THE KERNEL OF KAMEKO’S HOMOMORPHISM
AND THE PETERSON HIT PROBLEM

NGUYEN SUM

ABSTRACT. Let Py be the graded polynomial algebra Fa[z1,z2,...,xx] with
the degree of each generator x; being 1, where Fo denote the prime field of
two elements.

The hit problem of Frank Peterson asks for a minimal generating set for
the polynomial algebra P, as a module over the mod-2 Steenrod algebra A.
Equivalently, we want to find a vector space basis for F2 ® 4 Py in each degree.

In this paper, we study a generating set for the kernel of Kameko’s ho-
momorphism gqi : Fo ®a4 Pr — F2 ® 4 Pj, in a so-called ’generic degree’.
By using these results, we explicitly compute the hit problem for £ = 5 in
respective generic degree.

1. INTRODUCTION

Denote by Py := Fa[z1, 29, ..., 2] the polynomial algebra over the field of two
elements, Fy, in k generators z1, o, ..., Tk, each of degree 1. This algebra arises as
the cohomology with coefficients in 5 of a classifying space of an elementary abelian
2-group of rank k. Therefore, Py is a module over the mod-2 Steenrod algebra, A.
The action of A on Py is determined by the elementary properties of the Steenrod
squares S¢' and subject to the Cartan formula Sq¢"(fg) = Y1, S¢'(f)Sq"*(g),
for f,g € Py (see Steenrod and Epstein [30]).

We study the Peterson hit problem of determining a minimal set of generators
for the polynomial algebra Py as a module over the Steenrod algebra. Equivalently,
we want to find a vector space basis for the quotient

QP == Py /ATP, =F2 ®4 Py,

where AT denotes the augmentation ideal in A.

The hit problem was first studied by Peterson [18], Wood [39], Singer [28] and
Priddy [23], who showed its relation to several classical problems in the homotopy
theory. Then, this problem was investigated by Boardman [I], Bruner, H& and
Hung [2], Carlisle and Wood [3], Crabb and Hubbuck [4], Hung and Nam [6] [7],
Janfada and Wood [8, 9], Kameko [10} 1T}, 12], Mothebe [13]14], Nam [16} 17], Repka
and Selick [24], Silverman [25], Silverman and Singer [27], Singer [29], Walker and
Wood [34], 35}, 36}, B7], Wood [40], the present author [31], 33] and others.

The vector space Py, was explicitly calculated by Peterson [18] for £ = 1,2, by
Kameko [I0] for k = 3 and by us [33] and Kameko [12] for k = 4. Recently, the hit
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problem and it’s applications to representations of general linear groups have been
presented in the monographs of Walker and Wood [37, [38].

The p-function is one of the numerical functions that have much been used in
the context of the hit problem. For a nonnegative integer n, p(n) is the minimum
number of terms of the form 2¢ — 1,d > 0, with repetitions allowed, whose sum is
n. A routine computation shows that pu(n) = s if and only if there exists a unique
sequence of integers dy > do > ... > ds_1 > ds > 0 such that

n=2"42% 4 L qpoborgob_g= Y (24— (1.1)
1<i<s

Denote by (Py), the subspace of Py consisting of the homogeneous polynomials
of degree n in P, and (QPy), the subspace of QP consisting of all the classes
represented by the elements in (Py),.

The following is Peterson’s conjecture, which was established by Wood.
Theorem 1.1 (Wood [39]). If u(n) > k, then (QFPy), = 0.

One of the main tools in the study of the hit problem is Kameko’s homomorphism
:5“712 : QPy — QPy;. This homomorphism is induced by the Fo-linear map, also
denoted by @}2 : Py — P, given by

EZIS(I) _ {y, if x = ‘T.lIQ L TRY?,
0, otherwise,
for any monomial x € P;,. Note that SA”&S is not an A4-homomorphism. However,
g(}SSth = SthA’:}(:, and SA'Z]SSQ%H = 0 for any non-negative integer ¢.
Theorem 1.2 (Kameko [I0]). Let n be a positive integer. If u(n) = k, then
(%S)(k’n) = 552 :(QPr)yn — (QPk)ank is an isomorphism of the Fa-vector spaces.

Based on Theorems and the hit problem is reduced to the case of degree
n with u(n) = s < k.

The hit problem in the case of degree n of the form with s = k — 1, was

studied by Crabb and Hubbuck [], Nam [16], Repka and Selick [24], Walker and
Wood [36] and the present author [31] 33].

—~0
For s = k —2, we studied the kernel of Kameko’s homomorphism (Sq,) ). We
—~0
give in [31] a prediction for the dimension of Ker(Sq,) ) in this case.

Conjecture 1.3 (See Sum [31]). Let n = Zi:f(Qdi — 1) with d; positive integers.
Ifdi_ o —di 1 >i for3<i<k—1anddy_o >k >3, then

—~0 .
dimKer(Sq,) ey = [] 2'—1).
3<i<k

This conjecture is true for k < 4. Recently, Walker and Wood [38] give a lower
bound for the dimension of (QP%)..

Theorem 1.4 (Walker and Wood [38]). Let k > 3 and n = Ef;f@di — 1) with d;
positive integers. If d; —d;y1 >4 for 1 <1< k—3 and dy_2 = 5, then

dim(QPy)n > (k—1) J] @' -1). (1.2)

3<i<k
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From our result in [31, Theorem 1.6], we can see that if Conjecture is true,
then the inequality (1.2) is an equality for n as given in this conjecture.
In this paper, we study some properties of a generating set for the subspace
—~0
Ker(5q,)(x,n) of (QPy)n and explicitly compute the space (QPy), for k& = 5 and
ds > 5. One of our main results (Theorem [3.3.3) implies an upper bound for the

—~0
dimension of Ker(S5q,) (,n)-

Theorem 1.5. Letn = Zf:_f(Qdi — 1) with d; positive integers. If di—o —d;—1 > i
for3<i<k-—1anddgx_o > (’;), then

dim Ker(Sg. ).y < 260" T (21 = 1).

1<i<k

—~—0
Based on the construction of generators for Ker(Sq,), ) as given in the proof
of Theorem 1.5 we prove the following.

Theorem 1.6. Let n = 24+s+t 4 2d%s 4 9d 3 with d, 5,1 non-negative integers.
Ifd>6,t,s>4, then

—~0
dim Ker(Sq, )5, = (2° — 1)(2* — 1)(2° — 1) = 3255. (1.3)
Thus, we obtain the following.

Corollary 1.7. For k = 5, Conjecture is true and the inequality (1.2)) is an
equality.

Based on the proof of Theorem and our results in [33, Theoren 1.4], we
explicitly compute (QPs)y.

Theorem 1.8. Let n = 24tstt 4 2dts 4 9d _ 3 with d,s,t integers such that
d>6,s>0andt>0. The dimension of the Fy-vector space (QPs),, is given by
the following table:

n t=1 t=2 t=3 t=4 t=5 t>26
s=0|1116 2790 3813 4960 5735 6045
s=1|3410 6231 7285 7719 7595 7595
s=2|95766 9207 10726 11160 11160 11160
s=23 7254 10695 12090 12555 12555 12555
s>4| 7595 11160 12555 13020 13020 13020

Note that the case s =0, ¢ = 1 of this theorem have been proved by Phic [20].

This paper is organized as follows. In Section we recall some needed in-
formation on the admissible monomials in P, and criterions of Singer [29] and
Silverman [26] on hit monomials. In Section |3} we present the results for gener-
ators of the kernel of Kameko’s homomorphism. As an application of the results
of Section [3] in Section [ we explicitly compute the space QP in the degree
n=24tstt L odts L 9d _3ford>5,5>0andt>0.

2. PRELIMINARIES

In this section, we recall some results from Kameko [I0], Singer [29] and Silver-
man [26] which will be used in the next sections.
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Notation 2.1. From now on, we use the following notations.

Nk:{172a"'7k}7

X1 = Xj1 4areris = H zj, J= {jl,jQ, .. ,js} C Ng,
JENR\T
In particular, we have Xy, =1, Xy = z122... 2%, Xp = 21T2...Tk—1 € Pr_1.
Let av;(a) denote the i-th coefficient in dyadic expansion of a non-negative integer
a. That means a = ag(a)2° + a1 (a)2! + az(a)22+. .., for a;(a) =0 or 1 and i > 0.
Denote by a(a) the number of 1’s in dyadic expansion of a.
Let v = 2125 ... 2" € Pj,. Denote by vj(x) = a;,1 <j < k. Set

Ji(w) = {j € Ny, : ai(v;(z)) = 0},
for 4 > 0. Then we have »
r=]]X7

0
For a polynomial f in P, we denote by [f] the class in QP represented by f.
For a subset S C Pi, we denote

[S]=A{lf]: f €S} CQP.

Definition 2.2. A weight vector w is a sequence of non-negative integers (wy,ws, . . .,
Wi, ...) such that w; = 0 for 4 > 0. For a monomial x in Py, define two sequences
associated with = by

w(z) = (w1(x),ws(x),...,wi(x),...),

o(x) = (1(z),ve(x),. .., vp(z)),
where w;(z) = 37 ;<p ®i—1(vj(2)) = deg Xy, ,(x), © = 1. The sequences w(z) and
o(x) are respectively called the weight vector and the exponent vector of x.

The sets of the weight vectors and the exponent vectors are given the left lexi-
cographical order.

For weight vectors w = (wy,ws,...) and n = (n1,72,...), we define degw =
> is0 2 wi, the length f(w) = max{i : w; > 0}, the concatenation of weight
vectors wln = (Wi,...,WrM1,02,--.) if L(w) = r and (a)|® = (a)|(a)]...|(a), (b
times of (a)’s), where a, b are positive integers. Denote by Px(w) the subspace of
P, spanned by monomials y such that degy = degw and w(y) < w, and by P, (w)
the subspace of P (w) spanned by monomials y such that w(y) < w.

Definition 2.3. Let w be a weight vector and f, g two polynomials of the same
degree in Pj.

i) f=gifand only if f —g € AT P,. If f =0, then f is said to be hit.

ii) f =, g if and only if f —g € ATP, 4+ P, (w).

iii) f ~(s.) g if and only if f —g € AT P, + P (w).

Obviously, the relations =, =, and ~ ) are equivalence ones. Denote by
QP (w) the quotient of Py(w) by the equivalence relation =,,. Then, we have
(QP)n = D QP (2.1)
degw=n

We recall some elementary properties on the action of the Steenrod squares on
Py.
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Proposition 2.4. Let f be a polynomial in Pj.

i) If i > deg f, then Sq'(f) = 0. If i = deg f, then Sq'(f) = f>.

it) If i is not divisible by 2°, then Sq*(f*") = 0 while Sq"* (f*") = (Sq"(f))*".
Proposition 2.5 (See [33 Proposition 2.5]). Let z,y be monomials and let f,g be
polynomials in Py such that degx = deg f, degy = degg.

i) If wi(x) < 1 fori>s and x ~; f with t < s, then xy®> ~; fy* .

it) Ifwi(z) =0 fori>s, x>~ f and y ~, g, then zy* ~.\, fg* .
Definition 2.6. Let z,y be monomials of the same degree in P,. We say that
x < y if and only if one of the following holds:

i) w(z) <w(y);

ii) w(z) =w(y) and o(z) < o(y).
Definition 2.7. A monomial z is said to be inadmissible if there exist monomials
Y1,Y2, .-, Y such that y; <z for 7 =1,2,...,t and z — Z;Zl y; € AT P

A monomial z is said to be admissible if it is not inadmissible.

Obviously, the set of all the admissible monomials of degree n in Py is a minimal
set of A-generators for Py in degree n.

Definition 2.8. A monomial z is said to be strictly inadmissible if and only if there
exist monomials y1,y2, ...,y such that y; < z,for j =1,2,...,¢t and x_Z§:1 Y; €
Af Py, with s = max{i : w;(z) > 0}.

It is easy to see that if x is strictly inadmissible, then it is inadmissible. The
following theorem is a modification of a result in [10].

