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Abstract. This paper is addressed to study a null controllability problem

with finite number of constraints on the state for a parabolic system with

local and nonlocal nonlinearities. We first transform the linearized problem
into an equivalent problem of null controllability problem with constraint on

the control. Then, by using a suitable Carleman inequality adapted to the

constraint we get the null controllability with constraint on the control. Then,
the main result is proved by an application of a fixed-point method.

1. Introduction

Let Ω ⊂ RN , (N ∈ N+) be a bounded open set with boundary ∂Ω of class C2.
For a time T > 0, we set Q = Ω× (0, T ),Σ = ∂Ω× (0, T ).

We are concerned with the following initial boundary valued problem for a par-
abolic coupled system with nonlinear terms of local and nonlocal kinds

yt − a(
∫

Ω
ydx,

∫
Ω
zdx)∆y + f(y, z) = v1ω in Q,

zt − b(
∫

Ω
ydx,

∫
Ω
zdx)∆z + g(y, z) = 0 in Q,

y = z = 0 on Σ,

y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω,

(1.1)

where v is the control, (y, z) is the state and 1ω is the characteristic function of a
non-empty open subset ω of Ω. Moreover, a(r, s), b(r, s), f(r, s) and g(r, s) are C1

functions with bounded derivatives and satisfy

0 < L1 ≤ a(r, s); b(r, s) ≤ L2 < +∞, ∀(r, s) ∈ R× R, (1.2)

and
f(0, 0) = g(0, 0) = 0, (1.3)

and there exist positive constants c0 and T0 such that∣∣∣∣∂g∂y
∣∣∣∣ ≥ c0 > 0 in ω × (0, T0). (1.4)

This condition implies (2.5) which needs to get Lemma 2.5.
As in [11], if y0, z0 ∈ L2(Ω), v ∈ L2(Q), the functions a, b, f and g satisfy

(1.2)-(1.3), then the system (1.1) admits a unique weak solution (y, z) satisfying

(y, z) ∈
(
L2(0, T ;H1

0 (Ω)) ∩ C([0, T ];L2(Ω))
)2

, (yt, zt) ∈ (L2(0, T ;H−1(Ω)))2.
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The system (1.1) is said to be nonlocal in view of structure of the diffusion
coefficients. It appears in some phenomena which nonlocal terms appear naturally.
To this respect, let us list several examples of real physical models as follows.

In the case of migration of populations such as the bacteria in a container, we
can find in practice that, see [4, 18],

a = a
(∫

Ω

y(x, t)dx,

∫
Ω

z(x, t)dx,

∫
Ω

∇y(x, t)dx,

∫
Ω

∇z(x, t)dx
)
.

In the case of reaction-diffusion equations, see [3], the nonlocal coefficient can be
found by form

a = a(〈h, y(., t)〉, 〈k, z(., t)〉),
where h, k are continuous linear form on L2(Ω).

In the case of hyperbolic equations, we also find the terms of this kind, see [12]
for instance

a = a
(∫

Ω

|∇y|2dx,
∫

Ω

|∇z|2dx
)
.

We can find more details from the above references. In addition, we refer [5, 8]
and the references therein. In last decade, the control of reaction-diffusion system
has attracted the interest of the control community. The controllability of nonlinear
parabolic systems have been studied by many authors in recent years. In case of
a = b = 1, the null controllability of some reaction-diffusion systems are studied
(see [1, 9, 10, 17]). In [5], the authors obtained the local null controllability and
numerical experiments of (1.1). In [8], for a = b = 1, the author has proved the
null controllability with constraints on the state of the reaction-diffusion system.
In this paper, we focus on the null controllability problem with a finite number of
constraints on the state that we describe now.

For any fixed M ∈ N+, we consider ei ∈ L2(Q), i = 1, . . . ,M are such that

{ei1ω}Mi=1 are linearly independent. (1.5)

It will be said that the problem (1.1) is null controllable with a finite number of
constraints on the state at time T if given ei ∈ L2(Q), i = 1, . . . ,M , satisfy (1.5),
and y0, z0 ∈ L2(Ω), there exists control v ∈ L2(Q) such that the associated states
(y, z) satisfy

y(x, T ) = z(x, T ) = 0 in Ω, (1.6)

and ∫∫
Q

zeidxdt = 0, for i = 1, . . . ,M. (1.7)

Our approach is based on earlier works on the local and global null controllability
of parabolic equations and systems (see [5, 6, 8, 13, 14, 16]). The main tool to
establish such a result is a Carleman estimate. Let us now give the main result and
explain the methods used in the paper. We will prove following theorem.

Theorem 1.1. Let Ω be a bounded open subset of RN with boundary ∂Ω of class
C2 and ei ∈ L2(Q), i = 1, . . . ,M verifying (1.5). Assume that y0, z0 ∈ L2(Ω), one
can find a control v ∈ L2(Q) such that the solution (y, z) of (1.1) satisfies (1.6)
and (1.7).

This paper is in keeping with the idea of the framework can be found in [8, 13]
and it is organized as follows. In Section 2, we prove the null controllability with
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constraints on the state of the linearized system by reducing to the null controllabil-
ity with constraints on the control. The null controllability with constraint on the
control of the linearized system is based on a new adapted Carleman estimate for
an adjoint system respectively. The last section gives the null controllability with
constraints on the state of the nonlinear system by using the null controllability of
the linearized system and a fixed-point method.

Throughout this paper we use C to denote various constants, which may change
from line to line. When the dependence of the constant on some index is important
we highlight it in the notation.

2. Null controllability of the linearized system at zero with
constraints on the state

Since we prove the main result by using a fixed-point argument, we need to
analyze first the controllability of the linearized system. For any fixed (ŷ, ẑ) ∈
(L2(Q))2, using the condition (1.2), we have the following linearized system of
(1.1) at (ŷ, ẑ), 

yt − a∆y +A1y +B1z = v1ω in Q,

zt − b∆z +A2y +B2z = 0 in Q,

y = z = 0 on Σ,

y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω,

(2.1)

where

a = a
(∫

Ω

ŷdx,

∫
Ω

ẑdx
)
, b = b

(∫
Ω

ŷdx,

∫
Ω

ẑdx
)
,

A1 =

∫ 1

0

∂f(λŷ, λẑ)

∂y
dλ, B1 =

∫ 1

0

∂f(λŷ, λẑ)

∂z
dλ, (2.2)

and

A2 =

∫ 1

0

∂g(λŷ, λẑ)

∂y
dλ, B2 =

∫ 1

0

∂g(λŷ, λẑ)

∂z
dλ, (2.3)

Due to the condition (1.2) we have

a, b ∈ [L1, L2].

