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1 Introduction

Stochastic differential equations (SDEs) appear in many applied areas such as mathematical physics, mathe-
matical biology, mathematical finance... In these areas, it is often necessary to compute the expectation of some
function of the solution. Since both the explicit form and the probability distribution of Xt are unknown in
general, one needs to develop computable discrete approximation schemes that could be used in some kinds of
Monte-Carlo simulation.

Convergence and stability of these schemes are well studied for SDEs with globally Lipschitz continuous
coefficients (see [10], [14]). During the last few years, there are numerous efforts to construct effective numerical
approximations for SDEs with locally Lipschitz continuous coefficients. In particular, Hutzenthaler et. al [6], [7]
showed that the explicit EulerMaruyama (EM) scheme fails to converge strongly to the exact solution of some
SDEs with non-globally Lipschitz continuous coefficients. Moreover, they introduced a new numerical method
called tamed Euler scheme and showed that it converges in Lp-norm with a standard rate of order 1/2 for a
class of SDEs with superlinearly growing, one-sided Lipschitz continuous drift and Lipschitz continuous diffusion
coefficients. The tamed EM scheme then has been developed by many authors, see [19], [6], [20], [15], [12], for
example.

Since SDEs with Hölder continuous diffusion coefficient appears in many models in mathematical finance
and mathematical biology, its numerical approximation has been also considered extensively. In [2], Gyöngy and
Rásonyi showed that for the SDEs with 1

2 + α-Hölder continuous diffusion coefficient and Lipschitz continuous
drift coefficient, the EulerMaruyama scheme converges in L1-norm at the rate of order α. Their work was later
developed in [1], [16], [17], [15].

In many applications, one needs to evaluate the value of a stable process in a long time period even though
it may be very small. Therefore, the stability of SDEs was studied extensively by many authors (see [11], [9] for
example). Recently, there have been a number of studies focusing on the stability of the approximated solution
of SDEs whose exact solution is stable. The first result in this direction was presented in [21], where Saito and
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Mitsui considered SDEs with linear coefficients. Then the results for general SDEs with Lipschitz and locally
Lipschitz coefficients were shown in [4], [5], [11], [13]. Since classical approximation schemes (EM or Milstein,
for example) do not preserve the stability of the solution, new approximation schemes such as the implicit θ-EM
scheme ([3], [4], [13]) the tamed EM scheme ([22], [24]) have been developed.

In this paper, we will construct a new tamed Euler-Maruyama approximation scheme for SDEs whose diffusion
coefficient is Hölder continuous. We will show that the new scheme converges in L1-norm at the same rate as
the plain EM scheme given in [2]. Furthermore, the new scheme preserves the exponential stability of the exact
solution. In addition, if the exact solution is non-negative, we can easily modify our scheme to get another
approximation which is also non-negative. To the best of our knowledge, this is the first stable numerical
approximation scheme for SDEs with Hölder continuous diffusion coefficient. The difficulty arising when studying
the stability for such SDEs is that near zero, the size of the diffusion coefficient is of order |x| 12 +α which is much
greater than |x|, the order of the size of Lipschitz continuous diffusion coefficients (see Assumption A3 bellow).

The rest of this paper is organized as follows. Section 2 presents the new tamed EM scheme together with
its strong convergence, exponential stability, and non-negativity. All proofs are deferred to the Section 3. The
last section provides some numerical experiments which compare our new scheme with some other well-known
ones.

2 Main Results

2.1 Assumptions

Let (Wt)0≤t≤T be a standard Brownian motion defined on a filtered probability space (Ω,F, (Ft)t≥0,P) satisfying
the usual condition. Let b and σ be real valued, B(R)-measurable functions. We consider a stochastic differential
equation given by

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs, x0 ∈ R, t ∈ [0,+∞). (1)

We consider the following assumptions on the coefficients b and σ.

A1. There exists a positive constant L1 such that

(x− y)(b(x)− b(y)) ≤ −L1|x− y|2,

for any x, y ∈ R.

A2. There exists a positive constant L2 such that

|b(x)− b(y)| ≤ L2|x− y|,

for any x, y ∈ R.

A3. There exist positive constants L3 and α ∈
[
0, 1

2

]
such that

|σ(x)− σ(y)| ≤ L3|x− y|1/2+α,

for any x, y ∈ R.

A4. For each R > 0, there exists a positive constant LR such that

|b(x)− b(y)| ≤ LR|x− y|

and
|σ(x)− σ(y)| ≤ LR|x− y|1/2+α,

for any x, y ∈ R such that |x| ≤ R and |y| ≤ R.

A5. There exists a positive constant L such that

|b(x)|2 ∨ |σ(x)|2 ≤ L(1 + |x|2),

for any x ∈ R.

