LOCAL ASYMPTOTIC PROPERTIES FOR THE GROWTH RATE OF A
JUMP-TYPE CIR PROCESS
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ABSTRACT. In this paper, we consider a one-dimensional jump-type Cox-Ingersoll-Ross pro-
cess driven by a Brownian motion and a subordinator, whose growth rate is a unknown
parameter. The Lévy measure of the subordinator is finite or infinite. Considering the pro-
cess observed continuously or discretely at high frequency, we derive the local asymptotic
properties for the growth rate in both ergodic and non-ergodic cases. To do so, three cases
are distinguished: subcritical, critical and supercritical. Local asymptotic normality (LAN)
is proved in the subcritical case, local asymptotic quadraticity (LAQ) is derived in the critical
case, and local asymptotic mixed normality (LAMN) is shown in the supercritical case.

1. INTRODUCTION

On a complete probability space (€2, F,P) which will be specified later on, we consider a
one-dimensional jump-type Cox-Ingersoll-Ross (CIR) process Y = (Ytb)te[o,oo) driven by a
subordinator

d}/tb: (a—biftb> dt+0‘\/}§th+d<}t, (1'1)

where Y = yo € [0,00) is a given initial condition, a € [0,00), b € R and o € (0,00).
Here, W = (W});c[0,00) is & one-dimensional standard Brownian motion, and J = (J;)ie[0,00)
is a subordinator (an increasing Lévy process) with zero drift and with Lévy measure m
concentrated on (0, 00) and satisfying the following condition

(A1) [;° zm(dz) € [0,00).
Then, the Laplace transform of J is given by

E [e""] = exp {t/ooo (e — 1) m(dz)} : (1.2)

for any t € [0,00) and for any complex number u with Re(u) € (—o0,0], see, e.g. Sato [42,
proof of Theorem 24.11]. We suppose that the processes W and J are independent. Note
that the moment condition (A1) implies that m is a Lévy measure (since min(1,22) < z for
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€ (0,00)). Moreover, the subordinator J has sample paths of bounded variation on every
compact time interval almost surely, see e.g. Sato [42] Theorem 21.9]. We point out that
the assumptions assure that there is a (pathwise) unique strong solution of the stochastic
differential equation (SDE) (I.1)) with P(Y;? € [0,00) for all ¢ € [0,00)) = 1 (see Proposition
. In fact, Y? is a special continuous state and continuous time branching process with
immigration (CBI process), see Proposition below and [16, [30].

Let R, Ry, Ry, R_, R__ and C denote the sets of real numbers, non-negative real num-
bers, positive real numbers, non-positive real numbers, negative real numbers and complex
numbers, respectively.

In this paper, we will consider the jump-type CIR process Y solution to equation with
knowna € Ry, 0 € Ry, yp € Ry and Lévy measure m satisfying condition (A1), and we will
consider b € R as an unknown parameter to be estimated. Let {]?t}teR . denote the natural
filtration generated by two processes W and J. We denote by P’ the probability measure
induced by the process Y? on the canonical space (D(R,,R),B(D(R,,R))) endowed with
the natural filtration {F; }scr .- Here D(R;,R) denotes the set of R-valued cadlag functions

defined on Ry, and B(D(Ry,R)) is its Borel o-algebra. We denote by Eb the expectation

. = pv (P
with respect to (w.r.t.) P’ Let P—> )

?b—probability, in lgb—law, in ﬁb—almost burely, in P-probability, and in P-law, respectively. E
denotes the expectation w.r.t. P.

Notice that the Lévy-Ito6 decomposition of J takes the form J; = fg Jo* 2N (ds,dz) for
any t € Ry, where N(dt,dz) := ) o,y 1{a1,£0}0(s,a7,)(ds,d2) is an interger-valued Poisson
random measure in (Ry x Ry, B(R, x Ry)) with intensity measure m(dz)dt associated with
J. Here, the jump amplitude of J is defined as AJ; := J; — J,— for any s € Ry, AJy :=0,
d(s,2) denotes the Dirac measure at the point (s, z) € Ry x Ry, and B(R4 x R, ) denotes the
Borel o-algebra on Ry x R,. Hence, can be rewritten in the following integral form

}Qb:yO_F/t(a—bYsb)ds—i-a/t\/Y>deWS+Jt
:y0+/ (a—be ds+a/ \/>dW +// N(ds, dz),

for any t € Ry. Observe that E [J;] = tfo zm(dz), for any t € R,..

The next proposition is about the existence and uniqueness of a strong solution of the SDE
(1.1, and states also that Y is a CBI process.

P L(P .
Pb a.s., —», and (—>) denote the convergence in

(1.3)

Proposition 1.1. [4, Proposition 2.1] For alla € Ry, b e R, 0 € R4y, yo € Ry and Lévy
measure m on Ry, satisfying condition (A1), there is a pathwise unique strong solution Y =
(YP)ier, of the SDE such that P(YY = yo) = 1 and P(Y? € Ry for allt € Ry) = 1.
Moreover, Y is a CBI process having branching mechanism

0.2

R(u) = 7u2 — bu, u € C with Re(u) <0,

and immigration mechanism

F(u) = au +/ (e"* —1)m(dz), u € C with Re(u) <0.
0
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Furthermore, the infinitesimal generator of Y takes the form

0.2 00
AN = @ = ) o)+ Fur" W)+ [ G+ 2) = F@)m(as),

where y € Ry, f € C2(R4,R), f' and f" denote the first and second order partial derivatives
of f, and C%(R,,R) denotes the set of twice continuously differentiable real-valued functions
on Ry with compact support.

If, in addition, yo + a € Ry, then P(fg Ybds e Riy) =1 forallt € Ry,.

Next we present a result on the first moment of Y°.

Proposition 1.2. [4, Proposition 2.2] Leta e Ry, be R, 0 € Ry, yo € Ry and let m be a
Lévy measure on Ry satisfying condition (A1). Let Y be the unique strong solution of the
SDE (1.1 satisfying P(YY = yo) = 1. Then, for any t € Ry,

gy = [oe @ em(d2)) 5= if b#0,
U Lo+ (ot [ 2m(de))t if b=0.
Consequently, if b € Ry, then

lim E[Y}] = (a + /OOO zm(dz»%,

t—o0
if b=20, then
lim ¢ 'E[Y?] = a +/ zm(dz),
0

t—o00

if beR__, then
&0 1
. btraryb B 1
thm e”ElY)] =yo — (a —I—/O zm(dz)) -

Based on the asymptotic behavior of the expectations E[Y}?] as t — 0o, one can introduce
a classification of the jump-type CIR process ((1.1)).

Definition 1.3. Leta € Ry, b e R, 0 € R, yo € Ry and let m be a Lévy measure on R
satisfying condition (A1). Let Y be the unique strong solution of the SDE satisfying
P(Yob =yo) = 1. We call Y subcritical, critical or supercritical ifb € Ry, b=0orbeR__,
respectively.

The CIR processes are extensively used in mathematical finance to model the evolution of
short-term interest rates or to describe the stochastic volatility of a price process of an asset
in the Heston model. The CIR process appears in the financial literature also as part of the
class of affine processes, and a lot of interesting references can be found in this way, e.g. in
the work of Teichmann et al. [I5], Duffie, Filipovi¢ and Schachermayer [16], Kallsen [27],
Keller-Ressel [29], Keller-Ressel and Mijatovi¢ [30] and other authors.

Notice that most existing research works on statistics for CIR processes and Heston models
mainly focus on parameter estimation based on continuous observations. In case of the
diffusion-type CIR process, Overbeck [38] examined local asymptotic properties for the drift
parameter (a,b). It turned out that LAN is valid in the subcritical case when a € (%2, oo). In
the critical case LAN is proved for the submodel when b = 0 is known, and only LAQ is shown
for the submodel when a € (%, oo) is known, but the asymptotic property of the experiment
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locally at (a,0) remained as an open question. In the supercritical case LAMN is proved for
the submodel when a € (O, oo) is known. The concept of LAN, LAQ and LAMN can be
found, e.g., in Le Cam and Yang [36] or in Subsection 7.1 of Hépfner [21I]. Kutoyants [33]
investigated statistical inference for one-dimensional ergodic diffusion processes. LAN for the
diffusion-type CIR process in the subcritical case also follows from his general result. Later,
Ben Alaya and Kebaier [7, 8] show various asymptotic properties of maximum likelihood
estimator (MLE) associated to the partial and global drift parameters of the diffusion-type
CIR process in both ergodic and non-ergodic cases. More recently, Barczy et al. [4] have
investigated the asymptotic properties of MLE for the growth rate b of the jump-type CIR
process , which provides the main inspiration for our current work. Recently, Benke and
Pap [10] have studied the local asymptotic properties of certain Heston models. Barczy and
Pap [6], Barczy et al. [3, 5] have studied the asymptotic properties of MLE for Heston models,
jump-type Heston models, and stable CIR process, respectively.

In the other direction, Malliavin calculus techniques developed by Gobet [18] are applied to
analyze the log-likelihood ratio of the discrete observation of diffusion processes. Concretely,
Gobet [18,[19] obtained the LAMN and LAN properties for multidimensional elliptic diffusions
and ergodic diffusions. In the presence of jumps, several SDEs have been investigated, see
e.g. Kawai [28], Clément et al. [13, [14], Kohatsu-Higa et al. [3I],32], and Tran [43]. Notice
that all these results deal with the SDEs whose coefficients are continuously differentiable
and satisfy a global Lipschitz condition. The case where the coefficients of the SDEs do not
satisfy these standard assumptions is less investigated. The first contribution in this direction
can be found in Ben Alaya et al. [9] where the authors have established the local asymptotic
properties for the global drift parameters (a,b) of the diffusion-type CIR process.

The LAN, LAMN and LAQ properties for jump-type CIR processes on the basis of both
continuous and discrete observations have never been addressed in the literature. Motivated
by this fact and inspired by the recent paper [4], the main objective of this paper is to study
the local asymptotic properties for the parameter b of the jump-type CIR process in
both ergodic and non-ergodic cases. That is, LAN will be proved in the subcritical case, LAQ
will be derived in the critical case and LAMN will be shown in the supercritical case. Let
us mention here that the study of the parameter a needs the asymptotic behavior of fg Y%;,ds

which still remains an open problem.

For our purpose, in the case of continuous observations, we use the Girsanov’s theorem
(see Proposition and the central limit theorem for continuous local martingales (see
Lemma , together with the asymptotic behavior results —, and .
Unlike the CIR diffusion, the jump-type CIR process does not have an explicit expression
for its transition density and then proving local asymptotic properties based on discrete
observations becomes challenging. Therefore, to overcome this difficulty in the case of discrete
observations, our strategy is to prove first the existence of a positive transition density, which
is of class C' w.r.t. b (see Proposition and then to use the Malliavin calculus approach
developed by Gobet [I8, [19] for regular SDEs in order to derive an explicit expression for
the logarithm derivative of the transition density in terms of a conditional expectation of a
Skorohod integral (see Proposition Lemma and Corollary , which allows to obtain
an appropriate stochastic expansion of the log-likelihood ratio (see Lemma and .
Recall that Malliavin calculus for CIR process is established by Alos and Ewald [I], and
Altmayer and Neuenkirch [2]. To treat the main term of the expansion, in the subcritical
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case, we apply a central limit theorem for triangular arrays of random variables together with
the convergence result — (see Lemma 4.2)) whereas in the critical and supercritical
cases, the corresponding convergence results (2.6 and together with the central limit
theorem for continuous local martingales are essentially used (see Lemma and .

The difficulty of the proof is to treat the negligible terms of the expansion. The first
difficulty comes from the fact that the conditional expectations are taken under the measure

f’:(ﬁ) b, appearing from the application of the Malliavin calculus whereas the convergence
k> ty
is evaluated under P% with PP pb b, (see e.g. Lemma {d.4)). In [I8, [19], the authors
k> g

use a change of transition density functions together with the upper and lower bounds of
Gaussian type of the transition density functions. This measures the deviation of the change of
transition density functions when the parameters change. For our jump-type CIR process Y,
the transition density estimates of Gaussian type may not exist since the diffusion coefficient
and its derivative are not bounded. To overcome this first difficulty, Girsanov’s theorem
is essentially used to change the probability measures (see and Lemma . Then
a technical Lemma [3.9] is established to measure the deviation of the Girsanov change of
measure when the drift parameters change. Furthermore, the second difficulty comes from
the jumps of the subordinator appearing in the expansion in the subcritical case due to the
rate of convergence v/nA, (see Lemma . To resolve this problem, we split the jumps of
the subordinator into small jumps and big jumps. As in [32, Lemma A.14], we condition on
the number of big jumps outside and inside the conditional expectation. In [32], the authors
use upper and lower bounds for the transition density conditioned on the jump structure,
which is rather complicated since they need to show the estimates for this transition density.
However, they study only the case of finite Lévy measure. Here, the cases of finite and
infinite Lévy measure are considered. Our approach consists in rewriting the big jumps of
the subordinator on each time interval in terms of the increments of the process, the drift
and diffusion terms, and the small jumps. Then, conditionally on the events which have no
big jump on this interval, the increments of the process can be rewritten in terms of the drift
and diffusion terms, and the small jumps. Using all these arguments together with the usual
moment estimates instead of density estimates, we get the large deviation type estimates in
Lemma [5.3| where the decreasing rate is determined by the intensity of big jumps and the
behavior of small jumps of the subordinator. In the critical and supercritical cases, there is
no difficulty in treating the jumps of the subordinator appeari the expansion thanks to
)

nAn
the better rates of convergence nA, and e~ 2" (see Lemma |[4.14]).
Furthermore, some LP-norm estimation for positive and negative polynomial moments and

exponential moment estimates of the jump-type CIR process are needed to show the conver-
gence of the negligible terms (see Lemma 3.7). For this, condition (A3) below, which

turns out to be crucial, allows us to obtain the useful moment estimate in Lemma,
The lower bound 15%\/@ in condition (A3) is fixed in an optimal way to get minimal
restrictions on the ratio % (see Subsection and Remark . In addition, our strategy
does not require some additional assumptions on the decreasing rate of A,, such as nAl — 0
for some p > 1.

The paper is organized as follows. In Section [2, we state our main results in Theorem

and in the continuous and discrete observation cases as well as

in the subcritical, critical and supercritical cases. Furthermore, several examples are given.
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Section 3 presents technical results needed for the proof of the main results such as explicit
expression for the logarithm derivative of the transition density by means of Malliavin calculus,
decomposition of the Skorohod integral, some polynomial and exponential moment estimates
for the jump-type CIR process, Girsanov’s theorem, a discrete time ergodic theorem, central
limit theorems, and a comparison theorem. The proofs of these technical results are postponed
to Appendix in order to maintain the flow of the exposition. Finally, we prove our main results
in Section 4, which follows the aforementioned strategy.

2. MAIN RESULTS

In this section, we give a statement of our main results which is divided into two cases:
continuous and discrete observations.

2.1. Continuous observations. The main result is divided into three cases: subcritical,
critical and supercritical.

For all T' € Ry, let ?b = Ab|]_.

continuous observation Y70 .= (Y )telo,r) of the process Y? on the t1me 1nterval [0,T]. The

be the restriction of P® on ]?T, and consider the

next proposition is about the form of the Radon—Nikodym derlvatlve for b, beR.

Proposition 2.1. L4, Proposition 4.1] Let b,b € R. Then for all T € R4y, the probability

measures P% and P% are absolutely continuous w.r.t. each other, and

dp?, b—b - b2
log =L (Y1) = ——— (Y2 —yo — aT — Jr) — / Ylds
dPT o
b —-b b b
= / \/ Y2dW, — / YPds.
Moreover, the process (3; (YTI’))TG]R+ is a martingale.
pb
The martingale property of the process (dz;bT(YT’b)> is a consequence of Theorem 3.4
dPT T€R+

in Chapter III of Jacod and Shiryaev [23].
In order to investigate the local asymptotic properties of the family
(ST)T6R++ = (D([O¢ T]v R)v B(D([Ov T]aR))v {PIY)“ S R})T€R++ (21)
of statistical experiments, we will use the following corollary.

Corollary 2.2. For any b € R, T € Ry, ¢p(b) € R and u € R, we have the following
expansion

d§b+¥’T(b)U 2
log =L (YTb) = qUp(b) — L Ir(b),
dpb, 2

where

S

b T .
Ur(b) ¢=—¢§§)<Y$—yo—a:r’+b/o Ysde_JT> __or(b)
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Ip(b) == er(b)” /T Ylds.
0

o2

Using Proposition one can show the unique existence of MLE ?)\T of the parameter b
based on the continuous observations Y7'*, see Barczy et al. [4, Proposition 4.2].

Proposition 2.3. Leta € Ry, b e R, 0 € Ry, yo € Ry, and let m be a Lévy measure
on Ry satisfying condition (Al). If yo + a € Ry, then for each T € Ry, there exists a
unique MLE BT of b almost surely having the form
~ le-’, —yo—al —Jp
bp = — 7
fo Yods

provided that fOT Ybds € Ry, (which holds almost surely due to Proposition .

