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Abstract5

The central composite designs (CCDs; Box & Wilson, 1951) for fitting the second-6

order response surface require a large number of 2-level runs at the first stage, es-7

pecially when the number of factors is large. The small composite designs (SCDs;8

Draper & Lin, 1990; Nguyen & Lin, 2011) were developed for fitting the same model9

using a much less number of 2-level runs at the first stage. The 2-level runs at the first10

stage of CCDs and SCDs are fairly arbitrary. This paper introduced an algorithm11

which can augment any standard 2-level first-order design with additional 3-level12
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runs to form a second-order design. These augmented runs are made up of circulant13

matrices. All designs produced by this algorithm have the orthogonal quadratic effect14

property. The CCDs and SCDs are special cases this algorithm.15

Keywords: Augmented-pair designs; Composite designs; Circulant matrices; Orthog-16

onal quadratic effects; Plackett-Burman design.17

1 Introduction18

Consider a screening experiment in a pharmaceutical process (extrusion-spheronnization)19

in which the formulation contains a drug substance, a plastic diluent and a binder (Lewis20

et al. 1999). The experimenters wish to perform an optimization process and the re-21

sponse of interest is the percentage mass yield of pellets having a particle size between22

900-1,100µm. The seven process variables (factors) in this extrusion-spheronnization are:23

(1) % amount of binder (0.5-1%); (2) amount of water (40-50%); (3) granulation time (1-224

min); (4) spheronization load (1-4 kg); (5) spheronization speed (700-1,100 rpm); (6) ex-25

truder rate (15-60 rpm) and (7) spheronization time (2-5 min). Figure 1 shows the 8-run26

Plackett-Burman design (PB Design; Plackett & Burman, 1946) used for this screening27

experiment.28

The estimates of the coefficients using the first-order model are: b0 = 62.0% (constant29

term), b1 = 5.0%, b2 = 3.3%, b3 = 0.8%, b4 = 1.3%, b5 = −4.1%, b6 = −0.2% and30

b7 = −6.0%. Let us assume that, after studying the magnitude of these estimates of the31

coefficients, the experimenters think that the factors (1), (2), (5) and (7) deserve further32
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Figure 1: The 8-run PB design for the extrusion-spheronnization study.

studies and decide to augment the four columns corresponding to these four factors with33

additional runs, so that the second-order model can be fitted with the combined data from34

both stages. Augmenting these four columns with eight axial runs will result in an SCD.35

Augmenting them with (82) (= 28) runs using the approach described in Morris (2000)36

will result in an augmented-pair design (APD) in 36 (= 8 + 28) runs. Is there a different37

method to augment these columns?38

This paper discusses an algorithm which can be used to augment any standard 2-level39

first order design, a PB design or a fraction 2k−p of any resolution with 3-level runs. The40

augmented runs are made up of circulant matrices. As CCDs and SCDs are special cases41

of the designs constructed this way, we call our designs generalized SCDs or GSCDs. Like42

CCDs and SCDs, GSCDs are second-order designs with the orthogonal quadratic effect43

(OQE) property. This property is possessed by several popular second-order designs such44

as CCDs, SCDs, APDs and Box-Behnkens designs or BBDs (Box & Behnkens, 1960).45

Designs with the OQE property have the quadratic effects being orthogonal to all main46
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and interaction effects. This is an important property as the quadratic effects, which could47

not be estimated in the first stage, can be estimated with the maximum precision in the48

second stage (Nguyen & Lin, 2011; Nguyen & Pham, 2016). The information matrix of a49

design for m factors with the OQE property and its inverse will have the form50

 A 0′

0 B

 , (1)

and51

 A−1 0′

0 B−1

 , (2)

respectively where A and A−1 are square matrices of size m+1 and B and B−1 are square52

matrices of size m+ (m2 ). In the next paragraph we will explain the conditions of the OQE53

property in the context of GSCDs.54

2 Structure of the information matrix of GSCDs55

Consider the design matrix of a GSCD of the form56

D = (D′0 D′1, . . . ,D
′
r)
′ (3)

where D0 is a standard 2-level design or some columns of a PB design of order n0×m and57