Under conditions A4 and A5, the equation (1) has a unique solution in the strong sense (see [15], Theorem 3.1).
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2.2 Tamed Euler-Maruyama scheme

Suppose that assumptions A1 and A2 hold. For each h ∈
(

0,
L1

L2
2

)
, we denote ηh(t) = kh if t ∈ [kh, (k + 1)h)

for some k = 0, 1, . . ., and

bh(x) =
b(x)

1− L2
2L
−1
1 h

, and σh(t, x) =
σ(x)

1 + h1/2e2L1t(|σ(x)|+ 1)
.

A tamed Euler-Maruyama approximation of equation (1) is defined as follows

Xh
t = x0 +

∫ t

0

bh(Xh
ηh(s))ds+

∫ t

0

σh(ηh(s), Xh
ηh(s))dWs, t ∈ [0,+∞). (2)

This implies that for any t ≥ 0,

Xh
t = Xh

ηh(t) + bh(Xh
ηh(t)) (t− ηh(t)) + σh(ηh(t), Xh

ηh(t))
(
Wt −Wηh(t)

)
. (3)

In this paper, we are interested in not only the convergence of the approximation scheme but also its stability.
Therefore, we adjust coefficients b and σ in both time and space variables whereas the tamed EM schemes
presented in [6], [19], [20] adjust the coeficients in only space variable. Note that when h → 0, both terms

1
1−L2

2L
−1
1 h

and 1

1+h1/2e2L1ηh(t)
(

1+|σ(Xh
ηh(t)

)|
) tend to 1, which ensures the convergence of Xh

t to Xt for each t fixed.

2.3 Strong convergence

The convergence of the tamed EM scheme in Lp-norm and Lp-sup norm are stated in the following theorem.

Theorem 1. (i) Let assumptions A4 and A5 hold. For any T > 0,

lim
h→0

E
[

sup
0≤t≤T

|Xh
t −Xt|

]
= 0. (4)

(ii) If 0 < h < L1

2L2
2
∧1, and assumptions A2, A3 hold, then there exists a positive constant C = C(x0, L2, L3, T, α)

such that

sup
0≤t≤T

E[|Xh
t −Xt|] ≤


Chα if 0 < α ≤ 1

2
,

C

log(1/h)
if α = 0,

(5)

and

E
[

sup
0≤t≤T

|Xh
t −Xt|

]
≤


Ch2α2

if 0 < α ≤ 1

2
,

C√
log(1/h)

if α = 0.
(6)

(iii) If 0 < h < L1

2L2
2
∧ 1, and assumptions A2,A3 hold. For any p ≥ 2 there exists a constant C =

C(x0, L2, L3, T, p, α) such that

E
[

sup
0≤t≤T

|Xt −Xh
t |p
]
≤


C

log(1/h)
if α = 0,

Chp/2 if α =
1

2
,

Chα if 0 < α <
1

2
.

The tamed EM scheme (2) converges in L1-norm, L1-sup norm, and Lp-sup norm at the same rates as the
plain EM scheme does when applying for SDEs with Hölder continuous coefficients (see [2]).
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2.4 Exponential stability in Lp-norm

In [24], the authors showed the exponential stability of the exact solution Xt and its EM approximation in
L2-norm when the diffusion coefficient σ is locally Lipschitz continuous. Here, we will show the exponential
stability of Xt and Xh

t when σ is Hölder continuous.
Let T denote the set of all finite stopping times. The following theorem states the exponential stability of

the exact solution Xt. It seems to be a known result but we could not find it in the literature.

Theorem 2. Let A1–A3 hold and b(0) = σ(0) = 0.

(i) (Xt)t≥0 is exponentially stable in L1-norm in the sense that

sup
τ∈T

E
[
|Xτ |eL1τ

]
≤ |x0|.

Moreover, for any q ∈ (0, 1),

E
[
sup
t≥0

(
|Xt|qeL1qt

)]
≤ (2− q)|x0|q

1− q
. (7)

(ii) For any p > 1, it holds that

sup
τ∈T

E [|Xτ |peκτ ] ≤ |x0|p +
p(p− 1)(1− 2α)L2

3|x0|λ

2(p− λ)(λL1 − κ)
, (8)

where λ = (p − 1 + 2α) ∧ 1 and κ is any positive constant satisfying κ < λL1, and 0 < κ ≤ pL1 −
L2

3p(p− 1)(p− 1 + 2α− λ)

2(p− λ)
.

The next result states that the tamed EM approximated solution Xh
t is also exponentially stable under the

same assumption as in Theorem 2.

Theorem 3. Let A1–A3 hold, b(0) = σ(0) = 0, and 0 < h < L1

2L2
2
∧ 1

2L1
. Then there exists a positive constant

C = C(x0, L1, L2, L3) such that

E
[
|Xh

t |2e2L1t
]
≤ C

h
. (9)

In particular, for any ε > 0, it holds that

lim
t→+∞

E
[
|Xh

t |2e(2L1−ε)t
]

= 0. (10)

2.5 Non-negative approximation

In many practical models, the exact solution Xt is almost surely non-negative. For these models, we would like
to construct an approximate solution which is non-negative, stable, and converges to the exact solution at the
same rate as Xh

t . Indeed, we will show that X̂h
t = |Xh

t | is such an approximation.