)

In fact, it turned out that for the calculation of the MLE ET of b, one does not need to
know the value of ¢ € Ry or the measure m. Here, Jp = Zte[o,T] AY;I’ with the jumps

AYP = YP — Y} fort € Ryy and AYY := 0 of the process Y°. Moreover, note that
by =b+ o7 (b) UT((b)) and o7 (b)~ (bT —b) = UT((b)) whenever I7(b) # 0 and ¢7(b) # 0.

To simplify our notation, in all what follows, we fix the parameter by € R.

2.1.1. Subcritical case. Let b € Ry,. We recall the existence of a unique stationary distribu-
tion and the strong law of large numbers of the process Y.

Proposition 2.4. [4, Theorem 2.4 and 5.1], [26, Theorem 1.2 and Remark 5.2] Let a € Ry,
beRiy, 0 €Ry, yo € Ry and let m be a Lévy measure on Ry satisfying condition (A1).
Let Y be the unique strong solution of the SDE satisfying P(Yob =10) =1. Then

(i) Y? has a unique stationary distribution denoted by m,(dy) which is given by

[ [ ) - ).

for allu € R_. Moreover, my(dy) has a finite expectation given by

/000 ymy(dy) = % <a - /OOO zm(dz)> ER,. (2.2)

1 t EN oo 1 00
t/ YPds 2, ymp(dy) = 7 <a +/ zm(dz)) € Ry. (2.3)
0 0

0

(il) Ast — oo,

(iii) Consider a my(dy)-integrable function h : R4y — R. Then, as t — oo,
/ h(YD)ds — / y)mp(dy), Pb-a.s. (2.4)

In [4, Theorem 2.4], Barczy et al. show the strong law of large numbers for Y* which
is obtained from the exponential ergodicity of Y under two conditions on the Lévy measure:
(A1) and fol zlog(L)m(dz) < co. More recently, in [26, Theorem 1.2 and Remark 5.1], Jin
et al. show the validity of under the weaker condition: [;*logzm(dz) < oo. This
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condition relaxes significantly the above two conditions used by Barczy et al. in [4, Theorem
2.4]. Notice that condition [ logzm(dz) < oo is then satisfied under assumption (A1).

For fixed by € R, we consider the continuous observation Y 7% = (Y;bo)te[oﬂ of the

process Y% on the time interval [0,7]. The first result of this paper is the following LAN
property in the subcritical case.

Theorem 2.5. Leta € Ry, bg € Ry4, 0 € Ry, yo € Ry and let m be a Lévy measure
on Ry satisfying condition (A1l). Ifa € Ry or m # 0, then the family (7)rer,, of
statistical experiments given in (2.1) is LAN at by with scaling factor or(by) := ﬁ and with

(Ur(bo). Tz (bo)) “2) (U (b0), I(b0)), (2.5)

as T — oo, where U(by) = N (0, I(by)) is a centered R-valued Gaussian random variable with

variance ) -
I(by) := T (a +/0 zm(dz)) e Ryy.

That is, for allu € R, as T — o0,

~bo+—%=
dP VT Sb 2
log L —(vT40) “E5) 47 (b) — £ I(by).
dP? 2

2.1.2. Critical case. Let b= 0. We recall the asymptotic behavior of Y? = (Y}?);cR, .

Proposition 2.6. [4, Theorem 6.1] Let a € Ry, b =0, 0 € R4y, yo € Ry and let m be a

Lévy measure on R, | satisfying condition (A1). Let Y be the unique strong solution of the
SDE (1.1)) satisfying P(YY = yo) = 1. Then, as t — oo,

yo 1 ot S0 1
CLafow) o fo0) en

Here, Y = (Vi)ier, 1is the unique strong solution of a critical diffusion-type CIR process
starting from 0 defined by

dy, = <a + /OOO zm(dz)> dt + o\/VidW,, (2.7)

where Yy =0, and W = (VV,g)teR+ 18 a one-dimensional standard Brownian motion. Moreover,
the Laplace transform of ()1, fol Vsds) takes the form

=% (at [5° zm(dz))
2 . o .
(COSh L - 2 sinh 3 : 0 if veR__,

uYi+ov [ yst} _
o (1 )7 )

5 if v= O,
for all u,v € R_, where v, := vV —202%v.

Consider the diffusion-type CIR process YV = ();)ier, starting from 0 defined by

dy, = <a + /Oo zm(dz) — byt) dt + o\/VdW;, (2.8)
0

where )Jy = 0 and b € R. We denote by Pg, the probability measure induced by the CIR
process ) solution to equation (2.8) on the canonical space (C(R4,R), B(C(R4,R)) endowed
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with the natural filtration {G;}cr, generated by the Brownian motion W. Here C(R,R)
denotes the set of R-valued continuous functions defined on Ry, and B(C' (R4, R)) is its Borel
o-algebra. For any T' € Ry, let Pg,T be the restriction of PS’, on Gr. As a consequence of

[4, Proposition 4.1], under condition (A1), for any b € R, the probability measures Pg,’T and
Pg,’T are absolutely continuous w.r.t. each other and

dpPt

T
. ()ecom) =exp{ - / VI - s / s}, (2.9)

where YV = ()4)ier, is the CIR process solution to equation ([2.8) corresponding to the
parameter b = 0 (i.e., solution to equation ([2.7)).

On the other hand, as a consequence of Theorem 3.4 in Chapter III of Jacod and Shiryaev
b
[23], the process (dpy ((ys)se[o T}))T e is a martingale w.r.t. the filtration (Gr)rer. .
eR+

dpP?

For fixed by = 0, we consider the continuous observation Y70 = (Yto)te[o,T] of the process
Y?. The second result of this paper is the following LAQ property in the critical case.

Theorem 2.7. Let a € Ry, by =0, 0 € Ry, yo € Ry and let m be a Lévy measure on
Ry satisfying condition (A1l). If yo + a € Ry, then the family (Er)rer,, of statistical
experiments is LAQ at by = 0 with scaling factor o (0) := % and with

(Ur(0),I7(0)) —" (U(0),1(0)),

as T — oo, where

+ d 1 1
U) = S zm2 2) / YW, I1(0) :02/0 V.ds,

g

and (Vi)ier, is the unique strong solution of the SDE (2.7) with initial condition Yy = 0.
That is, for allu € R, as T — oo,

S0+
dP T 2
log 22T (yT0) £ 0y — L 1(0),
dpPY, 2

and B ewwrém] —1.

2.1.3. Supercritical case. Let b € R__. We recall the asymptotic behavior of Y.

Proposition 2.8. [4, Theorem 7.1] Let a € Ry, b€ R__, 0 € Ry, yo € Ry and let m
be a Lévy measure on Ry, satisfying condition (A1). Let Y be the unique strong solution
of the SDE satisfying P(YY = yo) = 1. Then, there exists a random variable V with
P(V e Ry) =1 such that as t — oo,

eyt — v, Pb-as. (2.10)

t
Vo o~
ebt/ des—)—g, Pl-as. (2.11)
0
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Moreover, the Laplace transform of V' takes the form

2a

2 T2
E [euV] = exp Uygzu <1 + 0'[;&)
14 % 2
o0 o0 by
X exp / / exp # —1|m(dz) | dyp,
0 0 1+ Spteby

forallu e R_, and consequenily \%4 é~]7+17, where V and V are independentrandoln variables

such that e®Y, 255V and 'V, 25V as t — oo, where Y= (jivt)te]}h and Y = (?t)teﬂh are
the pathwise unique strong solutions of the supercritical CIR models

(2.12)

dft = (a — b§t> dt +o j\jtth, with j)v() = Yo,

and
dY; = —bYidt + o\ VedW; + dJ;,  with Yo = 0,
respectively, where W = (m)teR+ and W = (VNVt)tGR+ are independent one-dimensional

standard Brownian motions. Furthermore, % £ Z_%, where Z = (Z;)ier, 15 the pathwise
unique strong solution of the critical CIR model

dZt = adt —+ o/ thWt, with ZO = Yo,

where W = (Wi)ier,,. is a one-dimensional standard Brownian motion.
If, in addition, a € Ry, then P(V € Ry4) = 1.

For fixed by € R__, we consider the continuous observation Y 7% = (Y;bo)te[oﬂ of the

process Y. The third result of this paper is the following LAMN property in the supercritical
case.

Theorem 2.9. Let a € Ryy, bp e R__, 0 € Ry, yo € Ry and let m be a Lévy measure
on Ry satisfying condition (A1). Then, the family (E7)rer.,, of statistical experiments is

LAMN at by with scaling factor pr(by) := ¢S and with

(Ur(bo). Tr(bo)) “E2) (U (b0), 1(b0)),

as T — oo, where

V 1%
Ul(bo) = _aTbOZ’ I(bo) == _aTbo’
and V' is the positive random variable whose Laplace transform is given by , and Z is
a standard normally distributed random variable, independent of V. That is, for all u € R,
as T — oo,
A LOEN
dphote * v

dp%

£(Bbo) 2

log (yToy A28 uU(bo)—%I(bo).
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2.2. Discrete observations. The main result is divided into three cases: subcritical, critical
and supercritical. For this, let us first add two following assumptions on equation (|1.1]) we
shall work with.

(A2) For any p>1, [~ 2zPm(dz) < cc.

15 185
(az) & 5 VIS
o 4

Note that conditions (A1) and (A2) imply that [;° zPm(dz) < oo for any p > 1.

Given the process Y = (Y)er, and n > 1, we consider a discrete observation scheme
at deterministic and equidistant times t; = kA,, k € {0,...,n} of the process Y, which is
denoted by Y™ = (Yt{’), Ytli, . »Yta) We assume that the high-frequency and infinite horizon
conditions hold. That is, A, — 0 and nA,, — oo as n — co. We denote by P’ and p,(-;b)
the probability law and the density of the random vector Y™, respectively.

2.2.1. Subcritical case. For fixed by € Ry,, we consider a discrete observation Y™ =
(Yg’, Ytlio, ce Ytlzlo) of the process Y%,
The next result of this paper is the following LAN property in the subcritical case.

Theorem 2.10. Assume conditions (A1)-(A3). Let by € Ry, 0 € Ry4, yo € Ry and let
m be a Lévy measure on Ryy. Then, the LAN property holds for the likelihood at by with
rate of convergence /nA,, and asymptotic Fisher information I(by). That is, for all u € R,
as n — oo,

bo+ —~—
dp, Yror b\ L(PPo) u?
1,00 _
log e (y >_> ul (bo) — =1 (bo),

where U(byg) = N (0, I(by)) and

I(bo) = 02150 <a + /OOO zm(dz)> .

2.2.2. Critical case. For fixed by = 0, consider a discrete observation Y0 = (Y;g,

v, ... Y0)
of the process Y.

The next result of this paper is the following LAQ property in the critical case.
Theorem 2.11. Assume conditions (A1)-(A8). Letby =0, 0 € Ry, yo € Ry and let m be

a Lévy measure on Ry . Then, the LAQ property holds for the likelihood at by = 0 with rate
of convergence nA,, and random variables U(0) and I(0). That is, for all u € R, as n — oo,

2

O_A'_L
dPn nAn 30
(vm0) L) w0 — %1(0),

log 7&)2

with E[e“U(O)_él(o)} =1, where

0 _ 1 1
U(O) ::a+f0 Zm(dz) V1 :_01-/0 \/JZdWS, I(O) :;2/0 ysds.

2
o
Here, Y = (Vi)ier, s a critical diffusion-type CIR process starting from 0 defined by ({2.7)).
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2.2.3. Supercritical case. For fixed by € R__, we consider a discrete observation Y% =
(Ytgo, Ytﬁo, e }Qio) of the process Y.

The last result of this paper is the following LAMN property in the supercritical case.

Theorem 2.12. Assume conditions (A1)-(A83). Let by € R__, 0 € Ry, yo € Ry and let

m be a Lévy measure on Ryy. Then, the LAMN property holds for the likelihood at by with

bo nA

rate of convergence e % 2 and asymptotic random Fisher information I(by). That is, for

allu e R, as n — oo,

nAnp
botef0 2 5 2
log dPnO € w anbo) [,(PbO)

u
dPl;LO — uU(bQ) — ?I(bo),

[V V
U(b()) = —O_TbOZ, I(bo) = _O'Tbo

Here, V is a positive random variable whose Laplace transform is given by (2.12)), and Z is a
standard normal random variable, independent of V.

where

Remark 2.13. Theorem [2.10, |2.11| and (2.1 extend the results in [9, Theorem 2.1, 2.2 and
2.3] when b is the only unknown parameter in the drift coefficient. However, condition (A3)
in [9] is less restrictive than that given in this paper (see Remark[5.9).

Remark 2.14. When the LAMN property holds, the convolution theorem gives the notion of
asymptotically efficient estimators in the sense of Hdjek-Le Cam convolution theorem. More-
over, the minimazx theorem gives the lower bounds for the asymptotic variance of estimators
(see Jeganathan [24] ).

Remark 2.15. From Theorem 5.2 and 7.3 in [4] and the consequence of the LAN and LAMN
properties established in Theorem[2.5 and[2.9, the MLE for the growth rate b for the jump-type
CIR process based on continuous time observations, which is proposed in [4l, Proposition
4.2], is asymptotically efficient in the sense of Hdjek-Le Cam convolution theorem.

Remark 2.16. Let us mention that condition (A3) on the ratio of the coefficients % required

in Theorem|2.10,|2.11 and|(2.12 is similar to condition (10) in [I1, Theorem 2.2] which is used
to prove the strong convergence of the symmetrized Euler scheme applied to CIR process.

Example 2.17. It can be checked that the following subordinators satisfy conditions (A1l)-
(A2).

1) J is a Poisson process.

2) J is a compound Poisson process with exponentially distributed jump sizes. That is,
m(dz) = C’)\e*)‘zl(om)(z)dz, for some constants C' € (0,00) and A € (0,00).

3) J is a Gamma process with Lévy measure m(dz) = fyz_le_)‘zl(o’oo)(z)dz, where v and
A are positive constants.

4) J is a subordinator whose Lévy measure is given by the gamma probability distribution.
That is, m(dz) = %zo‘_le_wl(opo)(z)dz where a € (—1,00) and X is a positive constant.

5) J is an inverse Gaussian process with m(dz) = =€ 7 1(0,0) (2)dz, for a positive
constant 6.
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As usual, positive constants will be denoted by C and they will always be independent of
time and A,,. They may change of value from one line to the next.

3. TECHNICAL RESULTS

In this section, we introduce some preliminary results needed for the proof of Theorem
.10 2.11] and |_2l Towards this aim, we consider the canonical filtered probability spaces
(Q, F', {Fi her, ., PY), i € {1,...,4}, associated respectively to each of the four processes
W,N,B and M, where B = (Bt)teR+ is a standard Brownian motion, M (dt,dz) is a Poisson
random measure with intensity measure m(dz)dt associated with a subordinator J = (J;)scr o

e., jt = f(f fooo zM(ds,dz). The processes W, N, B, M are mutually independent. Let
(0, F,{Fi}ter,,P) be the product filtered probability space of these four canonical spaces.
Weset Q=0 x 0% F=FloFP=PaP’ F=FoF Q=00 F=Far,
P= P3®P4, and F, = .F3®]-"4 Then, Q = Q x Q, F = ]-"®]-" P = P®P F=FEQF,
and E=E® E where E, E E denote the expectation w.r.t. P, P and P respectively.

For any t > s, the law of X? conditioned on X? = x admits a positive transition density
p°(t — s, x,7), which is of class C! w.r.t. b. To prove this result, we use the affine structure of
the jump-type CIR process and the inverse Fourier transform (see Proposition . In order
to deal with the likelihood ratio in Theorem [2.10 we use the Markov property, the chain rule
for Radon-Nikodym derivatives, and the mean value theorem on the parameter space to get
the following decomposition

bot - n—1 b ou
dp,, ~Vren b pn( bo + ) 0t A bo b
T ) g ) S (i)

Lu
yp™ Ve
kzom/ e (4

Next, as in Gobet [I8], we apply the Malliavin calculus on each interval [tg,tx4+1] in order
to derive an explicit expression for the logarithm derivative of the transition density w.r.t.
b. To avoid confusion with the observed process Y?, we introduce an extra probabilistic
representation of Y® for which the Malliavin calculus can be applied. Explicitly, we consider
on the same probability space (2, F, P) the flow X°(s,z) = (X}(s,z),t > s), x € R, on the
time interval [s, c0) and with initial condition X?(s,z) = z satisfying

th’(s,m):x+/ (a—bszz du+0/ \/ X0 (s,2)dBy, + // M(ds,dz). (3.2)

S

b b
Ytko7ytk0+1) dt. (3.1)

In particular, we write X? = X?(0,yo), for all € R,. That is,

Xf:y0+/ (a—bXb ds+a/ \de +// M(ds, dz)
:y0+/0t(a—bxg)ds+a/o \/;gstJrJt.

We will apply the Malliavin calculus on the Wiener space induced by B. Let D and § denote
the Malliavin derivative and the Skorohod integral w.r.t. B. We denote by D!? the Sobolev
space of random variables differentiable w.r.t. B in the sense of Malliavin, and by Dom ¢ the

(3.3)
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domain of §. The Malliavin calculus for CIR process is studied in [I, 2] and the Malliavin
calculus for CIR process with jumps is discussed e.g. in [40, Example 1].