D1, . . . ,Dr are circulant matrices of order m×m. Then the size of D is (n0 + rm)×m.58
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Let Xn×p denote the expanded design matrix for the second-order model, where p =59

1+2m+(m2 ) is the number of parameters. The uth row of X is (1, d2u1, . . . , d
2
um, du1, . . . , dum,60

du1du2, . . . , du(m−1)um). Nguyen & Lin (2011) showed that the following conditions imply61

the OQE property:62

Σdidj = 0 (i < j, i, j = 1, . . . ,m) (4)

63

Σd2i dj = 0 (i < j, i, j = 1, . . . ,m) (5)

64

Σd2i djdk = 0 (i 6= j, i 6= k, j < k, i, j, k = 1, . . . ,m) (6)

where the summations are taken over the n design points. The circulant matrix Dq (q =65

1, . . . , r) generated by the row vector (dq1, dq2, . . . , dqm) of length m will be of the form:66



dq1 dq2 · · · dqm

dqm dq1 · · · dq(m−1)

. . . . . . . . . . . .

dq2 dq3 · · · dq1


. (7)

The m runs of the circulant matrix Dq will contribute Σqdidj (i < j, i, j = 1, . . . ,m),67

Σqd
2
i dj (i < j, i, j = 1, . . . ,m) and Σqd

2
i djdk (i 6= j, i 6= k, j < k, i, j, k = 1, . . . ,m) to the68

summations in (4), (5) and (6) respectively. Note that D0 contributes zero to these summa-69

tions. Due to the cyclic nature of the circulant matrices, it can easily be seen that Σqd1d2 =70

Σqd2d3 = Σqd3d4, etc., Σqd
2
1d2 = Σqd

2
2d3 = Σqd

2
3d4, etc. and Σqd

2
1d2d3 = Σqd

2
2d3d4, etc.71
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Therefore, it is only necessary to compute Σqd1d2, Σqd1d3, Σqd1d4, etc.Σqd
2
1d2, Σqd

2
1d3, Σqd

2
1d4,etc.,72

Σqd
2
1d2d3, Σqd

2
1d2d4 and Σqd

2
1d3d4, etc. Thus for a GCSD of the form in (3), the conditions73

which imply the OQE property become:74

Σd1dj = 0 (j = 2, . . . ,m) (8)

75

Σd21dj = 0 (j = 2, . . . ,m) (9)

76

Σd21djdk = 0 (j < k, j, k = 2, . . . ,m) (10)

where the summations are take over the n design points. We will utilize this result in the77

next section.78

3 The circulant augment algorithm79

To construct a GSCD for m factors we choose a base matrix D0 of size n0 × m and80

augment it with r circulant matrices each of size m × m such that n0 + rm > p. The81

circulant augment (CA) algorithm requires the following steps:82

1. Pick m columns randomly from a standard 2-level fractional design or a PB design83

of n0 runs to form D0.84

2. Initialize a matrix d of size r × m by setting the first x elements of d to 1, the85

next x elements to -1 and the remaining to 0. Randomize the elements of d. Calculate86

Jq (q = 1, . . . , r) from each row of d and J = Σr
q=1Jq. Calculate f , the sum of squares of87

the elements of J.88
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3. Search for a pair of entries in d such that the position swap of these two entries89

results in the biggest reduction in f . If the search is successful, update f and d. Repeat90

this step until f = 0 or f cannot be reduced further.91

Remarks92

1. The three steps of our algorithm make up a try. Among all tries with f = 0 and the93

minimum of rmax, the maximum of the correlation coefficients among the last 2m + (m2 )94

columns of the model matrix, we select the one with the highest |X′X|.95

2. The fact that d has the same value of ±1’s will ensure that the resulting design is96

balanced, i.e. its factors have the same number of ±1’s.97

3. Step 1 is not required if D0 consists of the significant factors of a screening design98

in the first stage.99

4. The value for x in step 2 is set by trial and error. For r = 2, x = 1. For r = 4, x = 4100

when m = 3 and x = 6 when m = 4-7.101

Following is an example of calculating vector J from a matrix d with four generating102

vectors: d1=(1, 1, -1, 0), d2=( 1, 0, 1, -1), d3=( -1, -1, -1, 0) and d4=( 1, 1, 0, -1).103