Theorem 2.9 (Kameko [I0], Sum [31]). Let z,y,w be monomials in Py such that
wi(z) =0 fori>r >0, ws(w)#0 and w;(w) =0 fori>s>0.

i) If w is inadmissible, then xw? is also inadmissible.

ii) If w is strictly inadmissible, then :rwyyzrﬁ is also strictly inadmissible.
Proposition 2.10 (See [31]). Let x be an admissible monomial in Py. Then we
have

i) If there is an index iy such that w; (xz) =0, then w;(x) =0 for all i > iy.

ii) If there is an index ig such that w;,(z) < k, then w;(x) < k for all i > ig.

For 1 < i < k, define a homomorphism f; : P,_; — P, of A-algebras by
substituting f;(z,) = x, for 1 < w < i and f;(z,) = zuq1 for i < uw < k. For

1 < 7 <j < k, denote f(l)j) = fifjfl : Pk,Q fj—il) szfl i) Pk
Proposition 2.11 (See Mothebe and Uys [15]). Let i,d be positive integers such

that 1 < i < k. If © is an admissible monomial in Py_1 then xi?d_lfi(x) is also an
admissible monomial in Pj.

Now, we recall Singer’s criterion on the hit monomials in P.

Definition 2.12. A monomial z in Py, is called a spike if v;(z) = 2% — 1 for s; a
non-negative integer and j = 1,2,... k. If z is a spike with 51 > s9 > ... > 5,1 >
sp >0 and s; = 0 for j > r, then it is called a minimal spike.

The following is a criterion for the hit monomials in Pj.

Theorem 2.13 (See Singer [29]). Suppose x € Py, is a monomial of degree n, where
w(n) < k. Let z be the minimal spike of degree n. If w(x) < w(z), then x is hit.
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From this theorem, we see that if z is a minimal spike, then P, (w(z)) C AT P,
We need Silverman’s criterion for the hit polynomials in Pj.

Theorem 2.14 (See Silverman [26, Theorem 1.2]). Let p be a polynomial of the
form fg*" for some homogeneous polynomials f and g. Ifdeg f < (2™ —1)u(degg),
then p is hit.

This result leads to a criterion in terms of minimal spike which is a stronger
version of Theorem 213

Theorem 2.15 (See Walker-Wood [37, Theorem 14.1.3]). Let x € Py be a mono-
mial of degree m, where u(n) < k and let z be the minimal spike of degree n. If
there is an index h such that ZLI 2071w, (z) < Zf;l 271w, (2), then x is hit.

For 1 <r <k, we set

P? = ({z =225 ... 2% : ajay...a, = 0}),

P ={z =223 ...2% : araz...a, >0}).

It is easy to see that P? and P are the A-submodules of Pj.

For J = (j1,42,---,7r) : 1 < j1 < ... < Jr < k, we define a monomorphism
0y : P. — Py of A-algebras by substituting 0;(x:) = x;, for 1 <t < r. It is easy to
see that, for any weight vector w of degree n,

Q0;(P)(w) = QP (w) and (Q05(P))n = (QP )
for 1 < r < k. So, by a simple computation using Theorem and (2.1)), we get
the following.

Proposition 2.16 (See Walker-Wood [37]). For a weight vector w of degree n, we
have direct summand decompositions of the Fo-vector spaces

QRw)= D D (P,
nn)<r<k £(J)=r

where £(J) is the length of J. Consequently

dim QP (w) = Z <k> dim QP (w),
wmyr<k N

am@r, = 3 (¥) dm@rs..
wmyr<k N

We recall a result in our work [2I] which is used in Section

Definition 2.17. For any (i; ) € N}, we define the homomorphism P ¢ P —
Py of algebras by substituting

L if 1< <,
pan (@) = S cpremn, ifj=1i,
Lj—1, ifi <j<k.

Then, p(;ry is a homomorphism of .A-modules. In particular, for I = 0, p;py(x;) = 0
and pgn) (f:(y)) = y for any y € Py_1.
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Lemma 2.18 (See Phiic and Sum [21]). If x is a monomial in Py, then pg;.p(x) €
Pr_1(w(w)). So, pu.ry passes to a homomorphism from QPy(w) to QPy_1(w) for
any weight vector w.

From now on, we denote by By (n) the set of all admissible monomials of degree
n in Py, BY(n) = Bi(n) N PY, B (n) = Bi(n) N P;f. For a weight vector w
of degree n, we set By(w) = By(n) N Py(w), B (w) = B (n) N Py(w). Then,
[Bi,(w)]e and [B}f (w)]., are respectively the basses of the Fao-vector spaces QP (w)
and QP (w) := QP (w) N QP .

3. ON THE KERNEL OF KAMEKO’S HOMOMORPHISM
3.1. A construction for the generators of Pj.
Notation 3.1.1. We denote
N ={0G1): T=(i1,02,...,0),1<i<i; <...<i. <k, 0<r <k}
For (i;I) € Ny, denote by r = £(I) the length of I.

Definition 3.1.2 (See Sum [33]). Let (4;1) € Ny, 2(1,u) = x?:_hr'””r_u [lu<i<r wvgfit

for r = £(I) > 0, For any monomial  in P,_1, we define the monomial ¢;,)(z) in
Py by setting

@), it r = 0(1) = 0,
(21 (%))/x(1,4), if there exists 1 < u < r such that
Vip—1(7) = ... = v, -1(x) =2" -1,
iz () = vi,—1(x) > 2" =1,

or_t(vi,—1(x)) =1, Vi, 1 <t < u,
ar—t(Vi,—1(x)) =1, VE, u<t <,

0, otherwise.

Proposition 3.1.3 (See Sum [33]). Let d be a positive integer and let jo, j1, ..., ji—1 €
Nk, We seti = min{jg, ce ,jdfl}, I = (il, ey ir) with {ih PN ,Z'r} = {jo, N ,jdfl}\
{i}. Then, we have
t d_
II X5~ dan (X3,
0<t<d

Proposition 3.1.4. For any positive integer d, {¢r) (X,zd_l) 0 (4;1) € Ni} is the

set of all admissible monomials in Py such that their weight vectors are (k — 1)|%.

Proof. Let  be an admissible monomial in P}, such that w(z) = (k — 1)|%. Then,
there are integers ji, jo, ..., jq such that z = H1<t<d jtdft

If there is an index to such that jy, > ji,+1, then

_ gd—t 2 gd—to—1 gd—t
T = H X5 (X5 Xy ) H X3

1<t<to to+2<t<to
We have
2 v _ 2 w3 o 2 3
th() X]to+1 - xjto-uxﬂto Xto,th_H - xﬂf0+1xjt0 Xthjt0+1

+ Sql ('rjt0+1xjt0 Xgo,jt0+1) mOd(ij((k - 1)‘2)'
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This equality shows that the monomial ijto X+, 1s strictly inadmissible, hence
by Theorem [2.9] z is strictly inadmissible. Since z is admissible, we get j; <
Jo < ... < jq. Break the sequence J = (ji,j2,.-.,Jj4) into sections Iy, I, ..., I of
lengths a,, = ¢(1,), 0 < u < r < k—1, so that j;,—; and j; are in the same section
if and only if j;_1 = j;. If there is an index u > 0 such that a, > 1, then there is
ty such that ji;, < ji,+1 = jr+2, (U, € Tu—1 and jy, 41, Ji, +2 € I,). Then, we have

_ 2d7t 4 3 2d7t1—2 H 2d7t
T = H th (th1 tho+1) th :
1<t<ty t1+3<t<to
By a direct computation, we have

4 3 _ .3 4 3 _ .2 5 7 1/,..3 3 7
th,l thl+1 - szlxjtlﬂthlJtlﬂ - Ijtlxjtl+1th17jtl+1 +5¢q (Ijtlmjt,o Xjf,17jt1+1)

+ Sq2(x?t1x?to Xj?tlyjtl-f—l) mod (P, ((k — 1)|3).
This equality implies X;‘th ;’tﬁl is strictly inadmissible. By Theorem x is
strictly inadmissible. Since z is admissible, we obtain a, = ¢(I,) =1, 1 <u < r
and z = ¢(i;,)(x,§d—1), where i = j; € Iy, I = (iy,i9,...,i,) with I, = {i,} for
1 < u < r. In [22] Proposition 3.7], we have proved that the set

d— .
[{¢(i;1)(X1§ DERGE)) € Nt -1y
is linearly independent in QPy((k — 1)|¢). So, the proposition is proved. O

Theorem 3.1.5 (See Sum [33] Proposition 3.3]). Let n = Zf;f(?di — 1) with d;
positive integers such that dy > do > ... > dx—o > dy_1 :=d >k —12>= 3, and let
m = Zi:f(?di*d’“—l —1). Then
d d
U {san3 ') z€ Bioa(m)}.
(i:1)ENY,
is a minimal set of generators for A-module Py in degree n. Consequently
dim(QPy)n = (2F — 1) dim(QPyx—1)m.
3.2. Some properties of admissible monomials in Py ((k — 2)|¢).
Lemma 3.2.1. Let n = Zi:f(Qdi — 1) with d; positive integers such that d; >
do > ...dx_3 > di_o. If x is an admissible monomial of degree n in Py such that
—0
[z] € Ker((Sq,)k,n)), then wi(x) =k —2 for 1 <i <dp_».
Proof. Note that z = f:_f x?d‘ ~! is the minimal spike of degree n and w;(z) = k—2
for 1 € i < dg—2. Since z is admissible, [z] # 0. By Theorem [2.13] either w;(z) =
k—2or w(x) =k. If w(x) =k, then x = Xpy? with y a monomial in Py. Since
—~0
x is admissible, by Theorem y is also admissible. So, (Sq, )&, ([z]) = [y] # 0.
—~0
This contradict the hypothesis that € Ker((Sq.),n)), hence wi(z) = k —2. Now
the lemma follows from Proposition 0

—~0
Lemma 3.2.2. If x is a monomial of degree n in Py such that [x] € Ker((Sq,)x,n)),
then x = > & with T monomials in Py, such that w;(Z) = k-2, for1 <i < d = dj_o.

Proof. If wi(x) < k — 2, then by Theorem x is hit, hence the lemma holds.
Suppose wy(z) = k — 2 and let s > 1 be the smallest index such that ws(z) #
k—2. If ws(z) < k — 2, then by Theorem x is hit, hence the lemma holds.
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Assume that ws(z) = k. Then we have x = [];_ 3X21($)y25 ’ [>. X .Uf(z)’ where
Y= XJS_Z(I)Xi_l(m) XS L7222 with 1 < u < v < k. Then we have
y = Z Xﬁumazuz?,xf + Sql(Xi’,vxuzg).
1F U,V

By using this equality, the Cartan formula and Theorem we obtain x =
Z#uyv T (5,u,0), Where

T(iuv) = Hth) zuvxuxm S2HXL($)

t>s

A simple computation shows that w;(x(; ) = k — 2 for 1 <14 < s. By repeating
this argument we see that the lemma is true.
If wi(z) = k, then * = Xpy? with y a monomial in P,. Then, we have
—~0
(S¢.) (k,m)([z]) = [y] = 0. Hence, y = > w0 Sqr(gr) with suitable polynomial
gr in P. Then, using Proposition [2.4] Theorem and the Cartan formula we
get

v =Xoy’ =Y XoSq*(g7)

>0

=8¢ (Xpg?) + DY Sa*(Xp)(Sq" M (g.)? =D,

>0 r>0 t=1

where o’ are monomials in (P ), such that wy(z’) = k—2. The lemma is proved. O

Lemma 3.2.3. Let x be a monomial of degree (k —2)(2¢ —1). If wi(x) < k and
there is r > d such that w,(z) > 0, then z € P, ((k —2)|?) + AT Py.

