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ABSTRACT. Given a body convex P and a sequence {K j} of Borel subsets of a non-pluripolar
Borel set K ⊂ Cd . We prove some properties about the convergence of the sequence of the P-
extremal functions {V ∗P,K j

}. This is used to give a sufficient condition guaranteeing that the triple
(P,K,µ) where µ is a finite positive Borel measure with compact support K satisfy a Bernstein-
Markov inequality. Our work expands results in [3] for P-plurpotential theory.

1. INTRODUCTION

Let K be a compact subset of Cd and µ be a positive Borel measure on K ⊂ Cd. Obviously
the L2(µ)− norm on K of a polynomial p is majorized by its sup-norm. It is a natural problem
to see whether the above estimate can be reversed. For this purpose, we say that the pair (K,µ)
has the Bernstein-Markov property if for each ε > 0 there exists a positive constant C =Cε > 0
such that

‖p‖K := sup
z∈K
|p(z)| ≤Ceεdegp‖p‖L2(µ), ∀p ∈ C[z1, · · · ,zd]. (1.1)

The Bernstein-Markov property is a classical concept and was studied thoroughly in [2], [3],
[7],... One use of this property is to approximate the global extremal function VK by functions of
the form 1

deg p log |p| where p are polynomials that form an orthognormal system for L2(K,µ).

In [3], T. Bloom and N. Levenberg proved the following interesting result about sufficient
conditions such that (K,µ) has the Bernstein-Markov property.

Theorem 1.1. Let K be a compact regular subset of the unit ball in Cd and µ be a finite positive
Borel measure on K. Set

Er = {z ∈ K : µ(K∩B(z,r))≥ rT}, ∀r > 0.

Suppose that there exists a positive constant T such that one of the following (equivalent)
conditions holds true:

(i) lim
r→0+

C(Er,B) =C(K,B), where C(E,B) is the relative capacity of E in B;

(ii) V ∗Er
→V ∗E pointwise as r→ 0 on Cd, where VE j and VE are the global extremal function of

E j and E respectively;

(iii) u∗E j,B → u∗E,B pointwise as r → 0 on B, where uE,B and uE j,B are the relative extremal
functions of E and E j respectively.

Then (K,µ) has the Bernstein-Markov property (1.1).

The aim of this note is to expand some of mains results about sufficient conditions for
Bernstein-Markov property of measures living on K, but for P− polynomials on Cd , where
P is a compact subset of (R+)d satisfying P∩ (Z+)d 6= /0. Let us now recall the notion of
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P−polynomials associated to such a compact set P. Following [1], for each n≥ 1 we consider
the finite-dimensional polynomial space

Poly(nP) := {p ∈ C[z1, · · · ,zd] : p(z) = ∑
J∈nP∩(Z+)d

aJzJ}.

Here we use the multi-dimensional notation zJ = z j1
1 ...z jd

d for J = ( j1, ..., jd).

In the case P = Σ := {(x1, ...,xd) ∈ (R+)d : x1 + ...+ xd ≤ 1}, the standard unit simplex in Rd

we have Poly(nΣ) = Pn the usual space of holomorphic polynomials of degree at most n in
Cd . On the other hand, since there exists A ∈ Z+ such that P⊂ AΣ we get

Poly(nP)⊂ Poly(nAΣ) = PnA,∀n≥ 1.

Sometimes we also assume further that P is a convex body, i.e, P is a compact, convex set in
(R+)d with non-empty interior. Moreover, we require that P is admissible in the sense that

Σ⊂ kP, for some k ∈ Z+. (1.2)

These last restrictions were emphasized in [1] to exploit the approximability of the P−global
extremal functions by (normalized) logarithms of P−polynomials.

2. PRELIMINARIES

Throughout this paper, unless otherwise specify, we always denote by K a compact subset of
Cd,µ a positive finite measure whose support equals to K and for P a compact subset of (R+)d

satisfying P∩ (Z+)d 6= /0.

We first recall some elements about global P−extremal functions associated to P. Most of
the material that follows is taken from [9] (in the case P = σ ) and [1], [5] (in the case P is a
convex body). The first function to be defined is the logarithmic indicator function of P

HP(z) := sup
J=( j1,..., jd)∈P

log(|z1| j1....|zd| jd) = sup
J=( j1,..., jd)

( j1 log |z1|+ ...+ jd log |zd|), z 6= 0

and HP(0) = 0. Since HP is the maximum of finite plurisubharmonic functions we conclude
that HP ∈ PSH(Cd). In the standard case P = Σ, an easy reasoning yields

HΣ(z) = max
1≤ j≤d

log+ |z j|, ∀z ∈ Cd.