Since f(r, s) and g(r, s) are real C1 function with bounded derivatives, then
A1, A2, B1, B2 satisfy

‖Ai(ŷ, ẑ)‖L∞(Q) ≤ K, i = 1, 2,

‖Bi(ŷ, ẑ)‖L∞(Q) ≤ K, i = 1, 2,
(2.4)

with some positive constant K, and it follows from (1.4) that

|A2| ≥ c0 > 0 in ω × (0, T0). (2.5)

If (y0, z0) ∈ (L2(Ω))2 and v ∈ L2(Q), then it is well-know that the problem (2.1)

also has a unique solution (y, z) ∈
(
C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω))
)2

.

The adjoint system of (2.1) is given by
−%t − a ∆%+A1%+A2ψ = 0 in Q,

−ψt − b ∆ψ +B1%+B2ψ = 0 in Q,

% = ψ = 0 on Σ,

%(x, T ) = %T (x), ψ(x, T ) = ψT (x) in Ω.

(2.6)
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We consider the null controllability with a finite number of constraints on the
state as follows: Given y0, z0 ∈ L2(Ω) and ei ∈ L2(Q), i = 1, . . . ,M verifying (1.5).
Find v ∈ L2(Q) such that the solution of (2.1) satisfies (1.6) and (1.7).

In case of a = b = 1, [10] has considered the null controllability of (2.1) and
[16] has considered its null controllability with constraint on the control. The null
controllability with a finite number of constraints on the sate has studied by Gao
[8]. However, the term A2 ≥ c0 > 0 was required. To our situation, we will relax
restriction, i.e., |A2| ≥ c0 > 0. Moreover, the diffusion coefficients still depends on
time. By exploiting wisely some estimates used by authors (see [7, 8, 10]), we still
achieve the same results. To make it clear, let us give the main ideas.

We will need some well-known results from Fursikov [7] (see also [6]) that will be
used subsequently. Let ω′ be a subdomain of ω such that ω′ b ω b Ω, there exists
a function β ∈ C2(Ω) without critical points in Ω \ ω′ satisfying

∂β

∂ν
≤ 0, on ∂Ω,

and

min
x∈Ω\ω′

|∇β(x)| > 0, min
x∈Ω

β(x) ≥ max

{
3

4
‖β‖L∞(Ω), ln 3

}
,

where ν denotes the outward unit normal to ∂Ω. We adopt the following notations
with parameters λ > 0 and τ > 0:

ϕ(x, t) =
eλβ(x)

t(T − t)
, α(x, t) = τ

e
4
3λ‖β‖L∞(Ω) − eλβ(x)

t(T − t)
,

θ = eα, γ2 = e(2−r)α, E2 =

M∑
i=1

‖ei‖2L∞(Q).

L2 = ‖A1‖2L∞(Q) + ‖A2‖2L∞(Q) + ‖B1‖2L∞(Q) + ‖B2‖2L∞(Q).

The main result of this section is the following theorem.

Theorem 2.1. Let Ω be a bounded open subset of RN with boundary ∂Ω of class
C2 and ei ∈ L2(Q), i = 1, . . . ,M verifying (1.5). For every y0, z0 ∈ L2(Ω), one
can find a control v ∈ L2(Q) such that the solution (y, z) of (2.1) satisfies (1.6)
and (1.7).

2.1. Equivalence to the controllability problem with constraint on the
control. In this section, we transform the linearized problem into an equivalent
linear problem of null controllability with constraint on the control. The argument
of the proof is inspired the work by Gao [8]. Therefore, by following step by step
(see [8, Lemmas 2.3-2.6, Proposition 4.1]), we will obtain the same results, so we
omit the proofs here and state the main results as follows.

Lemma 2.1. The functions {pi1ω}i=1,...,M are linearly independent, where (pi, qi)
are the solutions of the following systems.

−pit − a ∆pi +A1pi +A2qi = 0 in Q,

−qit − b ∆qi +B1pi +B2qi = ei in Q,

pi(x, t) = qi(x, t) = 0 on Σ,

pi(x, T ) = qi(x, T ) = 0 in Ω.

(2.7)

Moreover, the functions {θ−1pi1ω}i=1,...,M are also linearly independent.
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We define
U = span{p11ω, p21ω, . . . , pM1ω},
Uθ = θ−1U ,

(2.8)

where (pi, qi) is the solution to (2.7).

Lemma 2.2. If (p, q) is the solution of the following system
−pt − a ∆p+A1p+A2q = 0 in ω × (0, T ),

−qt − b ∆q +B1p+B2q = 0 in ω × (0, T ),

p|ω ∈ U .

Then p, q are identically zero in ω × (0, T ).

Lemma 2.3. Let y0, z0 ∈ L2(Ω). There then exists a unique v0 ∈ Uθ such that

−
∫

Ω

y0pi(0)dx−
∫

Ω

z0qi(0)dx =

∫∫
ω×(0,T )

v0pidxdt, (2.9)

for i = 1, . . . ,M , and where (pi, qi) are solution to (2.7). Moreover, there exists a
constant C = C(Ω, T, L,E) such that

‖v0‖L2(ω×(0,T )) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

‖θv0‖L2(ω×(0,T )) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)).

Proposition 2.1. Let y0, z0 ∈ L2(Ω), U and Uθ be defined in (2.8). The null
controllability problem with constraints on the state (2.1), (1.6), (1.7) is equivalent
to the following null controllability problem with constraint on the control: Given
v0 ∈ Uθ verifying (2.9), find vθ ∈ L2(ω × (0, T )) such that

vθ ∈ U⊥, (2.10)

and the solution to
yt − a ∆y +A1y +B1z = (v0 + vθ)1ω in Q,

zt − b ∆z +A2y +B2z = 0 in Q,

y(x, t) = z(x, t) = 0 on Σ,

y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω,

(2.11)

satisfies (1.6).

2.2. Null controllability of the linearized system with constraint on the
control. Thanks to Proposition 2.1, we only focus on solving the null controllability
problem with constraint on the control (2.10), (2.11) and (1.6). To do this, we use
a Carleman inequality adapted to the constraint (2.10).

We begin with the following backward parabolic equation{
ξt + µ(t)∆ξ = h(x, t) in Q,

ξ = 0 on Σ,
(2.12)

where µ(t) is a positive, bounded and continuously differentiable function, and
h ∈ L2(Q).

Denoting

I(λ, s, τ, ξ) =

∫∫
Q

ϕ2s−1e−2α
[
λ−1(|ξt|2 + |∆ξ|2) + λτ2ϕ2|∇ξ|2 + λ4τ4ϕ4|ξ|2

]
dxdt.
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for positive constants λ, s, τ . Because of the properties of µ(t), we imitate step by
step of the proof of Theorem 7.1 in [7, p. 288], we get the following result.

Lemma 2.4. Let ξ and h satisfy the problem (2.12), and let s ≥ −3. There exist
λ0 > 0, τ0 > 0 and a positive constant C such that, for λ ≥ λ0, τ ≥ τ0, we have

I(λ, s, τ, ξ) ≤ C
[
τ

∫∫
Q

ϕ2se−2α|h|2dxdt+ λ4τ4

∫∫
ω′×(0,T )

ϕ2s+3e−2α|ξ|2dxdt
]
.