Proof. Tf wy(z) < k—2, then z € P, ((k—2)|%), hence the lemma holds. If wy (z) >
k—2, then wy(x) = k—2. Let s be the smallest index such that ws(x) > k —2, then
ws(z) = k. If s > d, then (k —2)(2¢ — 1) =degz > (k —2)(2% — 1) + 2! Ly (z) >
(k —2)(2% — 1). This is a contradiction, so s < d. If there is 1 < r < s such that

wr(z) < k—2, then z € P, ((k — 2)|%), so the lemma holds. Suppose w, = k — 2
for 1 <r <s. We have

Y= XJ?571($)X3572($) = X)) wiwl = Z X7, vrizawy + SqH (X, ).
1#U,v
for 1 <u < v <k Using Pr0p051t10nand the Cartan formula we get z =;,_g)«
Zi;éu,v T(ju,v), Where

5—3
— 2t 3 2,.4\2°72 2!
L(iuw) = HX (z)(quv‘rux L ) HX Ji ()
t=0 t>s

It is easy to see that w;(7(;uw) = k —2 for 1 <4 < s and w,(2(,u,0)) > 0 for
suitable r > d. By repeating this argument we obtain & = _g) >z with z
monomials such that w; < k—2 for 1 < i < d and w,(z) > 0 for suitable r > d.
Then we have Zle 2i=1,(7) < deg® = (k — 2)(2¢ — 1). Hence, there is an index
i such that w;(Z) < k — 2 and z € P, ((k — 2)|?). The lemma is proved. O
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Lemma 3.2.4. Let i1,i2, 51,72 € Ny such that i1 < j1, ia < ja.

i) If either iy > ig or iy =iy and j1 > jo, then X“ lew jo 18 strictly inadmissi-
ble.

ii) If j1 > jo and i, j € Ny, i < j, then the monomial le Jlez 2 Xij 1s strictly
inadmissible.

iil) If either iy < ia < j1 or iy = ia2,j1 # j2, then X;l1 ﬁXij is strictly inad-
missible.

iv) If either iy < iz and j1 < ja, then X8 . X7 . s strictly inadmissible.

i1,J1% 12,2

Proof. We prove i). If iy > is and j; = jo = j, then x = mile X3 We have

11,42, "

3 4 3

€r = xzzx le ,12,] + Z xhzlzxtX'Ll,zg,j t + Sq (lexizle zg,j)
t#i1,i2,j

This equality shows that z is strictly inadmissible.

If j1 # jo, then z = xile Tj, 2] Xf’l Jin.j1.jo- Then we have

2 3 3
T = Tip Xy lex X74177'27J17]2 + xl?lex]lszXhﬂle,Jz

§ 43
+ mllxmxhxpm X11»12J1,J27
t#11,42,J1,72

+ Sq (x11x12x]1z X3 )

11,42,71,52
Since i9 < i1 < j1, the above equality implies x is strictly inadmissible.

. 3
We now prove ii). If i1 = is =4, then z = :vhgc L, X1 i1.j.- We have

2 3 4y3 1 3
v=afap XP5 4 D wpapai XY g, 5+ 50 (@0 XY 5, -
t#4,71,52
This equality shows that x is strictly inadmissible. By Theorem Xm-xz is also
strictly inadmissible.

2 3
Suppose i1 < dp. Then z = x; 27,23 x5, X} ; 5 5 . We have

2

2 .2 2 2
Ty Tiy T, Tjy = Tiy Tiy T, 31“‘%1%2%2%1

127 j2

+ Sq (zilxizxj2$j1) + Sq (xi1$i2zj2xj1)

So, using the Cartan formula, we get

3 2 3
T = x11$’2xJ2mJ1X11,12731732 + T, T $]2$ Xhﬂzdl 2J2 +A+B+C
where

— 22 e o 3
A - xilxlthxhsq (le,zg,jl,Jz) + Sq (mllmlzlesz)sq ( 11,12, jl,jz)
B - xllzw‘rjlx]zsq (le,zz,jl,]g)

_ 10,2 .. . 3 2 . . . . 3
C= Sq (milx12xJ1xJ2X11,12J1,J2) + Sq ('r’lajZZlexhXil,imjl,jz)'

A direct computation shows that X; jA? € P, ((k—2)|*), X; ;B? € P, (k—2)]*)+
Al Ps and X; ;C? € P, ((k—2)|?) +.AF Ps. Hence, the monomial X; ;22 is strictly
inadmissible.

We prove Part iii). If iy = ji =4, then z := X} ; X2 . = 2} X7 ; .. Then
we have

r=a? a5 X7 + 8¢t (22 23 X7 )

i1 j2 lsz i1 2 i1,12,]2

+ S¢? (x 3 X7 ) mod (P, ((k — 2)|3))

11 ]2 11,%2,J2



THE KERNEL OF KAMEKO’S HOMOMORPHISM 11

Hence, x is strictly inadmissible. If iy < ji, then 2 = z zaf 23 2] Y7 with Y :=
7

Xi\ isj1ja- Then we have

3,3 4 4T, 2. 5.3 AT, 3,35 417

0 Ty, 3, Y g e, a2, Y 4 @ way, a0, Y

+ Sql(xg’lxmfzxilx?zY?) + qu(xflxa:g’zxglxi}ﬂ) mod (P, ((k — 2)*)).
4 3

L.t lejt0+1
We now prove Part iv). If ji = ja, then & = x] a5, X/?; . . We have

r=af 2 X}% . +S8q"(a] 2l X}1P, )+ 8¢ (2l 2l X}, ) mod(Py ((k—2)|Y)).

i1V i N iy ,02,01 1112 ,12,71 1112 i1,12,71

r=2x

The above equality shows that the monomial X is strictly inadmissible.

Hence,  is strictly inadmissible. If j; = iz, then © = ] 23 X7, .
computation, we see that x is strictly inadmissible.
7 .8

. . . _ 7 .8 15
Suppose J1 7& 11,72, then we have z = xilxizzjlxhxilaizdhh'

_ ,6,9,.7 .8 15 6,7 .9 .8 15
T = xhxizlexhXil,iz,jl,b + xilxinjlxj2Xil7i2:jlgj2

1 7,07 .8 15
+ Tiy TigTj Ty Xiy in,g1,52 + 5¢q (IZ&xizzjlszXihiQtJlJz)

+ S¢* (2% xl T 2% X1° ) mod (P, ((k —2)|*)).

i1 Vi j1" j2 ‘M 1,92,51,]2

By a similar

If i5 < j1, then

7T 28 48 15

Hence, z is strictly inadmissible. If j; < i3, then

.4 .7 11,8 15 5,6 ,..11_8 15 7,6 .9 .8 15
T =Ty Lj, Ly, szXihimjl,jz + Liy Ljy Liy Ly Xi17i21jls.j2 + Liy Ty xizxjéXil,iz’jhjz

1,7 .7 .7 .8 15 3,117 .8 15
+ 5¢q (xille Iiij2Xilai27j17j2 + i Ty xithXilJz,jl,jz)

2 7.6 .7 ..8 15 3,.10,..7 .8 15
+ Sq ((xhxj1xi2$j2Xi1,i2,j1J2 + LiyTjy mizxjéXil,iz’jhjz)

+ Sq* (2l al 28 X1° +a? 28zl 28 X1 ) mod(P, ((k —2)*)).

i1 j1 Vi ja i, 92,71, 02 i1% 1 Vi jo “ M i,42,71, 2
Hence, z is strictly inadmissible.
The lemma is proved. O

We see that there is a monomial z in Py such that x is inadmissible but it is not
strictly inadmissible. We defined the notion of strongly inadmissible monomial in
(Pr) (k—2)(24—1)-

For a positive integer a, denote by «(a) the number of ones in dyadic expansion
of a and by ((a) the greatest integer u such that a is divisible by 2%. That means
a = 269} with b an odd integer. We set d(a) = a — a(a) — ((a).

For any positive integer d such that d > d(k — 2), denote by P 4) the subspace
of Pj, spanned by all monomials = of degree (k — 2)(2¢ — 1) such that

h
> wyla) < (k=22 - 1),

for some h, 1 <h < d—d(k—2).
Definition 3.1. A monomial x of of weight vector (k — 2)|? in Py is said to be
strongly inadmissible if there exist monomials y1, o, ..., y; of the same weight vec-

tor (k — 2)|? such that y, < z, 1 <u <t and

T ~gy1+y2+ ...y mod(P.aq))-

Obviously, if x is strictly inadmissible, then x is strongly inadmissible.

By a direct computation we can show that the monomial r = zyz3x52522 of

weight vector (3)|® in Ps is strongly inadmissible but it is not strictly inadmissible.
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Proposition 3.2. Let 2 be a monomial of weight vector (k — 2)|* in Py. If x is
strongly inadmissible, then x is inadmissible.

Proof. Set s = a(k —2). Then
k—2=2" 4202 4 4201 42k
where t1 >ty > ... > ts_1 > ts = ((k—2) 2 0. Then, we have
(k—2)(2% —1) =24 podtta 4 4 odftemr g o0t _ |4 2
= Z (Zdl - 1)7
1<i<k—2
where
d+t17 1 < 1< S,
di=<d+ts—i+s—1, s<i< k-3,
dys=d+ts—k+s+1=d—-dk—-2), i=k—2.
It is easy to see that dy > do > ... > dy—3 = dp—2 = d — d(k — 2). Hence
z = Hf:_f 22" is a minimal spike of degree (k — 2)(2¢ — 1) and wi(z) =k—2

for 1 < j < k—2. By Theorem [2.14] we have Py, 4 C AT P. Hence x is
inadmissible. g

Proposition 3.2.5. Let c,d,e be positive integers and let u, x, y € P, be mono-
mials such that w(u) = (k — 2)|°, w(z) = (k — 2)|¢ and w(y) = (k — 2)|°. If z is
strongly inadmissible, then uxzcyZCM s also strongly inadmissible.

Proof. Since z is strongly inadmissible, there exist monomials y1,¥s,...,y: of the
same weight vector (k — 2)|%, g1 € P, ((k —2)|) and g2 € Pyi,q) such that y; < =
fori=1,2,...,t and

T=Y1+Y2+ ...yt g1+ g2+ Z 8¢’ (hy),
1<j<24

where h; are suitable polynomials in Py. Since w(u) = (k—2)|° and w(z) = (k—2)|¢,
using Proposition [2.4 and the Cartan formula, we get

c c+d coC c c+d _ c e
u(Sq'(hy))* y* " = S (uh y* ) mod(P (k= 2)[° ),

for 1 < j < 2%. Combining the above equalities gives

c gctd c ¢ gctd c octd

T = 3wy ugd T gl y?
1<kt
+ 30 S (uh ) mod(Py (k- 2)[7FH),
1<j<24

Since w(u) = (k—2)|¢, we can easily check that uyfcyQCM < quCyQCM for1 <1<t

ug? 2" € Pk_((k 2)|etdte) and ug2 > € P,c+d+e)- Hence, the last equality
+d
implies that uz? y?" " is strongly inadmissible. 0

Proposition 3.2.6. Let d > d(k — 2) + 2 and let x = Ht VX7, where 1 < iy <
Jt <k for 1 <t <d. If the monomial x is admissible, then i1 < iz < ... < ig and

J1<je<... < Ja.
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Proof. Suppose z is admissible. By using Lemma [3.2.4fi) and Theorem one
gets i1 < i3 < ... < 7g. Combining Lemma ii) and Theorem gives j1 <
Jj2 < ... < jg—1. So, we need only to prove jg_1 < jqg-

Suppose the contrary that j; < jg—1. We proved the proposition for the case
g2 < ig—1 < ig and jg—o & {i4—2, ta—1, %d, jd—2, ja—1}. The other cases can be
proved by similar computations. Then, we have z = yY® with

4 2 S .3 5 6 .3 6 5 77
de 2,Jd— 2X1d 1,Jd— 1X’dﬂd _xld 2x2d 1xldx]d 2x]d 1deZ ’

and Y = Hd Sx27 7 =X,

[ Td—2,%d—1,%d, Jjd—2,Jd—1,Jd"
we get

3 5 5.3 6 7y 8 5 6 .3 5 v 8
T =Ty, Uiy 1xldxjd 2Tjas ZdZ Y +x1d 2 Tig 1 LigTig oLjy s le Y

+g+Sqt(axd 2l a?ad x% a2 Z77YP)

ld22d11d]d2jd11d

+ S (@3 2 @bt 2% 2 Z7Y®) mod (P ((k —2)|%)),

ld22d11d]d2jd11d

By a direct computation,

with

_ .0 5 5.3 5 7 5 5.5 5 5 7
9= Tiy_ 5 Tig_ 1x1dxﬂd 2Tja lxle +x1d 2Tig 1 LigLig oLy 1x7«dZ

2 : 3 5 7
+ xld 2 ld 1x1d,xjd 2x]d 1x quu’

where the last sum runs over all u € Ng \ {ig—2, iq-1, td, ja—2, ja—1,ja} and Z, =
Z/x,. It is easy to see that if a monomial v appears as a term of g, then wy(v) =k
and wy(v) = k — 5. This implies w; (v) + 2wz (v) = 3k — 10 < (k —2)(22 — 1). Since
d > d(k —2) 4+ 2, one gets g € P q). This shows that x is strongly inadmissible.