For any k € {0,...,n — 1}, by definition, the process (X?(ty,x),t € [ty,tx11]) is defined by

t t t [ee)
X2ty x) =z + / (a —bX2(t4, x)) du + a/ \/ X (ty, z)dB, + / / 2zM(ds,dz). (3.4)
12 127 tr JO

Condition 2a > o2 and the fact that the subordinator admits only positive jumps imply
that the jump-type CIR processes Y® and X? = (Xf)t€R+ never hit 0. Then, by [41, The-
orem V.39], the process (X?(t,),t € [ty,tx11]) is differentiable w.r.t. @ that we denote by
(0:XP(t, ), t € [th,try1]). Furthermore, this process admits the derivative w.r.t. b that we
denote by (0 X} (tg,x),t € [t,tr+1]) since this problem is similar to the derivative w.r.t. the
initial condition (see e.g. [39, Theorem 10.1 page 486]). These processes are solutions to the
following equations

t t 0, Xb(tk x)
0: X (ty,2) =1—0b [ 8,X° tk,xdu+/ Mui’dB, 3.5
o X (ks ) , ulte, ) N T (3.5)
t Loy X0 (t
HXb(ty,z) = — / (Xg(tk,x)era,,Xg(tk,x)) du + / 20 Xut2) g (3.6)
ty 23 2 Xg(tk,.fﬂ)
Therefore, their explicit solutions are respectively given by
2t du o [ dB
0o XP(th, @) =expq —b(t —t) — — | e+ O [ b (3.7)

t 2t du o [t dB
Xl (ty, ) = — Xft,:cex{—bt—r—a/—i—/u}dr.
b t(k ) " (k ) p ( ) ] . Xg(tk7$) 2 i, \/m
(3.8)
Observe that from (3.7)), (3.8]), we can write
t
&,Xf(tk, l’) = — X,{)(tk, l’)azXf(tk, :L')(&EXf(tk, x))_ldr. (3.9)

tg
Moreover, under condition 2a > o2, for any t € [t}, 1], the random variables X! (¢, z) and
0: X} (tx, z) belong to D2, From (3.4) together with the chain rule of the Malliavin calculus,

t t D Xb t
DSXf(tk,x):ow/Xg(tk,a:)—b/ szg(tk,x)du+/ oD Xyt ) (3.10)
s S 2 Xg(tk,if)

for s <t a.e., and Dy X?(ty,x) = 0 for s > t a.e. Using (3.7) and the chain rule of Malliavin
calculus, we have that

D, (0:X} (b)) = 0u X} (b1, ) "1+02/t1D Xt
s | Oz Ay Lk, = Uz A \Uk, 2 Xg(tk,x) 8 Js (Xg(tij))g s Xy Uk,
o [t 1
A N S tk,deu>1 N -
4/3 (X5 (ty,x))? (t: @) 1] (5) (3.11)

Furthermore, proceeding as [37, (2.59)] by using Itd’s formula and the uniqueness of the
solution to equation (3.10)), we get that

D X[ty @) = 04/ X0t )0, X] (te, ©) (02 XL (tr, ) " Ly, 49 (5)- (3.12)
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Now, for all £k € {0,...,n — 1} and = € R4, we denote by f)sz the probability law of
Xb starting at z at time ty, i.e., f’fkm(A) = E[lA]ka — z] for all A € F, and denote by
Ef, . P

have that Ei’kl,[V] = E[V|X§’k = z]. Similarly, we denote by ﬁka the probability law of
Y? starting at x at time tg, i.e., ﬁ%’kx(A) = E[lA]Y;Z = z] for all A € F, and denote by

the expectation w.r.t. ng,w' That is, for all F-measurable random variables V, we

Efk » the expectation w.r.t. ﬁka That is, for all f—measurable random variables V', we
have that Et m[V] = E[V|Ytl; = z]. Let P} , := Pé’k + ®P? . be the product measure, and
Efk . = Etbk s ® Etk , denotes the expectation w.r.t. Ptk’x.

Now, we prove the existence and the smoothness of the density w.r.t. b.

Proposition 3.1. Assume condition (A1) and 2a > o%. Then for anyt >0 and b € R, the

law of X! admits a strictly positive density function p°(t,yo,y). Moreover, p°(t,vo0,y) is of
class C* w.r.t. b, for all b € R.

As in [I8, Proposition 4.1], we have the following explicit expression for the logarithm
derivative of the transition density w.r.t. bin terms of a conditional expectation of a Skorohod
integral.

Proposition 3.2. Assume condition (A1) and 2a > o%. Then, for all k € {0,...,n — 1},
beR, andz,y € Ry,

o b
B (B0) = Bl [3 (XL ()0 00,0)) |2, =]

where Ub(ty,, x) := (UP(tg, ), t € [tr, ter1]) with UP(tg, x) := (DtXf’kH(tk,a;))_l

We have the following decomposition of Skorohod integral appearing in Proposition

Lemma 3.3. Assume condition (A1) and 2a > o>. Then, for allb € R, k € {0,....,n — 1},
and x € Ry,

An
5(8bek+1(tk,x)Ub(tk,x)) _ _&n /Xb (th“ ~xb - (a—bek)An>

+ H(X") — Hi(X") = H5(X") — H5(X"),
where
] b
H(Xb) _ —AHE tr41 a,,;Xg(tk,x) axth(tk,,Z')

o Ji, VX5t x) B \/thk(tk )

+ /tk'*'1 0’2 8{,X§(tk,a}) _ Xg(tk,.%') tk, ds
4 Xb(tk, )(%;Xg(tk,x) 3$Xg(tk, ) 15) th tk,
bt 0. X tk,x) bt <8bek+1 (tg,z )) 0 Xb(tk,x

th \/)QT tr a th+1 tk’ \/)(Sb(T

tk+1
Hy(x") = A—Qb/ (xt-x} ) ds,

dB,

ds,



16 MOHAMED BEN ALAYA, AHMED KEBAIER, GYULA PAP AND NGOC KHUE TRAN

tht1
Hs(Xb)=-—" / «/ ,/th)dBS,
X} g

tet+1
Hg( -7 / / M(ds,dz).
th tg

As a consequence of Proposition [3.2] and Lemma [3.3] we have the following explicit expres-
sion for the logarithm derivative of the transition density.

Corollary 3.4. Assume condition (A1) and 2a > o*. Then, for allb € R, k € {0,...,n—1},
and x,y € R4y,

abp 1
p (Ana'f y) ﬁ(y_x_ (a_b'r)An)
1 ~

+ 8, Phs

[H(Xb) — Hy(X") - Hs(X?) — Ho(X")| X}, = ]
Let us now give the moment estimates for the jump-type CIR process (|1.1)).
Lemma 3.5. Assume condition (Al).
(i) For any T € Ry and p € [0, 3—% -1,

s ()

E® < 0.

(i1) Assume further condition (A2). Then for any T € Ryy and p > 1, there exists a
constant C > 0 such that

Eb[sup V2P| < O+ yh).

te[0,7)

(i) Assume further condition (A2). Then for any t > s > 0 and p > 1, there ezists a
constant C > 0 such that

Bb Hytb _y?

P P
| <ce—95" 0+ +u).
Moreover, all these statements remain valid for X°.

Next, we introduce the following exponential moment estimate obtained from [12].

Lemma 3.6. Assume condition (A1) and that %5 > 1. Then, for any k € {0,...,n — 1}
and x € R++, there exists a constant C' which does not depend on x such that for any
n< (2 —1)2% andt € [te, tey),

~ t du 1
Eb [ <Cll4+ —m—).
[exp{“ n Xf;(tk,:c)}] = < I 1>>

We are going to show the following crucial estimates which will be useful in the sequel.
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Lemma 3.7. Assume conditions (A1) and (A2). Then, for any b € R, k € {0,...,n — 1}
and x € Ry, there exists a constant C, > 0 which does not depend on x such that for all

te [tkv tk-‘rl];

~ r p
Bl [ X ] 6 4am), (3.13)
- | 1 C
E | <2 3.14
g, ‘th@k,x)‘p = ( )
~p T b P 1
Etk7x i 8rXt (tk,fl')‘ :| S Cp 1+ m s (315)
x a
~y T b P » 1
Etk x abXt (tk, .CC) S Cp (]. + X ) ]. + W 9 (3.16)
L 27 +p
T 2
where (3.13)) holds for any p > 1, (3.14)) holds for any p € [0, g—% —1), and (3.15), (3.16]) hold
2a _1)2
or any p > —"21171)1. Moreover, all these statements remain valid for Y°.
2( : )
22732

As a consequence of Lemma 3.7, we have the following crucial estimates.

Lemma 3.8. Assume conditions (A1)-(A3). Then for any b € R, k € {0,....,n — 1} and
x € Ry, there exists a constant C' > 0 which does not depend on x such that

By . [H(X")] =0, (3.17)

3+

~ 2 A 1
E [(be)]<c " (1442 (14 :
b ( ) o b ( ) x(%fl)(%+21+1§ﬁ+73+§?/ﬁ

(3.18)

114+/57
16

where p = and B > 1 is sufficiently large enough.

We next recall Girsanov’s theorem on each interval [t,tr11]. For all b,by € R, 2z € Ry
and k € {0,...,n — 1}, by [4 Proposition 4.1], the probability measures ng,m and Pf;}x are
absolutely continuous w.r.t. each other and its Radon-Nikodym derivative is given by

dﬁ?k @ by b—by [+ b b2 — p2  [tetl
: = — [ § by
dpy <(Y; )te[tk’t’““]) _eXp{ o? /tk Y /tk g ds}

b—b tht1 b—b)2 [te+r
:exp{— 1/ Ysbldws—(l)/ Ysblds}.
t L

o 202

(3.19)

Db P
By Girsanov’s theorem, the process W' ine = (W, ™"t € [tg,tr+1]) is a Brownian motion
under Pfk“r, where for any ¢ € [tg, tg11],

Py b—by [!
W, ™ =W, + 1/ Yids.
23

g

Next, we give the following technical lemma which will be useful in the sequel.
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Lemma 3.9. Assume conditions (A1) and (A2). Let by,be € R and p,q > 1 satisfying that

%%—% = 1. Then for any k € {0,...,n— 1} and x € Ry, there exists a constant C' > 0 which

does not depend on x such that for any ﬁtkﬂ—measumble random variable V,

Py, " 1
v (e () 1) | sovm e @[ @) al.

tr,T
Lemma 3.10. Assume condition (A1l). Let by,b € R. Then for any k € {0,...,n — 1} and
Ftypr -measurable random variable V,

by
tr,T

o 5] ] 8

Next, we recall a discrete ergodic theorem.
Lemma 3.11. Assume that b € R4 and conditions (A1) and (A2). Let m < % —1 and

C

consider a my(dy)-integrable function h : Ry, — R satisfying |h'(x)| < —, for some constant
x

C > 0. Then, as n — oo,

}/tk —>/ 7dey

We next recall a convergence in probability result and a central limit theorem for triangular
arrays of random variables. For each n € N, let ((n)r>1 be a sequence of random variables
defined on the filtered probability space (€2, F,{F:}icr,,P), and assume that (j,, are F3, -
measurable for all k.

Lemma 3.12. [22, Lemma 3.4] Assume that as n — oo,

n—1 n—1
D) Y E[GalFo] >0, and (i) Y E[Z,F] 0.
k=0 k=0

_ P
Then as n — oo, Zzzé Cen — 0.

Lemma 3.13. [22, Lemma 3.6] Assume that there exist real numbers M and V > 0 such that
as n — oo,

n—1 n—1
.. P
Bl =M, () Y (B[RalF] — BlGalFa)?) >V, and
k=0 k=0
n—1 P
(i) » E[{alF] — 0.
k=0
Then as n — oo, Z Ckn N + M, where N is a centered Gaussian random variable

with variance V.

Next, we recall a so called stable central limit theorem for continuous local martingales.
We use this limit theorem for studying the asymptotic behavior of the likelihood function
connected with the parameter b.



LOCAL ASYMPTOTIC PROPERTIES FOR A JUMP-TYPE CIR PROCESS 19

Lemma 3.14. [45, Theorem 4.1] Let (Q, F A Fitter, P) be a filtered probability space satisfy-
ing the usual conditions. Let M = (M;)icr, be a square-integrable continuous local martingale
w.r.t. the filtration {Fi}ier, such that P(My = 0) = 1. Suppose that there exists a function
q: [to,00) = R with some ty € Ry such that q(t) # 0 for all t € Ry, limy_,oo q(t) =0 and

)X (M)y =% as t — o0, (3.20)

where 1 is a random variable, and ((M),)icr, denotes the quadratic variation process of M.
Then, for each random variable v defined on (2, F,P), we have

(q(t) My, v) = £ )(nZ v) as t— oo, (3.21)

where Z is a standard normally distributed random variable independent of (n,v). Moreover,
P
(q(®)Mr, q2(M)) 28 (nZ,?)  as t— oo, (3.22)

Note that (3.22)) follows from (3.21]) applied for v = n? and from (3.20) by Theorem 2.7
(iv) of van der Vaart [44].

We finally recall a comparison theorem.

Lemma 3.15. [4, Proposition A.1] Leta € Ry, b € R, 0 € Ry, and let m be a Lévy measure
on Ry satzsfymg condition (Al) Let ng and ny be random variables independent of W and

J satisfying P(770 € R+) =1 and P(no €Ry)=1. Let (Y )t€R+ be a pathwise unique strong

solution of the SDE such that P( o =mno) =1. Let (Yt)teRJr be a pathwise unique strong
solution of the SDE

dy’ = (a - b?f;) dt + 0\/%th, (3.23)

such that ﬁ(?g =T7y) = 1. Then P(ny > M) = 1 implies ﬁ(Ytb > ?f forallt e Ry) =1.

4. PROOF OF MAIN RESULTS

This section is devoted to the proof of the main results of this paper. In the case of
continuous observations, the proofs of Theorem and will be based on Proposition
Corollary and Lemmatogether with the asymptotic behavior results @— ED,
and . In the case of discrete observations, the proofs of Theorem [2.10} [2.11] and
2| will be divided into three steps. We begin deriving a stochastic expansion of the log-
hkehhood ratio using Proposition [3:2] Lemma [3:3] and Corollary 3.4l Next, in the subcritical
case, we apply the central limit theorem for tr1angular arrays together Wlth the convergence
results — in order to show the LAN property. In the critical and supercritical cases,
the convergence results and are respectively used to show the LAQ and LAMN
properties. Finally, the last step treats the negligible contributions of the expansion.

4.1. Proof of Theorem [2.5l

Proof. By Proposition i), (V)er . has a unique stationary distribution m,(dy) with
1o~ yme, (dy) = (a+ [3° zm(dz))% € Ryy. By Proposition [2.4] (ii), we have £ fOT Yhods 25
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Jo~ yme, (dy) as T — oo. Thus, as T — oo,

I pro 1 [ 1 >
Ir(by) = UQT/ Yrds — = ymy, (dy) = o™ <a+/0 zm(dz)> =1I(bp). (4.1)

The quadratic variation process of the square integrable martingale ( fo VYZdw, ) takes

TeR
the form (fo Y;,bods)TeRJr.
obtain that as T' — oo,

1 (T LBy 1 [ [ 1/2
UT(bo)z—m/T/O Vyeaw, -2 (/0 ymo(dw) N(0,1)

(0.5 [ v (an) ) = A0, 100)) = U o).

Consequently, by (4.1)) and Theorem 2.7 (v) of van der Vaart [44], we obtain (2.5). Thus, the
result follows. i

Hence, applying Lemma [3.14] with 7 := (fo ywbo(dy)) /2 we

4.2. Proof of Theorem

Proof. By strong law of large numbers for the Lévy process (J;)ier, (see, e.g., Kyprianou
[34, Exercise 7.2]), we have

J o
P ( lim “& = B[] _/ zm(dz)> =1. (4.2)
T—o0 T 0
Hence, using ([2.6]), we obtain that as T'— oo,

1 T,
Ur(0),1r(0) = (=30 = o — a7 ), i [ v2as)

£0) (_012<y1_a_/000 (dz)) = /1ysds> = (U(0),1(0)).