In general, since (1.2), Σ⊂ kP for some k ∈ Z+ we have

HP(z)≥
1
k

max
1≤ j≤d

log+ |z j|. (2.1)

We will now use HP(z) to provide a generalization of the standard Lelong class

LP := LP(Cd) = {u ∈ PSH(Cd) : u(z)≤ cu +HP(z),z ∈ Cd},
where cu is a constant depending only on u. If P = Σ then LP =L (Cd) the usual Lelong class
in Cd .

For a bounded subset E ⊂ Cd , the P−global extremal function of E is defined by

VP,E(z) := sup{u(z) : u ∈LP(Cd),u≤ 0 on E}.
We also let V ∗E (z) := limsup

ξ→z
VE(ξ ) be the upper semicontinous regularization of VP,E . For P= Σ

we have VΣ,E =VE , the standard Siciak global extremal function.

It is well-known that V ∗E ≡+∞⇐⇒ E is pluripolar, i.e there exists a plurisubharmonic func-
tion u on Cd such that E ⊂ {z ∈ Cd : u(z) = −∞}. According to a result of Siciak we can
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even choose u ∈L (Cd). One use of these extremal functions is to define certain concepts of
regularity.

Definition 2.1. A compact set K ⊂ Cd is said to be L-regular (resp. PL− regular) if VK (resp.
VP,K) is continuous on Cd .

We can show, under some restrictions on P that the two notions L− regularity and PL−
regularity is actually equivalent.

3. CONVERGENCE OF P- EXTREMAL FUNCTIONS

Let E be a subset of Cd . The P- extremal function of E given by

VP,E(z) = sup{u(z) : u ∈LP,u≤ 0 on E}.
and V ∗P,E(z) := limsup

ξ→z
VP,E(ξ ) is the upper semicontinous regularization of VP,E . For P = Σ we

have
VΣ,E =VE = sup{u(z) : u ∈L (Cd),u≤ 0 on E}

is the usual global extremal function of E. Note that since 1
n log |p| ∈LP for any p ∈ Poly(nP),

we have the following (generalized) Bernstein- Walsh inequality

Proposition 3.1. Le E be non-pluripolar. Then for any p ∈ Poly(nP),

|p(z)| ≤ ‖p‖EenVP,E(z), z ∈ Cd.

In the special but important case where P is convex we have (see [5])

p ∈ Poly(nP),q ∈ Poly(nP) =⇒ pq ∈ Poly
(
(n+m)P

)
.

Using this fact and some standard technique on solving ∂̄− equation with L2− estimates,
Bayraktar [1] (see also Proposition 2.1 in [5]) proved in the theorem below that VP,K can be
defined by means of polynomials. In case P = Σ, this result of course reduces to the famous
Siciak-Zakharyuta approximation theorem.

Theorem 3.2. Let P be an admissible convex body and K be a non-pluripolar compact subset
in Cd . Then

VP,K = lim
n→∞

1
n

logΦn(z),z ∈ Cd,

where
Φn(z) = sup{|pn(z)| : pn ∈ Poly(nP),‖pn‖K ≤ 1}.

Furthermore, if VP,K is continuous then the convergence is locally uniform on Cd .

Using the above theorem we can compare the two notions of regularity introduced in the last
section. The simple lemma below is needed for this task.

Lemma 3.3. Let P be an admissible convex body in (R+)d. Then there exist constants a,A > 0
such that for every bounded non-pluripolar subset E of Cd and any compact set K of Cd we
have

aVE ≤VP,E ,VP,K ≤ AVK on Cd.

So in case P is an admissible convex body, K is L−regular if and only if K is PL−regular.

Proof. Since P ⊂ AΣ, using Theorem 3.2 we conclude easily that VP,K ≤ AVK on Cd . On the
other hand, in view of (2.1) we infer that aVK ≤ VP,K for a := 1/k. In particular, if P is an
admissible convex body then we have V ∗K = 0 if and only if V ∗P,K = 0. The proof is thereby
completed. �
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We have the following simple facts which will be useful in the sequel.

Proposition 3.4. (i) Let P(a,r) be the open polydisc with center a = (a1, ...,ad), radius r. Then

VP,P(a,r) = HP(
z−a

r
) = sup

J∈P
log+ |z−a

r
|J,z ∈ Cd.

(ii) If u ∈LP then

u(z)≤ max
P(a,r)

u+HP(
z−a

r
),∀z ∈ Cd.

