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Abstract We propose two algorithms of the subgradient extragradient type for variational
inequalities in Hilbert spaces. For the first algorithm, a sufficient condition for the weak
convergence is established under pseudomonotonicity and uniform continuity assumptions.
The strong convergence is also proved even with Q-linear rate, under strong pseudomono-
tonicity and Lipschitz continuity hypothesese. To avoid these restrictive hypothesese, the
second algorithm is designed by modifying the first one with the use of an idea of the Mann
algorithm in adding one step with new parameters to each iteration. These two algorithms
improve related results in the literature. Finally, some numerical experiments are presented
to show the efficiency and advantages of the proposed algorithms.
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1 Introduction

Variational inequalities (VI) introduced by Stampacchia [36] have been proved to be a sim-
ple, natural and unified framework for various (even seemmingly unrelated) problems in
mathematics, physics, engineering, social sciences and other fields. Besides qualitative stud-
ies, much attention has been given to develop effective and implementable numerical meth-
ods, including projection-type methods, see, e.g., [2,11,20,23,24]. Among all the iterative
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methods for VI, the simplest one is the gradient projection method in which only one projec-
tion on the feasible set is performed. The convergence of this method can be proved under
a strong condition that the underlying mapping is strongly monotone or inverse strongly
monotone.

To relax this assumption. Korpelevich [25] (also Antipin [1]) introduced the extragra-
dient method in an Euclidean space for VI with monotone and Lipschitz continuous map-
pings. For finite-dimensional spaces, it is known now that the extragradient method can be
successfully applied for solving pseudomonotone variational inequalities, see [11, Theorem
12.2.11]. Note that a monotone (pseudomonotone) variational inequality expresses an opti-
mality condition for a convex (pseudoconvex, respectively) minimization problem. So, the
above reducing monotonicity to pseudomonotonicity allows us to consider the remarkably
larger class of the pseudoconvex optimization problems. In recent years, the extragradi-
ent method has been further developed and extended in both finite and infinite dimensional
spaces, see, e.g., [3,6,7,8,21,22,28,29,35,37,38,39,41] and the references therein. The ex-
tragradient method requires two projections onto the feasible set per iteration. Finding this
projection is minimizing the distance function to the feasible set, which is relatively easy
only for simple sets. Therefore, its computation is expensive if the feasible sets have com-
plicated structures. Hence, many efforts have been made to reduce the overall number of
projections or to use projections on simpler sets such as closed half-spaces. The subgradient
extragradient method proposed by Censor et al. [6,7] is an important modification of the ex-
tragradient method in this direction (see also [14,40] for single projection methods). On the
other hand, Lipchitz continuity is also a restrictive condition which can prevent the use of
the method when this condition is violated or the Lipschitz constant (of the mapping defin-
ing the variational inequality) is difficult to compute. In this case, an Armijo-type procedure
is used to avoid Lipschitz assumptions. The interested reader is referred to [16,19,31] for
more details.

Recently, the subgradient extragradient method [6] has received significant attention
from researchers. A number of results on weak and strong convergence have been estab-
lished, but under relatively restrictive assumptions such as those on monotonicity and Lips-
chitz continuity in [7,26,34,38] and on strong pseudomonotonicity in [15,39].

Inspired by the above observations, in this paper, we develop new versions (Algorithms
3.1 and 3.2) of the subgradient extragradient method for variational inequalities in Hilbert
spaces to obtain sufficient conditions for both weak and strong convergence under suffi-
ciently relaxed assumptions. Algorithms 3.1 and 3.2 are relatively easy to implement and
their number of iterations and cpu time are smaller than some recently considered algo-
rithms of similar types. These facts are verified by numerical examples in both finite and
infinite dimensional cases.

The structure of the paper is as follows. In Section 2, we recall some definitions and
preliminary results for the use in what follows. Section 3 is devoted the main results. Here
we first propose Algorithm 3.1 and establish a sufficient conditions for its weak conver-
gence under pseudomonotonicity and uniform continuity assumptions (Theorem 3.1). This
algorithm is also proved to be strongly convergent with a Q-linear rate, but under more re-
stirctive assumptions of κ-strong pseudomonotonivity and Lipschitz continuity. To weaken
these hypothesese, we modify Algorithm 3.1 by adding one step with two new sequences
of parameters to each iteration following an idea of the Mann algorithm [30] in choosing
parameters for linesearches to get Algorithm 3.2. Then, we can come back to using the as-
sumptions of Theorem 3.1 with an additional hypothesis on the new parameters to receive a
strong convergence (Theorem 3.3). Section 4 contains numerical examples to illustrate our
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two algorithms and their advantages over some recent considered methods. Final remarks
and conclusions are given in Section 5.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H. The
weak convergence of {xn} to x is denoted by xn ⇀ x and its strong convergence is written as
xn→ x. For x,y,z ∈ H and α,β ,γ ∈ [0,1] with α +β + γ = 1, we have

‖αx+βy+ γz‖2 = α‖x‖2 +β‖y‖2 + γ‖z‖2−αβ‖x−y‖2−αγ‖x− z‖2−βγ‖y− z‖2. (1)

Definition 2.1 ([33, Chapter 9]). Suppose that a sequence {xn} in H converges strongly to
p ∈ H. We say that {xn} converges to p with a Q-linear rate if there exists δ ∈ (0,1) such
that, for large n,

‖xn+1− p‖ ≤ δ‖xn− p‖.