Furthermore, similarly to [10, Lemma 2, Theorem 3] (see aslo [16, Lemma 2.3,
Theorem 2.4, Corollary 2.5]), we also have the following result.

Lemma 2.5. Let (%, ψ) be the solution to (2.6) and C is determined in Lemma 2.4.

For any λ ≥ λ0, τ ≥ τ1 := T 2

4

( C
λ4

0

)1/3

L2/3 and s ≥ −3, the following inequality∫∫
Q

(
|%|2 + |ψ|2

)
ζ2s+3e−2αdxdt ≤ Cλ4

∫∫
ω′×(0,T )

(
|%|2 + |ψ|2

)
ζ2s+3e−2αdxdt

holds. Moreover, for all r ∈ [0, 2), there exists a constant C = C(T, L, c0, r) such
that ∫∫

Q

(
|%|2 + |ψ|2

)
e−2αdxdt ≤ C

∫∫
ω×(0,T )

|%|2e−rαdxdt. (2.13)

We now prove the following Carleman inequality.

Lemma 2.6. (Adapted Carleman inequality). There exists a positive constant C
such that for all the (%, ψ) which is the solution to (2.6)∫

Ω

(
|%(0)|2+|ψ(0)|2

)
dx+

∫∫
Q

θ−2
(
|%|2+|ψ|2

)
dxdt ≤ C

∫∫
Q

γ2|%1ω−P (%1ω)|2dxdt,

where P is the orthogonal projection operator from L2(ω × (0, T )) into U .

Proof. It follows from (2.13) that∫∫
Q

θ−2
(
|%|2 + |ψ|2

)
dxdt ≤ C

∫∫
ω×(0,T )

e(2−r)α

θ2
|%|2dxdt,

where θ−2 = e−2α and r ∈ [0, 2). Then replacing γ2 = e(2−r)α and using the
boundedness of θ−2, we obtain that∫∫

Q

θ−2
(
|%|2 + |ψ|2

)
dxdt ≤ C

∫∫
Q

γ2|%1ω|2dxdt. (2.14)

We first prove that there exists a positive constant C such that∫∫
Q

θ−2
(
|%|2 + |ψ|2

)
dxdt ≤ C

∫∫
Q

γ2|%1ω − P (%1ω)|2dxdt (2.15)

We argue by contradiction, i.e., suppose that (2.15) does not hold. Then for any
n, there exists %nT (x), ψnT (x) ∈ L2(Ω) satisfying∫∫

Q

θ−2
(
|%n|2 + |ψn|2

)
dxdt = 1, (2.16)∫∫

Q

γ2|%n1ω − P (%n1ω)|2dxdt < 1

n
, (2.17)
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where (%n, ψn) is the solution to
L∗a(%n, ψn) = 0 in Q,

L∗b(%n, ψn) = 0 in Q,

%n(x, t) = ψn(x, t) = 0 on Σ,

%n(x, T ) = %nT (x), ψn(x, T ) = ψnT (x) in Ω,

(2.18)

where
L∗a(%n, ψn) = −%nt − a ∆%n +A1%n +A2ψn,

L∗b(%n, ψn) = −ψnt − b ∆ψn +B1%n +B2ψn.

Thanks to the Cauchy inequality, for all n ∈ N∗, we have∫∫
Q

θ−2|P (%n1ω)|2dxdt ≤ 2
(∫∫

Q

θ−2|%n1ω|2dxdt+
∫∫

Q

θ−2|%n1ω−P (%n1ω)|2dxdt
)
.

Since θ−2 and γ−2 are bounded then it follows from (2.16), and (2.17) that there
exists a positive constant C satisfying∫∫

Q

θ−2|P (%n1ω)|2dxdt ≤ C.

Since P%n ∈ U and U is finite dimensional subspace of L2(ω × (0, T )), we deduce
that ∫∫

Q

|P (%n1ω)|2dxdt ≤ C. (2.19)

On the other hand,∫∫
Q

|%n1ω|2dxdt ≤ 2
(∫∫

Q

|P (%n1ω)|2dxdt+

∫∫
Q

|%n1ω − P (%n1ω)|2dxdt
)
.

According to (2.17) and (2.19), we infer from the last inequality that there exists a
positive constant C satisfying ∫∫

Q

|%n1ω|2dxdt ≤ C.

Consequently, we can extract a subsequence of {%n1ω} (still denoted by {%n1ω})
and %1ω ∈ L2(ω × (0, T )) such that

%n1ω ⇀ %1ω in L2(ω × (0, T )). (2.20)

Since P (%n1ω) belongs to U , an application of Lemma 2.3 in [13] with H = L2(ω×
(0, T )), pni = pi1ω and hn = P (%n1ω) leads to

P (%n1ω)→ P (%1ω) in L2(ω × (0, T )). (2.21)

On the other hand, it follows from (2.17) that

γ(%n1ω − P (%n1ω))→ 0 in L2(ω × (0, T )),

and therefore,

%n1ω − P (%n1ω)→ 0 in L2(ω × (0, T )). (2.22)

Putting (2.22) together with (2.21), we obtain

%n1ω → P (%1ω) in L2(ω × (0, T )). (2.23)

From (2.20) and (2.23) we deduce P (%1ω) = %1ω. This means that %1ω ∈ U and

%n1ω → %1ω in L2(ω × (0, T )). (2.24)
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Let us go back (2.16), as a result∫∫
Q

θ−2|%n|2dxdt ≤ 1,

∫∫
Q

θ−2|ψn|2dxdt ≤ 1.

Thanks to the boundedness of θ−2, we can extrapolate that {%n}, {ψn} are also
bounded in L2(Ω × (ε, T − ε)) for every ε ∈ (0, T ). Therefore, we can extract
subsequences of {%n} and {ψn} (still denoted by {%n}, {ψn}) such that

%n ⇀ % in L2(Ω× (ε, T − ε)).

ψn ⇀ ψ in L2(Ω× (ε, T − ε)).
We deduce that

%n → %, ψn → ψ in D′(Q).

Moreover, L∗a(%n, ψn), L∗b(%n, ψn) are also weakly continuous in D(Q). It means

L∗a(%n, ψn)→ L∗a(%, ψ) in D′(Q).

L∗b(%n, ψn)→ L∗b(%, ψ) in D′(Q).

where
L∗a(%, ψ) = −%t − a ∆%+A1%+A2ψ,

L∗b(%, ψ) = −ψt − b ∆ψ +B1%+B2ψ.

It follows from (2.18) that
L∗a(%, ψ) = 0 in ω × (0, T ),

L∗b(%, ψ) = 0 in ω × (0, T ),

%1ω ∈ U .