(iii) If {uα}α∈I ⊂LP and u = sup
α∈I

uα then either u∗ ≡+∞ or u∗ ∈LP.

Proof. (i) For simplicity of notation, we may assume that a = 0 and r = 1. It is then enough to
show

VP,P(0,1)(z) = HP(z) = sup
J∈P

log+ |z|J, z ∈ Cd.

Since HP ∈ PSH(Cd),HP = 0 on P(0,1), it is clear that HP≤VP,P(0,1) on Cd . For the reverse in-
equality, we take z∈Cd . If |z| :=max(|z1|, ..., |zd|)≤ 1 then the inequality is obvious. Consider
the case |z|> 1. Then for every u ∈LP,u≤ 0 on P(0,1)) the function

ϕ(λ ) =u(λ z)−HP(λ z)

is bounded, subharmonic on {λ ∈ C : |λ | > 1
|z|} and ϕ(λ ) ≤ 0 as |λ | = 1

|z| . By the maximum

principle we get ϕ(λ ) ≤ 0 for all |λ | ≥ 1
|z| . In particular with λ = 1 we obtain the required

inequality.

(ii) Set v(z) = u(z)− max
P(a,r)

u, z ∈ Cd . Then v ∈LP,v≤ 0 on P(a,r). Then by (i),

v(z)≤VP,P(0,1)(z) = HP(z),

thus we get (ii).

(iii) Assume that u∗(a) < +∞ for some a. Then there exists a polydisc P(a,r) such that C :=
sup

P(a,r)
u <+∞. From (ii) we infer that for every α ∈ I we have

uα(z)≤C+HP(
z−a

r
),∀z ∈ Cd.

Hence for z ∈ Cd we obtain

u(z)≤C+HP(
z−a

r
)≤C′+HP(z),

for some constant C′ > 0 depends only on C,a,r. We are done. �

We list below basic properties of P−global extremal functions that will be used through-
out our work. The following properties of the global extremal functions remain valid for P-
extremal functions (see also [5], discussion after Proposition 2.1 and 2.3).

Proposition 3.5. Let E be a bounded Borel set in Cd and K be a compact set. Then we have
the following assertions:

(i) If F ⊂ E then VP,F ≥VP,E;

(ii) V ∗P,E ≡+∞ if and only if E is pluripolar and when E is non-pluripolar then V ∗P,E ∈LP.

(ii) If E is pluripolar if and only if E is PL−pluripolar.

(iv) If K j ↓ K and if K j are compact then VP,K j ↑VP,K;
4



(v) If E j ↑ E then V ∗P,E j
↓V ∗P,E;

(vi) V ∗P,E\F =V ∗P,E if F is pluripolar.

(vii) If V ∗P,K ≡ 0 on K then VP,K is continuous on Cd .

Proof. The assertion (i) is trivial while (ii) and (vii) can be proved by adapting the standard
proofs for the case P = Σ.

(iii) We proceed by contradiction as in the classical case P = Σ. Assume that E is not PL-
pluripolar. Then by (ii) V ∗P,E ∈ LP and therefore M := sup

E
V ∗P,E < +∞. Since E is bounded,

there is a polydisc P(0,r) such that E ⊂ P(0,r). Then from Proposition 3.4 we infer

V ∗P,E(z)≥V ∗P,P(0,r) = sup
J∈P

log+
|z|J

r
, z ∈ Cd.

Thus we can find R > r such that inf
∂P((0,R)

V ∗P,E ≥ 2M + 1. Now we choose u ∈ PSH(Cd) such

that u =−∞ on E and u < 0 on P(0,R). For each positive integer j ≥ 1 we set

v j :=

{
max{1

j u+1, 1
2M+1V ∗P,E}, in P(0,R)

1
2M+1V ∗P,E , otherwise.

Then (2M+1)v j ∈LP and on E we have (2M+1)v j ≤M. Hence (2M+1)v j−M ≤VP,E on
Cd . In particular

(2M+1)(
1
j
u+1)≤M+VP,E in P(0,R)

for all j ≥ 1. By letting j→ ∞ we obtain V ∗P,E ≥M+1 on E. This yields a contradiction to the
fatc that V ∗P,E ≤M on E.

(iv), (v), (vi) now follows from the same reasoning as in [7] and (iii). �

From Proposition 3.4 (iii) and repeating the proof Theorem 3.5 in [9] we have the following
property of upper envelope of a family in LP.