Definition 2.2 ([18]) Let A : H→ H be a mapping. Then,

1. A is called L-Lipschitz continuous (with Lipschitz constant L > 0) if

‖Ax−Ay‖ ≤ L‖x− y‖ ∀x,y ∈ H.

Particularly, if L = 1 then A is called nonexpansive and if L ∈ (0,1), A is called a
contraction.

2. A is said to be monotone if

〈Ax−Ay,x− y〉 ≥ 0 ∀x,y ∈ H.

3. A is termed pseudomonotone if

〈Ay,x− y〉 ≥ 0 =⇒ 〈Ax,x− y〉 ≥ 0 ∀x,y ∈ H.

4. A is called κ-strongly pseudomonotone if there exists a constant κ > 0 such that

〈Ay,x− y〉 ≥ 0 =⇒ 〈Ax,x− y〉 ≥ κ‖x− y‖2 ∀x,y ∈ H.

5. A is called sequentially weakly continuous if, for each sequence {xn}, we have:
{xn} converging weakly to x implies Axn converging weakly to Ax.

It is easy to see that every monotone mapping is pseudomonotone but the converse is
not true. For every point x ∈H, there exists a unique nearest point in C, denoted by PCx such
that ‖x−PCx‖ ≤ ‖x−y‖ ∀y∈C. PC is called the (metric) projection of H onto C. It is known
that PC is nonexpansive.

Lemma 2.1 ([17]) Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 → H2 is
uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1. Then,
A(M) is bounded.

Lemma 2.2 ([12]) Let C be a nonempty, closed, and convex subset of a real Hilbert space
H. Given x ∈ H and z ∈C. Then, z = PCx if and only if 〈x− z,z− y〉 ≥ 0 ∀y ∈C.
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Lemma 2.3 ([12]) Let C be a nonempty, closed and convex subset in a real Hilbert space
H and x ∈ H. Then,

(i) ‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 ∀y ∈C;
(ii) ‖PCx− y‖2 ≤ ‖x− y‖2−‖x−PCx‖2 ∀y ∈C;
(iii) 〈(I−PC)x− (I−PC)y,x− y〉 ≥ ‖(I−PC)x− (I−PC)y‖2 ∀y ∈C.

Lemma 2.4 ([10]) For x ∈ H and α ≥ β > 0 the following inequalities hold.

‖x−PC(x−αAx)‖
α

≤ ‖x−PC(x−βAx)‖
β

,

‖x−PC(x−βAx)‖ ≤ ‖x−PC(x−αAx)‖.

Lemma 2.5 ([5]) Given x ∈ H and v ∈ H, v 6= 0, let T = {z ∈ H : 〈v,z− x〉 ≤ 0}. Then, for
all u ∈ H, the projection PT (u) is defined by

PT (u) = u−max
{

0,
〈v,u− x〉
||v||2

}
v.

In particular, if u /∈ T then

PT (u) = u− 〈v,u− x〉
||v||2

v.

For more properties of the metric projection, the interested reader is referred to Chapter
4 in [5] and Section 3 in [12].

For A : H → H and a nonempty, closed, and convex subset C of H, the (Stampacchia)
variational inequality (for A on C) is

(VI) find x∗ ∈C such that 〈Ax∗,x− x∗〉 ≥ 0 ∀x ∈C.

The Minty variational inequality (known also as the dual problem of (VI)) is

(MVI) find x∗ ∈C such that 〈Ax,x∗− x〉 ≤ 0 ∀x ∈C.

Let Sol(VI) and Sol(MVI) denote the solution set of (VI) and (MVI), respectivey. Note
that x∗ ∈ Sol(VI) if and only if x∗ = PC(x∗− γAx∗) for γ > 0.

The following lemmas are useful for the convergence study in this paper.

Lemma 2.6 ([9]) If A is pseudomonotone and continuous, then Sol(VI)) = Sol(MVI).

Lemma 2.7 ([32]) Let C be a nonempty subset of H and {xn} be a sequence in H such that
the following two conditions hold

(i) for every x ∈C, limn→∞ ‖xn− x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.

Then, {xn} converges weakly to a point in C.

Lemma 2.8 ([27]) For a sequence of nonnegative real numbers {an}, assume that there
exists a subsequence {an j} satisfying an j < an j+1 for all j ∈ N. Then, there exists a nonde-
creasing sequence {mk} of N tending to ∞ such that, for large k,

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1,2, · · · ,k} such that an < an+1.
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Lemma 2.9 ([42]) Let {an} be a sequence of nonnegative real numbers such that:

an+1 ≤ (1−αn)an +αnbn,

where {αn} ⊂ (0,1) and {bn} is a sequence such that ∑
∞
n=0 αn = ∞ and limsupn→∞ bn ≤ 0.

Then, limn→∞ an = 0.

3 The Main Results

In this section, we propose two algorithms of the subgradient extragradient type for solv-
ing (VI). In the first algorithm, we impose the following three conditions to get its weak
convergence.

Condition 1 The feasible set C is nonempty, closed, and convex.

Condition 2 The mapping A : H → H is pseudomonotone on H, and sequentially weakly
continuous on C and uniformly continuous on bounded subsets of H.