By Proposition z is inadmissible. This is a contradiction, so j4—1 < ja- O
Notation 3.2.7. Let S = (s1,82,...,84) be a sequences of integers.
Break S into sections of lengths ¢g, c1, . .., ¢, so that s;_; and s; are in the same

section if and only if s;,_1 = s;. We denote rl(S) = ¢ + ¢c2 + ... + ¢, the reduced
length of S. For example, for S = (2,2,3,1,1,1), we have rl(S) = 4.

We denote by PSqu the set of all pairs (Z,J) of sequences Z = (i1,42,...,%4),
J = (J1,J2,---,7d), where iy, j; are integers such that 1 <i; < j; < k,for 1 <t < d,
and by Plnci the set of all (Z,7) € PSeqz such that 77 < is < ... < iq and
Jj1<ja<...<jg. For (Z,J) € PSeqz, we denote

_ 2d7t
Xag =[] X2, €Pe
1<t<d

Proposition 3.2.8. Let (Z,J) € PInci. If the monomial Xz 7y is admissible,
then 11(Z) < (’5) and 11(J) < (g)

Proof. We prove 1r1(Z) < (g) Break 7 into sections of lengths by, by, ..., b, so that
is—1 and 4; are in the same section if and only if i, 1 = i;. We prove b, < k —u
for 1 < u < r. Suppose the contrary that there is an index u, 1 < u < r, such that
by =2 k —wu+ 1. Then, there is to such that i(;y4s) = i(o41) for 1 < ¢ < b, and
ity < i(to41)- Note that i 41) > v+ 1. We have

gd—to—bu

by
gd—t 2bu—t gd—t
X(I;j HX%Jt (H U(tg+t) T (tg+t) H le]t :

t=1 t=to+by+1
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Since i1y4+¢ = 9,41 for 1 <t < by, we have

ba by
. obu—t _ . obu—t
Y= HXi(to+t>J(to+t> - f’( YJ‘(toﬂ—l))’

t=1 t=1
where ¢ = i4,41 and Y, = x1...3p ... 2p—1 € Pp—y for 1 < h < k— 1. Since f;
is a homomorphism of A-algebras, by Proposition if y # oum (Y T
for all (h;H) € Ny_1 and Y = x1x9...7%-1 € Pr_1, then y is strictly in-
admissible. Hence, by Theorem X(z,7) is also strictly inadmissible. Sup-
pose y = (;S(h;H)(Yzb"_l) for suitable (h;H) € Nj_;. Since b, > k — u and
u—+1 < ’it0+1 < it0+2 < jt0+2 = h+1, we have h 2 U+1, E(H) § k—u—2
and b, — ¢(H) > 3. Hence, we get ji,+1 = Jto+2 = Jto+3 = b+ 1. Then, we obtain

to—1 gd—tg—3 d
Xz =[] X0 (x8 ;. X] [T x.
(z,7) — it,Jt Lt Jtg ™ ttg41.Jtg+1 Te,Jt "
t=1 t=to+4

by Theorem [2.9, Xz, 7) is strictly madmlssible This contradicts the hypothesis
that x is admissible. Since b, <k —u for 1 <u <r <k — 2, we get

By Lemma (iv) the monomial X? ot Xi?to+17jto+1 is strictly inadmissible. Hence,

T

Zb > (k —u)<§(k¢—u)— (;)

u=1

We now prove rl(J) < (’;) Break J into sections of lengths cg, c1, . . ., cs so that
ji—1 and j; are in the same section if and only if j;_1 = j;. We prove ¢, < k4+v—s
for all v, 1 < v < s. Suppose there is an index v, 1 < v < s such that ¢, > k+v—s,
then there is to such that ji,++ = jro+1 > Jr, for 1 <t < ¢,. It is easy to see that
Jto+1 < k+v —s. Then we have

Cy Qd—tofcv

d
2d t H 2c,,—t H 2d t
I J) T H Xlt \Jt ( U(tg+t) 5T (tg+t) Xlt Jt
=1 t=to+cy+1

Since jiy4t = Jro+1 for 1 <t < ¢, we have

Cy

L 2cv7t H 2c.,, t
z = H Xl(t0+t)7](t0+t) f]( U(tg+t—1)

t=1 t=1
where j = ji,4+1. Since f; is a homomorphism of 4-algebras, by Proposition
if 2 # ¢(h;H)(Y2C”_1) for all (h; H) € Ng_1, then z is strictly inadmissible. Hence,
by Theorem X(z,7) is also strictly inadmissible. Suppose z = gb(h;H)(YQCUA)
for suitable (h; H) € Ng—1. Since ¢, = k+v — s and 444t < Jeg+1 < k+v — s, for
1<t<ey, weget b(H) < k+v—s—2. If¢(H) <k+v—s—2, then ¢, —¢(H) > 3.
Hence, we get 44,41 = t1y+2 = t,+3 = h + 1. Then, we obtain

to—1 9d—tg—3 d

_ 2d t 8 7 2d7t
X(I,J) - H Xlt Wt (Xito JJto Xit0+17jt0+1) H Xit:jt :
t=1 t=to+4
By Lemma ( v), the monomial X? e tho“m ., isstrictly inadmissible. Hence,

by Theorem L X (7,7 is strictly 1nadm1881ble If¢(H)=k+v—s—2,theni, =1
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for 1 <t <tg+1and ¢, —¢(H) > 2. This implies 44,12 = 9,41 = 1. Then, we get

9d—1t0—2 d

to—1
_ 2971 (x4 3 241
Xz = [T X% (Xl,jtoXLjf,Oﬂ) IT X2,
t=1

By Lemma iii), the monomial X7 . s X 7. isstrictly inadmissible. Hence,
sJtg Jt +1
by Theorem X(z,7) 1s strictly inadmissible. ThlS contradicts the fact that z is

admissible.
Since ¢, < k4+v—s—1for1 <v<s<k—2, one gets

ch\vf:l k+v—s—1):i(k—u)<(];>.

u=1

The proposition is completely proved. O

From the proofs of Lemmas Proposition and Theorem we easily
obtain the following.

Proposition 3.2.9. Let d > (4). For any (H,K) € PSeq, we have

min IC

Xw,x) 4 Z Z X(z,07) mod(Pr.q)),
u=min H+1 (Z,7)EB,

where By, is a set of some pairs (Z,.J) € PIncy such that ri(T) < (g), ri(J) < (]2“),
minZ = min’H and min J = u.

3.3. Proof of Theorem [1.5l

Let n = Zk_2(2di — 1) with d; positive integers such that d; > dy > ... >
dp—3 > dp_o :=d, and m = Y F 3 (2di~d _ 1),
Lemma 3.3.1. Let d > d(k —2) and let f,g € (Px)(x—2)(24—1) be homogeneous
polynomials and let y € (Py)m be a monomial. If f =~y (x—2yj4) g mod(P.a)), then
= gy™
Proof. Note that z = Hf 12332 '~1is the minimal spike of degree n and w;(z) = k—2
for 1 <t < d. Suppose f = g+g14+2. 1< ;00 S¢ (hj), Where g1 € P(k 4) and suitable

polynomials h; € Py. By Proposition S¢? (h)y* =S¢’ (hjy ) for 1 < j < 2%,
If a monomial w appears as a term of the polynomial g;, then there is an integer
h, 1 <h<d-d(k—2), such that

i?‘*lwi( < (k—2)(2 ZT !
i=1

By Theorem wad is hit, hence the polynomial glde is hit. This implies
fy2* = gy?*. The lemma is proved. O

Definition 3.3.2. Suppose dy > d(k — 2), and B 4, is a subset of Plncgo. The
set Bk,d,) is said to be compatible with (k — 2)|90 if all of the following hold:

i) For any (Z,J) € Bk,dy), 1M(Z) < do — 2 and 11(J) < do — 2,



16 NGUYEN SUM

ii) For any (H,K) € PSeq®, we have
min KC

X2,6) ~do Z Z X(z,7) mod(Pk,dg)), (3.1)
u=min H+1 (Z,7)EB,

where B, is a set of some pairs (Z,J) € B4, such that minZ = minH and
min J = u.

Obviously, Proposition shows that for any dy > (g), the set
— . k
By = L@ CZ, (I~ ]7) : (Z.7) € Pincf?). i = minZ, j = min 7}
is compatible with (k — 2)|%. By a simple computation, we get
_ k
1Bk a0)l = \Plnc](j)\ < 2= 9k )2kt — 1),

Theorem follows from this inequality, Proposition Theorem and the
following.

Theorem 3.3.3. Letk >4, n= Zf:_f(Qdi — 1) with d; positive integers such that
dy >dy > ... > dpg>dpo=d>dy>dk—2), and m = Y12 (2%4 — 1).
Suppose the set B, 4,y C Plnci0 is compatible with (k — 2)|%. Then,

U {Xan @) 2 Japn (@) 2 € Bes(m), i =minZ, j = min 7 }
(Z,T)€EB(k,dq)

—~—0
is a set of generators for Ker(Sq ).n). Consequently
—~0
dimKer(Sq )(’fﬂl) < |B(k.,d0)|dim(QPk_2)m.
We need the following lemma for the proof of the theorem.

Lemma 3.3.4. Letn, m and B 4,) be as in Theorem. Let yo be a monomial
in (Pr)mo—1, Yu = Yoy for 1 <u < k, and (Z,T) € B(k,q,), i = minZ, j = min J.
Then we have

d d,
Xzoy = Z Z Xuwyye ', (3.2)
S UVIEB.
d, d,
Xagy; = Z Z Xuwys (3.3)

1<v<k
,U;M u,vyec,

where B, is a set of some (U,V) € B q,) such that minU = u for u < i and
minlf =i for u > i; C, is a set of some (U,V) € By q,) such that min) = v for
v < jand minY =j forv > j.

Proof. Applying the Cartan formula, we have
Xyl = > Xujyo+ Y Xjuys + S¢" (X;09).

151;;1 j<u<k
We have X(I,J) = X(I\i“f]\j)(Xi’j)Qdo_l and

do—1 X(u|(2\i),7) if u < j,
X(I\Z'J\')(Xu,j)2 = { ' . _
J X(jl@iyul(z\), i uw>7.
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Using the Cartan formula, Proposition and Theorem we can see that the
dp—1
polynomial X(z\; 7\;)(Sq" (X;43))*"

2d0 _ 2do 2do
Xani = Y, Xu@onbe + Y, XG@oul@\i)e
li;fj j<u<k

Since r1(Z) < dp — 1 and 11(J) < dp — 1, we have min(u|(Z \ ¢)) = u for u < i,
min(j|(Z \ 7)) = min(u|(Z \ 7)) =4 for i < u < j and min(u|(J \ 7)) = j for u > j.
Hence the relation (3.2)) follows from Lemma and the condition of By q,) in

Assumption
The relation (3.3 is proved by a similar computation. O

is hit. So, we get

Lemma 3.3.5. Let n, mqg be as in Lemma and let P}(n) denote the subspace
of (Px)n spanned by all monomials of the form X(J o (fily )2 with (1,7) €

)
Bidg), i = minZ and y € (Py_1)m,. Then Ker(Sq k) C [Pr(n)].