Proposition |1.1{ implies P(I(0) € Ry ) = fo Vsds € Ryy) = 1.
Finally, using equation (2.7) and (2.9), we have that

E [e“U(O)_H;I(O)} - E [exp{: <a+/ooo 2m(dz) —y1> - ;;Alysds}]
[exp{—/ VYsdWs — /ysds}] _p |

s (4.3)
Y1
dP() ((y8)5601])]
Then, using the fact that the Radon-Nikodym derivative process (Zi;; (Vs) SE[O,T}))

TeRy
is a martingale w.r.t. the filtration (Gr)rer. , we get that

dpPy | dPy,

u2
This, together with (4.3)), concludes E {e“U(O)_TI(O)] = 1. Thus, the proof of Theorem is
now completed. ]
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4.3. Proof of Theorem [2.9]

Proof. By ([2.11)), eb” fOT Yiods — —%, P as. as T — 0o, and using Lemma, [3.14| with

n = —%, we obtain that as T" — oo,
boT/2 bOT
(U (b0). Iz (b)) = ( / Jyhaw, < / Y"Ods) 0 (U (bo), T(00)).
0
Thus, the result follows. O

4.4. Proof of Theorem [2.10l

4.4.1. Ezpansion of the log-likelihood ratio.

Lemma 4.1. Assume condition (A1), by € R,y and 2a > 0. Then, the log-likelihood ratio
at by can be expressed as

bo+——=—
ap, Vrer

n,b b b b
10gdP%0<Y 0) ann“‘zm/ {H4 YO +H5(Y 0)+H6(Y 0)

(4.4)
b() b(e b(¢ b(e bé b(£) b
+Etk,Ytk [ (X0 — Hy(XPO) — Hy(XbO) — He(XPO ‘XkH = Ytk‘il} }dﬁ,
where b({) := by + \/u— with ¢ € [0,1], and
ul\,, v
Nk = 0_2 n ( Wtk+1 Wtk) 2\/7W t:)v

bo b1 bo bo boy __ 7” ftt bo bo
H4Y Y —Y ds, H5(Y )—— Y0 — Y;k dWy
ag ti
tk+1
Hg Yb0 = / / N(ds,dz).
tr

Proof. Start from the decomposition (3.1]) and use Corollary we obtain that

bot+ == n—1
dPn nlAn o u 1 abpb(f) bo bo
log dP?LO (Y ) N kZO M/O pb(é) (An’ Ytk ’Y;5k+1> dt

n—1 u 1 1
b b b
=Y o= [ F v - enoval) )
k=0 "
4 Aiﬁf(@bo [H(X*0) — Hy (X0 — H(x"0) — He(X*O)| X0 =y | }dg’
n ks

where b(¢) := by + \/— 1.1)), we have that

}/tl;c(:—l - Ybo = (a - bOY O)A + Y, Ybo (Wtk+1 - Wtk)

tht1 tht1 tot1
—bo/ <Yb0 YbO) ds+0/ <\/Yb° w/Y;;g> AW, +/ / N(ds, dz),

which, together with (| , gives the desired result. ([l
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In the next two subsections, we will show that 7, are the terms that contribute to the
limit, and all the others terms are negligible.

4.4.2. Main contributions: LAN property.

Lemma 4.2. Assume conditions (A1)-(A2), by € Ryt and let I(by) be defined in Theorem
[2.10. Then, as n — oo,

n—1 ~ )

S e N (0,1(00)) — 1 (bo).

Proof. 1t suffices to show that conditions (i), (i) and (iii) of Lemma [3.13] hold under the
measure P? applied to the random variable Nk,n- First, using Ebo Wt Wtk\]:tk] =0 and
Lemma m 3.11| together with (| ., we have that as n — oo,

2 o] 2

nflAb ~ w1 b, PO U U
3B alPu] = 55> DY T g | ) =~ (o)

This shows Lemma (i). Similarly, using Eb‘)[(WtkH - Wtk)2|]?tk] = A, we have that as
n — 00,

= Sbo [ 2|3 = = 1\? u? 1 by PP o
> (B2 [kl - (B i) ) = S S 5 et
k=0 k=0
This shows Lemma (ii). Finally, using ]?]bo[(l/Vthrl - Wtk)4|]?tk] = 3A2 we get that

n—1 u4 n—1 u8 n—1

Tbo [ 4 | T b bo\4

S e [it5] < (% o 1 o).

k=0 k=0 k=0
for some constant C' > 0, which, by Lemma converges to zero in ﬁbo—probability as
n — 00. This shows Lemma (iii). Thus, the result follows. O
4.4.3. Negligible contributions.

Lemma 4.3. Assume conditions (A1)-(A3) and by € Ry4. Then, as n — oo,

{H4 (Y%) + Hs(Y%) + Hg(Y)

> sl

b(0)
+Et£’;£ [H(XPO) — Hy (XM0) — H5(X1) — Ho(xX"O)| X0, = vlo,

Proof. The proof of Lemma is completed by combining the four Lemma below. [

} }dé@@.

Consequently, from Lemma and the proof of Theorem is now completed.

Lemma 4.4. Assume conditions (A1)-(A3) and by € Ryy. Then, as n — oo,

0y x/1 = ypo

thy1 = T lp41

}dﬁﬂo.

n—1 1
> e [BO. (1
—0 HA% 0 t’“’ytko
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Proof. 1t suffices to show that conditions (i) and (ii) of Lemma hold under the measure
Pt applied to the random variable

Xb f) }Xt YbO

Ckﬂ’b = k41 tk+1:| d‘g

DA ,
VA3 Jo o kY.
We start showing Lemma () Applying Lemma tob=">b() and V = H(X b(e)), and
using the fact that, by (3.17] -, . ; [H(X®®)] = 0, we obtain that

k> tk
n—1 n—1 u 1 o(0) o(0)
B (Gl = /@[E [ (x"0)]x ybo}f}de
n—1

1 ~
0

Thus, the term appearing in condition (i) of Lemma actually equals zero.
Next, applying Jensen’s inequality and Lemma [3.10]to b = b(£) and V = (H(X*9))2, and
(3.18), we obtain that

n—1

— 2 1 2
2 1= | _ U~ =p T=b(6) b(l b() b =
Z [Ckn|ftk} = k" </O By [H(X ) x, Yt;;l] £> \]-"tk]
=0 k=0 n
b b(¢ b =~
g 7 g [ o [(H(X ) ) X7 = Ytkgl] \J—}k] d
— 2
= / [ XW))) }dﬁ
=0 tk’ tk
C ZAP n—1 1
u Z <1+ (V02 ) T - -]
k=0 (Y;ko) 28 21+\/F 73+5\/W

for some constant C' > 0, where p = 1“17}5/577. Then taking the expectation in both sides, we
get that

n—1

1
2A D
< Cu”Af, Ebo |:Z io : (1 + (}/220)2
n k=0 (}/;k)

n—1
Zﬁbo |:C13,n|ﬁtk}
k=0

. : Viss Vi85 >]
a —"_ g
(Yti())(%_l)(ﬁ"'zw\/ﬁ‘*‘m%\/ﬁ) ()/;520)(%2_1)(%461;61854'73+§2 w5) 2
1 ~ ~ 1
< Cu*A ( max E% 5 + m . b
ke{0,...,n} (Ytko)5 kefo,...,n} (Y},CO)?’

2a

1
1
ke{0,...,n} (Ybo)(ﬁfl)(%jL 21+\/18 + 75+5\/18 )+5
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~ 1
+ max EY I
ke{0,...,n} (Ybo)( )(75+21+\/W+73+5\/W)

1
= > < Cu*Aj,

for some constant C' > 0, which tends to zero as n — co. Here, we have used the boundedness
of the negative moment estimates for the jump-type CIR process (|1.1)) using Lemma (i),
condition (A3) and the fact that 5 > 1 is sufficiently large enough. Therefore we have shown

that >, _ éEbD [C,%n|}'tk} "L 0asn — oo Thus, by Lemma [3.12] the result follows. O

Lemma 4.5. Assume conditions (A1) and (A2). Then, as n — oo,

M |

1
/ <H4(Yb°)— b(fz/ [H4(Xb(€))‘ thk(e _ ybo

t
tk7 tk k+1

D ae 24 0.
P nA3

Proof. We rewrite

< (Yho) — E:(E) 5 [H4(Xb(€))‘Xb(£) v }) Al = My n1 + My .2,

—— t t
nA3 k7)/tk0 k+1 k+1
where
2 tea1
u b b
— 0 0
Mign1 = _202nA <Y; — Yy, ) ds,

¢
My 0 = / / o (ybo — Ybr)) ds
w 2\/nT s b

~ tet1
b(£) b(£ b(£) b
- Etk,YbO |:/tk <Xs( ) — th > ds ‘th+1 Y;fki1:| }dﬁ

23

First, using Lemma (iii), we get that

n—1 -
sz,n,ll S B My ] < Cu VA
k=0

k=0

_ Pbo
for some constant C' > 0. Thus, ZZ:(I) My p1 — 0 asn — oo.

pb
Next, to prove ZZ;& Mi 2 "L 0asn — 00, it suffices to show that conditions (i) and
11) of Lemma |3. old under the measure P"0. e start showin . For this, applyin
(i) of L 3.12 hold under th P, W howing (i). For thi lying
Girsanov’s theorem and Lemma [3.10/to b = b(¢) and V = fi@“(Xi’“) Xb(g))ds we get that

let1 thin

~b b b =b(¢) . o(0) ) . R

= |:/t (Y;O a Y;k0> ds = Etk Ytbo [/t (XS( = th ) dS‘th }/tk0+1:| ‘]:tk:|
7tk

k k

tet1
Lb b b
“E [0 ) o

ik k

tet1
b b(e) b(¢ b
- Et;(: Ytbo |:Etk Ytbo |:/t (XS( ) — ) ds |th+1 Ytko+1:|:|
ik Pl

k
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Sb
Hb(0) B ) b dPtZ,YtZO b(0)
:Etk,ytbo / (Ys -Y, >ds Y0 ((Yt )te[tk,tkﬂ])
C dPt ;20
k> ty
tet+1
_ o) b(e) b0
EY, (x20 - x70) as
tkvxfko |:/tk k
t plo b
_ pb() M b0 yh(0) 00 b(e) B
_Etkzxfio /tk (¥; Y;k )ds dﬁi’@;bo (Y )te[tkvtlﬂ—l]) 1
k> tg
~ tht1 . thi1
B [ O R [ (-
k> t tr k> tg tr
b(0) tet1 b(0) d]si)}i) Ybo b(o)
-F b(e) Y B
B [ [y )ds(dﬁm S ) 1>]
th/tk.

where we have used the fact that X®® is the independent copy of Y°). This, together with
Lemma 3.9 with ¢ = 2 and Lemma (iii), implies that

n—1 R N 1 R thi1
SOEY [ MialF || = b z){Ebo [ / (vio —vpo)as
k=0 t

k

_ te41 ~
_ B Ut (x00 - x70) as| X9, = 1@’;@1& \Ftk]}dﬁ‘

2
=0 (o2 nAn 0

e k
ol AP o
u b(¢ k> b(e
= A Z/ b( E tk, [/t (Ysb(é) _ Ytk( ))dS (le)b(@tk((yt ( ))te[tk7tk;+1]) . 1>] v
K tk,Ytl;O
: dPY
u k+1 bl tImY 0 b(e
< UQ\I/TlT Z/ [b(£) tk > [/t (Y10 — v, )ds <d§b(@tk((yt ( ))té[tk,tk+1]) - 1)] de
’ k k

1

C’U’ 5b AL 2
< |b(0)] E Yy —Y))d db|dl < Cu*A
<SS /@( [ ([, 0rvon) | ) wjuscia.
for some constant C' > 0. This tends to zero as n — oo.
Next, applying Jensen’s inequality and Lemma |3.10[to b = b(¢) and V = ( f:“(Xf“) —
b(g))ds) and using Lemma (iii), we obtain that

-1

s 2 3 U et~ ! KA b
EO[M ]-"}:7 Ebo b(l (YO—YO)d
kzo ko2 P o2nA, prt t;waO [(/0 ( ){/t s te ) 49

k

tet+1 2
b(£) b(e b(£) b(€) b
- Etk,Y 0 |:/tk (Xs( ) — th ) dS‘thH Ytk(ll:| }CM) :|



26 MOHAMED BEN ALAYA, AHMED KEBAIER, GYULA PAP AND NCOC KHUE TRAN
trt+1 2
2(y b b b
T [ ([ o) ds) ]
" tkt1
b b(¢) b(¢ b(£) b
k
Z b2 )4 Bbo - (Ybo _ Yb“) i)
0_2 A tk;7 bo tk S tk S
2
RO ( / et ( O XW)) ds)
tkvy;fko tr s tk

for some constant C' > 0, which tends to zero. Thus, by Lemma the result follows. O

}dz < Cu’A2,

Lemma 4.6. Assume conditions (A1) and (A2). Then, as n — oo,

) b £ b Pbo
Z nN’ / < s(07) = tk,YtkO [H ’thﬂ Yo 1}) dt — 0.
Proof. We proceed as in the proof of Lemma 0

Lemma 4.7. Assume conditions (A1) and (A2). Then, as n — oo,

n—1

1 ~
U b Tb(€) b Pbo
— / <H6(Y ) =B | Hs (x|, = YtzfilD dl =5 0.
k=0 Tt

Proof. 1t suffices to show that conditions (i) and (ii) of Lemma hold under the measure
Pt applied to the random variable

<H6 (V) =B [ Ho(x"O)[ x5, = v Ddz.

t
t..Y, k+1 k+1
k> g

Chin = \/W/

Applying Lemma to b= b(¢) and V = Hg(X"®), we get that

~b b ~b(0) b(£) b T
B ) B [ O, =i ] 1]
g
s boy| _ Tbo | (D) b(0)y| x () b F
=[] =B [B [raxt et = v 17

- - A% [ A,
=E" , [H6<Yb0)] —Eb(q/b [HG(Xb(g))] = —02/0 zm(dz)+02/0 am(dz) = 0.

ths Yy, tg,Y, 0

2
This implies that

S [cenif] -
k=0

i
L

1
u b b Tb(£) b(¢ b(£) b =
/0 B o[Hﬁ(y ") -E", [HG(X D) xp0) Ytkil}{ftk}dﬁ

k> tp

N

0

I
=1
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We next show that condition (ii) of Lemma holds. Using Cauchy-Schwarz inequality and
Lemma we obtain that for all ¢ > 1,

2 n—1

ZEbo [Ckn‘ftk} < nuAi” Z/ Fbo [(H (vho) E:(f;b [He(X"9)| x;10 = le}) \]-"tk]
" k=0

k=0 Bt

tit+1
A Z/ by tk K/tk / zN (ds,dz)
0 bt PO _ yh 2
0
tk, [/tk / zM (ds,dz) ‘ thor = Ytkﬂ]) ]dﬂ

< U4n“An k;) /0 (1+ (P))A, <(AvnAn)é 4 / _ Fmld) + A / . zm(dz)>2> dt

ESS

(iu ((AUHA) / |, Fmldz) + A, < /< . dz)>2> <1+ : §<ni°>2>»

k=0

where (vy,)n>1 defined in Subsection is a positive sequence satisfying lim,_,., v, = 0,
and Ay, == [, m(dz).

When [ m(dz) < +oo, then A, < [;°m dz) < 4o00. Therefore, Ay, A;, = 0 as n — 0.

When [°m(dz) = +oo, then A\, — [;°m(dz) = +oo as n — oo. Then, there exist
e € (0,1) and ng € N such that \,, < A5 for all n > ng. This implies that A, A,, < A¢ for
all n > ng. Therefore, Ay, A, — 0 as n — 0.

By Lebesgue’s dominated convergence theorem and conditions (A1) and (A2) with p = 2,
we get that [ _ - 2>m(dz) — 0 and J.<,, #m(dz) = 0 as n — co. Finally, using Lemma

~ pb
as n — co. Hence, we have shown that >}~ L Ebo [anl}}k] "5 0asn — . Thus, the proof
is now completed. ]

4.5. Proof of Theorem [2.11]

4.5.1. Ezxpansion of the log-likelihood ratio.

Lemma 4.8. Assume condition (A1) and 2a > o2. Then, the log-likelihood ratio at 0 can
be expressed as

dPOJFﬁ n—1 n—1

T () =Y mea Y A2/ {H5 (Y°) + Ho(¥")

k=0 k=0

b(€) b(¢ b(¢ b(e
+E e [H(X ) — Hy(X*O) — Hy(X"®) — ) x, = Yti’ﬂ} }dﬁ,

log
(4.6)
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where b(£) := 0+ nﬂTun with £ € [0,1], and
u u
e = =y (VYR W = W) + 30750
41 tr41
Hy(Y?) = J"/ (\/ /Y )dWs, He(Y?) = -2 / N(ds, dz).

Proof. We proceed as in the proof of Lemma O

4.5.2. Main contributions: LAQ property.

Lemma 4.9. Assume conditions (A1)-(A2), and let U(0) and I(0) be defined in Theorem
2.11. Then as n — oo,
2

po
>k © wl(0) = 21(0), (4.7)
k=0
and E[qu(o)—él(o)] =1.
Proof. We rewrite
2
> i = ul (0) - %In(o) + HA(Y0) + Hy (YY), (4.8)
where t,, = n/\, and
Y L
Un(0) = —a—n \/ VAW, In( aQt% ; Y, ds,
0 u tht1 ﬁ 5 0 u noloet 0 0
Ho(Y0) = (Y—,/Y)dWS,HY: / YO — v0) ds.
"(Y7) onl, kzz:o/tk ® b () o?n2A2 kzz:o tn ( 3 tk) ’
First, using equation (|1.1)) with b = 0, we get that
1 Yto Yo Ji
U,0)=——= [ —=-=-— “
0)=-3 <tn tn tn

On the other hand, by strong law of large numbers for the Lévy process J (see, e.g., Kyprianou
[34, Exercise 7.2]), we have that as n — oo,

H 5 BlLh] = /Ooozmwz), Pl-a.s. (4.9)

This, together with ({2.6]), implies that as n — oo,

(Un(0), 1n(0)) g (U(0), 1(0)). (4.10)

Using Lemma([3.12)and [3.5] (ii), conditions (A1)-(A2), and the fact that nA,, — co asn — oo,
it can be checked that as n — oo,

PO
HA(Y?) + Hg(Y?) 25 0. (4.11)
Therefore, from (4.8]), (4.10) and (4.11)), we conclude (4.7). Finally, we proceed similarly as
u2
in the proof of Theorem [2.7| to get E[e”U(O)_Tl (O)} = 1. Thus, the result follows. O
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4.5.3. Negligible contributions.