Condition 3 The solution set Sol(VI) is nonempty.

Algorithm 3.1 Let the parameters be γ > 0, l ∈ (0,1),µ ∈ (0,1).

Initialization: Choose arbitrarily x1 ∈C.

Iterative Steps: Given a current iterate xn, calculate xn+1 as follows:

Step 1. Compute

yn := PC(xn−λnAxn),

where λn := γlmn and mn is the smallest nonnegative integer m satisfying

γlm‖Axn−Ayn‖ ≤ µ‖xn− yn‖. (2)

If yn = xn or Ayn = 0, then stop and yn is a solution of (VI). Otherwise,
Step 2. Compute

xn+1 := PTn(xn−λnAyn),

where

Tn = {x ∈ H : 〈xn−λnAxn− yn,x− yn〉 ≤ 0}.

Set n := n+1 and go to Step 1.

We start the analysis of the algorithm convergence by proving the following lemmas.

Lemma 3.10 Assume that Conditions 1–3 hold. Then, the Armijo linesearch rule (2) is
well-defined and λn ≤ γ for all n.
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Proof If xn ∈ Ω then xn = PC(xn − γAxn), therefore (2) holds with m = 0. For xn /∈ Ω ,
suppose to the contrary that, for all m, we have

γlm‖Axn−APC(xn− γlmAxn)‖> µ‖xn−PC(xn− γlmAxn)‖.

Then,

‖Axn−APC(xn− γlmAxn)‖> µ
‖xn−PC(xn− γlmAxn)‖

γlm . (3)

If xn ∈C, then since PC ans A are continuous, we have limm→∞ ‖xn−PC(xn− γlmAxn)‖= 0.
From the uniform continuity of A on bounded subsets of H, we have

lim
m→∞
‖Axn−APC(xn− γlmAxn)‖= 0.

Combining this and (3), we get

lim
m→∞

‖xn−PC(xn− γlmAxn)‖
γlm = 0. (4)

For zm := PC(xn− γlmAxn), we have

〈zm− xn + γlmAxn,x− zm〉 ≥ 0 ∀x ∈C.

Hence,

〈 zm− xn

γlm ,x− zm〉+ 〈Axn,x− zm〉 ≥ 0 ∀x ∈C.

Taking the limit m→∞ in this inequality and using (4), we obtain 〈Axn,x−xn〉 ≥ 0 ∀x ∈C,
which implies that xn ∈ Sol(VI). This is a contradiction.

For xn /∈C, we have

lim
m→∞
‖xn−PC(xn− γlmAxn)‖= ‖xn−PCxn‖> 0. (5)

and
lim

m→∞
γlm‖Axn−APC(xn− γlmAxn)‖= 0.

Combining this, (3), and (5), we get another contradiction. ut

Remark 3.1 Note that if yn = xn or Ayn = 0, then yn is a solution of (VI), and Algorithm 3.1
stops. Indeed, yn = xn means PC(xn− γAxn) = xn, i.e., xn satisfies the basic chracterization
of a solution of (VI) metioned just after the statement of the problem.

If Ayn = 0, substituting yn− λnAyn into the place of y and yn into x in ‖x−PCy‖2 ≤
〈x− y,x−PCy〉 (which holds for all x ∈C and y ∈ H), we obtain

0 = 〈Ayn,yn−PC(yn−λnAyn)〉 ≥
1
λn
‖yn−PC(yn−λnAyn)‖2 ≥ 1

γ
‖yn−PC(yn−λnAyn)‖2.

Hence, ‖yn−PC(yn− γAyn)‖= 0 and so yn is a solution of (VI).

Lemma 3.11 Assume that Conditions 1–3 hold and {xn} is a sequence generated by Algo-
rithm 3.1. If limk→∞ ‖xnk − ynk‖ = 0, then any weak cluster point of {xn} is a solution of
(VI).
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Proof We have
〈xnk −λnk Axnk − ynk ,x− ynk〉 ≤ 0 ∀x ∈C.

or equivalently
1

λnk

〈xnk − ynk ,x− ynk〉 ≤ 〈Axnk ,x− ynk〉 ∀x ∈C.

Consequently,

1
λnk

〈xnk − ynk ,x− ynk〉+ 〈Axnk ,ynk − xnk〉 ≤ 〈Axnk ,x− xnk〉 ∀x ∈C. (6)

Now, we claim that
liminf

k→∞
〈Axnk ,x− xnk〉 ≥ 0. (7)

Indeed, suppose first that liminfk→∞ λnk > 0. By Lemma 2.1, {Axnk} is bounded. Taking
k→ ∞ in (6), since ‖xnk − ynk‖ → 0, we get (7). Next, we assume that liminfk→∞ λnk = 0.
Setting znk := PC(xnk −λnk .l

−1Axnk), as λnk l−1 > λnk , Lemma 2.4 yields

‖xnk − znk‖ ≤
1
l
‖xnk − ynk‖→ 0 as k→ ∞.

Hence, znk weakly converges to z ∈C. Because A is (uniformly) continuous on the bounded
set {xn}∪{zn}, we obtain

‖Axnk −Aznk‖→ 0 as k→ ∞. (8)

As λnk l−1 = γlmnk l−1 = γlmnk−1, by the Armijo linesearch rule (2), we have

λnk l−1‖Axnk −APC(xnk −λnk l−1Axnk)‖> µ‖xnk −PC(xnk −λnk l−1Axnk)‖.