Proof. Let x be a monomial of degree n such that [z] € Ker(%o)(km). Using
Lemmas and we can assume that w;(z) = k — 2, for 1 < i < d. Since
d > dy, there are sequences of integers H = (a1, aa,...,aq4,), K = (B1,582, .-, Bd,)
such that 1 < ay < f; < k, for 1 <t < dp, and = = X(H,,C)gjzdo, where y is a
monomial of degree mg in Pj. By the condition of B, q,) in Definition lm, the
monomial Xy k) is of the form . Hence, using Lemma w one gets

min K

iU:X(H,iC)ﬂ2dOE Z Z Xz.7 ",

u=min H+1 (Z,T)€EB,

where B, is a set of some (Z,J) € Bk, do) such that min J = minH and min J =
u. For ¢ = minH, we have y = z¢f;(y) with a a non-negative integer and y €
(Pi—1)mg—a- We prove the lemma by proving [X(I,j)(a:?fi(y))2d0] € [PL(n)] for all
(Z,J) € By, i <u < min K. We prove this claim by double induction on (a, ).

If a = 0, then the claim is true for all 1 < ¢ < k. Suppose a > 0 and the claim
is true for (a — 1,4) with 1 <7 < min J.

For ¢ = 1, using Lemma with yo = 257" f1(y), we get

Xz y)*" = > > Xy (@87 firlmeaw)*”, (34)

2<t<k
t#min J (Z/l,v) EB(t’l)

where By, 1) is a set of some (U, V) € B(k,do) such that minZ/ = 1. By the inductive

hypothesis, [X vy ()" fi(zi-1))*"] € [Pi(n)] for all U, V) € By,1) with 1 <
t # min J. Hence, the claim is true for (a,1).
Suppose ¢ > 1 and the claim is true for all (a/,t), 1 < ¢ < ¢, and for (a — 1,1).

Applying Lemma for yo = ¢~ fi(y), we have

Xz,9) (@ Z Z X,y (xea™ Lfiy))2”

1<t<i (U,V)EB+,4)

T Z Z X (@™ filwe- 19)) . (3.5)

i<t<k
t;min] (Z/l V)EB“ )
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where B ;) is a set of some (U, V) € B q,) such that min/ = t for t < i and
miny/ = ¢ for t > i. From the relation (3.5) and the inductive hypothesis, we see
that our claim is true for (a,4). This completes the proof. O

We now prove Theorem [3.3.3]

Proof of Theorem[3.3.3. Denote by Pk (n) the subspace of (Py), spanned by the
set Bi(n). We prove that Ker(SqO)(k’n) C [Px(n)]. By using Lemma we
prove that [X(I’J)(fi(y*))Qd] € Pr(n) for all (Z,TJ) € B,q,) with minZ = i and
y* € (Pr—1)m,, where mg = f:_f(2df*d0 —1).

Set j = min J, we have f;(y*) = x?f(i,j)(y) with b a nonnegative integer and
Y € (Pr—2)mo—b- We prove [X(z, 7) (x?f(i’j)(y))Qd] € [Pr(n)] by double induction on
b, 7).
( ,{f)b = 0, then y € (Py—2)m,- Since wy,(y) = k —2 for 1 < u < d — dy, we
get y = Y2d7d0_1(g])2d7d0, with § € (Px—2)m and Y = z125...25_o. Note that

d—dg _ ~ — . .
Ja.)(Y) = X;j, hence f; jy(y) = XiQ,j ’ 1(f(i,j)(y))2d “ Since Byj,_2(m) is a set

of generators for (Py_2)m, there are z1, 23, ..., 2, € Bp_a2(m) such that
gjzzl—i—zQ—l—...—l—zr—i—ZSqt(ht),
t>0

where h; are suitable polynomials in Py_5. By using the Cartan formula and
Theorem we see that the polynomial Xz 7) (Xi,j)Qd_Qdo (Sqt(f(iﬁj)(ht)))Qd is
hit. Since f(; jy : Py—2 — Pk is a homomorphism of A-algebras, we get

Xz.n(fap@)* = > Xaz.zl 2 (S (za)? € Paln).

1<ugr

Hence, our claim is true for (0,7), i < j < k. We assume b > 0 and our claim holds
for all (b—1,7) with i < j < k.
For j = 2, we have i = 1. Applying Lemma 4 for yo = :L‘2 f(l 2 (y) w

obtain
d _ d
Xa.n@fany @) = DY Y Xuw @ (@)™,
3<t<k (U,V)EB;

where B; is a set of some (U, V) € B q,) such that min) = 2. The last equality
and the inductive hypothesis imply our claim for (b, 2).

Suppose j > 2 and the claim holds for all (b/,t) with 1 <4 <t < j and for
(b—1,5). Using Lemmaw1th Yo = :17 f(m (y), we have

d d
Xan@fanw)® = > Y Xww(filzal i)™

1<t<i u, V)EBt

+ Z Z wv) (fi(@e- 1% 11/))2d0

i<t<j (U,V)EB:
+ 30T X @ g (@),
J<t<k (U,V)EB;

where B; is a set of some (U, V) € By q,) such that minV =i for t <4, min)V =t
forv <t < jand minV = j for ¢ > j. From the last equality and the inductive
hypothesis, our claim is true for (b, j). The theorem is proved O
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4. APPLICATIONS TO THE CASE k =5

In this section, we explicitly determine the spaces QP5((3)|?) for d > 5. By using
this results and Theorem [3.3.3] and prove Theorems [I.6] and

4.1. The admissible monomials of the weight vector (3)

where

‘d in P5.

From the results of Kameko [I0] and our work [33] we see that if d > 4, then
QP ((3)|%) = ([(z12223)% " V(3ya) and QP ((3)|7) = ({[waul(aye = 1 < u < 11}),
Wy, 1 = xlsc%d*z:bgd*lmid*l Wq2 = xlmgdflxgdfzxidfl
wWq,3 = xlmgd_lmgd_lxid_Q Wq,4 = x%d_lmga:gd_Qxid_l
Wy 5 = xfd71x2x§d71x1d72 Wy 6 = x§d71x§d71x3x2d72
Wq,7 = x?x%d%xgd*zx?d*l W8 = x?m%d%xgd*lxzdﬂ
Wq,9 = x?zgd_lxgd_?’xid_Q Wq,10 = x%d_lajgxgd_‘?zid”

7,245 2d73x2d72

Wd,11 = T1Ty

T3

4

Applying Proposition we get dim QPY((3)|1) = (g) —+ 11(2) = 65. So
we need only to determine QP5((3)|¢). The main result of the subsection is the
following.

Theorem 4.1.1. Let d be a positive integer. If d > 5, then QP ((3)|) is an Fo-
vector space of dimension 90 with a basis consisting the classes represented by the
mononials aq:, 1 <t < 90, which are determined as follows:

1. xlxgxg
4. xlxgd
7. 2175
10.
13.
16.
19.
22.
25.
28.
31.
34.
37.
40.
43.
46.
49.
52.
55.
58.
61.
64.

d__ d__ d__
2xi ng 1
d__ d__
x;:,:ci ng !
249 9d_9
1‘31‘;1 Ty ]
:chg _2z4x§ -2
d_ d_ d_
xlwgazg lxi lxg 4
291 291 o 2¢_4
ity s Tals
xf _1552:52 _1zix§ -4
d__ d__ d_
xlw%mg 3:102 1x§ 2
241 2¢_3 2¢_2
i x2m§x4 3335
3,272 9294 9291
T1TTy Ty X
d__ d__ d__
33130%3:% 13:2 2274
294 2¢_9 2d_7
xi’x2z3 Ty Cxy
3 299 2d_1 2d_4
TiToTy Xy g
d__ d__ d__
xi"x% 11‘333421 4x§ 2
d__ d__ d__
x? 1x2x§xi 224
d__ d__ d__
xi’x% ngxi 4x§ 1
d__ d__ d__
xi’x% 1x§ 3@2196? 4
d__ d__ d__
wiadas Oxf Tl 4
d__ d_ d_
d__ d__ d__
xlxg ngxi 3x§ 2
d__ d__ d__
x?x% 3x3xi ng 2
6..29—5_2¢-3 2¢_2
T1r3T3 Xy Xy

-2
241

291
L1

2. T3
5. 175
8. T1T5
11.
14.
17.
20. x
23.
26.
29.
32.
35.
38.
41.
44.
47.
50.
53.
56.
59.
62.
65.

d__ d__ d__
2 2%21 1333 2
241 _2¢_2
d $3f4 xsd
241 242 242
T T4
2 2di4 2d—152d—1
R
291 9o 29-4 291
$1:’f2 x3x4d x5d
241 2 2¢-4 2¢_1
xld x2dx3x4 x5d
2,2¢-1 243 299
xlxszd :v4d x5d
3. 204 2992 92d¢_
xlxzmgd m4d x5d
3,292 9291 929 4
Titaly Ly o T5
2¢—1_3 29-4 2¢_2
T1Ty T X3Xy Ty
3 294 291 2¢_9
1'11»‘21:3(1 $4d l‘5d
3 291 294 29 9
xlngc?, x4d x5d
3,.2¢-1 242 2¢_4
Tity T3ty s
291 3 24—
] dx2x3z4d )
xi’x% 73:3%;33 71m§ -
241 3 29-3 9 2¢_4
T rox 5T
1 2 4
3.5 2'1—? 296 24—4
xlxzxgd z4d T )
3,293 2d_9 92d_9
T1T3T3 Xy X
3 2¢_3 2d—2x2d—2

292

TiTaly Ty 5
d__ d__ d__
wixy Pad Prgal 2

d_ d_ d_
xlxgxg 6(Ei 31‘? 2

3. 1'1.’,521'3
6. x5

d_
9. x% 13:23:3334

12.
15.
18.
21.
24.
27.
30.
33.
36.
39.
42.
45.
48.
51.
o4.
o7.
60.
63.
66.

d_ll'id_zl’gd_Q
292

2df3$gd—2
Ts
zlxgxgd_lxid_4x§d_l
x1m§d71x§x1d71x§d74
x%d_la:gx%xid_lxgd_‘l
xlxgxgd_?’xid_ngd_l
:legd*lx%midf?’mgd*z
mlxgxgd_4xid_1x§d_2
xlxg’xgd*lxid%xgd%
aclxgd*lwga:id%mgd%
z?xgxgd_%id_‘lxgd_l
xi’xgxgd*lxiddxgd%
xfd_lxgxgxid_4x§d_2
z%d_lxgxgzid_ngd_Al
xi’mgd%xgd*lxixgd%
x%x%x%d_6xid_4x§d_l
z%x%d_lxgxid_(axgd_‘l
:Elm%xgd*%id*?’xwﬂ
x%xgxgd_%id_sxgd_g
xi’x%d_gmgxid_?’xgd_Q
:L‘ngxgd*(sa:id*?’mgd*z

22 2d_1
T3
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7,275 _2%-4_ 292 7,275 _2%-2 294 70 2%=5_27-4 272
67. TITyTy Ty X5 68. T1TyTy Ty X5 69. TiTaTy T s
70. .’EIZL‘QI’% “Pad _2m§ T xixy Pwzr; _4x§ 272, 2lay Pasad _ng -
7.2%-5_27-3 92 294 3..3,2%7—-4_27-3 272 3..3,,27-3_2%-4_ 272
73. x{T5 Ty AT 4. TITHLG Xy 5 75. TITRL3 Xy 5
76. x?x%x% 32 _21‘? 17 el Padad _4m§ ~2 78 adad Padad _2333 -4
d__ d__ d__ d__ d__ d__ d__ d__ d__
79. wiadas Pxf Pl 7?0 80. afadel %af a2 7% 81, adafal Paxi tal 2
d_r od_ d__ d_ d_ d__ d_ d_ d__
82. x‘i’m%x% "xi 23:% 483 xi”mgmg 7963 45(}?) 2 84, x?x%x% 7953 2x§ 4
7..3,.24-7_2%—4 2?2 7..3,24-7_2¢-2 2¢_4 3..7.,.24-3 296 274
85. TIToa Ty L5 86. TiToT Xy 5 87. TiTHT3 Cwy w5
7,.3,.29-3_27-6 214 7,295 5 2¢-6_ 204 711,211 246 2¢ 4
88. xywyry Xy T 89. xyxy; Cxyxy T 90. zx5 T35 Ty T
4.1.1. Generating sets for QPs((3)|?) with d < 4.