Proposition 3.6. Given any {uα}α∈I ⊂LP and put u = sup
α∈I

uα . Then u∗ ∈LP if and only if

the set Au := {z ∈ Cd : u(z)<+∞} is non-pluripolar.

Theorem 3.7. Let {K j} be a sequence of Borel subsets of K. Consider the following assertions:

(i) V ∗P,K j
→ 0 q.e on K.

(ii) V ∗P,K j
→V ∗P,K pointwise on Cd;

(iii) V ∗P,K j
→V ∗P,K uniformly on Cd;

(iv) V ∗K j
→ 0 q.e. on K.

(v) V ∗K j
→V ∗K pointwise on Cd;

(vi) V ∗K j
→V ∗K uniformly on Cd .

Then (i)⇔ (ii)⇔ (iii) if K is PL-regular, (iv)⇔ (v)⇔ (vi) if K is L-regular, and (i)⇔ (iv) if
K is an admissible convex body.

Proof. First we consider the case K is PL-regular.
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(i)⇒ (ii) We can assume that K j is non-pluripolar for all j≥ 1. Then V ∗P,K j
∈LP,+,∀ j≥ 1. For

s≥ 1, define
vP,s(z) := sup

j≥s
V ∗P,K j

(z),z ∈ Cd.

Then the set {vP,1 < +∞} contains a non-pluripolar subset of K. Proposition 3.6 implies that
v∗P,s ∈LP for every s≥ 1. Therefore

V ∗P,K ≤ vP := lim ↓ v∗P,s.

In particular vP ∈LP,vP(z) = 0 q.e. on K. Here the latter equality follows from the fact that
vP,s = v∗P,s q.e. on Cd . By Proposition 3.5 (v) we obtain vP ≤ V ∗P,K on Cd. Moreover, since
K j ⊂ K we have

vP ≤V ∗P,K ≤V ∗P,K j
∀ j ≥ 1.

Putting all this together we concludes that

lim
j→∞

V ∗P,K j
(z) =V ∗P,K(z),∀z ∈ Cd.

(ii)⇒ (iii) Since K is PL-regular it follows that V ∗P,K j
→V ∗P,K = 0 on K. On the other hand, by

Proposition 3.6, the sequence V ∗P,K j
is locally uniformly bounded on Cd. Then using Hartogs’

lemma we infer that V ∗P,K j
→ 0 uniformly on K. By the definition we deduce easily that V ∗P,K j

→
V ∗P,K uniformly on Cd .

(iii)⇒ (i) is trivial.

If K is L−regular then by setting P = Σ in the above proof we have (iv)⇔ (v)⇔ (vi).

Finally, in case K is an admissible convex body we may apply the comparison lemma
(Lemma 3.3) to see that (i)⇔ (iv). �

Remark 3.8. 1. We do not need PL− regularity of K for the implication (i)⇒ (ii).

2. The assumption V ∗K j
→ 0 q.e. on K does not imply L−regularity of K. For a simple example

we let K be the union of a closed disk ∆ and an isolated point a while K j is taken to be a
sequence of closed disks increasing to ∆.

3. Under the assumptions that P is an admissible convex body and V ∗K j
→ 0 pointwise on K

then by adapting the proof of the implication (i)⇒ (ii) to the case P = Σ we can show that K
is indeed L− regular. So in this case all the equivalent conditions in Theorem 3.8 holds true.

4. BERNSTEIN-MARKOV PROPERTIES

Definition 4.1. The triple (P,K,µ) is said to have:

(a) the strong Bernstein-Markov property if for each ε > 0, there exists a positive constant
C =Cε > 0 such that

‖p‖K ≤Cenε‖p‖L2(µ), ∀p ∈ Poly(nP), n≥ 1; (4.1)

(b) the weak Bernstein-Markov property if there exists a constant λ ≥ 0 such that for each
ε > 0, there exists a positive constant C =Cε > 0 such that

‖p‖K ≤Cen(λ+ε)‖p‖L2(µ), ∀p ∈ Poly(nP), n≥ 1. (4.2)

Remark 4.2. (a) We present a class of pairs (K,µ) having the weak Bernstein-Markov property.
Let

K := {z ∈ C : |z|= 1}
⋃
{z ∈ C : z|= 2}
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and µ be any finite positive Borel measure on K whose support coincides with K such that
µ|∂∆ is the normalized Lebesgue measure where ∆ := {z ∈C : |z|= 1}. Consider a polynomial
p(z) := a0 +a1z+ · · ·+anzn. By Cauchy-Schwarz’s inequality we obtain

‖p‖2
K ≤

4n+1−1
3

(|a0|2 + · · ·+ |an|2)≤
4n+1

3

∫
∂∆

|p|2dµ.