That is,
1
µ
‖Axnk −Aznk‖>

‖xnk − znk‖
λnk l−1 .

Combining this and (8), we obtain

lim
k→∞

‖xnk − znk‖
λnk l−1 = 0.

Furthermore, we have from the definition of znk that

〈xnk −λnk l−1Axnk − znk ,x− znk〉 ≤ 0 ∀x ∈C.

Hence,

1
λnk l−1 〈xnk − znk ,x− znk〉+ 〈Axnk ,znk − xnk〉 ≤ 〈Axnk ,x− xnk〉 ∀x ∈C.

Taking the limit as k→ ∞, we get

liminf
k→∞

〈Axnk ,x− xnk〉 ≥ 0.

Therefore, the claim (7) is proved.
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Furthermore, we have

〈Aynk ,x− ynk〉= 〈Aynk −Axnk ,x− xnk〉+ 〈Axnk ,x− xnk〉+ 〈Aynk ,xnk − ynk〉. (9)

As limk→∞ ‖xnk − ynk‖ = 0, by the uniform continuity of A on bounded subsets, we get
limk→∞ ‖Axnk −Aynk‖= 0, which together with (7) and (9) implies that

liminf
k→∞

〈Aynk ,x− ynk〉 ≥ 0. (10)

Finally, we show that z∈ Sol(VI). Take a sequence {εk} of positive numbers, decreasing
and tending to 0. Choose an increasing sequence {Nk} such that

〈Ayn j ,x− yn j 〉+ εk ≥ 0 ∀ j ≥ Nk, (11)

where the existence of Nk follows from (10). Moreover, for each k setting vNk =AyNk‖AyNk‖−2,
we have 〈AyNk ,vNk〉= 1. We deduce from (11) that, for each k,

〈AyNk ,x+ εkvNk − yNk〉 ≥ 0.

In view of the pseudomonotonicity of A on H, we get

〈A(x+ εkvNk),x+ εkvNk − yNk〉 ≥ 0.

This implies that

〈Ax,x− yNk〉 ≥ 〈Ax−A(x+ εkvNk),x+ εkvNk − yNk〉− εk〈Ax,vNk〉. (12)

We show that limk→∞ εkvNk = 0. Indeed, since xnk ⇀ z and limk→∞ ‖xnk−ynk‖= 0, we obtain
yNk ⇀ z. Since A is sequentially weakly continuous on C, {Aynk} converges weakly to Az.
We have Az 6= 0 (otherwise, z is a solution). Since the norm mapping is sequentially weakly
lower semicontinuous, we have

0 < ‖Az‖ ≤ liminf
k→∞

‖Aynk‖.

Since {yNk} ⊂ {ynk} and εk→ 0, we obtain

0≤ limsup
k→∞

‖εkvNk‖= limsup
k→∞

(
εk

‖Aynk‖

)
≤ limsupk→∞ εk

liminfk→∞ ‖Aynk‖
= 0,

which implies that limk→∞ εkvNk = 0.
Letting k→∞, the right-hand side of (12) tends to zero due to the uniform continuity of

A. Thus, liminfk→∞〈Ax,x− yNk〉 ≥ 0. Hence, we have, for all x ∈C,

〈Ax,x− z〉= lim
k→∞
〈Ax,x− yNk〉 ≥ 0.

By Lemma 2.6, z ∈ Sol(VI) and the proof is complete. ut

Remark 3.2 When A is monotone, the imposed sequential weak continuity of A can be omit-
ted.

Lemma 3.12 Assume that Conditions 1–3 hold and {xn} is a sequence generated by Algo-
rithm 3.1. Then,

‖xn+1− p‖2 ≤ ‖xn− p‖2− (1−µ)‖yn− xn‖2− (1−µ)‖xn+1− yn‖2, (13)

for all p ∈ Sol(VI).
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Proof Since p ∈ Sol(VI)⊂C ⊂ Tn, by Lemma 2.3, we have

‖xn+1− p‖2 = ‖PTn(xn−λnAyn)−PTn p‖2 ≤ 〈xn+1− p,xn−λnAyn− p〉

=
1
2
‖xn+1− p‖2 +

1
2
‖xn−λnAyn− p‖2− 1

2
‖xn+1− xn +λnAyn‖2

=
1
2
‖xn+1− p‖2 +

1
2
‖xn− p‖2 +

1
2

λ
2
n ‖Ayn‖2−〈xn− p,λnAyn〉

− 1
2
‖xn+1− xn‖2− 1

2
λ

2
n ‖Ayn‖2−〈xn+1− xn,λnAyn〉

=
1
2
‖xn+1− p‖2 +

1
2
‖xn− p‖2− 1

2
‖xn+1− xn‖2−〈xn+1− p,λnAyn〉.

Then,

‖xn+1− p‖2 ≤ ‖xn− p‖2−‖xn+1− xn‖2 +2λn〈Ayn, p− xn+1〉.