Proposition 4.1.2. We have
: 1y .
1) Bs((3)') = {Xap: 1 <a<f <5
ii) BF((3)|?) is the set of the monomials agy, 1 <t < 15, which are determine
as follows:
1. xlx%xga:éa:g 2. xlxgmgxixg 3. xlxgzgzcéxg 4. xlzc%mgxixg
5. TixswzxTywy 6. wr5wET4xy T, T1THT3TLTs 8. TTETZT4TE
9. zya3zizizs  10. vizdrsried 11 mpadzdzga? 120 madadadas
13. azowszia?  14. alwondayx? 15, adwoaiadas.

Proof. For d = 1, if z € P5((3)|'), then w(z) = (3)|' if and only if z = X, 5 with
1 < a < B<5. Since X, 5 is admissible, we see that the first of Proposition
is true.

From the results in Kameko [I0] and our work [33], we have B3 ((3)?) =
{x32323} and BJ ((3)|?) = {wa,1, w22, .., w26}, where

W21 = 901553333332, W2 = xlxgxgxi, W2,3 = xlxgxgxi,
’U)274 = xif:chgxi, W25 = CB?.’EQZL’%Z‘E, W26 = x?mgxgxi
Hence, applying Proposition we get dim QPY((3)|?) = (g) + 6(2) = 40. So,
we need only to determine QP5 ((3)?). By a direct computation we see that if
x € PF((3)]?) and = # ag for all ¢, 1 <t < 15, then o = XiQI,lei'z,jz with i1 > io.
By Lemma z is inadmissible.
We observe that for 1 < ¢ < 15, agy = x; fi(ba,;) with by, an admissible monomial
of degree 8 in Py and 1 < i < 5. By Proposition az+ is admissible. The
proposition is proved. O

Consider the case d = 3. From the results in Kameko [10] and our work [33], we
have Bf ((3)?) = {(z12223)"} and B ((3)|®) = {ws, : 1 < i < 10}, where w3,
1 <4 < 10, are determined as in the beginning of this subsection. Namely,

— 6.7 .7 — 76,7 — 776 — 7 6.7
W31 = T1THT3T, W32 = TITHT3T) W33 = T1ToT3T, W34 = T{TaT3Ty
— T 7.6 — T 7 6 — 1325.,.6,.7 — 132.5.,.7,.6
w3’5 — .%‘131‘2.%‘31'4 wg’g — .%‘131‘2.7;3.%4 w3,7 — $1$2$3$4 w3,8 — l‘1$2$3$4

— 23.,.7,.5,.6 — 7375 .6
w379 — .1?1132373.234 w3710 — J)ll‘2$31‘4

So, using Proposition we get dim QPY((3)[%) = (3) + 10 (i) = 60. We need
to compute QP5 ((3)%).

We denote by A(3) the set of the monomilas a3, 1 <t < 50, which are given in
Theorem [£.1.1] for d = 3 and five monomials:

— 33,447 — 334,74 — 3.,.3,.7,.4,.4
a3.51 = méx%xgxixi @352 = z%xgachixi A3 53 = LT1XoL3L 4Ty
a/3’54 == $1$2I3$4$5 a3,55 - .%‘156‘21‘31‘4375
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mials az ¢, 56 < t < 70 which are determined as follows:

56. xizsxiaad 57, myadalaial 58. wyaSadaial 59. adwoxiala’d
60. 23xoxSaial 61. x3zdrsalad 62 zirdaSwaxl 63, pirdriadad
64. z3xdxixial 65, xdxixdaiad  66. airdafalad 67, p3xfadadad
68. xizdairiad  69. rizdadabat  70. xixdaSaiad

21

= A(3) U C(3), where C(3) is the set of the mono-

We prepare some lemmas for the proof of this proposition.

Lemma 4.1.4. Let z is one of the monomials: 2525wy, x1232823, v1a823ah,
ra§xixd, virdesal, edviadal, 23xdaiad. Then, the monomial x] fi(x), 1 <i < 5,

is strictly inadmissible.

Proof. We prove the lemma for some monomials of the form f5(z). The others can
be proved by similar computations. We have

rraSrSraal = viadaSalal + xyaSaiatal + Sqt (e adada,al)

+ S¢* (rrxdaiesal + xiadairard) mod(Py ((3)%)),
wrxdeSeial = vyaoaSalal + xyadadalal + Sqt (22 woadadal)

+ S¢* (rraxiaial + xizoxiaie?) mod(Py ((3)%)),
mlxgxga:ﬁxg = x1x§x§x4x5 + xlmgxgx4x5 + m1x§x§m4x5 + xlxgxgximg

6.2 5.7 2.3.3 5.7, .2.3537, 25337
+ ziafaiaial + Sq' (afadziala] + sladadaial + aixdaiadal)

+ Sq2 (xlzgxgxizg + x1x§x§$4x5 + xlmgxngmg
+wajeiriel + mafaiaiel) mod(Py ((3)1)),
edriririal = padadaial + a3adalalal + St (e3axdasaiall)
+8¢* (e}a3afaiag) + S (viajaiaial) mod(Py ((3)F)).
Hence, the above monomials are strictly inadmissible. O

Lemma 4.1.5. The following monomials are strictly inadmissible:

3,.5,5,2,6 .3.5.5.6.2 .3.5.6.5.2 ,3.4.5.3.6
N R 0 T A
TIT5TZLATE  TITOLZTILE  LITIT3LLT;  TILHT3TATE

Proof. We prove the lemma for the monomial z = z2$25x427. The others can be
proved by a similar computation. We have

v = siwyagaias + wiasebeies + Sq' (vlejegaias)
P((3)1%)).

These equality implies x is strictly inadmissible. O

+ S¢* (w3 aSaiad) + Sqt (ziadalaiad) mod(

Proof of Proposition[{.1.3 By a direct computation we see that if z € P ((3)[?)
and x # aszy for all ¢, 1 < ¢t < 70, then either x is one of the monomials as given
in Lemmas 4.1.5}7 or x is of the form X4 Xi ]1Xi27j2 with i; > is. Hence, by
Lemma

4(i) and Theorem [2.9} z is 1nadm1551ble.

We now prove that the set {[as;] : 1 < t < 70} is linearly independent in
QPF(3)P).

Consider ([A(3)]3)5) € QP5((3)]*) and ([C(3)](3))5) C QP5((3)[*). We see that
for 1 <t < 55, azy = «7 f;(bs,) with bs; an admissible monomial of degree 14 in
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Py. By Proposition :2.11|, as,t is admissible. This implies dim([A(3)](3ys) = 55. On
the other hand, we have ([A(3)](3)3s) N {[C(3)](s)2) = {0}. Hence, we need only to
prove the set [C(3)](sys is linearly independent. Suppose there is a linear relation

Z Yeas,e =32 0, (4.1)

56<t<70

where v, € Fs.
Applying the homomorphism p;,;) : Ps — P4 to (4.1)), we obtain

P(1;2)(S) =3)p3 (V58 + Ye7)ws,10 =33 0,

P(1;3)(S) =3)p3 (V57 + Y64)ws,0 =(3)p3 0,

P(1;4)(S) =3)p3 (v56 + Y65 + V68)W3,8 =(3)p3 0,

P1;5)(S) =@3)p3 (756 + V57 + V58 + Y66 + Y60 + Y70 W37 =(3))3 0,
P(2:3)(S) =3)3 (Y60 + Y63 + V64 + Y67)W3,9 =(3)p3 0,

P(2:4)(S) =3)p3 (759 + Y65) w38 =(3)p3 0,

P(2;5)(S) =3)p3 (v59 + Y60 + V66)w3,7 =(3)p3 0,

P3:4)(S) =@3)p3 (V61 + V62 + Y63 + V68) W38 =(3)2 0,

P(3:5)(S) =3)3 (V61 + Y60)ws,7 =(3)p2 0,

P(a;5)(S) =3)p3 (V62 + Y70)ws,9 =(3)p3 0.

From these equalities, we get v67 = V58, Y614 = V57, Y65 = V59, V69 = V61, V70 = V62-
Then, applying the homomorphism p(y,; jy) : P5 — Py to , we get
p(l;(2,3))(5) =(3)]2 Y60W3,9 T Y63W3,10 =(3)|3 0,
P(1;2,4)(S) =3)13 (156 + 158 + Yes)ws,9 + Yesw3,10 =3)p3 0,
P(15(3,4) (S) =3y13 (v50 + Y60 + Y66)w3,3 + (V59 + Ve2) w39
+ (756 + V57 + V50 + Y61 + Y63 + Ves)ws,g =(3y3 0.

From these above equalities we obtain g9 = 763 =g = 0and y = 755 for 56 <t <
70 and t # 60, 63, 68. Hence, the relation ) becomes S = 566 =(3)3 0, where
0= Zt¢60763768 as.¢. By a direct Computatlon we can show that a3 70 = x?xgxgxixé
is admissible. So, we get 56 = 0. The proposition follows. O

We consider the case d = 4. From the results in Kameko [I0], we get B3 ((3)[*) =
{(z12273)7} and Bf ((3)|*) = {was : 1 < t < 11}, where w3, are determined
as in the beginning of this subsection. By Proposition dim QP5((3)]*) =
(g) + 11(2) = 65. We need to determined the set B ((3)]*).

For d > 4, we denote A(d) the set of monomials ag¢, 1 < ¢t < 55, which are
determined as in Theorem [£1.11

Proposition 4.1.6. B ((3)[*) = A(4) U C(4), where C(4) is the set of the mono-
mials as+, 56 < t < 89 which are determined as in Theorem ford =4 and
the following monomials:

as00 = rixsalrBrlt  ayg1 = 2Txdxla Pt ay 90 = 2lalafalxld

70729814 707 79,.10,.12
4,93 = L1 ToT3T4T5 4,94 = T1ToT3Ty Ty~ .

We need the following lemma for the proof of this proposition.
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Lemma 4.1.7. Ifx is one of the monomials: v123x3%x3%, 2]woxl0212, 2323222l

wizdaSalt, ixdaltal, then the monomial x° fi(x), 1 < i < 5, is strictly inadmis-
sible.

Proof. We prove the lemma for monomials of the form f5(x). The others can be

proved by similar computations. We have

7,10, 12 15 _ 411,14 15 611,12 .15 78,13, 14
T1X9T3 T4 °T5" = X1Tox3 Ty Ty + X1ToX3 T4 Ty~ + T1ToX3L, Ty
5,.11.,12 15 781315

+ Sqt (x5 adtwfal

7,.9,.12 .15 8,.7,13 15
+ X1X5T3T, X5 + T1 T304 Ty

2/ 2 12,1
+S5q (%xgl";% $55

4 4 7 14,15
+ 8¢ (m12y7524 25

23,1312 15 2. 4.11,13_15
= TiT5x3 T, x5 + TI{ToT3 X, Xy

1/.3 .3 11,1215
+ Sq (zxy7y 14 w5

2,2 3 11,12, 1
+ Sq (xlz%x3 xy :1:55 + xiTyTsxy T
3 4 712, 15

+8¢* (aiwpeies®es” + aizgaiai’es”) mod(Py ((3)[Y))

2 141 4.9 14 1
= xlxgx§$4 1:55 + x:{’zﬂg% x55

+ r1T9x374 x5

47,7, 11, 15
+ziryTsTy T5°)

27,811 15
+ x{Tox3T 4 Ty

+aiadeioi®e;”) mod(Py ((3)[%)

2 5 111215
+ XT3 Ty T

3,87 1115
+airyrsTy 75°)

2871115)

2.8 7 11,15
+ziryrsTy T5°)

rhaa el

w3adafelial®

+ 8¢} atabelellol®) + SeP(eloadaliol
+ Sq* (zfx3ag21 05”) mod(Py ((3)|)).

Hence, the above monomials are strictly inadmissible.