Lemma 4.10. Assume conditions (A1)-(A3). Then, as n — oo,
n—1

ZnA2/ {H5 (V) + Ho(Y")

0 [H(Xb(f)) _ H4(Xb(€)) _ H5(Xb(£)) — Hj Xb(g ‘Xb(g

tpa1

+ B

0 PO
YY) Ytkﬂ} }dﬁ — 0.

Proof. The proof of Lemma is completed by combining the four Lemma [£.1TH4.14] below.
O

Consequently, from Lemma and the proof of Theorem is now completed.
Lemma 4.11. Assume conditions (A1)-(A3). Then, as n — oo,

n—1 1 )

v O O] w50 _ 10 po
2 oAz /0 Bve (XM X0 = v de 0.
k=0 M

Proof. 1t suffices to show that conditions (i) and (ii) of Lemma hold under the measure
P? applied to the random variable

1
Y o)
Sk = DAz | Biyp HEMO)XD, =]
Proceeding as in the proof of Lemma we get that ZZ;& E° (Chn a |=0.
Next, applying Jensen’s inequality and Lemma tob=0b(¢) and V = (H(X"®))?, and

(3.18)), we obtain that
Ly ) 2
=b¥
(/0 Etkvyti [H |‘Xv'5k+1 tk+1] ) |]:tk]

i 1
U 70 | =b(0) b(¢ 0 T
= nQA%/O E [Etm}@% [(H(X ) ) ’th+1 Y;k+1:| ’]:tk] dt

dr.

k=0
n—1 ) 1 9
_ u =b(6) b(e)
= E H(X dr
Y g J, Bl ()
< v 1 nz:l L 0?1+ !
B (nAn)l_%n% [ (Yo) t (YO)( )(% 21+13ﬁ+73+§?/ﬁ) 7

for some constant C' > 0, where p = H‘Ei%/ﬁ and 8 > 1 is sufficiently large enough. Then
taking the expectation in both sides, we get that

n—1 n—1
~ ~ Cu? 1o 1
E° g,%nm ] <——— - E° [ <1—i—(YO)2
1 1

1 22
1)(ﬁ+21+\/18 +73+5\/18 ) (YO)( )(26 21+\/18 +73+5\/185)_2>:|

(o)
tg
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C’uQ =0 =0 1
< ——F max E o5 |+ max E 3
(’I’LAn)l_;n; ke{O,...,n} (Y;k) kE{O,...,n} (}/tk)
~ 1
+ max E 5a T
ke{0,...n} (}/zt?c)(ﬁ_ )55+ 517 viss T e ) O
. 1 Cu?
+ max E° 5o T ) < = T 1o
ke{0,...,n} (Yt?c)(?_l)(zﬂ 21+\/F+73+5\/W)+3 (nAn)1_5n5

for some constant C' > 0, which tends to zero as n — oo since nA,, — oco. Here, we have
used the boundedness of the negative moment estimates for the jump-type CIR process
using Lemma (i), condition (A3) and the fact that B > 1 is sufficiently large enough

Therefore, we have shown that » ;— LEO [an|ftk} —> 0 as n — oo. Thus, by Lemma [3.12]

the result follows.

Lemma 4.12. Assume conditions (A1) and (A2). Then, as n — oo,

b(e 0 po
Z nA2 tk, A( X0 }XtHl Y}Hl] dl —s 0.
Proof. We proceed as in the proof of Lemma .

Lemma 4.13. Assume conditions (A1) and (A2). Then, as n — oo,
u £ 0 PO
Z A7 < G |15 (X X7, = YtWD dt 5 0.

Proof. We proceed as in the proof of Lemma O
Lemma 4.14. Assume conditions (A1) and (A2) with p=2. Then, as n — oo,

po
Z e / ( f“;o [ Ho (X)X} = Y;;HD it 5 0.

Proof. 1t suffices to show that conditions (i) and (ii) of Lemma hold under the measure
PO applied to the random variable

T 0 =b(0) TONER0
gk,n = TIA%/(; (H (Y ) Et y0 |:H X( ‘th+1 tk+1}> de.

Proceeding as in the proof of Lemma we get that Zz;é EO[ F, |=0.
We next show Lemma(3.12|(ii). Using Jensen’s and Burkholder-David-Gundy’s inequalities,
and applying Lemma |3.10/to b = b(¢) and V = tk“ fo zM ds,dz))?, we get that

~ PN
Z EO [Ck‘ n|ftk < n2A4 / EO[ Efg;g; [H {thﬂ Ytzﬂ]) “Ftk] de
" k=0
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trt+1
= n2A2 Z/ by [(/tk / zN (ds,dz)
940 2
= 0
tk, [/ / M (ds, dz) ’thH = Yikﬂ} > ]dﬁ
u2 n— teq1
= AT / Py K/tk / szsdz + A, / zm(dz)
~ trt1 2
bé) 0
tk, [/ / M (ds,dz) + Ay, / m(dz) ‘thH iﬁkﬂ}) }dﬁ
v / [(/m/ N(ds, dz)
- z s,dz)
oin2A2 prd b Yy, tr
2
[/ / M (ds, dz) yX Y;QHD ]df
ti
Cu 2 n—1 tri1
I IAZ Z/ { Y [(/t / zN ds dz> ]
. tet1
50 b(
+Etk7 {Etk, K/ / zM ds dz) }thﬂ Y;ka”}de
Cu2 n—1 1 0 tet1
—_ JANS E M
U4n2A%kZ::/O{ /0 m(dz) + tk’ K/tk / 2 dsdzﬂ}dz

0

Cu2 n—1 .1 00 ) 00 )
MZ/O {An/o z m(dz)+An/O z m(dz)}dﬁ

_ 2
= oA, ), z2*m(dz),

IN

IN

IN

which, by condition (A2) with p = 2, tends to zero as n — oo since nA,, — oco. Here,
N(dt,dz) := N(dt,dz) — m(dz)dt and M(dt, dz) := M(dt,dz) — m(dz)dt denote two compen-
sated Poisson random measures associated with N (dt,dz) and M (dt, dz), respectively. Thus,
the desired proof is now completed. O

4.6. Proof of Theorem [2.12

4.6.1. Ezpansion of the log-likelihood ratio.

Lemma 4.15. Assume condition (A1), by € R__ and 2a > o2. Then, the log-likelihood ratio
at bg can be expressed as

nA
deo+eb0‘2nu n—1 b() 2 u

1
"dT< nbo) anﬁ A /0 {H4(Yb°)+H5(Yb°)+H6(Yb0)
" k=0 n

R0 b(¢ b(¢ b(¢ b
HE [H(X"O) — Hy (X)) — Hy(X"1) — O)x = v | }d&

log
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where b(€) := by + P ™2™y with £ € [0,1], and

by 252 bo 1A
e 2 u e 2 uA
Men = — ) (U\/;ZO (Wtk+1 - Wtk) + 2”}@?) ,
A, brt tet1
Hy(Y™) = bo/ (v =) ds, Hy(Y™) = _/ <\/YT \/YT> 3

tkt1
Hg(Y)=-=2 / N(ds,dz).

Proof. We proceed as in the proof of Lemma O

4.6.2. Main contributions: LAMN property.

Lemma 4.16. Assume conditions (A1)-(A2) and by € R__. Let U(by) and I(by) be defined
in Theorem [2.12. Then, for allu € R, as n — oo,

2
L£(Pto u
Zﬁk iy uU (bo) — ?I(bo)- (4.12)
Proof. We rewrite

Z M = wUn(bo) — - In(bo) + Hr (Y") + Hg(Y™), (4.13)

where t,, = n/\,, and

1 tn
Un(bo) ——ebO/ \ Y2dW,, I (bo) = botn/ Yhods,

nln

bo tr4+1
H7(Yb0) _ e 2 / < /Ybo /}/;20) dWS’
(o

by _ AR R [t b
HS(YO):%?Z/t (YSO—Ytk‘)) ds.
k=0t

Moreover, using (2.11)) and Lemma we have that as n — oo,

1 tn
(Un(bo),ln(bo)) = ( bo/ YbOdWS, - botn/ Y;bods
0

£(Pbo) [V \%4 B
—_— < O'TbOZ’ 0’2bo> = (U(bo),](bo)),

where Z is a standard normal random variable independent of V.

Finally, using Lemma and [3.5] (iii), conditions (A1)-(A2) and the fact that by € R__
and nA,, — oo as n — 00, it can be checked that as n — oo,

N————

(4.14)

Hy(Y™) + Hy(Y?) 2% 0, (4.15)
Therefore, from (4.13)-(4.15)), we conclude (4.12). Thus, the result follows. O
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4.6.3. Negligible contributions.
Lemma 4.17. Assume conditions (A1)-(A3) and by € R__. Then, as n — oo,

n—1 bO "An

1
5, {H4<Y"°>+H5<Yb°>+H6<Yb0>

pb
+ Eti ; [H(XW) ) — Hy(XYO) — Hy(xb0) - b0 X7 = ypo 1} }dﬁ 2%0.
Proof. We proceed as in the proof of Lemma [£.3] and [£.10] O

Consequently, from Lemma[4.15] [£.16|and [£.17], the proof of Theorem is now completed.

5. APPENDIX

5.1. Proof of Proposition

Proof. First we recall that since the jump-type CIR process X’ = (X?);cr ., is an affine

process, the corresponding characteristic function of X? = X?(0,y0) is of exponential-affine
form (see page 287 and 288 of [25], Section 3 of [26] or Section 4.1 of [I7]). That is, for all
(t,u) e Ry xU with Y := {u € C: Reu < 0},

B [ euxtb(o,yo)] _ e(bb(t,u)-FyOwb(tau)’

where Re u denotes the real part of u and the functions ¢y (¢, u) and ¥4 (¢,u) are solutions to
the generalized Riccati equations

at(z)b(ta u) = F(wb(tau))7 ¢b(0>u) =0,
atwb(tau) = R(wb(tvu))a ¢b(0a u) =u€el,

with the functions F' and R given by

00 0_2u2
F(u) = au —|—/ (e —1)m(dz), R(u) = 5~ bu.
0
Solving the system above, we get the following explicit form
ue—bt
t,u) = .
Q[)b( ) _ 0227;%1 _ e_bt)

In what follows, the notation constant C' will designate a generic constant which can change
values from one bound to another. Now, using Lemma C.6 of [I7], there exist constants C' > 0
and R > 0 such that

C
S
(1+ |ul)->
for all u € R with |u| > R. Hence, as 3—% > 1 we get

/R’E [eiqu(O,yo)”du:/u|SR‘E [eiuxf(o,yw”dqu/'u'zR e

‘ @p (t,0u)Fyorbs (t,iu)

(5.1)

K )+y0wb(t7iu) du < +o00.
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Therefore, by the inversion Fourier theorem, we obtain the existence of the density

pb(t Yo,y) = i / e~ WUR [GWX?(O,:UO)} du = i / e~ P (tiw)+yots (tiu) 7,
’ ’ 2 R 2T R

Next, in order to prove the smoothness of the density w.r.t. b, we are going to show that
e—iyuéﬁ [eiqu(O,yo)]

/R o d“:/R

First, observe that

e_iyu g e¢b (taiu)'i_yodjb (tﬂ:u)

2% du < 400, Yo € R.  (5.2)

o—ive Oy (tin)+yov(tiv)

5 = %bb(t, i) + yo%wb@, iu)| ettt (5.3)
and
D) » —jute (1 — %(1 — e*bt)> — jue b ("%’2“(1 —eb) — %te*bg
%wb(u ZU) - 2 2 )
(1- % —em)

which is continuous w.r.t. b for all b # 0 and we can easily see that it is continuous for all
b € R. Therefore, by standard calculations there exists R’ > 0 such that for all |u| > R/,

Cluf?

14 22 (1 — ebt)2 ~

t t 00
op(t,iu) = a/o Up(s,iu)ds +/0 /0 (e¥ (12 _ 1 Ym(dz)ds.

Now, for all |u| > R, we have | & (t, iu)| < C and

‘ Yp(t,iu)| < (5.4)

Furthermore,

zaabwb(&iu)eiﬁb(s,iu)z < CzezRe Yy (s,iu) <Oz,

since , ,
—bt 1—e t
Re ¥y (s,iu) = — 2b 1-e) <0.

1+ f’;‘bf(l —embt)2 =

Then, for all |u| > R’, we have fg ‘%% (s,iu)|ds < Ct and using condition (A1),

// dzds<C'// dzds—Ct/ zm(dz) < +o0.
0

Thus, we have shown that for all |u| > R/,

—qf)b (t,iu) / 8() (s,iu ds+/ / z—ll)b s, iu)e wb(s’i“)zm(dz)ds,

which is also continuous w.r.t. b for all b € R and then
0
%gbb(tv Zu)
Hence, from (5.3)), (5.1), (5.4) and (5.5)), for all |u| > RV R/,
C
S ——%a
(1+ |uf)o?

z—¢b s, iu)e Yo (s,iu)z

< Ct. (5.5)

o—ivu 0 on(tiu)tyon(tiu)

0b
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which implies that

/ . du S / B %du < +o00. (56)
|u|>RVR' [ul>RVR' (1 + |ul)o*

On the other hand, for all |u| < RV R’, using (3.16]), we get

o 0 =~ iqu(O,yO) _mls 0 b iqu(O,yo)
= ’81)E [e t } =|E zuabXt(O,yo)e ¢

o—ivu 0 on(tiu)tyoriy(tiu)

i D on(tiu)tyor(tin)

< |ulE Habxf(o,yo)u <CRVR(+y) 1+ | <C
Yo

e—ivu 9 on(tiu)tyorn(tin)

This implies that
5% du < C du < 400, ¥b € R. (5.7)

/ungR' |u|<RVR/

From (/5.6)) and , we conclude (5.2), which implies that the p®(t, yo,y) is of class C! w.r.t.
b for all b € R and its derivative is given by

1 9 ] '
abpb(t7y07y) = % /R eily“%e¢b(tﬂ“)+y0’wb(t,lu)du

1

9 P . .
_ —iyu ; ; &b (t,iu)+yors (t,iu)
o7 ) e <8b¢b(t, iu) + yo abz/zb(t, zu)> e du.

Thus, the result follows. ]

5.2. Proof of Proposition

Proof. Let f be a continuously differentiable function with compact support. The chain rule
of the Malliavin calculus implies that f’(kaH(tk,a:)) = Dy(f(XP . (tg,2)))UP(tg,x), for all

th+1

beRandt € [tg,tyy1], where UP(ty,z) = (DtthkH(tk,x))_l. Then, using the Malliavin
calculus integration by parts formula on [tg, tx1+1], we get that

OE [F(XD,,, (b, 2)| = E[£/(XD,, (o 2)0 XL, (11 )]

L[ [, oy b
_ g / f(th+1(tk,x))@bthH(tk,az)dt]

LJ Tk

1 ~ tet1
= A—E / Dt(f(ka_‘_l (t, l’)))Utb(tk, ﬂj)abekH (tg, l‘)dt]

LSt

1~_

FXL,, ()8 (96X, (b 2)U (11, 2) )|

Observe that by (3.16[), the family (f’(thkH(tk,x)) @bthkH(tk,x),b € R) is uniformly inte-

grable. This justifies that we can interchange 9, and E. Note that 6(V) = SV, 0 (+)) for
any V € Dom 4.

Using the fact that p’(A,,z,y) and 9yp°(A,, z,y) are continuous w.r.t. (y,b), and that f
is the continuously differentiable function with compact support, the stochastic flow property



36 MOHAMED BEN ALAYA, AHMED KEBAIER, GYULA PAP AND NGOC KHUE TRAN

and the Markov property, we obtain that

O XS, ()] = [ F)0 (A i

and
E[f(XP,, (b, )8 (06X7,, (th, 2) U (b, @)
tet1 k> b tht1 ks X ks X
=B [r(xt,)8 (X0, (s 2) Ut ) ) | XD, = 2]
:/0 f()E [5 (abeM(tk,x)Ub(tk,x)) |ka+1 =y, X) = x} PP(An, z,y)dy,
which gives the desired result. O

5.3. Proof of Lemma [3.3l

Proof. From ({3.5) and Itd’s formula, for any ¢ € [tg, tx11],

1 ¢ b o2
=1+ + d
anf(thx) /tk <85L“Xg(tk7x) QXS(tk7x)amX§(tka$)> §

/ t 2 B
tr 24/ X0(tg, )0, X0 (tg, ) >
which, together with (3.6]), and 1t6’s formula, for any t € [tg, tgt1],

XD (ty, ) _/t <g2 X (tg, x) B Xb(ty, x) )ds
8mX?(tkux> B tr 4 Xg(tkax)axXg(tkvx) axXg(tk:ax) '

Then7 USing Utb(tk7x) = (Dtthk+1(tk7:B))_1 = Nﬁ(af‘){tb]wﬂ(tk’x))_laCﬂXf(tk7x)7 the

product rule [37, (1.48)], and the fact that the Skorohod integral and the It6 integral of an
adapted process coincide, we obtain that
XY, () e 9, XDt @) 5
0 Xp () Sy o /XDty w)
- /tkﬂ D, (&X&H(tk,x)> OuXb(tn7)
t Xy (te, @) ) o /X0 (ty, )
_ /tkﬂ <02 XL (ty, ) _ X(ty, @) ) s /ml 0. X (ty,, ) iB
th 4 X0(th, 2)0u X0(tk,2)  0uXD(ty, ) th O'\/m ’
- /fw D, (&X&H(tk,x)) O Xb(th )
t afokH(tk,ﬂJ) o/ X8 (tg, )

X0 (tr.)