The readers can verify that the corresponding vectors Jq (q = 1, . . . , r) are: J1=(0, -104

2, 0, 0, 0, 2, -1, -1, 1), J2 = (-2, 2, -2, 0, 2, 0, -1, 1, -1), J3 =(2, 2, 2, -2, -2, -2, 1, 1, 1) and105

J4=(0, -2, 0, 2, 0, 0, 1, -1, -1) and J = Σ4
q=1Jq = 0 where 0 is a null vector.106
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4 Discussion107

Table 1 displays the goodness statistics of 63 GSCDs constructed by the CA algorithm108

in Section 3 for m = 3, . . . , 7 and n0 = 8, 12, 16, 20, 24, 28 and 32. There are 28 GSCDs109

with r = 2, x = 1 and 35 GSCDs with r = 4, x = 4 for m = 3 and x = 6 for m > 3.110

These goodness statistics are the d-value, rmax, vQ, vM and vI . d-value is the second-order111

d-efficiency of the design, which is calculated as112

|X′X|1/p/n (11)

where X and p (= 1+2m+(m2 )) are the expanded design matrix and the number parameters113

for the second-order model respectively. This d-value, known as “information per point”,114

is a popular measure of goodness of a design (Draper & Lin, 1990, Nguyen & Lin, 2011).115

rmax has already been defined in the previous section. vQ, vM and vI are the maximum116

variances of the m quadratic effects, of the m main effects and of the (m2 ) interactions117

respectively. Let us use denote a GSCD with r = 2 by GSCD(2)and a GSCD with r = 4118

by GSCD(4). In Table 1, five GSCD(2)’s are also SCDs and four GSCD(4)’s are also119

CCDs.120

It can be seen in Table 1 that the SCDs are inferior to the corresponding GSCD(4)’s for121

the same values of (m,n0) with respect to all goodness statistics. Users of SCDs should be122

aware that the rmax, vM and vI values of SCDs are very high. In Table 1, the rmax values123

of SCDs range from 0.607 to 0.943. Also, the vM and vI values of SCDs are about 5 to 10124
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times more than those of the corresponding GSCD(4)’s. It is interesting to note that the d-125

values of CCDs are very close to the corresponding values of GSCD(4)’s. The rmax, vQ, vM126

and vI values of CCDs, however, are still much larger than the ones of GSCD(4)’s. Note127

that GSCD(4)’s have 2m extra runs.128

There are a number of (m,n0) combinations when both CCDs and SCSs are not avail-129

able, such as (5, 8), (6, 8), (6, 12), (7, 8),(7, 12), (7, 16) and (7, 20). For these combinations,130

solutions can be found with the GSCD and APD approaches. As the number of runs of131

APDs for n0 = 8, 12, 16, 20, etc. are 36, 78, 136 and 210 respectively, only APDs132

for n0 = 8 seem popular. The next paragraphs compares our GSCDs and the APDs for133

(m,n0) = (4, 8) and (5, 12). It is interesting to note that our GSCD(4) for (m,n0) = (7, 8)134

and the corresponding APD are identical if the design in the first stage is a PB design for135

seven factors.136

Let us return to the example in the Introduction and compare three different candidate137

augmented parts for the four chosen columns (1), (2), (5) and (7) in Figure 1. They are:138

(A) the eight axial runs; (B) the 16 runs generated by four cyclic generators (1, 1, -1, 0),139

(1, 0, 1, -1), (-1, -1, -1, 0) and (1, 1, 0, -1); and (C) the 28 runs generated by the APD140

approach. The 8-run 2-level design in Figure 1 together with the runs in (A) will result in141

a 16-run SCD; with the runs in (B) will result in a 24-run GSCD(4); and with runs in (C)142

will result in a 36-run APD.143

Let us use the vector (d-value, rmax, vQ, vM , vI) to summarize the goodness statistics of144

each candidate design. For the 16-run SCD this vector is (0.308, 0.894, 0.403, 0.500, 0.625).145

For the 24-run GSCD(4) it is (0.446, 0.224, 0.375, 0.060, 0.070). For the 36-run APD it is146
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Figure 2: Candidate augmented parts for the extrusion-spheronnization study.