As 〈Ap,yn− p〉 ≥ 0, by the pseudomonotonicity of A on H, we get 〈Ayn, p−yn〉 ≤ 0. Hence,

‖xn+1− p‖2 ≤ ‖xn− p‖2−‖xn+1− xn‖2 +2λn〈Ayn,yn− xn+1〉.

Consequently,

‖xn+1− p‖2 ≤ ‖xn− p‖2−‖(xn− yn)+(yn− xn+1)‖2 +2λn〈Ayn,yn− xn+1〉
= ‖xn− p‖2−‖xn− yn‖2−‖yn− xn+1‖2 +2〈xn− yn,yn− xn+1〉+2λn〈Ayn,yn− xn+1〉
= ‖xn− p‖2−‖xn− yn‖2−‖yn− xn+1‖2 +2〈xn−λnAyn− yn,xn+1− yn〉.

(14)

Now, we estimate 〈xn−λnAyn− yn,xn+1− yn〉. As xn+1 ∈ Tn, we have

2〈xn−λnAxn− yn,xn+1− yn〉 ≤ 0.

Therefore,

2〈xn−λnAyn− yn,xn+1− yn〉= 2〈xn−λnAxn− yn,xn+1− yn〉+2λn〈Axn−Ayn,xn+1− yn〉
≤ 2λn〈Axn−Ayn,xn+1− yn〉
≤ 2λn‖Axn−Ayn‖.‖xn+1− yn‖
≤ 2µ‖xn− yn‖.‖xn+1− yn‖
≤ µ‖xn− yn‖2 +µ‖xn+1− yn‖2.

This together with (14) implies that

‖xn+1− p‖2 ≤ ‖xn− p‖2− (1−µ)‖xn− yn‖2− (1−µ)‖yn− xn+1‖2.

ut

Theorem 3.1 Assume that Conditions 1–3 hold. Then, any sequence {xn} generated by
Algorithm 3.1 converges weakly to a solution of (VI).
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Proof By virtue of Lemma 3.12, we have

‖xn+1− p‖ ≤ ‖xn− p‖ ∀p ∈ Sol(VI).

Hence, for all p ∈ Sol(VI), limn→∞ ‖xn− p‖ exists. Also from Lemma 3.12, we have

(1−µ)‖xn− yn‖2 +(1−µ)‖yn− xn+1‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2,

which implies that
lim
n→∞
‖xn− yn‖= 0. (15)

Since {xn} is a bounded sequence, there exists the subsequence {xnk} convergent weakly
to z ∈ C. It follows from Lemma 3.11 and (15) that z ∈ Sol(VI). Therefore, according to
Lemma 2.7, the sequence {xn} converges weakly to a solution of (VI). ut

Remark 3.3 Some main assumptions in Theorem 3.1 are weaker than the corresponding
ones in Theorem 5.1 in [6] as follows:

(i) the monotonicity of A on H in Theorem 5.1 in [6] is replaced by the pseudomono-
tonicity on H and sequential weak continuity on C;

(ii) the Lipschits continuity of A is replaced by the uniform continuity on bounded sub-
sets of H.

It is evedent that Lipschitz continuity (on C) implies uniform continuity (on C) (simply
take δ = ε/L to see that ‖Ax−Ay‖≤ ε if ‖x−y‖≤ δ in the definition of uniform continuity).
The following example shows that the converse is false.

Example 1 Let A : [0,1]→ [0,+∞) be defined by Ax =
√

x. We claim that A is uniformly
continuous and even monotone on [0,1], but not Lipschitz continuous. Indeed, A is monotone
because

〈Ax−Ay,x− y〉= (
√

x−√y)(x− y) = (
√

x−√y)2(
√

x+
√

y)≥ 0 ∀x,y ∈ [0,1].

To see the uniform continuity, for any ε > 0, we choose δ = ε2 to have, from |x− y| ≤ δ ,

|Ax−Ay|= |
√

x−√y| ≤
√
|x− y| ≤ ε.

Now suppose that, for some L > 0,

|Ax−Ay| ≤ L|x− y| ∀x,y ∈ [0,1].

Taking x = 0 and y = (2(L + 1))−2, we arrive at that contradiction |Ax− Ay| > L|x− y|
because

|Ax−Ay|= (2(L+1))−1 and L|x− y|= L(2(L+1))−2.

Additionally, notice that in this case, Sol(VI) is nonempty (equal to {0}).

To get a sufficient condition for the strong convergence of Algorithm 3.1, we modify the
assumptions, back to a Lipschitz continuity condition, as follows. Here, we assert further-
more that the iterative sequence generated by Algorithm 3.1 converges at a Q-linear rate to
the unique solution of (VI). This result extends and improves the corresponding one in [15],
where the strong pseudomonotonicity of A was imposed.
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Theorem 3.2 If we retain Conditions 1 and 3 and replace Condition 2 by

Condition 2′ A is κ-strongly pseudomonotone on C and L-Lipschitz continuous on H,

then, any sequence {xn} generated by Algorithm 3.1 converges strongly to the unique solu-
tion p of (VI) with a Q-linear rate.

Proof First, we claim that η ≤ λn, where η := min{γ, µl
L
}.

Indeed, as λn ≤ γ by Lemma 3.10, the claim is checked if λn = γ . Consider the case
λn < γ . Then, λnl−1 must violate inequality (2), i.e.