5 (abxfm (t, 2) U (¢, x))

aa:X?k (tkvx)

U\/ ka (tkvx)

We next add and subtract the term in the first integral, and the term

in the second integral. This, together with ka (tg,x) = x, yields

5 <8bekH(tk, 2)UP(ty, x)) - —%ﬁ (Biy,, — By) + H(XY). (5.9)
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On the other hand, equation (3.3|) gives

1 le+1

o By =
/ o (\r VXt ) dB, — / o / M (ds, dz) > (5.10)

which, together with -, gives the desired result. O
5.4. Proof of Lemma [3.51

Proof. (i) From [2, Lemma 2.2] or [12, Lemma A.1l], we have that for any 7 € Ri; and
pE [07 ?,% - 1)a

E < 00,

—b —p
sup (Yt>
tel0,7
where (?f )ter, is the diffusion-type CIR process defined by (3.23)). This, together with the

fact thz;t by Lemma m IS(Ytb > Yf for all t € Ry) = 1, implies that for any 7' € R, and
[O 7 — )’

702

Ab —b —p
<E’| sup (Y, < 0.

t€[0,T

EY | sup (Ytb>_p
t€[0,T

(ii) This result can be easily obtained from equation (1.3)) applying Burkholder-David-
Gundy’s inequality and Gronwall’s inequality, together with conditions (A1)-(A2).

(iii) From (1.3)), we have that for any ¢t > s > 0,

Ytb—Ysb—/ <a—be)du+a/ \rdW +// N(du, dz).

Then, applying Burkholder-David-Gundy’s and Hoélder’s inequalities, and Lemma (ii),
together with conditions (A1)-(A2),

[ P

||l ]

oyl <o (B[ (o-02)a
1)
<3 ((t _gplgp /: (a + oIPB? [Y2P]) du+ Cov (¢ — )8! /: B [[v2[8] du
+2rt (Eb { ] ( zm(dz)du> p) )
sc(u—s)pu+y€>+<t—s>‘5<1+y§>+<t—s>/0°°zpm<dz>+<t—s>P ([ ema))

P
<C(t—s)M (1+y§+y02),

for a positive constant C'. Thus, the result follows. O

t o]
+ E [ 2N (du, dz)
0

ZN (du, dz)
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5.5. Proof of Lemma [3.61

Proof. We consider on the probability space (§~2, F, ﬁ) the diffusion-type CIR process (Y?)te]}g N

defined by
—b t —b gy -
X = yo + (a _ bXS> ds+o | /X dB..
0 0

We next consider the flow Yb(s,:c) = (Yf(s,x),t > s), x € Ry4 on the time interval [s, 00)
and with initial condition Y?(s, x) = x. That is, for any ¢t > s,

Y?(s,x) =z+ /St (a - bYZ(s,a:)) du + o*/t \/YZ(s,aj)dB

202

Therefore, applying [12, Lemma 3.1], for any % > 1, u < ( —1)°% and t € [tg, tgq1], We
have that
b du 1
Ef?” exp M/b §C<1 1)>-
tr Xu(tk?x) 1‘2

The comparison theorem (see [4, Proposition A.1] or Lemma [3.15) gives
ﬁ(xfsz, We]lh) =1

which implies that

( (te, ) > Xo(t,x), V> tk) = 1.

p<

Therefore, for any % (2—% — )2‘7 and t € [tg, tpt1],

~ t du ~ t du 1
E [exp{u } <E’ lexp ,u/ s SC(l—i—a).
b ti Xg(tk7$) b ti YZ(tk)x) x%(%_l)

Thus, the result follows. O

5.6. Proof of Lemma [3.71

Proof. Proof of (3.13). This result can be easily obtained from equation (3.4) applying
Burkholder-David-Gundy’s inequality and Gronwall’s inequality together with conditions
(A1)-(A2).

Proof of (3.14). From (3.20) of [9, Lemma 3.6], we have that for any p € [0, 2§ — 1),
~ 1 C
Eb - | <z
o ‘7b lg, x )‘p —

for a constant C}, > 0. Then, using p (Xt (tg, x) > Y?(tk,x), vt > tk) =1, we get

1 _G

< E? =2
p —
tk} )‘ P

ty,x ‘717

~ 1
E? —

Proof of (3.15) and (3.16). We proceed as in the proof of [9, Lemma 3.6] by applying
Lemma O
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5.7. Proof of Lemma [3.8

Proof. Proof of (3.17). This fact follows easily from (5.9)), and properties of the moment of
the Skorohod integral and the Brownian motion.

Proof of (3.18). We rewrite H(X") = Hy(X") + Ha(X®) + H3(X"), where

Hi(X) = —A,S e [0, X0tk x)  0u Xy (th,
1 no_ " \/W \/)(bi
= Xb B tkt1 0'2 abXS(tk,l') Xg(tk7$) ka(tk,:c) d
200= ), T Xenaxtien 0w X))
k S b S b S b x )
o [ O Xl 7).
tk U\/m

tht1 WXl (tp,x b
Ha(X") :_/ p, (22X () a””XSb(t’“’x) ds
. 0:XP ., (try @) ) o/ X0 (te, 7)

Observe that

B [(H(Xb)>2] E) . [(Hl(Xb) + Hy(X") +H3(Xb)>1

< 3<Egk7w “Hl(Xb)ﬂ o UHQ (x) ] Bf, . UH3 (x| D

(5.11)
First, we treat the term H;(X?). Using Burkholder-David-Gundy’s inequality, we have that

2
~ 2 a? e (9, X0y, 2) 0 X}, (b
Ef o Uﬂl(Xb)\ } <AZ5E, /t Xia) ﬁt;
k ka
tet1 . X? th 0. X
<o’ Etk / 0 X x) bt ) ds| < CAZz? H{’lds,
1 VX (tg, \/Xb t

where

2
T 8o Xl(ty,x) 02 X) (t, )
11 —

7. _
e \/Xg(tk,l') \/thk(tk x

By Itd’s formula, it can be checked that
39:X§(tk,l“) 81‘ng (tkvx) :

s _2_|_L b
- = [ 9. Xt(ty,x) 28 du
VXUt D) XD () (XB(tr,2))7 2/ X0 (8, 2)

S e.) 1 1
—|—/ / 8IX3 t , L - duadz7
w Jo (B, 2) VXl 2) + 2 (du, dz)

\/X'S(tka SC)
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which, together with Burkholder-David-Gundy’s and Hélder’s inequalities with p% + q% =1,
(3-14) and (3.15]), and condition (AZ2), implies that

s

HY, <CA, EY

tg,T

2
8$ij(tk, x)
Xb(ty, x)

b T ! - 1
0: X, (tr, )<\/X3(tk,$)+z \/Xg(tk,lE))

1 1
S ~ 2po po [ ~ 1 <0
< CA, be[zf;t,x D E | —
tk{( s (e )‘ XD (g, ) [P0
1 1
2po po [~ 1 a0
(Pl ot (E )
0. X0 (ts,
+C// - ut )
tg

s Po

3
Xg(tkv ))2
1
1 1\ 1 AT
a0 0
R R B e <x3qo> M TE (> "
LA

T

b
Eth

(tka )
<Xb<tk, z))?

s oo _
of [
tp 40

123

2

m(dz)du

2m(dz)du

1 1 1
<CA, 1+ ——— =

2 2a
e _1 3 241

+1

70
where gg should be chosen close to 1 in order that 3¢gy < 2% —

Therefore, under condition —5 > 2, we have shown that

1 1 1
B . “Hl (x) ‘ ] <onji (14— - — , (5.12)

x 2P0

where pg > 1 with pfﬂl close to 1.

Next, we treat the term Hy(X?). From (3.9),

81,X§(tk,x) s Xff(tk,.%‘)

0. Xb(trz) azx,lz(tk,x)d’”'

Therefore,

tr4+1 2 s b b Xb th)
HQ(Xb) :/ - g Xrgtk;fl') dr — ng)tk,l') B tk( k .1‘) ds
th AXY(tk, ) Sy, 0xXb(tr, ) D X0(ty., x) )

8xX§’k (tg,x
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bt 8xX§(tk, x) B
Y SH
t, o/ Xb(tg, )

which, together with Holder’s inequality with % + % =1, implies that

~ 2 1 1
B |[meef ] < (4)" ()"

where
o [ /t< —o? [t XY(ta) dr_( Xt z)  Xh(to) )) N QP]
th,x " 4X°(ty, x) t O X2 (tg, x) 0 X (tg, ) azka(tk,x) )
2q
H22 E? tkHang(tkvw)
o t, o/ Xb(tg,x)

First, observe that
tht1
Hj) < C’Aip_l/ (Hgn + H§12) ds,
ti
where

X(tg,w)  X](t, )

(%CXg(tk,a:) amek (tk,x)

o * Xty x)

dr
AXb(ty, ) Jy, 0:XD(t, )

Hgll Eb

2p
b |
We treat HY,,. Using Holder’s inequality with - ﬁ =1and 1 —|— - =1, (3.14) and (3.15)),
2p
] dr
L 1
s [ _ 1 1 2ps Bl
<cay [ (E,, = ( WUXb b )]“]) Ldr
t U LIXE (b, 2) 00 X2 (t, )|
1

1
1 pP1o] ~ 1 m
< CAZPL E? Eb
> n /tk< T | Xb(ty,, z)|2Prra T |0, X5 (ty,, x)[2a1pen

([ ),%D%

1 9141

2p
} 7H212 Etk x [

HSyy < 0AZ! /

tk

X (tka )
R [Xb tk, )8 Xb (tk, )

1

1 proq 1 +
2p—1 2pﬂ1 Bl
S CA” An <x2p1pa1) 1 _I_ 2—0‘71 2q1paq (1 + x )
T 2 —
< CAzp 1 L 1+ 2%
n 2p + 2 ( +x ) ,
:L-Qgtnal P

where a1 > 1 should be chosen close to 1 in order that 2pipa; < 3—3‘ — 1.
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Next, we treat H%,. Using (3.4), (5.8) and It6’s formula, we get that

Xb(ty,x) X} (t,2) s / \/Xb (tr, @
t
tk k‘7

=a
Bfo;(tk,x) 695ng (tk,x) 5' X tk,

+ —Z  M(du,d).
/tkA a:cXg(tlﬁx) ( ! Z)

HY,<C (Hgml + HYpo + H3123) )

Therefore,

where
s du 2p
_— HY., =E
t, 0o X (tr, @) ] ez t”[
/ ) / S 2 M(du,d2)
tr 40 833X’3(tk’$) ’

2p:|
1

b 2p—1 b 2
<027 [ Pl g = O3 {1+

tg

/ \/Xb tk,
dB
tk

tkn )

7

b _ b
Hy01 = E, & [

b _ T
Hy03 = Ef, » [

Using (3.15),

Using Burkholder-David-Gundy’s and Hélder’s inequalities w1th ql =1, (3.13)) and (3 -,
Xb(ty, x) |

b -1 b
H2122 S CA% / Etk m|: amXb(tk .CIZ‘)
u )

1
- pp|\ 71 [ ~ 1
< CAP ! / <Elt)k x |: Xﬁ(tk, ) :|> Egk,:c [ 211110:| du
b 0, X115, )
< CAP (14 2P) 1+;
>~ n %—1
TR

Finally, using Burkholder-David-Gundy’s inequality and condition (A2),

1 1
b 2p -
H2123 S C/ / tk: |:|a Xb(tk :U)|2p:| m(dz)du S CAn 1 + 2%71

Thus, we have shown that

1 1 1
o 22 P o

which implies that
1
b
Hj < CA?LP{AELPQCQP Lt — (L+2%) +AZ | 1+

2
fed — g —
J,‘qual p €T 2 p

27(1_1
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1 1
AL (I 4a?) (14— |+ A, (14— }
2g 2g
;1;02441 P N

Next, using Burkholder-David-Gundy’s and Holder’s inequalities with p% + q% =1, (3.14) and

(3.15)),
q tk+1 -
} < CAI! / E) ,
tr

1

tht1 [ 1 P2
< oArt / o
>~ n b < tr,T |X£(tk, .fC)‘qu tk x

1
2a )
2 +q

2q
0 Xs(tk7 )
XO(ty, )

1
9 1
(tk,l')’ lI2q:|> q2 ds

. tht1 xXb t 2
H§2 S CEi)Iww |:/ (a S( k‘?x)) dS
t

k

1
<ong— |1+

a
x 292

where po should be chosen close to 1 in order that pog < (27—”2‘ —

In order to be able to apply two estimates (3.14]) and (3.15) to estimate two terms above
Hb, and H},, all conditions required here are the following

(LG —1)? 2a 2a
—2 >—7,2 <—=-1,qg<—=—1.
qip 2(% — %) pP1p 0_2 q 0_2

This implies that

24> 2qp+ 20p 2ap+1) +1

2a 2q1p. +1

02 q1 1
2a
ﬁ pfl + 1.

Here, the optimal choice for p and g1 corresponds to choose them in a way which gives minimal
restrictions on the ratlo . That is,

QIP p
2q1p +V2q1p (2q1p + 1) pi—

11+\/

Thus, the unique solution is given by p = and ¢ = Btiﬁ, which implies that

i—% > 9+‘ﬁ Therefore, under condition 75 > %, we have shown that
b 2p 2p 1 2p 2p 1
E) . ‘HQX ‘ < Af Anﬁ Lt (1+2P)+ AP | 1+ pr
xgqlal -p €T < 2 -p
1 1 p 1 1
T 022q1 P x 022 P x 022112 +a

condmt (oL sy 11—
S A R (T+2%) +A% [ 1+ g

r2a01p x 2p -1
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1 1 1
e + AL |14+ ———

o2 27

1

1
ot (1
r 221

T 291p €T 2P €T 2929

+A, (14+x) |1+

3+

A 1 1 1
<C—"— |1+ — { I+ —— | (1 +2°) + [ 1+ —
x 2t o271 221

1
T 2924 X 29101P €T 2p

B =

1

1

t( ) | 1+ } (5.13)
x 2ap

where p = 11+‘ﬁ, q= L = 7+§/§, Q=

1, and a; > 1 is close to 1

Finally, we treat the term Hz(X?). Using Holder’s inequality W1th + - =1,

) tht1 817th+1 (tg, x) 0p X0 (tg, )
th ’H?) X ’ < An Etk: Dy O, Xb /X b
tk tk+1 (tk7 x) o XS (tk7 x)
D. 0 ka+1 (tk :E)
0, XP (tg, )

BxXg(tk, x)
trt1

o/ X8 (tk, )

13++v/57 _ 25+3\/
4 > AP =

1 1
2p3 p3 2q3 a3
b
Etk T

trt1

<A, 1D

ty,x
127

From ,

abek_‘_l(tk,:L') _/tk-H Xf?(tk,a:) dr
t

0uXp,, (tryw) s XAy, )
This, together with the chain rule of Malliavin calculus and (3.12)), gives

RXP,,, (ty, ) teer (DX (b, @) 1
D, | kT :_/ sCr\h ) Dy (0, X0 (¢, >d
(axfol(tk,x) T (Gt ~ it e o0 ) i

- (%ka,x) - D.(0:X!(tr,2)) | dr.

k

(5.14)

On the other hand, from (3.11]) and (3.12)), we get that

_ p <6Xb(t ))—Ul+02/T1DXb(t )d
0 Xp(t,a) ) T Ry 8 s (K

o 1

- = — D Xt w(ti, x)dB,
4 /S (Xb(ty, 2))2
. g 1 U/ \/Xé’(tk,l')axXz(tk, / \/Xb tk, 8 X tk,
Xg’(tk,x) 8 s (Xg(tk,$))28mX£(tk Xb tk .CU 26 X (tk, )
which, together with (5.14)), gives

D, <abX£’kH<tk,x)> N /fw (U\/Xg(tknx) 1 {0 1
B s tk? ) Xb

0 th+1(tk7$) ang(tkax) - 63:X7l»)( s(tk,x)
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+/ VX (tr, )0, X0 (1 / VX (th, )0, X0 (tg, 2 dB })dr
o )

Xb tkv 28 Xb( Xb tk .I' 28 X (tk,

Then, using Burkholder Dav1d Gundy’s and Hélder’s inequalities with —- + ,82 =1, ais + é —
L o+ g =land -+ L+ - =1, (3.14) and (3.15), we get that

2 o
B |ID, X () \ [ <o, ||a, Y1) 3
tw 00Xy, (ths @) RO
L CRb i /tk+1 dr 1 .
b o e Xb(th ) /X5ty )

2p3

- lk41 / b b(t
+ CE! / axl / Kot ©)0: X (0, 2) g

P(trx) Jo (XL(tr, ))23 Xb( )

bt 1 T/ Xb(t 0. X5 (t
+ CEtk x / 8 X / S( k’.r) U( k”a:) dB’U,dT

Pte, @) Js (XD(te,x))2 0, XD (t, )