Thus (K,µ) enjoy the weak Bernstein-Markov property. It is not clear to us if we could also
choose µ on the out circle {z : |z| = 2} such that (K,µ) does not enjoy the strong Bernstein-
Markov property.

(b) If P = Σ then (4.1) becomes (1.1). Note that in general the exponent n in (4.1) may be less
than degp.

We will give a sufficient condition, in terms of convergence of certain P−global extremal
functions, for the triple (P,K,µ) to have the strong Berstein-Markov property. For this purpose,
we first introduce the following type of function.

Definition 4.3. A measurable function f : (0,∞)→ (0,∞) is said to have the (BM)−property if
for every ε > 0 there exists a sequence {rn} ↓ 0 and ε ′ > 0 satisfying the following conditions:

(i) inf
n≥1

f (rn)en(ε−ε ′) > 0;

(ii) lim
n→∞

rnenε ′ = 0.

Theorem 4.4. Let K be a compact PL-regular set in Cd and µ be a finite positive Borel measure
on K. Let f : (0,∞)→ (0,∞) be a function satisfying the (BM)− property. Assume that V ∗P,Er

→
0 q.e on K as r ↓ 0, where

Er := {z ∈ K : µ(K∩B(z,r))≥ f (r)}.

Then the triple (P,K,µ) has the strong Bernstein-Markov property.

Remark 4.5. Observe that for any T > 0 the function f (r)= rT has the (BM)−property. Indeed,

given ε > 0, we choose ε ′ := λε,rn := e
nε(λ−1)

T where λ ∈ (0, 1
T+1).

Our proof relies on Bloom-Levenberg’s methods.

Proof. Fix 0 < ε < 1. Then we choose ε ′ and a sequence {rn} satisfying the condition given
on f .

Step 1. Then we claim that there exists δ > 0 such that for r ∈ (0,δ ) we have

‖p‖Kδ
≤ ‖p‖Ere

nε ′, (4.3)

where Kδ := {z ∈ Cd : d(z,K) ≤ δ}. To see this, we first apply Proposition 3.5 to see that
VP,Kδ

↓VP,K on Cd . Since K is PL-regular, VP,K is continuous on Cd . By Dini’s theorem we can
choose δ = δ (ε ′) such that

|VP,K(z)−VP,Kδ
(z)|< ε ′

2
, ∀z ∈ Kδ .

In particular, since VP,Kδ
= 0 on Kδ we get

VP,K(z)≤
ε ′

2
,∀z ∈ Kδ . (4.4)
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The Berstein-Walsh inequality (Proposition 3.1) now implies that for any n≥ 1 and p∈Poly(nP)
we have

‖p‖Kδ
≤ ‖p‖Kenε ′/2. (4.5)

On the other hand, by the hypothesis V ∗P,Er
→ 0 q.e on K, so by Proposition 2.5 we see that

the family V ∗P,Er
is locally uniformly bounded from above on Cd. So by shrinking δ and using

Hartogs’ lemma we may obtain that

V ∗P,Er
(z)≤ ε ′

2
∀z ∈ K,∀0 < r < δ .

Using again the Berstein-Walsh inequality for Er we have

‖p‖K ≤ ‖p‖Ere
nε ′/2. (4.6)

Combining these last estimates we obtain (4.3).

Step 2. We will show for all n large enough and all w ∈ Ern

|p(z)| ≥ |p(w)|− 1
2
‖p‖Ern

,∀|z−w|< rn. (4.7)

For z 6= w we put e = z−w
‖z−w‖ = (e1, ...,ed). Put q(t) := q(w1 + e1t, ...,wd + edt). Then q is a

polynomial of one complex variable t with p(z) = q(‖z−w‖) and p(w) = q(0). Then

p(z)− p(w) = q(‖z−w‖)−q(0) =
∫ ‖z−w‖

0
q′(t)dt.

So for r′ > r > 0 we have

|p(z)− p(w)| ≤ r‖q′‖|t|<r ≤ r
‖q‖|t|<r′

r′− r
≤ r

r′− r
‖p‖K′r . (4.8)

Here we use Cauchy’s inequality in the last estimate. Choose r := rn,r′ := rn(1+ 2enε ′), by
Step 1 we obtain for n large enough the following estimate

|p(z)| ≥ |p(w)|−
‖p‖Kr′n

2enε ′
≥ |p(w)|− 1

2
‖p‖Ern

.