Corollary 4. Assume that Xt ≥ 0 almost surely for any t ≥ 0.

(i) Let assumptions A1–A3 hold and 0 < h < L1

L2
2
∧ 1

2L1
. Then for any ε > 0, it holds that

lim sup
t→+∞

E
[
|X̂h

t |2e(2L1−ε)t
]

= 0.

(ii) Let assumptions A4 and A5 hold. For any T > 0, it holds that

lim
h→0

E
[

sup
0≤t≤T

|X̂h
t −Xt|

]
= 0.
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(iii) If 0 < h < L1

2L2
2
∧ 1, and assumptions A2 and A3 hold, then there exists a positive constant C =

C(x0, L2, L3, T ) such that

sup
0≤t≤T

E[|X̂h
t −Xt|] ≤


Chα if 0 < α ≤ 1

2
,

C

log(1/h)
if α = 0.

and

E
[

sup
0≤t≤T

|X̂h
t −Xt|

]
≤


Ch2α2

if 0 < α ≤ 1

2
,

C√
log(1/h)

if α = 0.

Moreover, for any p ≥ 2 there exists a constant C = C(x0, L2, L3, T, p, α) such that

E
[

sup
0≤t≤T

|Xt −Xh
t |p
]
≤


C

log(1/h)
if α = 0,

Chp/2 if α =
1

2
,

Chα if 0 < α <
1

2
.

Proof. Part (i) follows directly from Theorem 2. Part (ii) and (iii) follow from Theorem 1 and a remark that

|X̂h
t −Xt| =

∣∣|Xh
t | − |Xt|

∣∣ ≤ |Xh
t −Xt|.

3 Proofs

3.1 Some auxiliary estimates

Lemma 5 ([18]). Let ξ = (ξt)t≥0 be a positive, adapted right continuous process, and A be a continuous
increasing process such that

E[ξτ |F0] ≤ E[Aτ |F0] a.s.,

for any bounded stopping time τ . Then for any λ ∈ (0, 1),

E

[(
sup
t≥0

ξt

)λ]
≤
(

2− λ
1− λ

)
E

[(
sup
t≥0

At

)λ]
.

Lemma 6. Let assumption A5 hold.

(i) For any p > 0, there exists a positive constant C1 = C1(p, x0, T, L) such that

E
[

sup
0≤t≤T

|Xt|p
]
≤ C1. (11)

(ii) If h < L1

2L2
2
, then for any p ≥ 2, there exist positive constants C2 = C2(p, x0, T, L) and C3 = C3(p, x0, T, L)

such that

E
[

sup
0≤t≤T

|Xh
t |p
]
≤ C2, (12)

and
sup

0≤t≤T
E
[
|Xh

t −Xh
ηh(t)|

p
]
≤ C3h

p/2. (13)
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Proof. Since the estimate (11) is well-known, we can omit its proof. The estimate (12) is also followed from
classical arguments and the fact that

|bh(x)|2 ∨ |σh(t, x)|2 ≤ 4L(1 + |x|2).

To show (13), we write∣∣∣Xh
t −Xh

ηh(t)

∣∣∣p ≤ 2p−1
(∣∣∣bh(Xh

ηh(t))h
∣∣∣p +

∣∣∣σh(ηh(t), Xh
ηh(t))(Wt −Wηh(t))

∣∣∣p)
≤ 22p−1Lp/2(1 + |Xh

ηh(t)|
2)(hp + |Wt −Wηh(t)|p).

This fact together with (12) implies the desired result.

3.2 A modification of the Yamada and Watanabe approximation

In order to show the exponential stability of the exact solution, we propose a modification of the well-known
approximation technique of Yamada and Watanabe (see [23], [2]). First, note that for each p ≥ 1, δ > 1 and
ε > 0 there exist a positive constant C(p, δ) and a continuous function ψδε(p, .) : R→ R+ such that

(i)
∫ ε
ε/δ

ψδε(p, z)dz = pεp−1,

(ii) 0 ≤ ψδε(p, z) ≤ C(p, δ)zp−2 for z ∈ [
ε

δ
, ε]; ψδε(p, z) = 0 for z ∈ (0,

ε

δ
); and ψδε(p, z) = p(p − 1)zp−2 for

z ∈ (ε,+∞).

We will approximate the function x 7→ |x|p by the function φδε defined by

φδε(p, x) :=

∫ |x|
0

∫ y

0

ψδε(p, z)dzdy, x ∈ R.