Thanks to Lemma 2.2, we obtain that % = ψ = 0 in ω× (0, T ). Therefore, it follows
from (2.24) that

%n1ω → 0 in L2(ω × (0, T )).

Because of (2.14), we deduce that∫∫
Q

θ−2
(
|%n|2 + |ψn|2

)
dxdt→ 0,

which is a contradiction with (2.16).
Next, we prove that∫

Ω

(
|%(0)|2 + |ψ(0)|2

)
dx ≤ C

∫∫
Q

γ2|%1ω − P (%1ω)|2dxdt.

On a time interval [T/4, 3T/4], we have

α(x, t) = τ
e

4
3λ‖β‖L∞(Ω) − eλβ(x)

t(T − t)
≤ τe 4

3λ‖β‖L∞(Ω)(4/T )2.

Thus

θ−1 = e−α ≥ e−τe
4
3
λ‖β‖L∞(Ω) (4/T )2

.

We deduce the existence of a positive constant C such that∫ 3T/4

T/4

∫
Ω

θ−2(|%|2 + |ψ|2)dxdt ≥ C
∫ 3T/4

T/4

∫
Ω

(|%|2 + |ψ|2)dxdt.
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Moreover, it follows from (2.15) that∫ 3T/4

T/4

∫
Ω

θ−2
(
|%|2 + |ψ|2

)
dxdt ≤ C

∫∫
Q

γ2|%1ω − P (%1ω)|2dxdt.

So, ∫ 3T/4

T/4

∫
Ω

(
|%|2 + |ψ|2

)
dxdt ≤ C

∫∫
Q

γ2|%1ω − P (%1ω)|2dxdt. (2.25)

We consider the following function
`(t) ∈ C∞([0, T ]), 0 ≤ ` ≤ 1,

` ≡ 1, ∀t ∈ [0, T/4],

` ≡ 0, ∀t ∈ [3T/4, T ],

and with δ ∈ R, we define

%̂(x, t) = `(t)e−δt%(x, t),

ψ̂(x, t) = `(t)e−δtψ(x, t).
(2.26)

We see that

%̂|Σ = ψ̂|Σ = 0,

%̂(x, 0) = %(x, 0), ψ̂(x, 0) = ψ(x, 0),

%̂(x, T ) = ψ̂(x, T ) = 0.

(2.27)

From (2.26) one gets that−
∂%̂
∂t − a∆%̂+ (A1 − δ)%̂+A2ψ̂ = −`′e−δt%,

−∂ψ̂
∂t
− b∆ψ̂ +B1%̂+ (B2 − δ)ψ̂ = −`′e−δtψ.

Taking inner product of both equations with respect to %̂, ψ̂, then integrating by
parts over Q, we get

1

2

∫
Ω

|%̂(0)|2dx+

∫∫
Q

a|∇%̂|2dxdt+

∫∫
Q

(A1 − δ)|%̂|2dxdt

+

∫∫
Q

A2%̂ψ̂dxdt = −
∫∫

Q

`′%%̂e−δtdxdt,

and

1

2

∫
Ω

|ψ̂(0)|2dx+

∫∫
Q

b|∇ψ̂|2dxdt+

∫∫
Q

B1%̂ψ̂dxdt

+

∫∫
Q

(B2 − δ)|ψ̂|2dxdt = −
∫∫

Q

`′ψψ̂e−δtdxdt.
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Summing these equations and using the Young inequality leads to

1

2

∫
Ω

(|%̂(0)|2 + |ψ̂(0)|2)dx+

∫∫
Q

a|∇%̂|2dxdt+

∫∫
Q

b|∇ψ̂|2dxdt

+

∫∫
Q

(A1 − δ)|%̂|2dxdt+

∫∫
Q

(B2 − δ)|ψ̂|2dxdt

= −
∫∫

Q

(
A2%̂ψ̂ +B1%̂ψ̂

)
dxdt

−
∫∫

Q

(
`′`|%|2 + `′`|ψ|2

)
e−2δtdxdt

≤ 1

2

∫∫
Q

|%̂|2dxdt+
1

2

∫∫
Q

|A2ψ̂|2dxdt

+
1

2

∫∫
Q

|B1%̂|2dxdt+
1

2

∫∫
Q

|ψ̂|2dxdt

+

∫∫
Q

(
|%|2 + |ψ|2

)
|`′`|e−2δtdxdt.

So, we get that

1

2

∫
Ω

(|%̂(0)|2 + |ψ̂(0)|2)dx+

∫∫
Q

a|∇%̂|2dxdt+

∫∫
Q

b|∇ψ̂|2dxdt

+

∫∫
Q

(
A1 − δ −

1

2
− B2

1

2

)
|%̂|2dxdt+

∫∫
Q

(
B2 − δ −

1

2
− A2

2

2

)
|ψ̂|2dxdt

≤
∫∫

Q

(
|%|2 + |ψ|2

)
|`′`|e−2δtdxdt. (2.28)

We now choose

δ ≤ −min

{
‖A1‖L∞(Q) +

1

2
+
‖B1‖2L∞(Q)

2
, ‖B2‖L∞(Q) +

1

2
+
‖A2‖2L∞(Q)

2

}
,

then it follows from (2.28) that

1

2

∫
Ω

(|%̂(0)|2 + |ψ̂(0)|2)dx+

∫∫
Q

a|∇%̂|2dxdt+

∫∫
Q

b|∇ψ̂|2dxdt

≤ C
∫ 3T/4

T/4

∫
Ω

(
|%|2 + |ψ|2

)
e−2δtdxdt.

Taking (2.25) into account, we infer from the last inequality that∫
Ω

(|%̂(0)|2 + |ψ̂(0)|2)dx ≤ C
∫∫

Q

γ2|%1ω − P (%1ω)|2dxdt.

Thus, using (2.27) we get that∫
Ω

(
|%(0)|2 + |ψ(0)|2

)
dx ≤ C

∫∫
Q

γ2|%1ω − P (%1ω)|2dxdt. (2.29)

Combining (2.15) and (2.29) we complete the proof of Lemma 2.6. �
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Thanks to Lemma 2.6, we can construct the following norm on a Hilbert space
V which is the completion of V = {(%, ψ) ∈ (C∞(Q))2 such that L∗a(%, ψ) =
L∗b(%, ψ) = 0 and % = ψ = 0 on Σ} with respect to the norm

‖(%, ψ)‖2V :=

∫∫
Q

γ2|%1ω − P (%1ω)|2dxdt.

Obviously, this norm is generated from the following scalar product in V which is
also a symmetric bilinear form

A((%̂, ψ̂); (%2, ψ2)) :=

∫∫
Q

γ2(%̂1ω − P (%̂1ω))(%21ω − P (%21ω))dxdt.