We finish the proof of this step.

Step 3. Completion of the proof. Fix p ∈ Poly(nP). Then for each w ∈ Ern , from (4.7) we
obtain the following chain of estimates

‖p‖L2(µ) =
(∫

K
|p|2dµ

) 1
2 ≥

(∫
B(w,rn)∩K

|p|2dµ

) 1
2

≥ µ(B(w,rn))
1/2 inf

B(w,rn)
|p(z)|

≥ f (rn)
1/2(|p(w)|− 1

2
‖p‖Ern

)
.

Taking supremum over w ∈ Ern and using (4.6) we get

‖p‖L2(µ) ≥
1
2

f (rn)
1/2‖p‖Ern

≥ 1
2

f (rn)
1/2e−nε ′/2‖p‖K.

So in view of the property (ii) of f , there exists a constant C > 0 such that for n ≥ n0 large
enough we have

Cenε/2‖p‖L2(µ) ≥ ‖p‖K,

Finally, since Poly(n0P) is a finite dimension space, the norm ‖.‖L2(µ) and the sup-norm are
equivalent. The proof is thereby completed. �
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Theorem 4.6. Let K be a compact non-pluripolar subset of Cd and µ be a finite positive Borel
measure on K. Let f : (0,∞)→ (0,∞) be a function satisfying the (BM)− property. Assume
that the set {z ∈ Cd : sup

0<r<r0

V ∗P,Er
(z)< ∞} is non-pluripolar for some r0 > 0, where

Er := {z ∈ K : µ(K∩B(z,r))≥ f (r)}.

Then the triple (P,K,µ) has the weak Bernstein-Markov property.

Proof. By the assumption and Proposition 3.6 we infer that the family V ∗P,Er
is locally uniformly

bounded on Cd. Moreover, since K is non-pluripolar we have

λ := max{limsup
r→0

(sup
K

V ∗P,Er
), limsup

δ→0
(sup

K
V ∗P,Kδ

)}< ∞,

where Kδ := {z ∈ Cd : d(z,K) ≤ δ}. Fix 0 < ε < 1. Then we choose ε ′ and a sequence {rn}
satisfying the condition given on f . Now by the same reasoning as in Step 1 of Theorem 4.3
we can find δ > 0 such that for r ∈ (0,δ ) we have

‖p‖Kδ
≤ ‖p‖Ere

n(λ+ε ′) and ‖p‖K ≤ ‖p‖Ere
n(λ+ε ′)/2. (4.9)

By Step 2 in Theorem 4.3 for n large enough and w ∈ Ern we have the following estimate

|p(z)| ≥ |p(w)|− 1
2
‖p‖Ern

,∀|z−w|< rn. (4.10)

Finally we fix p ∈ Poly(nP). Then by repeating the argument given in Step 3 and using (4.9)
and (4.10) we obtain

‖p‖L2(µ) ≥
1
2

f (rn)
1/2‖p‖Ern

≥ 1
2

f (rn)
1/2e−n(λ+ε ′)/2‖p‖K.

So in view of the property (ii) of f , we see that there exists a constant C > 0 such that for n≥ n0
large enough we have

Cen(λ+ε)/2‖p‖L2(µ) ≥ ‖p‖K.

Finally, since Poly(n0P) is a finite dimension space, the norm ‖.‖L2(µ) and the sup-norm are
equivalent. The proof is thereby completed. �

Now, we deal with the following notation which is relevant to the Bernstein-Markov property
that was introduced by Siciak [10].

Definition 4.7. A measure µ is called P-determining for a compact K ⊂ Cd if for every Borel
E ⊂ K such that µ(E) = µ(K) we have V ∗P,E =V ∗P,K .

Example 4.8. (a) Let D be a bounded open set in Cd such that ∂D is C1 smooth. Then
the Lebesgue measure λ2d is P-determining for K = D and the surface measure σ2d−1 is P-
determining for K′ = ∂D. These facts are easy consequences of basics facts that K (resp. K′)
is non-plurithin at every point of K (resp. K′).

(b) By the same proof as Proposition 2.4 in [8] we conclude that if K is non-pluripolar compact
then the measure µ = (ddcV ∗P,K)

d is P-determining for K.