(0.373, 0.258, 0.115, 0.054, 0.089). It can be seen that this SCD have a big price to pay in147

terms of the goodness statistics.148

Let us have another example in which our GSCD could be used. Bermejo-Barrera et al.149

(2001) conducted an experiment to optimize the ultrasonic bath-induced acid leaching for150

the determination of trace elements in seafood products by atomic absorption spectrometry.151

The seven variables (factors) are (1) Nitrid acid concentration (M), (2) Hydrochloric acid152

concentration (M), (3) Hydrogen peroxide concentration (M), (4) Acid solvent volume153

(mL), (5) Ultrasonic water-bath temperature (oC), (6) Ultrasound exposure time (min)154

and (7) Mussel particle size (µm). Seven columns of a 12-run PB design were used to select155

the most significant variables that affect to the acid leaching process (Figure 3), while156

CCDs were used to find the optimum values for the variables involved in acid leaching.157

10



Figure 3: The 12-run PB design for the study of Bermejo-Barrera et al. (2001).

This experiment was also discussed in Mee (2011) p. 206. In this paper, we assume that158

the experimenters found the significant variables were 1-4 and 7.159

Let us compare three types of candidate augmented parts: (A) 10 axial runs; (B)160

20 additional runs generated by four cyclic generator (-1, 1, 0, -1, 0), (0, 1, 0, -1, -1),161

(0, 1, 1, 0, 1) and (-1, 0, -1, 0, 1); and (C) 66 (= (122)) runs obtained by the APD ap-162

proach. The 12-run 2-level design in (A) together with the runs in (A) will result in a163

22-run SCD, with the runs in (B) will result in a 32-run GSCD(4) and with the runs in (C)164

will result in a 78-runs APD. The vector (d-value, rmax, vQ, vM , vI) of the 22-run SCD is165

(0.259, 0.607, 0.411, 0.417, 0.536), of the 32-run GSCD(4) is (0.408, 0.333, 0.333, 0.051, 0.089)166

and of the 78-run APD is (0.341, 0.208, 0.052, 0.024, 0.048).167

168
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SCD GSCD APD

169

Figure 4: CCPs of a 16-run SCD, a 24-run GSCD and a 36-run APD for four factors.170

171

SCD GSCD APD

172

Figure 5: CCPs of a 22-run SCD, a 32-run GSCD and a 78-run APD for five factors.173

To visualize the aliasing pattern among the columns of the model matrix of each can-174

didate design in the previous paragraph, we make use of the correlation cell plots (CCPs).175

These plots, proposed by Jones & Nachtsheim (2011), display the magnitudes of the cor-176

relations between quadratic effects, main effects and 2-factor interactions of each designs.177

The color of each cell in these plots goes from white (no correlation) to dark (correlation178

of 1 or close to 1). The CCPs of the candidate designs in the first example are in Figure 4179

and the ones in the second example in Figure 5. All six CCPs in Figures 4 and 5 show that180
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the quadratic effects are orthogonal to the main effects and 2-factor interactions. They181

also show that the main effects are orthogonal to one another. It can be seen that the182

magnitude of correlation is very high among the quadratic effects of the SCD.183

In summary, this paper introduces a new class of second-order designs with orthogonal184

quadratic effects using cyclic generators or GSCDs. It describes an algorithm to construct185