According to the Cauchy-Schwarz inequality, the bilinear form A(., .) is continuous
on V ×V and coercive on V . Let v0 be determined by Lemma 2.3. Let us consider
the linear operator L on V defined by

L(%, ψ) :=

∫∫
ω×(0,T )

v0%dxdt+

∫
Ω

y0%(0)dx+

∫
Ω

z0ψ(0)dx.

Using the Hölder inequality, we have the following estimate

|L(%, ψ)| ≤ ‖θv01ω‖L2(Q)‖θ−1%‖L2(Q) + ‖y0‖L2(Ω)‖%(0)‖L2(Ω)

+ ‖z0‖L2(Ω)‖ψ(0)‖L2(Ω).

Thanks to Lemma 2.3 and Lemma 2.6 and the Cauchy-Schwarz inequality, we infer
that

|L(%, ψ)| ≤ C(‖y0‖2L2(Ω) + ‖z0‖2L2(Ω))‖(%, ψ)‖V .
We deduce that the linear operator L is continuous on V . In view of the Lax-
Milgram theorem, there exists a unique (%θ, ψθ) of the following equation.∫∫

Q

γ2(%θ1ω − P (%θ1ω))(%1ω − P (%1ω))dxdt

=

∫∫
ω×(0,T )

v0%dxdt+

∫
Ω

y0%(0)dx+

∫
Ω

z0ψ(0)dx, for every (%, ψ) ∈ V. (2.30)

Proposition 2.2. Let y0, z0 ∈ L2(Ω), (%θ, ψθ) is the unique solution of (2.30) and

vθ = −γ2(%θ1ω − P (%θ1ω)). (2.31)

Then vθ satisfies (2.10) and the associated solution of (2.11) satisfies (1.6). More-
over, there exists a positive constant C(Ω, ω, T, L,E) such that

‖vθ‖L2(ω×(0,T )) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)), (2.32)

‖(%θ, ψθ)‖V ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)). (2.33)

Proof. According to the construction of vθ. We easily infer that vθ ∈ U⊥. We
now prove that the solution (yθ, zθ) of (2.11) satisfies (1.6). Indeed, multiplying
both sides of the first equation in (2.11) by % and the second one by ψ, and then
integrating in time and spaces. It follows from adding the resulting identities that∫

Ω

(y(T )%(T ) + z(T )ψ(T )) dx =

∫∫
Q

(vθ + v0)1ω%dxdt+

∫
Ω

(y0%(0) + z0ψ(0)) dx,

for every (%, ψ) ∈ V . Putting this together with (2.30), we deduce that∫
Ω

(y(T )%T + z(T )ψT ) dx = 0,
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for every (%, ψ) ∈ V . Therefore, y(T ) = z(T ) = 0 in Ω.
The estimation (2.32) and (2.33) are implied directly from (2.30) by replacing %

by %θ, using the Cauchy - Schwarz inequality, Lemma 2.3 and Lemma 2.6. �

Proof of Theorem 2.1. We have just proved the null controllability of linearized
system with constraint on the control (2.10), (2.11) and (1.6). Therefore, Theorem
2.1 is the result directly deduced from Propositions 2.1-2.2.

3. Null controllability of nonlinear system

We have just proved that, for any (ŷ, ẑ) ∈ (L2(Ω))2, there exists a control v ∈
L2(Q) such that v = vθ + v0 and the triple (v, y, z) satisfies the null controllability
problem with constraints on the sate associated to the linearized system (2.1), (1.6)
and (1.7). Thus we can construct a nonlinear map

S : (L2(Q))2 −→ (L2(Q))2,

(ŷ, ẑ) 7−→ S(ŷ, ẑ) = (y, z),

where (y, z) is the solution of (2.1) with v(ŷ, ẑ) = vθ + v0, v0(ŷ, ẑ) ∈ Uθ, and
vθ(ŷ, ẑ) ∈ U⊥ are determined by Lemma 2.3 and Proposition 2.2. We now prove
that S has a fixed point (y, z) ∈ (L2(Q))2, such that S(y, z) = (y, z), since f(y, z) =
A1(y, z)y+B1(y, z)z, and g(y, z) = A2(y, z)y+B2(y, z)z, will be sufficient to finish
the proof of Theorem 1.1.

Proposition 3.1. Assume that a, b, f and g be functions of class C1 with bounded
derivatives, satisfying (1.2)-(1.4). Then

(i) S is continuous;
(ii) S is compact;

(iii) S has a bounded range, i.e., there exists a positive constant C such that

‖S(y, z)‖(L2(Q))2 ≤ C, ∀(y, z) ∈ (L2(Q))2.

Proof. The proof is the same idea as in [13, Proposition 3.1]. However, it must be
adapted to our situation. Thus, we outline it for reader’s convenience.
i) Proof of the continuity of S. We proceed in five steps as follows:
Step 1. Let (ŷn, ẑn) ∈ (L2(Q))2 be such that

ŷn → ŷ in L2(Q),

ẑn → ẑ in L2(Q).

Since a and b are C1-functions with bounded derivatives satisfying (1.2), we have

a
(∫

Ω

ŷndx,

∫
Ω

ẑndx
)
→ a

(∫
Ω

ŷdx,

∫
Ω

ẑdx
)

in L2(0, T ), (3.1)

b
(∫

Ω

ŷndx,

∫
Ω

ẑndx
)
→ b

(∫
Ω

ŷdx,

∫
Ω

ẑdx
)

in L2(0, T ). (3.2)

Moreover, we can extract subsequences of {ŷn} and {ẑn} (still denoted the same)
such that

ŷn → ŷ almost everywhere in Q,

ẑn → ẑ almost everywhere in Q.
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Since f and g are functions of C1 class with bounded derivatives, then functions
A1, A2, B1 and B2 determined by (2.2) and (2.3) are continuous. Thus

Ai(ŷn, ẑn)→ Ai(ŷ, ẑ) almost everywhere in Q,

Bi(ŷn, ẑn)→ Bi(ŷ, ẑ) almost everywhere in Q,

for i = 1, 2. We deduce from (2.4) that |Ai(ŷn, ẑn)| ≤ K, and |Bi(ŷn, ẑn)| ≤ K
almost everywhere in Q. It follows from the relation of modes of convergence that
(see [2, Chapter 7, Theorem 7.2])

Ai(ŷn, ẑn)→ Ai(ŷ, ẑ) in L2(Q), (3.3)

Bi(ŷn, ẑn)→ Bi(ŷ, ẑ) in L2(Q). (3.4)

Step 2. Since Theorem 2.1 holds for every (ŷ, ẑ) ∈ (L2(Q))2, it is also true for
(ŷn, ẑn) ∈ (L2(Q))2. Therefore, there exists the control v(ŷn, ẑn) such that the
solution (yn, zn) of