It is easy to verify that φδε has the following properties: for any x ∈ R

(T1) φ′δε(p, x) =
x

|x|
φ′δε (p, |x|), where φ′δε(p, x) = ∂

∂xφδε(p, x);

(T2) p|x|p−1I(ε;+∞)(x) ≤ |φ′δε(p, x)| ≤ pεp−1I[ εδ ;ε](x) + p|x|p−1I(ε;+∞)(x);

(T3) φδε(p, x)− pεp ≤ |x|p ≤ εp + φδε(p, x);

(T4)
φ′δε(p, |x|)
|x|p

≤ pδp

ε
;

(T5) φ′′δε (p, |x|) = ψδε(p, |x|) ≤ C(p, δ)|x|p−2I[ εδ ;ε](|x|)+p(p−1)|x|p−2I(ε;+∞)(x), where φ′′δε(p, x) = ∂2

∂x2φδε(p, x).

In the case that p = 1, we can choose C(1, δ) =
2

log δ
. Moreover, we denote φδε(x) = φδε(1, x) for simplicity.

3.3 Proof of Theorem 1

Note that if b and σ satisfy A2 and A3 then they also satisfy A4 and A5. For the moment, we suppose that b
and σ satisfy A4 and A5.

In the following, constants are denoted by C which may change from line to line, and which are independent
of the time step h, LR and R, but may depend on L, T, α and x0.

Consider h < L1

2L2
2
∧ 1. Set τR = inf{t ≥ 0 : |Xt| ≥ R}, τhR = inf{t ≥ 0 : |Xh

t | ≥ R}, τ = τR ∧ τhR and

A = {τR ≤ T} ∪ {τhR ≤ T}. By Lemma 6, we have

P(A) ≤ P(τR ≤ T ) + P(τhR ≤ T ) ≤
E(sup0≤t≤T |Xt|2)

R2
+

E(sup0≤t≤T |Xh
t |2)

R2
≤ C

R2
,
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which, together with Hölder’s inequality and Lemma 6, yields

E
[

sup
0≤t≤T

|Xt −Xh
t |IA

]
≤ C

R
.

Set Y ht = Xt −Xh
t . Since τ > T on the set Ā = Ω \A, we have

E
[

sup
0≤t≤T

|Y ht |
]

= E
[

sup
0≤t≤T

|Y ht∧τ |IĀ
]

+ E
[

sup
0≤t≤T

|Y ht |IA
]

≤ E
[

sup
0≤t≤T

|Y ht∧τ |
]

+
C

R
. (14)

Similarly, we also have

E
[
|Y ht |

]
≤ E

[
|Y ht∧τ |

]
+
C

R
. (15)

Using property T3 and Itô’s formula, we have

|Y ht | ≤ ε+ φδε(Y
h
t )

≤ ε+

∫ t

0

φ′δε(Y
h
s )
[
σ(Xs)− σh(ηh(s), Xh

ηh(s))
]
dWs

+

∫ t

0

{
φ′δε(Y

h
s )
[
b(Xs)− bh(Xh

ηh(s))
]

+
φ′′δε(Y

h
s )

2

[
σ(Xs)− σh(ηh(s), Xh

ηh(s))
]2}

ds,

which implies
|Y ht∧τ | ≤ ε+ J1(t) + J2(t) + J3(t), (16)

where

J1(t) =

∫ t∧τ

0

φ′δε(Y
h
s )
[
b(Xs)− bh(Xh

ηh(s))
]
ds,

J2(t) =
1

2

∫ t∧τ

0

φ′′δε(Y
h
s )
[
σ(Xs)− σh(ηh(s), Xh

ηh(s))
]2
ds,

J3(t) =

∫ t∧τ

0

φ′δε(Y
h
s )
[
σ(Xs)− σh(ηh(s), Xh

ηh(s))
]
dWs.

If follows from T2 that |φ′δε(x)| ≤ 1 for all x ∈ R. Therefore, if 0 < s < τ ∧ t, then∣∣∣φ′δε(Y hs )
[
b(Xs)− bh(Xh

ηh(s))
]∣∣∣

≤
∣∣b(Xs)− b(Xh

s )
∣∣+
∣∣∣b(Xh

s )− b(Xh
ηh(s))

∣∣∣+
∣∣∣b(Xh

ηh(s))− bh(Xh
ηh(s))

∣∣∣
≤ LR|Xs −Xh

s |+ LR|Xh
s −Xh

ηh(s)|+
2
√
LL2

2h

L1
(1 + |Xh

ηh(s)|),

where we use the estimate that |b(x) − bh(x)| ≤ 2L2
2

L1

√
Lh(1 + |x|) for the last term. Therefore, it follows from
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Lemma 6 that

E[ sup
0≤s≤t

|J1(s)|] ≤ LRE
[∫ t∧τ

0

|Y hs |ds
]

+ LRE
[∫ t∧τ

0

|Xh
s −Xh

ηh(s)|ds
]

+ ChE
[∫ t∧τ

0

(1 + |Xh
ηh(s)|)ds

]
≤ LRE

[∫ t∧τ

0

|Y hs∧τ |ds
]

+ LRE
[∫ t

0

|Xh
s −Xh

ηh(s)|ds
]