53,614 15
+ 2125257, 75”)

Lemma 4.1.8. i) The following monomials are strictly inadmissible.

g
rirdriteitei?  xdzlridafalt adalaldzltad aladalPafalt
plrdrideitad  adalrilal?xl? 2ladxllzl?zl? olalladzl?al?
plrladalalt  2Tallalalial  2lailaid2bad 2ladalelOxi2.

ii) The following monomials are strongly inadmissible.
3,.13..6,.11..12 .3..13,.7,.10,,12 .7,.7,.9,.14.8
TITS°TAXT, Te®  X]To THTL T~ T {TST3T4 T,

= ziri?adzaBalt y = 2ladzl¥28alt and 2

Proof. We prove Part i) for x
xTxdleda82l*. We have
1223 T3T4T5"

_ 2,115 13 14
T = T{Ty T3T, Ty

1/,.3.7,.3..13..18
+ Sq (zyzya5a,°Ty

+ajajaieitest) + Sq* (rfwfadzitest) mod(Py ((3)[Y)),

5.3 11 12 14 , 5.3 1310 14 , 7.2 13.9 14 , 7.3.9 12 14
Y= XWXz Ty Ty + XT3 Ty Ty + T1ToT3 Tyl + T1XpT3T4 Xy

7.3.12.9 14 1/.7.3.11.9 14 2/ 7.2 11.9 14 , 7.5.7.10, 14
+ayryrgtryry” + Sq (viasey whws) + SqT(viaawy vy + w1ToTsTy T

7.5 11,614 4,5 3 712 14 , 5.3 13 6,14 , 11.3. 7,614
+ 1575 TyTs") + SqC (P sy wsT 4+ T THT5 w4 wE + Ty THTITYTE)

+8¢%(afa3wiadzst) mod(Py ((3)[)),

511 3 12 14 511 _5_10 14 5119 6 14
Z = X{T5 X3X, x5 + XT{Ty X3Xy Ty + T{Ty T3XyTx

79,510 14 7,.10,.5.9 14 7..11,4.9 14
+ X XoT3T, X5 + T Ty T3THT5 + XLy T3X Ty

7.7.3.9 18 , 7 11,3518
T X1 TXZT4T5" + T Ty T3T4 X5

3,.9..5 .14 14
+ X7XT3Ty Xy

3,.7,3,,17 14
+ x7x5T3T, X5

311413, 14
+ T1Ty 3Ty T

3 113 1314 2/ 2 11.3 13 14
+aywy wywy wst) + Sq7 (xiry a3wTs

2,13 3 13 14
+ x7x5"x3x4" Ty

5,.13,.3,.10 .14
T XL X3TY T

1/,7,7.3.5.22
+ Sq (zwyT3T)7]

7 11.3 9 14 2/ 7.7 2.5 22
+ 2125 w37y TE") + Sq7 (v1wyT3 Ty TS
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12,14, 7.1 14 1 14 10,14
+ ajafada®elt + o]l adafatt + el adalelt + 2lalade}alt)

+ 8¢ (elwgaiey®es + afwy wfafag® + afwy afafes’ + o) wladales?)
+8¢% (afxfaizdzst) mod(Py ((3)])).
The above equalities show that x, y, z are strictly inadmissible.
We prove Part ii) for w = z3xi32$zi 212, We have
w = x%x%gxgxi‘lxég + xfx%gxga:%a:%l + xi’x%lmgxi4xé2 + xi’x%?’x%x%x?

3,13, 4 14 11 1(,3,11.3 17 10 , 313 3 13 12 , 3 13 3 14 11
+ iz wyxy vy + Sq (vimy ayry Ty + vy wir, ws” + airy wyr, vy

1 1 1 11,12 1 1 1 11,1

+x?x23x§x4gmg +x§’x23a:gx4 Ty +x§x23xgx43xg +x?x27x§x4 a:50
3,173, 147 20,213 3 14 11 3,135 13,9 5,113 14 10
+ @iy @iy wg) + 5S¢ (via viwy vy + 21Ty w3w ws + 21wy a5Ty @

5..14_3 11,10 5.14_3_14_7 4/.3.11_3_14_10 3,143 11_10
+ XiT5 x3x, x5 + XLy X3Xy J:5) + Sq (x1x2 T3Ty Ty + TiXx5 T3T4 Ty
3,..14,3,14_7 5,135,139 — 4
+ 212y w3y wg) + Wiy 3wy ry mod(Py ((3)]7)).

Since zfzi*zjxj*e? € P54y, this equality shows that w is strongly inadmissible.

The lemma follows. O

Proof of Proposition[[.1.6. Letz € Pi"((3)|*) be an admissible monomial, then =
X, ;y* with 1 <i < j < k. Since z is admissible, by Theorem y is admissible.
By a direct computation we see that if z € Bs((3)[®) such that X; ;22 € P ((3)[%)
and X; ;22 # a4, for all ¢, 1 < ¢ < 94, then either X; ;22 is one of the monomials
as given in Lemmas [3.2.4(iv), [4.1.7, 4.1.8] or X; ;22 is of the form uv?", where u is
a monomial as given in one of Lemmas [3.2.4] .1.4], [£.1.5]and r is a suitable integer.
Hence, by Theorem [2.9] X; ;2% is inadmissible. Since x = X; ;y? is admissible, we
have x = a4+ for some ¢, 1 <t < 94.

We now prove that the set {[as;] : 1 < t < 94} is linearly independent in
QP ((3)]).

Consider ([A(4)]3)4) C QP5((3)]*) and ([C(4)](3))4) C QP5((3)[*). We see that
for 1 <t <55, ast = x}° fi(bs,) with by, an admissible monomial of degree 30 in
P,. By Proposition El, ay, is admissible. This implies dim([A(4)]()4) = 55. On
the other hand, we have ([A(4)](3)4) N {[C(4)]()+) = {0}. Hence, we need only to
prove the set [C(4)](3ys is linearly independent. Suppose there is a linear relation

S = Z Yiaa, =3 0, (4.2)
56<t<94

where v; € F5. We denote vy = Zte,]] ~¢ for J C N.
Applying the homomorphism p;,;) : Ps — P4 to (4.2), we obtain

P(1:2)(S) =(3))+ V58Wa,10 + V{64,79)Wa,11 =(3))4 0,

P(1;3)(S) =(3)]4 V{57,74,91,92}W4,9 T V{65,003 W4,11 =(3)|4 0,

P(1;4)(S) =(3)]4 V{56,68,75,77,81,83,93}W4,8 + V67W4,11 =(3)|4 0,

p(1;5)(5) =(3)]4 V{56,57,58,64,65,67,76,78,82,84,87} W4,7 + V68 W4,11 =(3)|4 0,
p(2;3)(5) =(3)]4 Y{60,63,74,79,80,90,92}W4,9 + V{66,013 W4,11 =(3)|4 0,
P(2;4)(5) =(3)]4 V{59,70,75,85,93}W4,8 T YeoW4,11 =(3)|4 0,

P(2;5)(S) =(3)]4 Y{59,60,66,69,76,86,88}W4,7 + Yr0W4,11 =(3)|4 0,

p(3;4)(5) =(3)4 V{61,62,63,72,73,77,80} W48 T Yr1wa,11 =3)4 0,



THE KERNEL OF KAMEKO’S HOMOMORPHISM 25

P(3:5)(S) =(3)4 V61,7178 Wa,7 + Yr2wa11 =(3))4 0,
D(a;5)(S) =(3))4 Ye2wa,7 + Y73wa,11 =32 0.
From these equalities, we get 758 = Y62 = Y67 = Y68 = Y69 = Y70 = Y71 =
Y2 = 173 = 0, Y79 = Y64, Y90 = Y65, Y91 = V66, Y78 = Y61 Lhen, applying the
homomorphism py,; ) : P5 — P4 to , we get
P(1:(2,3)) (S) =(3)1* V{57,60,74,92}W4,9 + V63Wa,10 + Y80W4,11 =(3)|2 0,
P(1;(2,4))(S) =(3)]4 V{56,59,64,75,77,81,82,83,85,93} W4,8 + Y77W4,10 + Y81W4,11 =(3)|4 0,
P(l;(3,4))(5) =(3)|4 V{56,61,63,65,66,74,75,77,80,81,83,84,85,89,92,93,94} W48 + V83W4,11
+ Y{59,60,66,76,86,88} W4,3 + Y{57,66,74,75,85,87,92,93,94} W4,9 =(3)|4 0.
From these above equalities we obtain 63 = 777 = Y80 = Y81 = 783 = 0 and
Y89 = Y61- Then we have
p(l;(2,5))(5) =(3)|4 V{56,57,59,60,61,65,66,76,82,84,86,87,88} W4,7
+ Y61Wa4,10 + Ys2W4,11 =(3))2 0,
p(1;(3,5))(5) =(3)[* V{59,75,85,93} W4,2 + V{56,57,64,66,74,76,82,84,86,87,92,94} W4,7
+ V{57,66,74,76,86,87,92,94} W4,9 T Y84W4,11 =(3)+ 0,
p(1;(4,5))(5) =(3)|4 7{60,64,65,74,92} W4,1 + V{56,57,64,65,75,76,82,84,87,88,93,94} W4,7
+ V{56,75,76,82,84,88,93,94} W4,8 T Y87W4,11 =(3)+ 0.

Computing from these above equalities we get vz = 0 for ¢ ¢ {56, 57, 59, 60, 64,
65, 66, 74, 75, 76, 79, 90, 91, 92, 93, 94}, and the relation (4.2]) becomes

S = 5101 + 5202 + 5303 + 6404 + 6505 5(3)‘4 0, (43)

where 61 = v56 + V57, 92 = Y60, 03 = V57 + Y60 + V74, 04 = Y56 + V75, 05 = V56 and
0., 1 < u <5, is determined as follows:

0 =1z %xélle’x%‘l + xlxgxéoxf’x}f + xi’x%xé%}f’xé‘l + x‘;’x;mgx}fﬂcé‘l,
0y = x?x2$§4zi3mé4 + x?x%xézmigz? + xzmgxéox}lgzz:ézl + x{m%x%x?ajé‘l,
0y = a3a302 3010 | 2T laS a0,
01 = adudallaltelt + oTaludalelt,

3,.13,.14 .14 314,13 14 6,11 13 14 13,14 .14

05 = v12525°2, 05" + 212505 4725 + T129%5 T, %5 —l—x‘;’xgm:z Ty Xy
bafrlelallalt 4 rlelalfallt 1 oladalielinl? 4 afadelleliald
+ m{x%m%x}lox?.
By a direct computation we can show that the monomial ay 94 = z]zlzi2}0zi?

is admissible, hence from one gets d5 = 0. By applying the homomorphism
ps: Ps — Ps to , we get
pa(S) =(3)j4 0101 + 0202 + (63 + 04)03 4 0404 4 0405 =(3)}4 0.
This implies 64 = 0. Applying the homomorphism p3 : Ps — P5 to (4.3) gives
p3(S) =(g)j+ 0101 + 0202 + 0304 =(34 0.