∂yn
∂t − a

( ∫
Ω
ŷndx,

∫
Ω
ẑndx

)
∆yn

+A1(ŷn, ẑn)yn +B1(ŷn, ẑn)zn = v(ŷn, ẑn)1ω in Q,
∂zn
∂t − b

( ∫
Ω
ŷndx,

∫
Ω
ẑndx

)
∆zn +A2(ŷn, ẑn)yn +B2(ŷn, ẑn)zn = 0 in Q,

yn(x, t) = zn(x, t) = 0 on Σ,

yn(x, 0) = y0(x); zn(x, 0) = z0(x) in Ω

(3.5)
satisfies

yn(T ) = zn(T ) = 0 in Ω,∫ T

0

∫
Ω

zneidxdt = 0, i = 1, . . . ,M,

and

v(ŷn, ẑn) = v0(ŷn, ẑn) + vθ(ŷn, ẑn),

where, in view of (2.8),

v0(ŷn, ẑn) ∈ θ−1span{p1(ŷn, ẑn)1ω, p2(ŷn, ẑn)1ω, . . . , pM (ŷn, ẑn)1ω}

satisfies

−
∫

Ω

y0pi(ŷn, ẑn)(0)dx−
∫

Ω

z0qi(ŷn, ẑn)(0)dx =

∫∫
ω×(0,T )

v0(ŷn, ẑn)pi(ŷn, ẑn)dxdt,

(3.6)
for i = 1, . . . ,M , and (pi(ŷn, ẑn), qi(ŷn, ẑn)) is the solution of

−∂pi(ŷn,ẑn)
∂t − a

( ∫
Ω
ŷndx,

∫
Ω
ẑndx

)
∆pi(ŷn, ẑn)

+A1(ŷn, ẑn)pi(ŷn, ẑn) +A2(ŷn, ẑn)qi(ŷn, ẑn) = 0 in Q,

−∂qi(ŷn,ẑn)
∂t − b

( ∫
Ω
ŷndx,

∫
Ω
ẑndx

)
∆qi(ŷn, ẑn)

+B1(ŷn, ẑn)pi(ŷn, ẑn) +B2(ŷn, ẑn)qi(ŷn, ẑn) = ei in Q,

pi(ŷn, ẑn)(x, t) = qi(ŷn, ẑn)(x, t) = 0 on Σ,

pi(ŷn, ẑn)(x, T ) = qi(ŷn, ẑn)(x, T ) = 0 in Ω.

(3.7)

Let Pn = P (ŷn, ẑn) be the orthogonal projection operator from L2(ω× (0, T )) into

U(ŷn, ẑn) = span{p1(ŷn, ẑn)1ω, p2(ŷn, ẑn)1ω, . . . , pM (ŷn, ẑn)1ω}.
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In view of (2.31),

vθ(ŷn, ẑn) = −γ2(%θ(ŷn, ẑn)1ω − Pn(%θ(ŷn, ẑn)1ω)), (3.8)

where (%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ∈ V satisfies
L∗a(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) = 0 in Q,

L∗b(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) = 0 in Q,

%θ(ŷn, ẑn)(x, t) = ψθ(ŷn, ẑn)(x, t) = 0 on Σ,

%θ(ŷn, ẑn)(x, T ) = %T (x), ψθ(ŷn, ẑn)(x, T ) = ψT (x) in Ω.

(3.9)

Furthermore, according to Proposition 2.2, Lemmas 2.3 and 2.6, there exists a
positive constant C(Ω, ω, T, L,E,K) such that

‖(%θ(ŷn, ẑn), ψθ(ŷn, ẑn))‖V ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)), (3.10)

‖(%θ(ŷn, ẑn), ψθ(ŷn, ẑn))‖(L2(ω×(0,T )))2 ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)), (3.11)

‖v0(ŷn, ẑn)‖L2(ω×(0,T )) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

‖θv0(ŷn, ẑn)‖L2(ω×(0,T )) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)), (3.12)

‖vθ(ŷn, ẑn)‖L2(ω×(0,T )) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

‖v(ŷn, ẑn)‖L2(ω×(0,T )) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)). (3.13)

Therefore, we can extract subsequences (see [15, Theorem 4.18, Corollary 4.19])
(still denoted the same) such that

(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ (%̃θ, ψ̃θ) in V,

(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ (%̃θ, ψ̃θ) in (L2(ω × (0, T )))2, (3.14)

v0(ŷn, ẑn) ⇀ ṽ0 in L2(ω × (0, T )), (3.15)

θv0(ŷn, ẑn) ⇀ ṽ1 in L2(ω × (0, T )), (3.16)

vθ(ŷn, ẑn) ⇀ ṽθ in L2(ω × (0, T )). (3.17)

Therefore,

v(ŷn, ẑn) ⇀ ṽ = ṽ0 + ṽθ in L2(ω × (0, T )). (3.18)

Step 3. Since (yn, zn) is the solution of (3.5), by using (3.13), we have

‖yn‖W (0,T ) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

‖zn‖W (0,T ) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

where

W (0, T ) = L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)).

Consequently, there exists (ỹ, z̃) ∈ (W (0, T ))2 such that

yn ⇀ ỹ in W (0, T ), (3.19)

zn ⇀ z̃ in W (0, T ). (3.20)

In addition, the embedding of W (0, T ) into L2(Q) is compact, we deduce that

yn → ỹ in L2(Q), (3.21)

zn → z̃ in L2(Q). (3.22)
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Now, passing to the limits in (3.5), while using (3.1), (3.2), (3.3), (3.4), (3.18),
(3.19), (3.20), (3.21) and (3.22), we deduce that the triple (ṽ, ỹ(ṽ), z̃(ṽ)) verifies

∂ỹ
∂t − a

( ∫
Ω
ŷdx,

∫
Ω
ẑdx

)
∆ỹ +A1(ŷ, ẑ)ỹ +B1(ŷ, ẑ)z̃ = ṽ1ω in Q,

∂z̃
∂t − b

( ∫
Ω
ŷdx,

∫
Ω
ẑdx

)
∆z̃ +A2(ŷ, ẑ)ỹ +B2(ŷ, ẑ)z̃ = 0 in Q,

ỹ(x, t) = z̃(x, t) = 0 on Σ,

ỹ(x, 0) = y0(x); z̃(x, 0) = z0(x) in Ω

satisfies

ỹ(T ) = z̃(T ) = 0 in Ω,

and ∫ T

0

∫
Ω

z̃eidxdt = 0, 1 ≤ i ≤M.