1
Psﬂz] ) By

2p3

1
~b 1 a2
2 b
< CA D3 < tex [|8$Xb(tk x)‘2p3a2]> ( tr,T |:‘X tka )

CAZs— / U ! - " d
+ — T
n s b axX,,l,)(tk,CC) Xg(tkvx)
- 2p3
+ AL / e 1 / Xl )0 Xl g
" s b 8mX7€)(tka~T) s (Xg(tk,’x))zaxXg(tk,-f)
- 2
apat tr41 ~b \/Wa X tk7 "
+CA’VL Etk, b dBu dr
. D, X5( tk, (X (g, )20, X0 (tg, 2)

< CAZE |1+ (1+aP3)

—Pp3

tht1 / 1 % ~ 1 i
2p3—1 b b
O8N / <E [\axm >rm]> <Etkvw[\xs<tk,x>rp3q4]> dar

2p3
—I—C’A?pa 1A2p3 1/ / 1 \/Xg(tkax)axXg(tk T dudr
e X0(tg, x) (Xb(ty, )20 X0(t, x)
2p3
tet1 b b
+ A AP / / » 1 \/Xs(tmw);@qu(tk,x duds
XD (s @) (XD (b, )7 05 X2 (tr, )
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1 1 1
<SCAP [ 1+ —— (14aP) +CAP |14+ ——— | —
o2 5 xP3
T Sy D3 x Ton b3

1 O A2 /tk“ /T E! : i
e Lo U 100X (b, ) (XD (1, )20, X B (1, 1) PO

1
~ 2p3fB3 |\ Ps
G [Nt |

_ 41 T . 1
+ CAMs2 / / B, 3 —
? ® aZCXfZ(tk?x)(Xg(tkvw))iang(thx)

. 2psfs]\ s
X Egk,:lc ‘\/maxXz(tk’ ) dudr
1 1

1

2 2

SCAP |1 g [ (A4 2™) + AP | T P5
€T 02a2 —b3 T o'p4 p3

Q
w

1
tret1 r [ __ 1
+ Al / / B
n i i tg,x |axX7l?(tk,l')|2p3a3p4

1
~ 1 azas
b b b
X (Etk,:v [’Xﬁ(tk, x)|4p3a3q4] ) (Etk,x |:‘Xs (tk7 l’)

1
~ 2p3B3f3 B3By
X (Efkgc [&;XZ(tk,x)‘ P33 4]> N

_1
P3ﬁ30t4:| ) Bzay

1
tret1 T - 1 a3pPq - 1 3P4
+ CA3P3_2/ / E} E}
n i i tg,x \6,,;Xf?(tk, :B) ’2p3a3p4 tr,x ‘837Xg(tk> :B) ’2p3a3p4

1
P353a4:| > By

1
~ 1 azaq /__
b b b
X (Etk,l‘ [|X3(tk7;1})|3p3a3q4]> (Etk,x |:‘Xs(tk7$)

1
~ 2p3 8383 B384
x (Efw [axxg(tk,x)’ . 4]) ™ dudr

1 1 1
2 2
SCAYP [ 14 —5— (1+2P)+ CAP [ 1+ |
T 02a2 —p3 €T Gp4 —Pp3
1 1 1 1
+OAP [ 14— 1+ —5 o (LT aP) [ 1+ ——
-2 52 X 52

$2a3p4 —p3 x2a3p4 —b3 $2Bi57541+p3

1

3P4 = 1 3P4
E
o 10n Xty )PP

1
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1 1 1 1
3p. D,
+CAPE 11+ g 1+ g x3p3(1+$3) 1+ pr
$2a3p4 —p3 1,2(13;;4 —Pp3 x23354+p3
2a _1)2
Here as > 1 and a3 > 1 should be chosen close to 1 in order that —2psas > —2("22(17)1),
S272
2
—2p3asgpy > % and 4psai3qy < —1,and B4 > 1.
2

Next, using Holder’s inequality Wlth —|— - =1, (3.14]) and (3.15)),

1 1
N 203p5]\ 75 [~ 1 %
b b b
<C (EtM { s(tk,flf)’ D <Etk,x [WD

1 1
+q3

2q3
C%Xg(tk, x)

o/ Xtk 7)

b
ti,x

o2
T 2?5
where ¢5 should be chosen close to 1 in order that ¢3qs < % —

In order to be able to apply two estimates ([3.14) and (3.15)) to estimate the term H3(X?),
all conditions required here are the following

(2% —1)? 2a 2a
—2p3ps > ——~%——1—, Apsqu <3 -Ls< 5 -1

This implies that

29 > 2p3ps + \/2p3pa (2p3ps + 1) + 1

o2

2a , Apspa
0'2 pa—2 +1
2a Ps

57 > 1t 1.

Here, the optimal choice for ps and py4 corresponds to choose them in a way which gives
minimal restrictions on the ratlo . That is,

4p3py D3
2p3pa + \/2p3pa (2p3ps + 1) = = )
v ( ) pe—2 p3—1
Thus, the unique solution is given by p3 = 21+37 V2185 and pg = 19+17\{ﬁ7 which implies that

Z—% > 15‘“ 185 " Therefore, under condition 2 5> 15% V185 we have shown that

2 2 2p3 1 D3 2ps3 1 1
E} o | |Hs(X SCANAP N1+ ——— | A+ 2") + AP 1+ ——— |
52 52 X
x ag P8 x “oa P3
+ AP [ 1 4 P ! (1+aP) [ 1+
n i—’l—l 3—%71 xdp3 2g
x203pa D3 x 2037 D3 2ﬁ3ﬁ4 tPs
1
1 1 1 1 P3
3p: - - D:
+ AP |14 g 1+ 7 = (1+aP) [ 1+ 5 }
x2a3ps P3 p2a3ps 3 2 2P3P1 +p3
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1
. 1 1\”
X —|— 27(171 %
3:7”2105 +4q3
2] A2 1 9 1 1
< CAZSAL |1+ e (I+z)+ A5 [1+ % -
z;;xzng - €T 23p4 N
1 1 1 1
A1+ 1+ —5 ) | 1 ——
231 -1 281
I 203P3P4 T 20631’3?4 @ 2P3B4p3 +
1 1 1 1
+Ai 1+ 27%71 ( 2a 1 73(1—1—33) 1+27%771 } 1—|—27%771
T Sa3p3Pa -1 x2a3p3p4 x253ﬂ4p3 +1 T Sp543 +1
Al 1 1
SCJ ]‘+ 2a { (1+x)+ 1+ 2a -
T 21 1 251 B T
X 2r593 * x2a2P5 X P3P4
1 1 1
e ml (o) (14 5
x2a3p3Ps T 2043173174 T 2PB3B4P3 +1
1 1 1
1+ —= T — SA+2) |1+ —7F ] ¢ (5.15)
o2 x o2 "
x203p3P4 35203173104 1 2PB3B4P3 +1
where p3 = 21+\/18 g3 pfil _ 416+Zéix/18 py = 19+\/F7 DPapy = 73-&-5\/18 ps > 1 with

% close to 1, ag > 1 and ag > 1 are close to 1, 84 > 1.

From (5.11), (5.12), (5.13) and (5.15)), under condition (A3): % > 12185 e obtain
that
341
=b NS o 2 1
By . | (H(XD) | < (142 [ 14+ — L+~
xg%iqs—i_l T 2103 -1
3+1
1 A, ” ) 1
x| 14+ — 1+ — <C (1+m)<1+
2a _q 2a 4 5 (La,l)(i+i+ 1 )
xé’;sm_l xwfmﬂ v x o2 2B 2p3P4
3+1
=C 14z 14+ —5; ,
b ( )< x(ff 1)(215+21+\/K+73+§%/ﬁ))
for some constant C' > 0, where p = 11+‘ﬁ, p3 = 21‘“18 , P3ps = 73+‘274 V185 “and 8

min{ps, B3, B4} > 1 is sufficiently large enough T hus we conclude the estimate (3.18). O

Remark 5.1. When we use Cauchy-Schwarz’s inequality instead of Holder’s inequality to
estimate (H(X"))?, in this case the required condition (A3) will be = > 717+‘21‘/ﬁ
15+1185

.

which is

actually bigger than
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Remark 5.2. In the case of CIR process without jumps studied in [9] when the subordinator
is degenerate, using the explicit expression for the Malliavin derivative obtained by Alos and
Ewald in [1, Corollary 4.2] instead of the expression (3.12) in order to estimate the term

H3(X"), condition (A3) will be % > %ﬁ (see Ol Lemma 3.8]), which is less restrictive
than that given in this paper.

5.8. Proof of Lemma [3.91

Proof. Using (3.19)), we have that

dﬁ?ﬁ T b1 dP?}i T dPIt); b1
dlSi’;’m ((Yt )te[tk,tkﬂ]) —1= T ((Yt )te[tk,tkﬂ})

ba a dPtk b
- /bl ) (dpln ) ((Yt l)te[t’“tkﬂ}) db
/bg tot1 \/W
by

b b dﬁ? X b
<dW + Yy 1d5> dﬁbi <(Y;€ l)té[tk,tkﬂ]) db.

g t,T
Then, using Girsanov’s theorem, we get that

R dp®
b b, b
Bl [V <d13b’i CRATTE 1)1
ty

b2/\ tk+1 Ybl dﬁb
b b ty,x b
:/b B |V v (dW +— Yslds)dlgb'; (O )it |
1 k ty,x
ba 1 Y
- / E |V dWS Phes | g,
b1 tr

Db Pt
Here, the process W' iws = (W, ™"t € [tr,tgy1]) is a Brownian motion under p

tr,x)
for any t € [tg, tgs1],
P b—by [t
W, =" =W, + 1/ \/}gd&
g ty

Next, using Holder’s and Burkholder-David-Gundy’s inequalities and Lemma (ii), we get
d§b2 tret1 )
V(S ()ieinn) 1 / B v f VY P g

dPtkzx b1 tr
tket1 /Y
V dWS tk x]
P1\ 7
]) db

12
lkt1 Yb po
\ th
N s qw et
g

l o~
NIZE (E” [
tg
bo R 1 P_q tk+1/\
/ (Egk,x [|V|q]> ! (Afl tk T |:
by

k

where

by
tr,x

db

IA
S\@

IN
@\
- N

—
=)
=
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b2
< OVAL (1) | [ (B VI7) " ab

for some constant C' > 0, where p,q > 1 and % + % = 1. Thus, the result follows. O

1

5.9. Proof of Lemma [3.10l

Proof. For simplicity, we set g(y) := E? V|X

tr )/tk
Girsanov’s theorem (see (3.19))), we obtain that

= y| for all y € R44. Then, applying

lkt+1

Tbo | T _ b = | _ 1 b bo| _ b b
E™ |:Etk, [V‘ ter1 thko+1:| |]:tk:| = E7 [ (Y;k(:-l)‘y;ﬁko} o Et;i) Ytbo [g(nkil)}
g
dp
_ b v 5 Y yb
t]wy;l;O q( tk“)dlf:;bi (( t)te[tk,tkﬂ])
L tk,Y bo
- dlgi’o N o
b b b kotey b b
— 0 ()
tkaVtI; tkvytl;o g( tk+1)de bo ( t)tE[tk’tk+ﬂ tk+1
L tk’Ytk 4
- dlgi’o N -
_ b b &b ks ey b b
= Etk’nbo g(}/tk-}—l) tk,Y;bO dﬁb ((Y;f )te[tk,tk_’_ﬂ) ’}/;fk+1
k k bo
L tk’Ytk 44
dpb
oo bo
b B Yy, b b b bo
= | 9WE yao | (et Yo =] 2(An Yo y)dy
" tlmxftio
dp®
=b =b te Yy, b b
= /0 Eth [V‘thﬂ = y} E%Ytbo dﬁbi <(Yt )te[tk,tk+1]> ‘Y;tkH =Yy (A Yk ,y)dy
i tk’y;tl;o
dp%
~ TR 14 gl v VP =y, X0 =y pP(A,, Y, y)d
= i |Vose Y )tektutors) ) Yoo = ¥ Xty = v | (A0, Y0, y)dy
0 ty tk,Y;bo
k
ap%
~ [ [ ts,Y, 0 17
_ T b tg b b b _ b
- Etk,YtI; Etk’y 0 Vd/\bi((y;‘/ )te[tmtkﬂ])‘nkﬂ’xtkﬂ - Y;fk+1
) ) tk7§/tb0 o
k
~bo
I I t,, Y20 17
_ b b katey b b b b
B Etk,YtbO Etk,YtbO Vdﬁb (Y3 )te[tmtml])‘y;fkﬂ’thﬂ Y;5k+1
k k L tk,Y;bO 44
k
dpb dpb
_ Eb V tk’Ytl;cO Yb _ Eb V Eb tk,Y;ZO Yb
= tkvytbo dﬁb (( t )tE[tk,tk+1]) - tk’ytbo[ ] tk7nb0 dﬁb (( t )te[tk,tk+1]>
F t,, Y20 F b tr, Y20
ity k> tg
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= E° YbO [V] ?

tkv tg

where we have used that fact that, by definition of Efk 2 for any ]?tk +,-measurable random

variable Vj and F3, ,  -measurable random variable V5,

tk T |:V1‘ tei1 - i| tr,T |:V2| tri1 - y:| tk T |:V1V2‘}/;fk+1 X;)k+1 = y:| )

ap
~ Yy, 0
and Ei’ " [dﬁzk & ((Ytb)te[tk,tkﬂ])} = 1 together with the independence between V and
b o ' ’Ytl;co
dp®o
Y
dfvzk : ((Yt )t€ltp,tesa]). Thus, the result follows O
ty, Yko

5.10. Proof of Lemma [3.111
Proof. Observe that

|| 1A 1«
b b b
e O D DU

Using the mean value theorem, there exists « € (0,1) such that
RYE) = h(YE) = B (V2 + (vt = i) (Vi -Yh).

Then, using Holder’s inequality with % + % = 1, Lemma (iii) and (i), we get that
B Ity - nof] < (B [(0 + a0 -x) ) (B [(v2-32)'])

~ 1 1 g IA1N § g1
§C<Eb (Y2 +a(Yl —yp))mr D (24")" A+ uf+up)

1

P a1 1

Q=

-D\»—l

S C Eb b : bym,
CARRE
for a constant C' > 0, where p is chosen close to 1 and ¢ is large enough. This together with
(5.16)) shows that
B [

which tends to zero as n — oo. On the other hand, from Proposition (iii), as n — oo,

n—1

1 VANY b 1 .
Tl RRLLEUEED DUV

k=0

< CAZ, (5.17)

h(y?) Pl-as. 1
A ds —>/ y)mp(dy), a.s (5.18)

Thus, from (5.17) and (5.18)), the result follows. O
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5.11. Large deviation type estimates. Let (v,),>1 be a positive sequence satisfying
limy, 00 v, = 0. The process J" = (J;/")ier, defined by J/™ = Zogsgt AJs1A g 5 0,) 18
a compound Poisson process with intensity of big jumps A, := fz>vn m(dz) and distribution

1Z>’Un m(dz)

of big jumps . Then, we can split the jumps of the subordinator J; into small jumps

and big jumps as follows

t poo t ~ t
/ / zN(ds,dz) = / / zN(ds, dz) —I—t/ zm(dz) —I—/ / 2N (ds, dz).
0 JO 0 Jz<vu, z2<vp 0 Jz>u,

Hence, from ({1.3)), for any t € R, we can write

VP =y +/ abeb d5+0/ dWJr// dsdz
Pewt | (a-0) VY )
—l—t/ zm(dz)+/ / 2N (ds,dz).
z<wvn 0 Jz>vu,

Let N = (N/")ier, denote the Poisson process with intensity \,, counting the big jumps
of the compound Poisson process J.

(5.19)

Similarly, the process JU» = (jf“)ta& defined by Jm = > 0<s<t AJ, LINAS o} is a

compound Poisson process with intensity of big jumps )., and distribution of big jumps

1. >vup M (dZ)
Aoy,

jumps as follows

/ / M (ds, dz) / / ds dz)+t/ m(dz) / / M(ds, dz).
<'Un z<vn z>vn

Hence, from (3.3 , for any t € R, we can write

Xf=y0+/ (a—bXb)ds—l—cr/ \de +// M(ds, dz)

<vn
+t/ zm(dz)—i—/ / zM(ds, dz).
z2<wvn 0 Jz>vu,

Let MY = (M;™);er, denote the foisson process with intensity A,, counting the big jumps

. Then, we can split the jumps of the subordinator J; into small jumps and big

(5.20)

of the compound Poisson process J.

Now, for k € {0,...,n — 1}, we consider the events Nok (vn) = {IV", — Ny = 0} which
have no big jumps of J*» in the interval [ty, tx11) and Nzl,k(vn) = {Ny," , — Ny,* > 1} which

have one or more than one big jump of JY» in the interval [tg,txy1). Similarly, we consider
the events Noy(vn) := {M," — M;" = 0} which have no big jumps of J** in the interval

tot+1

[tk, tr+1) and Nzl’k(vn) = {My", — M;* > 1} which have one or more than one big jump

of JU in the interval [tk, tr+1). Next, we obtain the following large deviation type estimates.