In the case P = Σ, Siciak showed in [10] (see also Proposition 2.5 in [8]) that if K is compact
L-regular and µ is determining for K then (K,µ) satisfies the Bernstein-Markov inequality
(1.1). This result is expanded in [6] for the case K is compact non-pluripolar. The following is
analogue to Proposition 4.8 in [6] and for the reader’s convenience we give here the proof.
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Theorem 4.9. Let K be a L− regular (resp. non-pluripolar) compact subset of Cd . Assume
that µ is a P-determining measure for K. Then (P,K,µ) has the strong (resp. weak) Bernstein-
Markov property.

Proof. We only give the proof for the weak Bernstein-Markov property, the other case is some-
what easier. Let λ := sup

K
V ∗P,K and E := {z∈K : V ∗P,K(z)> 0}. Then E is pluripolar and so there

exists a plurisubharmonic functions ϕ on Cd such that

E ⊂ E ′ := {z ∈ K : ϕ(z) =−∞}.

Let E j := {z ∈ K : ϕ(z)≥− j} and ε ′ := ε/2. Then {E j} is an increasing sequence of compact
subsets of K and E j ↑ K \E ′. By Proposition 3.5 we have

V ∗P,E j
↓V ∗P,K\E ′ =V ∗P,K.

Then sup
K

V ∗P,E j
↓ sup

K
V ∗P,K , thus we can find j(ε) sufficient large such that

V ∗P,E j(ε)
(z)≤ λ + ε

′ ∀z ∈ K. (4.11)

We claim that there exists C > 0 such that for any n≥ 1 and any p ∈ Poly(nP) we have

‖p‖E j(ε) ≤Cenε ′‖p‖L2(µ). (4.12)

We proceed by contradiction. Suppose that there exists a sequence {nk} and pnk ∈ Poly(nkP)
such that

‖pnk‖E j(ε) ≥ k(1+ ε
′)nk , ‖pnk‖L2(µ) =

1
k
. (4.13)

For each m≥ 1, define

Km := {z ∈ K : sup
k≥1
|pnk(z)| ≤ m} and K′ :=

⋃
m≥1

Km.

Then Km ↑ K′, hence V ∗P,Km
↓V ∗P,K . We will show that

V ∗P,K′ =V ∗P,K on Cd. (4.14)

Since µ is P-determining for K, it suffices to check that µ(K \K′) = 0. Indeed, we infer
from ( 4.13) that ∑

k≥1
|pnk(z)|2 converges in L1(µ) and hence |pnk(z)| → 0 µ-a.e as k→ ∞, thus

sup
k
|pnk(z)| < +∞ µ-a.e. This means µ(K \K′) = 0. Thus (4.14) is proved. Then it follows

from (4.14) that V ∗P,Km
↓V ∗P,K on Cd . In particular, V ∗P,Km

↓ 0 on E j(ε). By Dini’s theorem we can
find m0 such that V ∗P,Km0

≤ ε ′ on E j(ε). It follows that

1
nk

log
|pnk(z)|

m0
≤V ∗P,Km0

(z)≤ ε
′, ∀k ≥ 1,∀z ∈ E j(ε).

This yields a contradiction to (4.13) if k is large enough. Finally, combining (4.11), (4.12) and
applying Bernstein-Walsh inequality to E j(ε) we obtain

‖p‖K ≤ ‖p‖E j(ε)e
(λ+ε ′)n ≤Ce(λ+ε)n‖p‖L2(µ), ∀p ∈ Poly(nP), n≥ 1.

The proof is thereby completed. �

We have the following result which gives examples of measures satisfying the condition of
Theorem 4.4 and Theorem 4.6.
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Proposition 4.10. Let K be a compact set in Cd and µ be a finite positive Borel measure on K.
Let f : (0,∞)→ (0,∞) be a function satisfying the (BM)− property. Set

G := {z ∈ K : liminf
r→0

µ(B(z,r)∩K)

f (r)
> 1}.

Then the following assertions hold true:

(i) If G is non-pluripolar then (K,P,µ) has the weak Bernstein-Markov property;

(ii) If K is PL-regular and if V ∗P,G =V ∗P,K then (K,P,µ) has the strong Bernstein-Markov prop-
erty.

Proof. For r > 0 we set

fr(z) :=
µ(B(z,r))

f (r)
,Er := {z ∈ K : fr(z)≥ 1}.

Then we have
G = {z ∈ K : liminf

r→0
fr(z)> 1} ⊂ {z ∈ K : sup

r>0
inf
s≥0

fr+s(z)> 1}

⊂
⋃
r>0

{z ∈ K : inf
s≥0

fr+s(z)≥ 1} ⊂
⋃
r>0

⋂
s≥0

{z ∈ K : fr+s(z)≥ 1}

=
⋃
r>0

⋂
s≥0

Er+s =
⋃
r>0

Fr

where Fr :=
⋂

s≥0
Er+s. Note that Fr ⊂ Er and by the above reasoning {Fr}r>0 ↑ G. Thus, if G is

non-pluripolar then so is Fr0 for some r0 close enough to 0. Since

Fr0 ⊂ {z ∈ Cd : sup
0<r<r0

V ∗P,Er
(z)< ∞}.