Step 4. Since (pi(ŷn, ẑn), qi(ŷn, ẑn)) is the solution of (3.7), we deduce that

‖pi(ŷn, ẑn)‖L2(0,T ;H1
0 (Ω)) ≤ C‖ei‖L2(Q), (3.23)

‖qi(ŷn, ẑn)‖L2(0,T ;H1
0 (Ω)) ≤ C‖ei‖L2(Q). (3.24)

On the other hand, we can rewrite (3.7) as follows
−∂pi(ŷn,ẑn)

∂t − a
( ∫

Ω
ŷndx,

∫
Ω
ẑndx

)
∆pi(ŷn, ẑn) = ci(ŷn, ẑn) in Q,

−∂qi(ŷn,ẑn)
∂t − b

( ∫
Ω
ŷndx,

∫
Ω
ẑndx

)
∆qi(ŷn, ẑn) = di(ŷn, ẑn) in Q,

pi(ŷn, ẑn)(x, t) = qi(ŷn, ẑn)(x, t) = 0 on Σ,

pi(ŷn, ẑn)(x, T ) = qi(ŷn, ẑn)(x, T ) = 0 in Ω,

where
ci(ŷn, ẑn) = −A1(ŷn, ẑn)pi(ŷn, ẑn)−A2(ŷn, ẑn)qi(ŷn, ẑn),

di(ŷn, ẑn) = ei −B1(ŷn, ẑn)pi(ŷn, ẑn)−B2(ŷn, ẑn)qi(ŷn, ẑn)

are uniformly bounded in L2(Q) according to (3.23), (3.24), and (2.4). Then
we get that (pi(ŷn, ẑn), qi(ŷn, ẑn)) is bounded uniformly in n in (L2(0, T ;H2(Ω) ∩
H1

0 (Ω)) ∩ H1(0, T ;L2(Ω)))2 =: X(Q)2. Therefore, we can extract a subsequences
of (pi(ŷn, ẑn), qi(ŷn, ẑn)) (still denoted the same) such that

pi(ŷn, ẑn) ⇀ p̃i in X(Q), (3.25)

qi(ŷn, ẑn) ⇀ q̃i in X(Q). (3.26)

Thanks to the compactness of the embedding X(Q) into L2(0, T ;H1
0 (Ω)), we have

pi(ŷn, ẑn)→ p̃i in L2(0, T ;H1
0 (Ω)), (3.27)

qi(ŷn, ẑn)→ q̃i in L2(0, T ;H1
0 (Ω)). (3.28)

From the energy inequality for pi(ŷn, ẑn), qi(ŷn, ẑn), (3.23) and (3.24), it follows
that

‖pi(ŷn, ẑn)(0)‖L2(Ω) ≤ C‖ei‖L2(Q), (3.29)

‖qi(ŷn, ẑn)(0)‖L2(Ω) ≤ C‖ei‖L2(Q). (3.30)
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Therefore, passing to the limits in (3.7), while using (3.1), (3.2), (3.3), (3.4), (3.25),
(3.26), (3.27) and (3.28), we get

−∂p̃i∂t − a
( ∫

Ω
ŷdx,

∫
Ω
ẑdx

)
∆p̃i +A1(ŷ, ẑ)p̃i +A2(ŷ, ẑ)q̃i = 0 in Q,

−∂q̃i∂t − b
( ∫

Ω
ŷdx,

∫
Ω
ẑdx

)
∆q̃i +B1(ŷ, ẑ)p̃i(ŷ, ẑ) +B2(ŷ, ẑ)q̃i = ei in Q,

p̃i(x, t) = q̃i(x, t) = 0 on Σ,

p̃i(x, T ) = q̃i(x, T ) = 0 in Ω.

It follows from (3.29) and (3.30) that

pi(ŷn, ẑn)(0) ⇀ p̃i(0) in L2(Ω), (3.31)

qi(ŷn, ẑn)(0) ⇀ q̃i(0) in L2(Ω). (3.32)

Therefore, for each ei, i = 1, . . . ,M , (p̃i, q̃i) is the solution of (2.7). Hence, thanks
to the uniqueness of the solution of (2.7), one gets

pi(ŷ, ẑ) = p̃i(ŷ, ẑ), i = 1, . . . ,M, (3.33)

qi(ŷ, ẑ) = q̃i(ŷ, ẑ), i = 1, . . . ,M. (3.34)

Step 5. Since θv0(ŷn, ẑn) ∈ span{p1(ŷn, ẑn)1ω, p2(ŷn, ẑn)1ω, . . . , pM (ŷn, ẑn)1ω}
and satisfies (3.12), by using [13, Lemma 2.3] with H = L2(ω × (0, T )), hn =
θv0(ŷn, ẑn), pni = pi(ŷn, ẑn)1ω while taking into account (3.16), (3.27), (3.28), (3.33)
and (3.34), we deduce that there exists α̃j ∈ R, i = 1, . . . ,M , such that

θv0(ŷn, ẑn)→
M∑
j=1

α̃jpj(ŷ, ẑ)1ω in L2(ω × (0, T )).

Since θ−1 is bounded in L∞(Q) and v0(ŷn, ẑn) satisfying (3.15), we infer that

v0(ŷn, ẑn)→ ṽ0 =

M∑
j=1

α̃j
1

θ
pj(ŷ, ẑ)1ω in L2(ω × (0, T )).

Passing to the limits in (3.6), while using (3.15), (3.27), (3.28), (3.31), (3.32), (3.33)
and (3.34) we get

−
∫

Ω

y0pi(ŷ, ẑ)(0)dx−
∫

Ω

z0qi(ŷ, ẑ)(0)dx =

∫∫
ω×(0,T )

ṽ0pi(ŷ, ẑ)dxdt,

for i = 1, . . . ,M . Thanks to the uniqueness of v0 ∈ Uθ which verifies (2.9), we
conclude that v0(ŷ, ẑ) = ṽ0.

On the other hand, since

vθ(ŷn, ẑn) ∈ U⊥(ŷn, ẑn) = span{p1(ŷn, ẑn)1ω, p2(ŷn, ẑn)1ω, . . . , pM (ŷn, ẑn)1ω}⊥,

then we have ∫∫
ω×(0,T )

vθ(ŷn, ẑn)pi(ŷn, ẑn)dxdt = 0, i = 1, . . . ,M.

Taking the limits in this identity while using (3.17), (3.27), (3.28), (3.33) and (3.34),
we obtain ∫∫

ω×(0,T )

ṽθpi(ŷ, ẑ)dxdt = 0, i = 1, . . . ,M.

This means that ṽθ ∈ U⊥ = span{p1(ŷ, ẑ)1ω, p2(ŷ, ẑ)1ω, . . . , pM (ŷ, ẑ)1ω}⊥.



NULL CONTROLLABILITY WITH CONSTRAINTS ON THE STATE 17

Now, it follows from Lemma 2.4 that

I(λ, s, τ, %θ(ŷn, ẑn)) + I(λ, s, τ, ψθ(ŷn, ẑn))

≤ C
[
τ

∫∫
Q

ϕ2se−2α
(
|A1%θ(ŷn, ẑn) +A2ψθ(ŷn, ẑn)|2

+ |B1%θ(ŷn, ẑn) +B2ψθ(ŷn, ẑn)|2
)
dxdt

+ λ4τ4

∫∫
ω′×(0,T )

ϕ2s+3e−2α
(
|%θ(ŷn, ẑn)|2 + |ψθ(ŷn, ẑn)|2

)
dxdt

]
.

