem 2.4]). The following statements are equivalent for a ring R.

- (1) R is a right Noetherian right almost V-ring.
- (2) Every right R-module is semisimple-extending.
- (3) $R = \bigoplus_{j=1}^{n} I_j$, where I_j is either a Noetherian V-module with zero socle, or a simple module, or an injective module of length 2.
- (4) $R = I \oplus J$, where I and J are right ideals, I is Noetherian, every semisimple module in $\sigma[I]$ is I-injective, and every module in $\sigma[J]$ is extending.

The following result provides a characterization of right Noetherian right almost V-rings via almost injective semisimple modules.

Theorem 3.4. The following statements are equivalent for a ring R.

- (1) R is a right Noetherian right almost V-ring.
- (2) Every semisimple right R-module is almost injective and R has finite right Goldie dimension.
- (3) Every semisimple right R-module is almost injective and $Soc(R_R)$ is finitely generated.

Proof. (1) \Rightarrow (2) By hypothesis, R has finite right Goldie dimension. Now we show that every semisimple right R-module S is almost injective. Let N be any module N and let $0 \rightarrow A \rightarrow N$ be an any monomorphism for a submodule A of N and let $f : A \rightarrow S$ be any non-zero homomorphism. Assume U = E(f(A)) and $E(S) = U \oplus V$. Since R is a right Noetherian ring,

$$U = \bigoplus_{i \in I} E(S_i)$$

By Theorem 3.1, either $E(S_i)$ is simple or $E(S_i)$ is projective of length 2. Since U is injective, there exists a homomorphism $g_1 : N \to U$ such that $f = g\iota$.

Case 1: $g(N) \leq \bigoplus_{i \in I} S_i$. Let $\omega : \bigoplus_{i \in I} S_i \to S$ be the natural embedding and $g_1 = \omega g$. In this case the following diagram commutes.

Case 2: $g(N) \nsubseteq \bigoplus_{i \in I} S_i$. Let $\pi_i : U \to E(S_i)$ be the canonical projection. Then there exists an index $j \in I$ such that $\pi_j(g(N)) \nsubseteq Soc(E_j)$. So that $\pi_j(g(N)) = E(S_j)$, since length $(E(S_i) \le 2$, for any $i \in I$. Hence $\pi_j(g(N))$ is both injective and projective. It follows that there exists a decomposition $N = N_1 \oplus \text{Ker}(\pi_j g)$, and $\varphi = (\pi_j g)|_{N_1}$ is an isomorphism from N_1 to E_j . Set $w_1 = \varphi^{-1}$ and $w_2 = w_1\pi_j$, $h_1 = w_2|_S$.

Then h_1 is a homomorphism from $U \oplus V$ to N_1 . Let $h = h_1|_S$. Let $\pi : N \to N_1$ be the canonical projection. Let $a \in A$, then $a = a_1 + a_2$ with $a_1 \in N_1$ and $a_2 \in Ker(\pi_j g)$.

Therefore $\pi_j g(a) = \pi_j g(a_1) + \pi_j g(a_2) = \pi_j g(a_1) = \pi_j f(a_1) \in S_j$. Since φ is isomorphic, it follows that $a_1 \in \operatorname{Soc}(N_1)$. Define a homomorphism $\varphi : \operatorname{Soc}(N_1) \to S_j$ with $\theta(x) = \pi_j f(x)$. Last, we put $\beta : \pi_j|_S$ and $h = \theta^{-1}\beta$. Then h is a homomorphism from S to N_1 . Let $a \in A$ with a = x + y where $x \in \operatorname{Soc}(N_1)$ and $y \in \operatorname{Ker}(\pi_j g)$. Then $\pi(a) = x$. Hence $\theta(x) = \pi_j f(x)$, so that

$$x = \theta^{-1}(\theta(x)) = \theta^{-1}(\pi_j f(x)) = \theta^{-1}(\beta)(f(x)) = (\theta^{-1}\beta)(f(x)) = hf(a).$$

Therefore $\pi \iota = fh$. In this case the following diagram commutes.

$$0 \longrightarrow A \xrightarrow{i} N = N_1 \oplus N_2$$

$$f \downarrow \qquad \qquad \downarrow \pi$$

$$S \xrightarrow{h} N_1$$

Therefore S is an almost injective module. $(2) \Rightarrow (3)$ is clear.

 $(3) \Rightarrow (1)$ Assume (3). Then R is an almost right V-ring. Let S be a semisimple right R-module. By [5, Proposition 2.1], S is essentially injective. Then, every semisimple right R-module is essentially injective. Therefore $R/\operatorname{Soc}(R_R)$ is right Noetherian, by [5, Lemma 2.2]. Hence R is a right Noetherian since $\operatorname{Soc}(R_R)$ is finitely generated.

Theorem 3.5. The following statements are equivalent for a ring R.

- (1) R is an Artinian serial ring with $Rad(R)^2 = 0$.
- (2) Every semisimple right R-module is almost injective, R_R is almost injective and R is a direct sum of indecomposable right ideals.
- (3) Every semisimple right R-module is almost injective, R_R is almost injective and $Soc(R_R)$ is finitely generated.