+ ChE
[∫ t

0

(1 + |Xh
ηh(s)|)ds

]
≤ LRE

[∫ t

0

|Y hs∧τ |ds
]

+ C(LR + 1)
√
h. (17)

With 0 < s < t ∧ τ , it follows from A4 that[
σ(Xs)− σh(ηh(s), Xh

ηh(s))
]2

≤ 3
[
σ(Xs)− σ(Xh

s )
]2

+ 3
[
σ(Xh

s )− σ(Xh
ηh(s))

]2
+ 3

[
σ(Xh

ηh(s))− σh(ηh(s), Xh
ηh(s))

]2
≤ 3L2

R|Y hs |1+2α + 3L2
R|Xh

s −Xh
ηh(s)|

1+2α + 3Ch
[
|Xh

ηh(s)|
4 + 1

]
, (18)

where we use the inequality (a+b+c)2 ≤ 3(a2+b2+c2) for the first estimate and the inequality |σ(x)−σh(t, x)|2 ≤
Ch(|x|4 + 1) if t ∈ [0, T ] for the last one. Following T5 and Lemma 6, we have

E[ sup
0≤s≤t

|J2(s)|] ≤ 3

log δ

{
L2
Rε

2αT +
L2
Rδ

ε
E
[∫ t∧τ

0

|Xh
s −Xh

ηh(s)|
1+2αds

]
+
Chδ

ε

}
≤ 3

log δ

{
L2
Rε

2αT +
L2
Rδ

ε
E
[∫ t

0

|Xh
s −Xh

ηh(s)|
1+2αds

]
+
Chδ

ε

}
≤ 3C

log δ

{
L2
Rε

2α +
L2
Rh

1/2+αδ

ε
+
hδ

ε

}
. (19)

Combining this fact and the estimates (16), (17) implies that

E
[
|Y ht∧τ |

]
≤ ε+ LR

∫ t

0

E
[
|Y hs∧τ |

]
ds+ C(LR + 1)

√
h

+
3C

log δ

{
L2
Rε

2α +
L2
Rh

1/2+αδ

ε
+
hδ

ε

}
.

The application of Gronwall’s inequality yields

E
[
|Y ht∧τ |

]
≤
(
ε+ C(LR + 1)

√
h+

3C

log δ

{
L2
Rε

2α +
L2
Rh

1/2+αδ

ε
+
hδ

ε

})
eLRt. (20)
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On the other hand, using Burkholder-Davis-Gundy’s inequality, we get

E
[∣∣∣∣ sup

0≤t≤T
J3(t)

∣∣∣∣] ≤3E

{∫ T∧τ

0

∣∣∣σ(Xs)− σh(ηh(s), Xh
ηh(s))

∣∣∣2 ds}1/2


≤
√

27LRE

{∫ T

0

|Y hs∧τ |1+2αds

}1/2


+
√

27LR

{
E

[∫ T

0

∣∣∣Xh
s −Xh

ηh(s)

∣∣∣1+2α

ds

]}1/2

+ C
√
h

{
E

[∫ T

0

(
|Xηh(s)|4 + 1

)
ds

]}1/2

,

where we use (18) for the last estimate. It follows from Lemma 6 that

E
[∣∣∣∣ sup

0≤t≤T
J3(t)

∣∣∣∣] ≤ √27LRE

{∫ T

0

|Y hs∧τ |1+2αds

}1/2
+ C(1 + LR)h(1+2α)/4. (21)

If α = 0, by choosing ε = h1/4 and δ = h−1/4 in (20) we have

sup
0≤t≤T

E[|Y ht∧τ |] ≤ C
eLRT (1 + L2

R)

log 1
h

. (22)

Combining this fact and (16), (17), (19), and (21) implies

E
[

sup
0≤t≤T

|Y ht∧τ |
]
≤ C e

LRT (1 + L3
R)√

log 1
h

.

This fact together with (14) yields,

E
[

sup
0≤t≤T

|Y ht |
]
≤ C e

LRT (1 + L3
R)√

log 1
h

+
C

R
. (23)

Let h ↓ 0 and then let R ↑ ∞ we obtain (4). Similary, it follows from (22) and (15) that

sup
0≤t≤T

E[|Y ht |] ≤ C
eLRT (1 + L2

R)

log 1
h

+
C

R
. (24)

If α ∈ (0, 1
2 ], it follows from (21) that

E
[∣∣∣∣ sup

0≤t≤T
J3(t)

∣∣∣∣] ≤1

2
E
[

sup
0≤t≤T

|Y ht∧τ |
]

+
27

2
L2
R

∫ T

0

(
E[|Y hs∧τ |]

)2α
ds

+ C(1 + LR)h(1+2α)/4.