(3.35)

Using the Cauchy-Schwarz inequality in the right hand side of (3.35), one gets

I(λ, s, τ, %θ(ŷn, ẑn)) + I(λ, s, τ, ψθ(ŷn, ẑn))

≤ C
[
L2τ

∫∫
Q

ϕ2se−2α
(
|%θ(ŷn, ẑn)|2 + |ψθ(ŷn, ẑn)|2

)
dxdt

+ λ4τ4

∫∫
ω×(0,T )

ϕ2s+3e−2α
(
|%θ(ŷn, ẑn)|2 + |ψθ(ŷn, ẑn)|2

)
dxdt

]
.

(3.36)

On the other hand, since (%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) verifies (3.9) and (3.11), then
it follows from (3.36) that (%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) is bounded uniformly in n in
(L2(ε, T − ε;H2(Ω)))2, for all T > ε > 0. This implies that

(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ (%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) in (L2(Ω× (ε, T − ε)))2,

(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ (%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) in (L2(∂Ω× (ε, T − ε)))2.

So

(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ (%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) in (D′(Q))2,

(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ (%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) in (D′(Σ))2.

Setting

L∗a(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) =− ∂%θ(ŷn, ẑn)

∂t
− a
(∫

Ω

ŷndx,

∫
Ω

ẑndx
)

∆%θ(ŷn, ẑn)

+A1(ŷn, ẑn)%θ(ŷn, ẑn) +A2(ŷn, ẑn)ψθ(ŷn, ẑn),

L∗b(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) =− ∂ψθ(ŷn, ẑn)

∂t
− b
(∫

Ω

ŷndx,

∫
Ω

ẑndx
)

∆ψθ(ŷn, ẑn)

+B1(ŷn, ẑn)%θ(ŷn, ẑn) +B2(ŷn, ẑn)ψθ(ŷn, ẑn).

It follows from (3.1), (3.2), (3.3), and (3.4) that

L∗a(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ L∗a(%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) in D′(Q),

L∗b(%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) ⇀ L∗b(%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) in D′(Q).

Combining with (3.9), we deduce that
L∗a(%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) = 0 in Q,

L∗b(%̃θ(ŷ, ẑ), ψ̃θ(ŷ, ẑ)) = 0 in Q,

%̃θ(ŷ, ẑ) = ψ̃θ(ŷ, ẑ) = 0 on Σ,

%̃θ(ŷ, ẑ)(x, T ) = %T (x), ψ̃θ(ŷ, ẑ)(x, T ) = ψT (x) in Ω.
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Thanks to uniqueness of the solution of (2.30) and v0 = ṽ0, we have %θ = %̃θ, ψθ =

ψ̃θ. According to (3.10) and the definition of the norm on V , we have

‖Pn(%θ(ŷn, ẑn)1ω)−%θ(ŷn, ẑn)1ω‖L2(Q) ≤ C(Ω, ω, T, L,E,K)(‖y0‖L2(Ω)+‖z0‖L2(Ω)).
(3.37)

Applying inequality (2.13) to (%θ(ŷn, ẑn), ψθ(ŷn, ẑn)) and taking into account (3.9)
and (3.11), we obtain

‖θ−1%θ(ŷn, ẑn)‖L2(Q) ≤ C(Ω, ω, T, L,E,K)(‖y0‖L2(Ω) + ‖z0‖L2(Ω)), (3.38)

‖θ−1ψθ(ŷn, ẑn)‖L2(Q) ≤ C(Ω, ω, T, L,E,K)(‖y0‖L2(Ω) + ‖z0‖L2(Ω)). (3.39)

Then, proceeding as in the proof of Lemma 2.6 while using (3.37), (3.38) and (3.39),
we get

‖Pn(%θ(ŷn, ẑn)1ω)‖L2(Q) ≤ C(Ω, ω, T, L,E,K)(‖y0‖L2(Ω) + ‖z0‖L2(Ω)).

Therefore, Pn(%θ(ŷn, ẑn)1ω) being in U(ŷn, ẑn), using [13, Lemma 2.3] with H =
L2(ω × (0, T )), hn = Pn(%θ(ŷn, ẑn)1ω), pni = pi(ŷn, ẑn)1ω while putting together
with (3.27), (3.28), (3.33), and (3.34), one gets

Pn(%θ(ŷn, ẑn)1ω) ⇀ χ ∈ span{p1(ŷ, ẑ)1ω, p2(ŷ, ẑ)1ω, . . . , pM (ŷ, ẑ)1ω}.

This means that χ ∈ U .
By using (3.8), (3.14) and (3.17), we deduce that

vθ(ŷn, ẑn) = −γ2(%θ(ŷn, ẑn)1ω − Pn(%θ(ŷn, ẑn)1ω))

⇀ −γ2(%θ(ŷ, ẑ)1ω − χ) = ṽθ in L2(ω × (0, T )).

Observing that P (%θ(ŷ, ẑ)1ω − χ) = 0 and P (χ) = χ because %θ(ŷ, ẑ)1ω − χ ∈ U⊥
and χ ∈ U . We derive P (%θ(ŷ, ẑ)1ω) = χ. This leads to

ṽθ = vθ = −γ2(%θ(ŷ, ẑ)1ω − P (%θ(ŷ, ẑ)1ω)).

It follows from the relation (3.18) that ṽ = v0(ŷ, ẑ) + vθ(ŷ, ẑ) = v. Therefore, the
triple (v, y, z) verifies (2.1), (1.6) and (1.7).
ii) Proof of the compactness of S. We deduce from the argument above that
when (ŷ, ẑ) lies in bounded subset B of (L2(Q))2, S(ŷ, ẑ) = (y, z) lies in bounded set
of (W (0, T ))2. Since the compactness of the embedding (W (0, T ))2 ↪→ (L2(Q))2,
we deduce that S(B) is relatively compact in (L2(Q))2. Thus, S is a compact
operator.
iii) Proof of the boundedness of the range of S. Let (ŷ, ẑ) ∈ (L2(Q))2. Since
(y, z) is solution of (2.1) with v(ŷ, ẑ) satisfying

‖v‖L2(Q) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

we deduce that

‖y‖L2(0,T ;H1
0 (Ω)) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

‖z‖L2(0,T ;H1
0 (Ω)) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)).

Thanks to the continuous embedding of L2(0, T ;H1
0 (Ω)) into L2(Q), it follows that

‖y‖L2(Q) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)),

‖z‖L2(Q) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)).

�
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Proof of Theorem 1.1. Due to the Proposition 3.1, all hypotheses of the Schauder
fixed-point theorem are satisfied. Consequently, the mapping S has a fixed point
(y, v), and then we complete the proof of Theorem 1.1.
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