‖Axn−A(PC(xn−
λn

l
Axn))‖>

µ

λn
l

‖xn−PC(xn−
λn

l
Axn)‖,

combining this with the Lipschitz condition we obtain the claim: λn > µlL−1.

As 〈Ap,yn− p〉 ≥ 0, the strong pseudomonotonicity of A gives 〈Ayn,yn− p〉 ≥ κ‖yn−
p‖2. Hence,

〈Axn, p− yn〉= 〈Axn−Ayn, p− yn〉−〈Ayn,yn− p〉
≤ ‖Axn−Ayn‖‖yn− p‖−κ‖yn− p‖2

≤ L‖xn− yn‖‖yn− p‖−κ‖yn− p‖2.

Furthermore, as yn ∈C,

〈xn−λnAxn− yn,yn− p〉 ≥ 0,

and so

〈xn− yn, p− yn〉 ≤ λn〈Axn, p− yn〉
≤ λnL‖xn− yn‖‖yn− p‖−λnκ‖yn− p‖2.

Thus,

λnκ‖yn− p‖2 ≤λnL‖xn− yn‖‖yn− p‖+ 〈xn− yn,yn− p〉
≤λnL‖xn− yn‖‖yn− p‖+‖xn− yn‖‖yn− p‖
=(1+λnL)‖xn− yn‖‖yn− p‖.

Therefore, we get

‖yn− p‖ ≤ 1+λnL
λnκ

‖xn− yn‖ ≤
1+ γL

ηκ
‖xn− yn‖.

Moreover,

‖xn− p‖ ≤ ‖xn− yn‖+‖yn− p‖ ≤ 1+ γL+ηκ

ηκ
‖xn− yn‖.

This implies that

‖xn− yn‖ ≥
ηκ

1+ γL+ηκ
‖xn− p‖
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Substituting this into (13), we get

‖xn+1− p‖2 ≤ ‖xn− p‖2− (1−µ)

(
ηκ

1+ γL+ηκ

)2

‖xn− p‖2

=

(
1− (1−µ)

(
ηκ

1+ γL+ηκ

)2
)
‖xn− p‖2.

As

√
1− (1−µ)

(
ηκ

1+ γL+ηκ

)2

∈ (0,1), this inequality shows that {xn} converges strongly

to p with a Q-linear rate. ut

Although Algorithm 3.1, under Conditions 1, 3 and 2′, strongly converges with a Q-
linear rate, the restrictive Condition 2′ prevents its applications. Hence, we modify it to get
Algorithm 3.2 with additional parameter sequences {αn} and {βn}, and use again Condi-
tions 1-3 and add Condition 4 below to keep the strong convergence. Furthermore, we have
an important additional property of the solution being the limit of the generated sequence
{xn}.

Condition 4 {αn} is in (0,1) and tends to 0 such that ∑
∞
n=1 αn =∞ and {βn} is in [c,1−αn)

for some c > 0.

Algorithm 3.2 Let the parameters be γ > 0, l ∈ (0,1),µ ∈ (0,1), and {αn}, {βn} given in
Condition 4.

Initialization: Choose arbitrarily x1 ∈C.

Iterative Steps: Given a current iterate xn, calculate xn+1 as follows:

Step 1. Compute
yn := PC(xn−λnAxn),

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm‖Axn−Ayn‖ ≤ µ‖xn− yn‖.

If yn = xn or Ayn = 0, then stop; xn is a solution of (VI). Otherwise,
Step 2. Compute

zn := PTn(xn−λnAyn),

where
Tn = {x ∈ H : 〈xn−λnAxn− yn,x− yn〉 ≤ 0}.

Step 3. Compute
xn+1 = (1−αn−βn)xn +βnzn.

Set n := n+1 and go to Step 1.

Observe that in comparison with Algorithm 3.1, in Algorithm 3.2 the only addition is
Step 3.
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Theorem 3.3 Assume that Conditions 1–4 hold. Then, any sequence {xn} generated by
Algorithm 3.2 converges strongly to p ∈ Sol(VI), where p = argmin

z∈Sol(VI)
‖z‖.

Proof Claim 1. The sequence {xn} is bounded.
Indeed, applying Lemma 3.12 to Algorothm 3.2, in (13) in the place of xn+1 we write zn

and for p we take p = argmin
z∈Sol(VI)

‖z‖ (which is PSol(VI)0) to obtain

‖zn− p‖2 ≤ ‖xn− p‖2− (1−µ)‖xn− yn‖2− (1−µ)‖zn− yn‖2. (16)

Then,
‖zn− p‖ ≤ ‖xn− p‖. (17)

We have

‖xn+1− p‖= ‖(1−αn−βn)xn +βnzn− p‖
= ‖(1−αn−βn)(xn− p)+βn(zn− p)−αn p‖
≤ ‖(1−αn−βn)(xn− p)+βn(zn− p)‖+αn‖p‖. (18)

Furthermore, using (17), we get

‖(1−αn−βn)(xn− p)+βn(zn− p)‖2

=(1−αn−βn)
2‖xn− p‖2 +2(1−αn−βn)βn〈xn− p,zn− p〉+β

2
n ‖zn− p‖2

≤(1−αn−βn)
2‖xn− p‖2 +2(1−αn−βn)βn‖zn− p‖‖xn− p‖+β

2
n ‖zn− p‖2

≤(1−αn−βn)
2‖xn− p‖2 +2(1−αn−βn)βn‖xn− p‖2 +β

2
n ‖xn− p‖2

=(1−αn)
2‖xn− p‖2.