Combining this fact and estimates (16), (17), (19) yields

E
[

sup
0≤t≤T

|Y ht∧τ |
]
≤ 2ε+ 2LR

∫ T

0

E|Y hs∧τ |ds+
6C

log δ

{
L2
Rε

2α +
L2
Rh

1/2+αδ

ε
+
hδ

ε

}
+ 27L2

R

∫ T

0

(
E[|Y hs∧τ |]

)2α
ds+ 2C(1 + LR)h(1+2α)/4. (25)
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By choosing δ = 2, ε =
√
h in (20), we get

E
[
|Y ht∧τ |

]
≤ C(1 + L2

R)eLRthα. (26)

This fact together with (25) yields

E
[

sup
0≤t≤T

|Y ht∧τ |
]
≤ C(1 + L2+4α

R )eLRTh2α2

.

Then it follows from (14) that

E
[

sup
0≤t≤T

|Y ht |
]
≤ C(1 + L2+4α

R )eLRTh2α2

+
C

R
. (27)

Similary, it follows from (26) and (15) that

sup
0≤t≤T

E
[
|Y ht |

]
≤ C(1 + L2

R)eLRthα +
C

R
. (28)

Again, first let h ↓ 0 and then let R ↑ ∞ in (27), we obtain (4). The proof of Part (i) is completed.
Next, we prove Part (ii). Suppose that assumptions A2 and A3 hold, then LR does not depend on R. If

α = 0, let R ↑ ∞ in (24) and (23) we obtain (5) and (6), respectively. If α ∈ (0, 1
2 ], let R ↑ ∞ in (28) and (27)

we also obtain (5) and (6), respectively.
The proof of Part (iii) goes along similar lines as the one for Part (i), so we only sketch it. Suppose b and σ

satisfy A2 and A3. We denote by Cp a quantity which is independent of h, but may depend on L,L2, L3, T, α, x0

and p. The value Cp may also change from line to line. For any p ≥ 2, we have

E
[

sup
0≤t≤T

|Y ht |p
]
≤Cpεp + Cp

∫ t

0

E
[
|Y hs |p

]
ds+ Cph

p/2

+
Cp

(log δ)p

{
ε2pα +

hp(1+2α)/2δp

εp
+
hpδp

εp

}
+ CpE

[∫ t

0

|Y hs |p(1+2α)/2ds

]
+ Cph

p(1+2α)/4.

Using Young’s inequality p(2α+1)−2
2(p−1) xp + p

2(p−1) (1− 2α)x ≥ xp(2α+1)/2, we get

E
[

sup
0≤t≤T

|Y ht |p
]
≤ Cpεp + Cp

∫ t

0

(
E
[
|Y hs |p

]
+ (1− 2α)E[|Y ht |]

)
ds+ Cph

p/2

+
Cp

(log δ)p

{
ε2pα +

hp(1+2α)/2δp

εp
+
hpδp

εp

}
+ Cph

p(1+2α)/4. (29)

By choosing ε = h1/4, δ = h−1/4 when α = 0; ε = h1/2, δ = 2 when α ∈ (0, 1
2 ] in (29), using the esimate (5) and

applying Gronwall inequality, we get (6).

3.4 Proof of Theorem 2

Applying Itô’s formula for eκtφδε(p, x) for some κ > 0 and p ≥ 1, and the property T3, we obtain

|Xt|peκt ≤ εpeκt + φδε (p,Xt) e
κt

≤ εpeκt + pεp + |x0|p +

∫ t

0

eκsφ′δε(p,Xs)σ(Xs)dWs

+

∫ t

0

eκs
[
φ′δε(p,Xs)b(Xs) +

1

2
φ′′δε(p,Xs)σ

2(Xs) + κ|Xs|p + κpεp
]
ds. (30)
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Thanks to A1, A2, T1, T2,

φ′δε(p,Xs)b(Xs) = φ′δε (p,Xs) b(Xs)I{|Xs|≤ε} +
φ′δε (p, |Xs|)
|Xs|

Xsb(Xs)I{|Xs|>ε}

≤ pεp−1|b(Xs)|I{|Xs|≤ε} − pL1|Xs|pI{|Xs|>ε}
≤ pL2ε

pI{|Xs|≤ε} − pL1|Xs|p(1− I{|Xs|≤ε})
≤ p(L1 + L2)εp − pL1|Xs|p. (31)

It follows from condition A3 and the property T5 that

φ′′δε(p,Xs)σ
2(Xs) = φ′′δε(p, |Xs|)σ2(Xs)

≤ C(p, δ)L2
3|Xs|p−1+2αI[ εδ ;ε](|Xs|) + L2

3p(p− 1)|Xs|p−1+2αI(ε;+∞)(|Xs|)
≤ C(p, δ)L2

3ε
p−1+2α + L2

3p(p− 1)|Xs|p−1+2α. (32)