Proof. First we note that if R_R is an almost injective module with finite Goldie dimension then R is a direct sum of uniform right ideals. Hence, it suffices to show that $(3) \Rightarrow (1)$. Assume (3). By Theorem 3.4, R is right Noetherian right almost V-rings, and R_R has a decomposition $R_R = e_1 R \oplus e_2 R \oplus ... \oplus e_n R$, where each $e_i R$ is uniform, since R_R is almost injective. Let $e = e_i$, for $1 \le i \le n$. We shall prove that eR is an uniserial module. Let U, V be submodules of eR. Then U and V contain maximal submodules U_1 and V_1 , respectively, since R is right Noetherian. Then $eR/(U_1 \oplus V_1)$ has two distinct minimal submodules $(U+V)/(U_1+V)$ and $(U+V)/(U+V_1)$. This is impossible, since $eR/(U_1 \oplus V_1)$ is an indecomposable module over a right almost V-ring. Therefore eR is uniserial. Assume that eR is not simple, and U is a non-zero proper summodule of eR. Then there exitsts a maximal submodule U_1 of U. Since eR/U_1 is an uniform with the socle is U/U_1 . So length $(eR/U_1) = 2$, since R is a right almost V-ring. Hence U is simple and length(eR) = 2, and eR is injective. Last, we get $R_R = e_1 R \oplus e_2 R \oplus ... \oplus e_n R$, where each $e_i R$ is either a simple module or an injective module of length 2. By $[10, 13.5, (e) \Rightarrow (g)], R$ is an Artinian serial rings with $\operatorname{Rad}(R)^2 = 0.$

We obtain the following results in [5, Theorem 3.1]

Corollary 3.6. The following statements are equivalent for a ring R.

- (1) R is an Artinian serial ring with $Rad(R)^2 = 0$.
- (2) Every right R-module is almost injective and R is a direct sum of indecomposable right ideals.
- (3) Every right R-module is almost injective and $Soc(R_R)$ is finitely generated.

Acknowledgments. Parts of this paper were written during a stay of the authors (Thuyet, Dan and Quynh) in the Vietnam Institute For Advanced Study in Mathematics (VIASM). The authors would like to thank the members of VIASM for their hospitality, as well as to gratefully acknowledge the received support.

THUYET, DAN, ABYZOV AND QUYNH

References

- A. N. Abyzov, Almost projective and almost injective modules, Math. Notes, 103(1),(2018),3-17.
- [2] Alahmadi, A., Jain, S. K. (2009). A note on almost injective modules. Math. J. Okayama Univ. 51:101-109.
- [3] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules. New York: Springer-Verlag (1992).
- [4] Arabi M., Asgari Sh., Khabazian H., Rings for which every simple module is almost injective, Bull. Iran Math. Soc., (2016)1:113-127.
- [5] Arabi M., Asgari Sh., Tolooei Y., Rings over which every module is almost injective, Commun. Algebra, (2016)44:2908-2918.
- [6] Arabi M., Asgari Sh., Tolooei Y., Noetherian rings with almost injective simple modules, *Commun. Algebra*, (2017)45:3619-3626.
- [7] Bab Y, Note on almost M-injectives, Osaka J. Math. 26(1989), 667-698.
- [8] Baccella G., Semi-Artinian V-rings and semi-Artinian von Neumann regular rings, J. Algebra, 173 (1995), 587C612
- Baccella, G. Representation of artinian partially ordered sets over semiartinian von Neuman regular algebras. J. Algebra 323, 790C838 (2010)
- [10] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending modules, *Pitman Research Notes in Mathematics*, Vil. 313. Harlow: Longman (1994).
- [11] Jain S. K. and Alahmadi A., A note on almost injective modules, Math. J. Okayama Univ., 51(2009),110-109.
- [12] Jain S. K. and Alahmadi A., Almost injective modules A brief survey, J. Algebra Appl., 13(2014):1350164, (12 pages).
- [13] Baba Y. and Harada M., On almost M -projectives and almost M -injectives, Tsukuba J. Math. 14 (1990),53-69.
- [14] Goldie A.W., Torsion-free modules and rings, J. Algebra 1 (1964), 268-287.
- [15] Harada M., On almost relative injectives on Artinian modules, Osaka J. Math. 27 (1990),963-971.
- [16] Harada M., Direct sums of almost relative injective modules, Osaka J. Math. 28 (1991), 751-758.
- [17] Harada M., Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29 (1992), 435-446.
- [18] Harada M., Almost QF-rings and Almost QF^{\sharp} -rings, Osaka J. Math. **30** (1993), 887-892.
- [19] Harada M., Almost projective modules, J. Algebra 159 (1993), 150-157.
- [20] Rizvi, M. Yousif, On Continuous and Singular Modules. Noncommutative Ring Theory, Proc., Athens, Lecture Notes in Mathematics, Vol. 1448. Berlin, New York and Heidelberg: Springer Verlag, pp. 116-124, 1990.
- [21] Singh S., Almost relative injective modules, Osaka J. Math. 53(2016), 425-438.
- [22] L. V. Thuyet, P. Dan, B. D. Dung, On a class of semiperfect rings, J. Algebra Appl., 12(6) (2013), 1350009 (13 pages).
- [23] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

RINGS CHARACTERIZED VIA SOME CLASSES OF ALMOST-INJECTIVE MODULES 15

Le Van Thuyet

Department of Mathematics, College of Education, Hue University 34 Le Loi, Hue city, Viet Nam E-mail: lvthuyet@hueuni.edu.vn

Phan Dan

Hong Bang International University 215 Dien Bien Phu Street, Binh thanh, Ho Chi Minh city, Viet Nam E-mail:gmphandan@gmail.com

Adel Abyzov

Department of Algebra and Mathematical Logic, Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia E-mail: Adel.Abyzov@kpfu.ru

Truong Cong Quynh

Department of Mathematics, Danang University, 459 Ton Duc Thang, DaNang city, Vietnam E-mail: tcquynh@ued.udn.vn