Hence, from (18), we obtain

‖xn+1− p‖ ≤ (1−αn)‖xn− p‖+αn‖p‖
≤max{‖xn− p‖,‖p‖}
≤ ...≤max{‖x1− p‖,‖p‖}.

That is, the sequence {xn} is bounded and hence so is {zn} by (17).
Claim 2

βn(1−µ)‖xn− yn‖2 +βn(1−µ)‖zn− yn‖2 ≤ ‖xn− p‖2−‖xn+1− p‖2 +αn‖p‖2.

Indeed, using (1), we have

‖xn+1− p‖2 =‖(1−αn−βn)xn +βnzn− p‖2

=‖(1−αn−βn)(xn− p)+βn(zn− p)+αn(−p)‖2

=(1−αn−βn)‖xn− p‖2 +βn‖zn− p‖2 +αn‖p‖2−βn(1−αn−βn)‖xn− zn‖2

−αn(1−αn−βn)‖xn‖2−αnβn‖zn‖2

≤(1−αn−βn)‖xn− p‖2 +βn‖zn− p‖2 +αn‖p‖2,
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which together with (16) implies that

‖xn+1− p‖2 ≤(1−αn−βn)‖xn− p‖2 +βn‖xn− p‖2−βn(1−µ)‖xn− yn‖2

−βn(1−µ)‖zn− yn‖2 +αn‖p‖2

=(1−αn)‖xn− p‖2−βn(1−µ)‖xn− yn‖2−βn(1−µ)‖zn− yn‖2 +αn‖p‖2

≤‖xn− p‖2−βn(1−µ)‖xn− yn‖2−βn(1−µ)‖zn− yn‖2 +αn‖p‖2.

This inequality implies Claim 2.
Claim 3

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2 +αn[2βn‖xn− zn‖‖xn+1− p‖+2〈p, p− xn+1〉].

Indeed, setting tn = (1−βn)xn +βnzn, we have

‖tn− p‖=‖(1−βn)(xn− p)+βn(zn− p)‖
≤(1−βn)‖xn− p‖+βn‖xn− p‖
=‖xn− p‖, (19)

and
‖tn− xn‖= βn‖xn− zn‖.

Then, by the formula of xn+1 in Step 3,

‖xn+1− p‖2 =‖(1−βn)xn +βnzn−αnxn− p‖2

=‖(1−αn)(tn− p)−αn(xn− tn)−αn p‖2.

Substituting, in the write-hand side of the simple inequality for any Hilbert space ‖x+y‖2 ≤
‖x‖2 +2〈y,x+ y〉, x = (1−αn)(tn− p), y = −αn(xn− tn)−αn p, and x+ y = xn+1− p, we
get

‖xn+1− p‖2 =‖(1−αn)(tn− p)−αn(xn− tn)−αn p‖2

≤(1−αn)
2‖tn− p‖2−2〈αn(xn− tn)+αn p,xn+1− p〉

=(1−αn)
2‖tn− p‖2 +2αn〈xn− tn, p− xn+1〉+2αn〈p, p− xn+1〉

≤(1−αn)‖tn− p‖2 +2αn‖xn− tn‖‖xn+1− p‖+2αn〈p, p− xn+1〉
≤(1−αn)‖xn− p‖2 +αn[2βn‖xn− zn‖‖xn+1− p‖+2〈p, p− xn+1〉].

Claim 4. The sequence {‖xn− p‖} converges to zero.
We have two cases.
Case 1: There exists an N ∈ N such that ‖xn+1− p‖ ≤ ‖xn− p‖ for all n ≥ N. This

implies that limn→∞ ‖xn− p‖ exists. It follows from Claim 2 that

lim
n→∞
‖xn− yn‖= 0 and lim

n→∞
‖zn− yn‖= 0.

So, limn→∞ ‖zn− xn‖= 0. Hence,

‖xn+1− xn‖ ≤ αn‖xn‖+βn‖xn− zn‖→ 0.

As {xn} is bounded, we can take a subsequence {xn j} converges weakly to a point q such
that

limsup
n→∞

〈p, p− xn〉= lim
j→∞
〈p, p− xn j 〉= 〈p, p−q〉.
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Observe that Lemma 3.11 is valid also for {xn} generated by Algorithm 3.2. Indeed, exam-
ining its proof we see that only Conditions 1-3 and the formula of yn in terms of xn are used,
not depending on xn+1 defined in the additional Step 3 of Algorithm 3.2. Applying now this
lemma, we have q ∈ Sol(VI).

Since q ∈ Sol(VI) and p = PSol(VI)0, we have

limsup
n→∞

〈p, p− xn〉= 〈p, p−q〉 ≤ 0.

As ‖xn+1− xn‖→ 0, we get
limsup

n→∞

〈p, p− xn+1〉 ≤ 0.