Combining (30), (31), and (32), we have

|Xt|peκt ≤ εpeκt + pεp + |x0|p +

∫ t

0

eκsφ′δε(Xs)σ(Xs)dWs

+

∫ t

0

eκs
[
p(L1 + L2)εp − pL1|Xs|p +

1

2
C(p, δ)L2

3ε
p−1+2α

]
ds

+

∫ t

0

eκs
[
p(p− 1)L2

3

2
|Xs|p−1+2α + κ|Xs|p + κpεp

]
ds

≤ εpeκt + pεp + |x0|p +

∫ t

0

eκsφ′δε(Xs)σ(Xs)dWs

+

[
p(L1 + L2)εp +

1

2
C(p, δ)L2

3ε
p−1+2α + κpεp

]
eκt − 1

κ

+

∫ t

0

eκs
[
(κ− pL1)|Xs|p +

p(p− 1)L2
3

2
|Xs|p−1+2α

]
ds. (33)

Part (i): Consider p = 1. We choose C(1, δ) =
2

log δ
, and κ = L1, then for any N > 0, ε > 0, and finite stopping

time τ , it holds that

E[|Xτ∧N |eL1(τ∧N)] ≤ εE
[
eL1(τ∧N)

]
+ ε+ |x0|

+

[
(2L1 + L2)ε+

L2
3ε

2α

log δ

]
E
[
eL1(τ∧N) − 1

L1

]
≤ ε

(
eL1N + 1

)
+ |x0|+

[
(2L1 + L2)ε+

L2
3ε

2α

log δ

](
eL1N − 1

L1

)
.

First let δ ↑ ∞, and then let ε ↓ 0, we have

E[|Xτ∧N |eL1(τ∧N)] ≤ |x0|.

Because |Xτ∧N |eL1(τ∧N) a.s−−→ Xτe
L1τ as N →∞, by Fatou’s lemma, we obtain

E
[
|Xτ |eL1τ

]
≤ |x0|. (34)

This fact together with Lemma 5 implies (7).
Part (ii): Consider p > 1. Since 0 < λ < 1 ∧ (p− 1 + 2α), using Young’s inequality, we get

|Xs|p−1+2α ≤ 1− 2α

p− λ
|Xs|λ +

p− 1 + 2α− λ
p− λ

|Xs|p.

11



From (33),

|Xt|peκt ≤ εpeκt + pεp + |x0|p +

∫ t

0

eκsφ′δε(Xs)σ(Xs)dWs

+

[
p(L1 + L2 + κ)εp +

1

2
C(p, δ)L2

3ε
p−1+2α

]
eκt − 1

κ

+

∫ t

0

eκs
(
κ− pL1 +

p(p− 1)(p− 1 + 2α− λ)L2
3

2(p− λ)

)
|Xs|pds

+

∫ t

0

eκs
p(p− 1)(1− 2α)L2

3

2(p− λ)
|Xs|λds

≤ εpeκt + pεp + |x0|p +

∫ t

0

eκsφ′δε(Xs)σ(Xs)dWs

+

[
p(L1 + L2 + κ)εp +

1

2
C(p, δ)L2

3ε
p−1+2α

]
eκt − 1

κ

+

∫ t

0

eκs
p(p− 1)(1− 2α)L2

3

2(p− λ)
|Xs|λds, (35)

where we use the fact that κ ≤ pL1 −
L2

3p(p− 1)(p− 1 + 2α− λ)

2(p− λ)
. For any N > 0, ε > 0, and finite stopping

time τ ,

E
[
|Xτ∧N |peκ(τ∧N)

]
≤ εpeκN + pεp + |x0|p

+

[
p(L1 + L2 + κ)εp +

1

2
C(p, δ)L2

3ε
p−1+2α

]
eκN − 1

κ

+

∫ N

0

p(p− 1)(1− 2α)L2
3

2(p− λ)
E
[
eκs|Xs|λ

]
ds.

Let ε ↓ 0, we have

E
[
|Xτ∧N |peκ(τ∧N)

]
≤ |x0|p +

∫ N

0

p(p− 1)(1− 2α)L2
3

2(p− λ)
E
[
eκs|Xs|λ

]
ds.

From (34) and Holder’s inequality, we get E
[
eκs|Xs|λ

]
≤ |x0|λe(κ−λL1)s. Since κ < λL1, we get

E
[
|Xτ∧N |peκ(τ∧N)

]
≤ |x0|p +

∫ N

0

p(p− 1)(1− 2α)L2
3

2(p− λ)
|x0|λe(κ−λL1)sds ≤ |x0|p

+
p(p− 1)(1− 2α)L2

3|x0|λ

2(p− λ)(λL1 − κ)
.

Let N ↑ ∞ and apply Fatou’s lemma, we obtain (8).

3.5 Proof of Theorem 3

It follows from (3) that we can write E
[
|Xh

(k+1)h|
2
]

as

E
[
|Xh

kh|2
]

+ 2hE
[
Xh
khbh(Xh

kh)
]

+ h2E
[
|bh(Xh

kh)|2
]

+ hE
[
|σh(kh,Xh

kh)|2
]
.