Hence, 63 = 0. Now by applying the homomorphism ps : Ps — P to (4.3) we
obtain
p2(S) =314 0101 + 2035 =(3))4 0.
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This implies 65 = 0. Finally, applying the homomorphism p; : Ps — Ps5 to (4.3) we
obtain p;(S) =3))1 6162 =(3y2 0, hence J; = 0. From the above equalities we get

~v¢ = 0 for all ¢, 56 < r < 94. The proposition is proved. O
4.1.2. Proof of Theorem [[.1.1}
Lemma 4.1.9.
i) The following monomials are strictly inadmissible.
p3xlr2ta20r30 273224229230 2lala2522022  p1PrlPalTal8x28.
ii) The following monomials are strongly inadmissible.
defadladfn?  xiSadedlaladd.
Proof. By a direct computation, we have
23wt adta® 230 g 1y adri0a? 230 + 1y ala20239 230 + adada 223230,

7..7,.25_.26_28 3,.29_.30,.30 3,.30,.29 .30 6,.27,.29 .30
T1ToX3 Ty Ty~ N5 X1XoX3 Ty Ty + T1X5X3 Ty Ty + T1ToX3 Ty Xy

3. 29,3030 3,.3,.28,.29 .30 3,.3,.29,.28 .30
+ xirox3 Xy Ty + x7X5x3° X, Ty + X7X5T37 Xy Ty

3,.3,.29,.30,,28 3,.4,27,29 30

T T1XT3 Ty TE + T3 Ty T,
15,15 .17 .18 28 _, 3,.29,,30 .30 3,.30,,29,.30 6,.27 .29 .30
T Xy T3 Xy X5 X T1X5X3 Ty Ty + T1X5X3 Ty Ty + T1ToX3 Ty Xy

3 29 .30,.30 3,.3,.28 .29 .30 3,..3,.29 .28 .30
+ XT3 Xy Ty + X7TRT3° X, Ty + XT3, Ty

3,329 3028 , .3 4 27 29 30
T XT3 XY T+ T|Tax3 Ty Xy,
3,.15,.21 2628 3..30,.29. 30 6,.27,.29 30 7,27, 28 30

TITF X3 Ty X5 N5 X1THT3 Ty Ty + T1XoT3 Ty Ty + X1X5X3 Ty Ty

3. 29,3030 3,.3,.28,.29 .30 3,.3,.29,.28 .30
+ xirox3 Xy Ty + x7T5x3°x; Ty + X7X53T3° X, Ty

3.3..29 30,28 342729 30 37,25 28 30
+ xixox3 Ty Ty + TiTox3 Ty Ty + T{ XT3 Xy Ty

3.7.25.30.28 3.7.29 26,28
+ wixsrs ey w5 + rirrs ey rs” mod(Pes s ).

The lemma follows. O

Proof of Theorem[{.1.1 Denote A(d) = {aq: : 1 < t < 55} and C(d) = {aq: :
56 < t < 90}. We prove that B ((3)|%) C A(d) U C(d) by induction on d > 5.

Let z € P ((3)|?) is an admissible monomial. Then, w(z) = (3)|¢ and z = X; ;4°
with y a monomial in Ps((3)[%"!) and 1 < i < j < 5. Since z is admissible, by
Theorem y is also admissible.

Let d =5 and z € A(4)UC(4) U BY((3)|*). By a direct computation we see that
if X;,2% € P((3)]°) and X; ;22 # a5, for all £, 1 <t < 90, then either X; ;2% is
one of the monomials as given in Lemma [4.1.9} or X; ;22 is of the form uv?", where
u is a monomial as given in one of Lemmas [3.2.4} |4.1.4] |4.1.5] |4.1.7] 4.1.8)and 7 is a
suitable integer. Hence, by Theorem Xm-z2 is inadmissible. Since x = Xm-y2
is admissible and y € Bs((3)[*) € A(4) U C(4) U B((3)[*), we have x = a5 for
some t, 1 <t < 90. Hence, BS ((3)|° € A(5) U C(5).

Suppose d > 5 and Bs ((3)|97!) ¢ A(d—1)UC(d—1). Let z € A(d—1)UC(d —
1)U BY((3)|%71). By a direct computation we can check that if X; ;22 € P:H((3)[%)
and Xm-z2 # aqq forall t, 1 <t <90, then Xi’jZQ is is of the form wv?", where u
is a monomial as given in one of Lemmas [3.2.4] [{.1.4] 1.5 [4.1.7] {.1.8, [£.1.9] and
r is a suitable integer. By Theorem X; ;2% is inadmissible. Since z = X; jy?
is admissible and y € Bs((3)|¢"1) € A(d — 1) UC(d — 1) U BY((3)|%"1), we have
T = aq, for some t, 1 <t < 90. That means B ((3)|4) ¢ A(d) U C(d).
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Now we prove that the set [A(d)UC(d)]3)ja is linearly independent in QP5((3)]%).
Consider <[A(d)](3)|d> C QP5((3)|4) and <[C(d)](3)|d> - QP5(( )|d) By a simple
computation, we can see that for 1 < t < 55, aq; = £C fz(bd ¢+) with bg; an
admissible monomial of degree 2(2¢ — 1) in P4 and 1 <4 < 5. By Proposition
aq,; is admissible. This implies dim([A(d)]syj«) = 55. On the other hand, we have
([A(d)](3))4) N {[C(d)](3))a) = {0}. Hence, we need only to prove the set [C(d)] sy«
is linearly independent in QPs((3)|%). Suppose there is a linear relation

Z Yead,t =(3)|a 0, (4.4)
56<¢<90

where v; € Fa. Applying the homomorphism p;

i35)
(4.4), we obtain

P — Py, 1 <i<j <5, to

P(1;2)(S) =(3))a 158Wd,10 + V{64,79)Wa, 11 =(3)[a 0,

P(1:3)(S) =(3)ja V{57,74)Wa,0 + Ve5Wd, 11 =(3)]a 0,

P(134)(S) =(3)ja V{56,68,75,77,81,83) Wd,8 + V67Wd,11 =(3)]4 0,
P 5)(5) =(3)|¢ V{56,57,58,64,65,67,76,78,82,84,87} Wd,7 T Y68Wd,11 =(3)|d 0,
P(2; 3)(5) =(3)|4 V{60,63,74,79,80} Wd,9 + V66Wd,11 =(3)|d 0,

D(2;4) () =(3)j¢ V{59,70,75,85} Wd,8 + VeoWd,11 =(3)[¢ 0,

P(2;5) () =(3)]¢ 7{59,60,66,69,76,86,88) Wd,7 + Y70Wd,11 =(3)[a 0,
P(3;4)(S) =(3)|¢ V{61,62,63,72,73,77,80} Wd,8 + V71Wd,11+ =3 0,
P(3:5)(S) =3yt Vi61,71,78)Wa,7 + Yr2wa,11 =(3))¢ 0,

P(4;5)(S) =(3)|¢ Vo2Wa,7 + Yr3Wa, 11 =(3)[¢ 0.

From these equalities, we get 158 = Y62 = Y65 = Y66 = Vo7 = V68 = V69 = V70 =
Y71 = Y2 = 73 = 0, Y74 = 757, Y18 = Y61, Y79 = 7Yea. Then, applying the
homomorphism p(i;(;,5)) : P5 — P4 to , we get

P(15(2,3)) () =(3y1¢ YeoWd,0 + V63Wd, 10 + Y80Wd, 11 =(3)j¢ 0,

P(1;(2,4))(5) =(3)|¢ V{56,59,64,75,77,81,82,83,85} Wd,8 T Y77Wd,10 + V81Wd,11 =(3)|4 0,

p(l;(3,4))(5) =(3)]¢ V{59,60,76,86,88} Wd,3 T V{56,57,61,63,75,77,80,81,83,84,85,89,90} Wd,8

+ V{75,85,87}Wd,9 + V83Wd,11 =(3)j¢ 0.
Computing from these above equalities gives Y60 = Y63 = Y77 = Y80 = Y81 = Y83 = 0
and Y64 = V57, Y75 = V65, Y89 = Y61. Then we have
p(l;(2,5))(5) =(3)|4 V{56,57,59,61,76,82,84,86,87,88,00} Wd,7 T Y61Wd,10 + Y82Wd,11 =(3)|d 0,
p(1;(3,5))(5) =(3)|4 V{56,59,85}Wd,2 T V{56,57,76,82,84,86,87} Wd,7
+ 7V(76,86,87} Wd,9 + YsaWa,11 =3)|a 0,

p(1;(4,5))(5) =(3)|4 V{76,82,84,87,88,00}Wd,7 T V{76,82,84,88,90} Wd,8 + Y87Wd,11 =(3)d 0.
By a direct computation from the above equalities we get v = 0 for all ¢, 56 < ¢ <
90. The theorem is proved. O

Proof of Theorem[1.6 Let n = 23+s+t 4 2d+s 4 2d _ 3 and m = 2571 425 — 2. We
have 25 = 2d—1+s+t 4 gd=lds 4 9d=2 4 9d=2 _ 4 By Theorem and Theorem
1.4 1in ﬂBZ{ﬂ,lfd 6, s >4 and t > 4, then

dim(QPs) n_s = (25 — 1) dim(QPy)gste41 405410 = 3(2° — 1)(2* = 1)(2° — 1).
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—~—0
Kameko’s homomorphism (Sq )5,n) : (QP5)n — (QP;,)nT_s is an epimorphism,
hence using Theorem [2.15] we get

42— 1)@~ 1)(2° ~ 1) < dim(QPs),, = dim Ker(Sg ) 5.0 + dim(QP) ns
= dim Ker(%o)(s,n) +3(2% —1)(2* = 1)(2° — 1).

This implies dim Ker(Sq )50 = (2% — 1)(2 — 1)(2° — 1),

We set Bisq) = {(Z,J) € Pincd : X(z,7) € B5((3)|Y)}. By a direct computa-
tion using Lemma Lemmas in Subsection |4.1] on inadmissible monomials and
Propositionwe can check that the set B 4) is compatible with ((3)|%) for any
d > 6. By applying Theorem we obtain

dim Ker(Sg ) 5.0y < 1B((s.0)| Aim(QP3) = 155 dim(QPs) .

By Kameko [10], we have dim(QPs),, = 21 for any s, ¢t > 2. Hence, we get
dim Ker(Sq ) s, < |Bs((3)])] dim(QPy),m
=155 x 21 = (2° — 1)(2* = 1)(2° - 1).

Thus, dimKer(fS"Z]O)(g,’n) = (22 -1)(2* = 1)(2° — 1), for any d > 6, s, t > 4. The
theorem is proved O
4.2. Proof of Theorem [1.8

First, we prove the following.
Theorem 4.2.1. Let n = 24s+t 4 9d+s 1 od _ 3 with d, s,t integers such that
d>6,5>0andt>0. Then, dimKer(Sq )5 = 155 dim(QPs).

We recall the following.

Theorem 4.2.2 (See Kameko [10]). Let m = 251 425 — 2 with s, t integers such
that s > 0,t > 1. The dimension of the Fo-vector space (QP3)., is given by the
following table:

m |t=1 t=2 t=3 t=4 t>5
s=0] 3 7 10 13 14
s=1| 8 5 14 14 14
s>2| 14 21 21 21 21

Sketch proof of Theorem[{.2.1l From the proof of Theorem we see that the
—0
theorem holds for s, ¢ > 4 and dim Ker(Sq )5, < 155dim(QP3),, for any s >
—o0
0, t = 1. We prove dim Ker(Sq )5 ) = 155 dim(QP),, by proving that the set
a . . . .
{((Xz.0)(fi.5))* ] (T, T) € Bsay, 2 € Ba3(m), i = minZ, j = min J}

is linearly independent in (QPs),. Suppose that there is a linear relation

d
5= > V2.0 X @5 (fai)” =0,
(I,j)EB(syd),ZeBg(m)
with vz, 7). € Fa. By a direct computation from the relations p(;,;)(S) = 0,
1 <i<j<5band paywe)(S) =0,2 <u<v <5 weget vz g),. =0 for all
(Z,T) € Bs,a), = € Bs(m).
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~0
Now the theorem follows from the relation dim Ker(Sq )5 ) = 155 dim(QP3),
and Theorem .22 0O

Proposition 4.2.3 (See Sum [33, Theorem 1.4]). Let n = 24+s+t 4 2d+s 4 od 3
with d, s, t integers such thatd > 6, s > 0 andt > 0. The dimension of the Fa-vector
space (QPy) n—s 1is given by the following table:

2

n t=1 t=2 t=3 t=4 t=5 t=>6
s=0| 21 55 73 95 115 125
s=1| 70 126 165 179 175 175
s=2| 116 192 241 255 255 255
s=3| 164 240 285 300 300 300
s=>4| 175 255 300 315 315 315

Proof of Theorem[I.8 By Theorem we have
dim(QPs)n_s) = (2°-1) dim(QPy) n_s

2

—~0
for any d > 6. Since (Sq )(5,n) : (QP5)n — (QP5)n=s) is an epimorphism, we get

—0
dim(QPs), = dimKer(Sq )(5,,) + dim(QP4)n775.

Now the theorem follows from the last equality, Theorem and Proposition
E23 O
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