GSCDs and compare them with more popular designs such as SCDs, CCDs and APDs.186

The advantage of GSCD over SCD, CCD and APD is its flexibility: the 2-level factorial187

part n0 could have different sizes and the circulant augmented part could also have different188

sizes. As the percentages of the 0-level for each factors of BBDs with the recommended189

number of factor are too high (for BBDs for 3-7 factors these percentages are 47, 56, 65, 56190

and 61% respectively) and very often, the extreme setting ±1’s are the settings in which191

the experimenters are interested and not the neutral setting which is zero, our GSCDs192

could also be considered good alternatives to BBDs.193
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Table 1: Comparison of the goodness statistics of GSCDs for r = 2 and r = 4

r = 2 r = 4

m n0 n d2 rmax vQ vM vI n d2 rmax vQ vM vI

3 8 14†‡ 0.463 0.300 0.406 0.100 0.125 20 0.452 0.250 0.375 0.063 0.083

12 18 0.455 0.357 0.396 0.079 0.092 24 0.405 0.224 0.333 0.053 0.066

16 22 0.464 0.389 0.391 0.056 0.063 28 0.455 0.167 0.312 0.042 0.050

20 26 0.451 0.409 0.388 0.047 0.052 32 0.447 0.154 0.300 0.037 0.043

24 30 0.447 0.423 0.385 0.038 0.042 36 0.445 0.125 0.292 0.031 0.036

28 34 0.435 0.433 0.384 0.034 0.036 40 0.436 0.118 0.286 0.028 0.032

32 38 0.429 0.441 0.383 0.029 0.031 44 0.432 0.100 0.281 0.025 0.028

4 8 16† 0.308 0.894 0.403 0.500 0.625 24 0.446 0.224 0.375 0.060 0.070

12 20 0.395 0.524 0.398 0.106 0.127 28 0.468 0.200 0.333 0.042 0.052

16 24‡ 0.457 0.556 0.396 0.056 0.063 32 0.462 0.154 0.313 0.039 0.044

20 28 0.440 0.576 0.394 0.052 0.057 36 0.467 0.143 0.300 0.031 0.036

24 32 0.447 0.59 0.394 0.043 0.046 40 0.460 0.118 0.292 0.029 0.032

28 36 0.445 0.600 0.393 0.035 0.038 44 0.459 0.111 0.286 0.025 0.028

32 40 0.449 0.608 0.392 0.029 0.031 48 0.452 0.095 0.281 0.023 0.025

5 8 - - - - - - 28 0.372 0.667 0.344 0.067 0.190

12 22† 0.259 0.607 0.411 0.417 0.536 32 0.409 0.333 0.333 0.048 0.083

16 26‡ 0.440 0.639 0.41 0.056 0.063 36 0.444 0.357 0.328 0.039 0.052

20 30 0.406 0.659 0.409 0.061 0.068 40 0.446 0.375 0.325 0.034 0.048

24 34 0.430 0.673 0.409 0.056 0.061 44 0.455 0.389 0.323 0.029 0.040

28 38 0.436 0.683 0.408 0.038 0.041 48 0.458 0.400 0.321 0.026 0.034

32 42 0.456 0.691 0.408 0.029 0.031 52 0.466 0.409 0.320 0.023 0.028

6 8 - - - - - - 32 0.303 0.667 0.171 0.109 0.264

12 - - - - - - 36 0.348 0.500 0.167 0.071 0.173

16 28† 0.263 0.943 0.423 0.500 0.562 40 0.399 0.676 0.164 0.081 0.109

20 32 0.309 0.709 0.422 0.417 0.482 44 0.423 0.542 0.163 0.042 0.063

24 36 0.368 0.723 0.422 0.117 0.109 48 0.445 0.556 0.162 0.039 0.054

28 40 0.392 0.733 0.421 0.074 0.069 52 0.459 0.567 0.161 0.032 0.039

32 44‡ 0.456 0.741 0.421 0.029 0.031 56 0.491 0.576 0.161 0.023 0.028

7 8 - - - - - - 36 0.269 0.667 0.117 0.055 0.180

12 - - - - - - 40 0.277 0.250 0.115 0.092 0.182

16 - - - - - - 44 0.319 0.800 0.113 0.094 0.193

20 - - - - - - 48 0.356 0.500 0.113 0.057 0.119

24 38† 0.253 0.756 0.432 0.47 0.725 52 0.386 0.286 0.112 0.046 0.089

28 42 0.318 0.767 0.432 0.293 0.284 56 0.409 0.375 0.112 0.044 0.075

32 46 0.358 0.970 0.431 0.500 0.531 60 0.461 0.704 0.111 0.047 0.056

†SCDs, ‡CCDs.
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