Thanks to A1 and A2, and the fact that |σh(kh,Xh
kh)| ≤ h−1/2e−2L1kh, we get

E
[
|Xh

(k+1)h|
2
]
≤

[
1− 2L1h

1− L2
2L
−1
1 h

+
L2

2h
2(

1− L2
2L
−1
1 h

)2
]
E
[
|Xh

kh|2
]

+ e−4L1kh. (36)
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Because 1− 2L1h

1− L2
2L
−1
1 h

+
L2

2h
2(

1− L2
2L
−1
1 h

)2 ≤ 1− 2L1h when h <
L1

2L2
2

∧ 1

2L1
, it follows from (36) that

E
[
|Xh

kh|2
]
≤ (1− 2L1h)k|x0|2 +

k−1∑
i=0

e−4L1(k−1−i)h(1− 2L1h)i.

Using the simple estimate ex ≥ x+ 1, we get

E
[
|Xh

kh|2
]
≤ e−2L1kh|x0|2 +

k−1∑
i=0

e−4L1(k−1−i)h−2L1ih.

After some elementary estimates, we get

E
[
|Xh

kh|2
]
≤ |x0|2 + e2

2L1

e−2L1kh

h
. (37)

Moreover, it follows from (3) that

E
[
|Xh

t |2
]
≤ 3

{
E
[
|Xh

ηh(t)|
2
]

+ h2E
[
|bh
(
Xh
ηh(t)

)
|2
]

+ hE
[
|σh(kh,Xh

kh)|2
]}
.

Using again the estimates |bh(x)| ≤ 2L2|x| and |σh(t, x)| ≤ h−1/2e−2L1t, we get

E
[
|Xh

t |2
]
≤ 3(1 + 4L2

2h
2)E

[
|Xh

ηh(t)|
2
]

+ 3e−4L1ηh(t).

This fact together with (37) implies (9). The relation (10) is a direct consequence of (9). The proof is complete.

4 Numerical experiments

We consider the following SDE

Xt = 0.1−
∫ t

0

Xsds+

∫ t

0

|Xs|α+ 1
2 dWs. (38)

It is well-known that such equation has a unique strong non-negative solution (see [8] , [15]). Moreover, it follows
from Theorem 2 that (Xt)t≥0 is exponentially stable in L1-norm. We consider three numerical schemes for this

equation: the plain EM, the backward EM and the non-negative tamed EM X̂ introduced in Section 2.5. Recall
that the plain EM (PEM) for equation (38) is given by{

XPEM,h
0 = x0,

XPEM,h
(k+1)h = XPEM,h

kh −XPEM,h
kh h+ |XPEM,h

kh |α+ 1
2 (W(k+1)h −Wkh), k ≥ 0,

and the backward EM (BEM) for it is given by{
XBEM,h

0 = x0,

XBEM,h
(k+1)h = XBEM,h

kh −XBEM,h
(k+1)h h+ |XBEM,h

kh |α+ 1
2 (W(k+1)h −Wkh), k ≥ 0.

The convergence of the plain EM scheme was considered in [2], where the authors showed that it converges at
the same rate as the tamed EM X̂h. The backward EM has been also studied in [3], [14], [13].

In our numerical experiment, we consider the L1-norm of the approximation error

eh,T = E[|Xt −Xh
T |].

In particular, we focus on the errors at two points T = 1 (short time) and T = 5 (long time). Since we also
concern with the convergence rate with respect to the value of α, we consider α = 0.05 and α = 0.45. Although
we do not know the explicit form of the solution to (38), Corollary 4 guarantees that the non-negative tamed EM

13



Figure 1: Strong error plots in log2− log2 scale of plain EM scheme (PEM), backwark EM scheme (BEM) and
non-negative tamed EM scheme (TEM)

approximation X̂h
t strongly converges to the true solution. Therefore, it is reasonable to take the non-negative

tamed EM approximation X̂h
t with a very small time step h = 2−15 as a reference solution. We then simulate

the sample paths of Xt by using the three numerical approximation schemes with timesteps 23h, 25h, 27h, and
29h. The values of eh,T corresponding to each approximation scheme are computed via the Monte-Carlo method
based on N = 5000 such sample paths.

In Figure 1, we plot eh,T against h on a log2− log2 scale. We see that the plain EM scheme and the
backward EM scheme converge at almost the same rate. Compare with the non-negative tamed EM scheme,
their approximation errors are smaller in the regular case, i.e., when T is small and α is large. However, in
irregular case when T is large or α is small, the approximation error of the non-negative tamed EM scheme is
much smaller than that of plain and backward EM ones.

Next, we consider the stability of each numerical schemes. In Figure 2, we plot sample paths of X̂h, XPEM,h

and XBEM,h on the interval [0, 5] based on a common sample path of the Brownian motion W . We choose the
stepsize h = 0.01. We can see that the sample path of the non-negative tamed EM scheme is stable at 0 while
the ones of plain and backward EM schemes seem unstable. Moreover, the non-negative tamed EM scheme
preserves the non-negativity of the solution while the other schemes do not.
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