So the set on the right hand side is non-pluripolar, by Theorem 4.4 we conclude the assertion
(i). For (ii), it suffices to use Proposition 3.5 (iii) to get

V ∗P,Fr
↓V ∗P,G =V ∗P,E on Cd.

Since V ∗P,Er
≤V ∗P,Fr

we infer V ∗P,Er
→ 0 pointwise on K as r→ 0. By Theorem 4.4 we obtain the

desired conclusion (ii). �

In case (K,P,µ) has the strong Bernstein-Markov property and P is an admissible convex body,
we can express the P−global extremal function VP,K by a sequence of Szëgo kernels (see [1]
and [4]). It’s natural to see what may occur if (K,P,µ) only has the weak Bernstein-Markov
property. We only has the following very partial result.

Proposition 4.11. Let P be a convex compact subset of Rd. Assume that (K,P,µ) has the weak
Bernstein-Markov property. For n≥ 1 we let { f j}1≤ j≤dn be an orthonormal basis for Poly(nP)
with respect to the inner product in L2(µ). Set

Sn(z,w) := ∑
1≤ j≤dn

f j(z) f j(w).

Then there exists λ ≥ 0 such that

uP,K(z) := limsup
n→∞

1
2n

logSn(z,z)≤ λ +VP,K(z) ∀z ∈ Cd.

In particular uP,K ∈ LP(Cd). Furthermore, if K is PL−regular then uP,K ≥VP,K .
11



Proof. Set
Φn(z) = sup{|pn(z)| : pn ∈ Poly(nP),‖pn‖K ≤ 1}.

Then it’s clear that
1
n

log |Φn| ≤VP,K on Cd.

Moreover, since P is convex, we infer that ΦnΦm ≤Φn+m on Cd. It follows that

∃ lim
n→∞

1
n

logΦn(z) := v(z)≤VP,K(z) ∀z ∈ Cd.

On the other hand, since (K,P,µ) has the weak Bernstein-Markov property, there exists λ ≥ 0
such that for n≥ 1,1≤ j ≤ dn we have

‖p j‖K ≤Cεe(λ+ε)n.

By the arguments of Bloom and Shiffman we get the following key estimates

1
dn
≤ Sn(z,z)

Φn(z)
≤Cεe(λ+ε)ndn.

Putting all this together we obtain the desired conclusions. �
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[5] L. Bos and N. Levenberg, Berstein-Walsh theory associated to convex bodies and applications to multivariate

approximation theory, Comput. Methods Funct. Theory 18 (2018), 361-388.
[6] Nguyen Quang Dieu and Pham Hoang Hiep, Weighted Bernstein-Markov property in Cn, Ann. Polon. Math,

105.2 (2012), 101-123.
[7] Klimek. M, Pluripotential Theory, Oxford Univ Press, Oxford (1991).
[8] N. Levenberg, Weighted pluripotential theory results of Berman-Boucksom, preprint, (2010).
[9] Siciak, J. Extremal plurisubharmonic function in CN , Ann. Polon. Math., 39 (1981), 175-211.

[10] Siciak, J. Families of polynomials and determining measures, Ann. Fac. Sci. Toulouse 9 (1988), 193-211.

NGUYEN QUANG DIEU

1 DEPARTMENT OF MATHEMATICS, HANOI NATIONAL UNIVERSITY OF EDUCATION, 136 XUAN THUY,
CAU GIAY, HANOI, VIETNAM

2 THANG LONG INSTITUTE OF MATHEMATICS AND APPLIED SCIENCES, NGHIEM XUAN YEM, HOANG
MAI, HANOI, VIETNAM

E-mail address: ngquang.dieu@hnue.edu.vn

TANG VAN LONG
12



3 DEPARTMENT OF MATHEMATICS, HANOI NATIONAL UNIVERSITY OF EDUCATION, 136 XUAN THUY,
CAU GIAY, HANOI, VIETNAM

E-mail address: tvlong@hnue.edu.vn (corresponding author)

13


	1. Introduction
	2. Preliminaries
	3. Convergence of P- extremal functions
	4. Bernstein-Markov properties
	References