Lemma 5.3. Assume conditions (A1) and (A2) with p = 2. Then, for any b € R, there
exists a constant C > 0 such that for all ¢ > 1, and k € {0,...,n — 1},

trt1 trt1 b 2
[(/ / N(ds,dz) [/ / dsdz’thl—Yto}>]
tk, tk tr t/r€7 tr + k+1
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<C (1 + (1@’;0)2) A, <(AvnAn)§ + / . 2m(dz) + A, < / N zm(dz))2> .

Proof. Splitting the Poisson integrals into small jumps and big jumps, we get that

tk+1 tk+1 b 2
[(/ / N(ds,dz) [/ / M (ds,dz) ‘ tepr = Y;k‘ll} ) ]
ty koY tr
~b te+1 - that
=E" [(/ / zN(ds,dz) + An/ zm(dz) —|—/ / zN(ds,dz)
tk,thk tr <wvp <vn t 2>,
~ tr41
~-E [ / / M(ds,dz) + A, / m(dz)
Yy t <'Un <un

tr4+1
/t / M(ds,dz)|X}p | =Y 1D } <3(Dign + Dok + Dajn) s (5:21)
k Z>Un

~b tet+1
len—EO (/ / szsdz)) ,
tk 123 <vnp
tkt1 bo 2
( t, sz [/tk /<vn (ds, dz) ‘thﬂ = Ytk+1:|> )
~b tea1
i 0
D3k = Etk%bko K/tk /DUH zN(ds,dz)
~ tet+1 2
—E’ / / zM(ds,d2)| X} =Y" :
tg, Y, Z>on, k41 k+1

First, using Burkholder—Dawd—Gundy s inequality,

where

b
D2kn:EOYl;

k>

tet1
Dipn <C / m(dz)ds = CA, 22m(dz). (5.22)
<vn

z2<vp

Next, using Jensen’s 1nequahty, Lemma |3.10[ and Burkholder-David-Gundy’s inequality,

~b tr4+1 ‘
Dyjn <E? </ / dsdz) L= t
tk’Y}kO tk, tk " z<vn k+1 k+1

(5.23)

~ th+1 ~ 2
=K’ bo </ / ZM(dS, dZ)) < CA, sz(dz),
tk’Ytk t z<up, 2<vn
Next, multiplying the random variable outside the conditional expectation of D3 1, ,, by (Un)+
Ry p(vn)? W get that
tet+1
DSkn_Et Y |:(1NOIc(Un)Jr N>1kvn </t /z>v dS dz)
’ " (5.24)

tet1
b b
B, U / M(ds, dz)[ Xy, = Yt’il} > ] = Mg+ M2
’ >Un
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b ~b trt1
Mg gn = E 0 [1N0 £ (on) (/t /Z>U zN (ds,dz)
=b Kak b bo ?
_ Etk, {/t /Z>Un zM(ds,dz)|th+1 = Ytkﬂ} > ],
~b tet1
MYy, = E 0 [1N>1 on) (/t / 2N (ds,dz)
Z>Un
let1 b 2
tk [/ / M (ds,dz) | tepr = Y;kil} ) ]
’ >Un

We start treating Mo i.n Multiplying the random variable inside the conditional expectation
b _ _ . .
of My, ,, by 1No,k(vn) + 1N21,k(vn) and using equation ([5.20)), we get that

~ r ~ tet1 2
ﬂ{b _ Tabg R b _ . bo
0,k,;n — Etk,YbU _1N0,k(vn) (Etk’ybo [(1N0,k(vn) + 1N>17k(un))/ /Z>U ds dz ‘ o1 ™ }/tk+l:|) }

2%

tht1 2
— Eb 1 E / / M(ds, dz) ‘ =Yb
. —~ b b
tlwytko No,k(vn) tk7Ytk0 N>1 k(vn) z>vn k+1 let1

b [ =b b b bt b
_ Tabo
o Etk,YbO 1N0 k(Un) <Etk,y |:1N>1 k(vn) (th+1 th / (a B bX )d

tk+1 tk+1 2
b
o [ o [ o), i)
k n SUn

where

b _ Tbo
M0747k7n - Et]vatbO NO k(Un

<53 Ml (5:25)
i=1
where
- 2
b _ b =b N _ b
Mo = Et;on Nok(vn) (Etk, 1N21,k(vn)(th+1 th ‘thﬂ Ytlﬁu]) ]’
_ . 2
Mb, =T E’ 1z kH(a —bXD)ds|X) =Y
0,2,k,n tkatZO NO k(vn tlm NZl,k(Un) S ter1 = Ttk ’
tet+1 2
b __ Tb b b
MO’?”]“’" o Et:,YbU No,k(vn) (Etk, N>1 k()7 / V dB |th+1 }/tkgr1:|> } ’

~p Tkt ) 2
0
Etk7Y 0 1N>1 k('Un) / /<U dS dZ |th+1 }/tk+1:|> :| ,

r 2
b _ b ~ b _ b
MO,5,]€,TL N Et27Yb0 1N07k('Un) (Etkﬂ}/il;o 1N21J€(U")An ~/z<v Zm(dZ) ‘thJrl Yik11:| > :| .

tr L

First, we treat the term Mé’ 1 k- Using equation (5.19) and the fact that there is no big jump
of JU» in the interval [tg,tx+1), we get that

2
b b bo\ b b _ b
MO 1 k n o Eto Y |:1]/\7'07k(vn) ((thkgrl - }/;ko)Etk’Yf;O |:1]F\7>1’k(1_)n) ‘th+1 - }/tk(it—li| ) :|
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Tbo trt1 , born -
- N, — 0
Etk,yb |:1N0k(Un)<</ (a —boY, ds—i—a/ Yo,

ty
tet1 b bo 2
/ / zN ds,dz) + A, / dZ tk [1N21,k(vn)|th+1 = Kﬁkﬂ]) }
tk <vp <’Un ’ k
= 4ZM0,1,i,k,nv (5.26)
i=1

where

b _ Tabo
MO,l,l,k,n =E

th+1 2
b b b _ b
2 Mo ([ 00 PIE, ¥, =)
7k: ? =

ty

tet1 ~ 2
b b b _yb
U/t \/EdWSEtk,}QZO [lﬁzlyk(vn)|th+1 - Y;k(ll]) }’
bt 2
b _ b
/tk /z<U (dS dZ) e, Y |:1N21,k(vn) ’th+1 }/tkole]> :| ’
B 2
b b _ yb

Ay / Zm(dZ)Etk ybo [1ﬁ>1,k(vn) |Xt’“+1 }/tk(ll]) :| ’

ngn g =
Using Hélder’s inequality with % + % = 1 and Jensen’s inequality together with Lemma

1 1
- lkt1 2p p [ ~ q
b bo _ bo bo b . bo
M071,17k7n S <Etk’}/tl;0 |:(/tk ((l bO}/S )ds) ) (Etk7}/tl;0 [Etk,Yk [1N>1 k ) )’ tht1 }/tk+1:|:|>

1 1
+1 o L = a

2p—1 bo _ bo \2p b ~
S<A" /tk B o [~ boY?) }d8> (Etk,m’f [1N>1»’f(’””)]>

1 =

<o (az [*7 2 4 prim yioye)as)” (B, (N !
= n (a + b o l(Y5) ) oY vo (N51.£(v3))
tr k>
<

2%

b _ Db ~
Mo 1360 = E%Ytz;o L%y s (om)

b _ Tbo N
MO71747k’n - E 1N0,k(vn)

b _ B ~
M071727k7n - Et]waO 1N0,k(vn)<
bo <
tkvnk L

23
<0 (a2 (14 1)) (ndon, 8,) <O (1+ () A2, a0)F. (527

Next, using Holder’s inequality with % + % = 1 and Burkholder-David-Gundy’s inequality
together with Lemma [3.10

1 1
tht1 P /. - 3
b b b b b __ vb
M0,1,2 kn = <Etz / Y OdW ) ]) (Et: Ytbo [Etk Yt’;o [lﬁ>1,k(vn)|th+1 - Y;fkoﬂ]])
7 9 k) K =
b By \P ’ b g
0 0 ~
=C <Etk7Yf; [(/t Y, ds) }) (Etk,Yt’;f [1N>1,k(vn)]>
C (

0
k
. tk+1,\b b % =~ ~ %
At TR 0 las)” (B (R )

k

IN

IN
=

C (A'Z (1 + (}on)p)> » (6_)‘“”A"/\UnAn); <C (1 + Y;ZO) A, ()\vnAn)% . (5.28)
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Using Burkholder-David-Gundy’s inequality,

tit1 2
MG 1 30 < [ /t /< N (ds, dz ] <CA, /< m(dz). (5.29)
k SUn SUn

Observe that
Mg,1,4,k,n < <An /< zm(dz))Q. (5.30)
Therefore, from —, we have shown tha_t "
Mg, <CO+ (YQZO)Q)An (()\vnAn)‘ll + /< 2*m(dz) + Ap (/< zm(dz)>2> . (5.31)

Next, we treat the term M&Zk’n. Using Jensen’s inequality, Lemma and Holder’s in-
equality with % + % =1,

~ th+1
&b b b b
Mgann <E? L, o {wa}f [1@1%(%) (/tk (a — bX?) ) X0 = Yt;ﬁllH
~p tht1 b 9
= Etk,yk |:]-]\[>1 k(vn) ( /t;C (CL - bXS)dS) :|
173 2 1 1
+1 D P " " ;
b b b
< (B ([ o) (P o)

k

<C (14 (V)2) A2 (A, An)7 (5.32)

Using Jensen’s inequality, Lemma and Holder’s inequality with % + % = 1 together with
Burkholder-David-Gundy’s inequality,

=N - trt1 2
b b b b _ b
Moz kn < Et: VA {Etk,Y’;O {11\7» k(vn) <U/ V ngBs) ‘th+l Ytkoﬂn
k
~b to+1
8 15 (o[ Vx|
~p tr41 \/>b 2p p ~ %
< <Etk,3§i° [(U /tk XSst) }) <Ptk7Y (N1, kw”»)

<C (1 + ybo) Ay (AUHAn)% . (5.33)
Using Jensen’s inequality, Lemma [3.10] and Burkholder-David-Gundy’s inequality,

bo tet1 bo
S N T
- tet1
=K K / / M (ds dz)) ] < CA, / m(dz). (5.34)
£, Y0 t <'un <vn

Finally, observe that

2
M5 pn < (An / < zm(dz)> . (5.35)
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Thus, from and - -, we have shown that

Mgy, <C (1 + (1@*;0)2) A, ((A%A )i + /Mn 2m(dz) + A, (/Mn zm(dz)>2> . (5.36)

Finally, we treat M. 21 .- Multiplying the random variable inside the conditional expectation
of Mgl’k’n by 1N07k(vn) + 1];,21’16(””), we get that

trt+1
b _ Tbo N
M =Bl [t ([, L V09
=b B+t b b )’

N Etlm I;O [<1No k(vn) T 1K7>1 J(vn) /k /Z>U ZM(ds’dz)‘thH - YtkH] > }
~b tk+1

=E [ I (/ / N(ds,dz)
tr,Y, tk >1,k Un >Un

~b tet1 , 2
. 0
N Etk,ﬁ/tl:) |: N>1 k 7Jn / /Z>’U ds dz ‘th-}—l }/;fk+1:| ) :|
Hbo bo bo bt trt1 bo
= 0
= [1N>1 o) (th v —/ (a — bpY0)ds — a/ \Yoaw,

tg

k»
tr+1 . .
/tk /Z<U N(ds,dz) — A, /<U m(dz) tk, [1N>1 L (om) (th+1 - Xy
let1 tet1 tet1
- a—bX? ds—a/ dB, / / ds ,dz)
/tk ( ) \/> tk

<vn

_An/ xm )\th“ _YtZLD ] < 9ZM21,z,k,m (5.37)
ZSUn i=1

where

b _ Bbo bo _ vbo b ~ Xb —xb) bo 1\2
M>1,17k,n - Etk Ytbo 1N>1 k(vn) (Ytk+1 Y Et y [1N21,k(vn) le+1 Xi | ley1 = Ytk+1]) >
g

b
M = E
2172ak)n tr, Ytbko N>1 k(U'ﬂ

b =b [ bt 2
— 0 0
M2173’k’n - Etkvytbo N>1 k(Un / Y dW
kL
Tyt
(ds,dz
Z Ly, tk;Yt[;O i N>1k Un /t‘k /<Un ) ’
b _ Tbo
Mi5pn = Etk __ N>1 o(vn) <An B dz)> ],
SUn

b _ Tbo
M>14kn_E

i L

Sbo

E
tk’yt’;O I N>1 & (vn)

b =b Bt b b b ?
— 0
MZI,G,k,n - E%Y 0 [ N1 (vn) /t (a —bXy) d8|th+1 Y;lc+1:| } ’

b bt bo ?
Et Yo [ N>1k(vn) / V XydB; }thﬂ _Y;k+1:|> }’

b _ Ebo
M1 760 = b, Y0 N>1 % (vn)
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b b =b Kas b 2
_ 0 =N _ 0
MZLS"“” o Etk,YtbO 1N21,k(Un) Etk7 N>1 & (vn) / /<U M(ds, dz) |th+1 Y;fk+1 )
k n

2
b _ Tabo N b _ _ vbo
MZLQ,k,n - Et ybo [1N>1,k(ﬂn) (Etk v [1N>1,k(vn)An/ dz ‘ tet1 — Y;k+1]) :|
k> tg Tt ZSUn

First, we treat the term Mgl 1 kn- Using equation (5.20) and the fact that there is no big
jump of JU» in the interval [ty tx41), we get that

b _ Tabo [ bo
Mz 1 jn = Etk%o 15y o) (Ve

b b b
— Y - (YR, - YR poyiol
.

2
bo . b() o b ~ _ bo
tk,YbO N>1 Jk(vn) Ytk+1 Y (1 Etk, |:1N>1kyvn ‘th+1 Ytkﬂ] >}

2
_ b b bo\ T=b _ b _ b
- EtZ:thZO N>1 k Un ( Y;k‘il - Y O Etk Y |:1 - 1N21,k(vn)’th+1 }/;Jkilj|> :|

1

b 2
N>1,(vn) th+1 = Y;fkil]) }

b
Ebo
tk,Ytl;O N>1 k(vn)

b _ Ybo

2
b b
Y T Y;ko Etk y |:1ZV0 k(Un )}th+1 tk+1:|> :|

tk+1

EY

2
=b b xb) bo
ty Yt”O N>1k Un) Eth [ No k(’L}n)(th+1 X ‘ ter1 }/tk+1:|> :|
it

Tbo =b trt1 b trt1
- Etk, N>1 & (vn) Etk [ No.k(vn) </tk (a —bX])ds + o'/ \/7dB
tk+1 N
/t l<vn ZM(dS,dZ)+An/Z<UnZ >‘ the1 tk+1:|> :|

S 4ZM21,1,z;k,m (5.38)
i=1

where
tht1 2
b _pyb _ vbo
sLydy tk’Yt bo N>1 k ’Un) (Etk’ 1N0 k(Un) /t (a bX ds‘ tk+1 )/;k+1:|> :| )
b ~p [ et , 2
— 0 — 0
M>171727k n o Et YbO N>1 k ’Un) t 1N0 k ’Un / \/>dB ’th+1 Y;qul ’
k> tg kv
b tot1 N . ) 2
~ 0
t NO k(Un) / / ZM(dS, dZ) ‘th+1 Ytk+1 9
kY, |0 t 2<vn

r 2
bo _ b _ bo
Etk,YtkO _1N21,k(vn) <Etk,Ytl;° _1N0,k(’Un)An /Z<Un Zm(dz)‘thH Ytkﬂ}> :| .

: b b b b
Proceeding as the terms Mo,l,l,k,m M071’27k7n, M071’3,k7n and M0’174’k’n, we get that

_ Tbo
]\4>1111~cn_E

ek

=

b _ Tabo
M21,1,37k,n = E%Ytbo Ns1.k(vn)

b _
My akn =

1 1
M>1 1,1,kn < c ( (Y;ZO)Q) A?L ()‘UnAn)q ) Mgl,l,?,kz,n < C (1 + Y;Z()) An ()\vnAn)q )

y byt

2
M>1 13kn < CA, /< 22m(dz), Mg1,1,4,k,n < (An /< zm(dz)> . (5.39)



LOCAL ASYMPTOTIC PROPERTIES FOR A JUMP-TYPE CIR PROCESS 59

Thus, from (5.38)) and ([5.39)), we have shown that

1
Myt n < C(1L+ (FP)P)A, ((A%Am [

22m(dz) + An(/

z2<vp

zm(dz)) 2> . (5.40)

<vn

Similarly, we have that

b b bo\2) A2 1
My opm+My6pn <C (1 +(Y3,) ) A7 (A, An)

1
M§1,3,k,n + M§1,7,k,n <C (1 + Ytl;o) Ay (A, Ap)a,

b b 2 b b
My g+ M21 gk < CAn Zm(dz), M2y, + M21gpn < <An/
4

zm(dz)>2.

z<vn, <vn

This, together with (5.37) and (5.40)), concludes that

My < O+ (VR)A, [ (A0t + /

22m(dz) + Ap (/Z<Un zm(dz)>2 . (5.41)

z<uvp

Thus, from (5.21)), (5.22)), (5.23)), (5.24), (5.36)) and (5.41]), the result follows. O
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