Therefore, by Claim 3 and Lemma 2.9, we get limn→∞ ‖xn− p‖= 0, that is xn→ p.
Case 2: There exists a subsequence {‖xn j − p‖} of {‖xn− p‖} such that ‖xn j − p‖ <

‖xn j+1− p‖ for all j ∈ N. In this case, it follows from Lemma 2.8 that there exists a nonde-
creasing sequence {mk} of N such that limk→∞ mk = ∞ and the following inequalities hold
for all k ∈ N:

‖xmk − p‖ ≤ ‖xmk+1− p‖ and ‖xk− p‖ ≤ ‖xmk+1− p‖.
As βn ≥ c ∀n ∈ N, by Claim 2, we have

c(1−µ)‖xmk − ymk‖
2 + c(1−µ)‖zmk − ymk‖

2 ≤‖xmk − p‖2−‖xmk+1− p‖2 +αmk‖p‖2

≤αmk‖p‖2.

Therefore,
lim
k→∞
‖xmk − ymk‖= 0 and lim

k→∞
‖zmk − ymk‖= 0.

As proved in the first case, we obtain

‖xmk+1− xmk‖→ 0, limsup
k→∞

〈p, p− xmk+1〉 ≤ 0.

In view of Claim 3, we have

‖xmk+1− p‖2 ≤(1−αmk)‖xmk − p‖2

+αmk [2βmk‖xmk − zmk‖‖xmk+1− p‖+2〈p, p− xmk+1〉]
≤(1−αmk)‖xmk+1− p‖2

+αmk [2βmk‖xmk − zmk‖‖xmk+1− p‖+2〈p, p− xmk+1〉].

This leads to

‖xk− p‖2 ≤ ‖xmk+1− p‖2 ≤ 2βmk‖xmk − zmk‖‖xmk+1− p‖+2〈p, p− xmk+1〉.

Therefore, limsupk→∞ ‖xk− p‖ ≤ 0, that is xk→ p. The proof is complete. ut

Remark 3.4 In comparsion with Theorem 5.1 in [7] and Theorem 3.3 in [34], our Theorem
3.3 has the following improvements.

1. The Lipschitz continuity (of A) is replaced by the uniform continuity on bounded sub-
sets.

2. The monotonicity (of A) is replaced by the pseudomonotonicity on H and the sequential
weak continuity on C.
Moreover, in our Theorem 3.3, we do not need to add a mapping f : H→ H is contrac-
tion as required in Theorem 3.3 in [34].
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The following example illustrates that the replacement 2 is indeed an improvement.

Example 2 Let H = l2 be a real Hilbert space whose elements are square-summable se-
quences of real scalars, i.e.,

H = l2 := {u = (u1,u2, ...,un, ...) :
∞

∑
n=1
|un|2 <+∞}

(with the usual inner product). Let β > 1 and

C = {u = (u1,u2, ...,un, ...) ∈ H : |un| ≤
1
n

for all n},

Au =

(
(‖u‖+1)β − 1

‖u‖+1

)
u.

We show that A is pseudomonotone on H, uniformly continuous and sequentially weakly
continuous on C, but not Lipschitz continuous on H. Moreover, Sol(VI)6= /0.

As β > 1, we have
(
(‖u‖+1)β − 1

‖u‖+1

)
> 0 ∀u ∈ H. Let u,v ∈ H be such that

〈Au,v−u〉 ≥ 0. Then, 〈u,v−u〉 ≥ 0. Consequently,

〈Av,v−u〉=
(
(‖u‖+1)β − 1

‖u‖+1

)
〈v,v−u〉

≥
(
(‖u‖+1)β − 1

‖u‖+1

)
(〈v,v−u〉−〈u,v−u〉)

=

(
(‖u‖+1)β − 1

‖u‖+1

)
‖v−u‖2 ≥ 0,

which implies that A is pseudomonotone on H.
Because A is continuous on C and C is compact, A is uniformly continuous and sequen-

tially weakly continuous on C.
Now, suppose that A is Lipschitz continuous on H with constant L> 0. For u=(L,0, ...,0, ...)

and v = (0,0, ...,0, ...),

‖Au−Av‖= ‖Au‖=
(
(‖u‖+1)β − 1

‖u‖+1

)
‖u‖=

(
(L+1)β − 1

L+1

)
L.

Thus, ‖Au−Av‖ ≤ L‖u− v‖ is equivalent to(
(L+1)β − 1

L+1

)
L≤ L2,

which implies the contradiction that β < 1. Finally, it is easy to see that Sol(VI)= {0}.
Remark 3.5 To avoid possible repeated mistakes, we note that the following example in
Section 4 of [41] does not illustrate the main result in that paper (Section 3 there), because
the mapping Aβ used there defined as below is not weakly sequentially continuous as mis-
takenly asserted there.

Let H = l2, Let α and β be positive numbers such that β > α >
β

2
, and

Cα = {u ∈ H : ‖u‖ ≤ α}, Aβ u = (β −‖u‖)u.

To show that Aβ is not weakly sequentially continuous, take en = (0, ...,0,1,0, ...) with
1 at the n-th position ({en} is the standard basis of H) and β = 2

√
2. Then, en + e1 ⇀ e1,

Aβ (en +e1) =
√

2(en +e1)⇀
√

2e1 and Aβ (e1) = (2
√

2−1)e1. Thus, Aβ (en +e1) does not
converge weakly to Aβ e1. ut
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4 Numerical Illustrations

In this section, we provide two numerical examples to test the proposed algorithms. All the
codes were written in Matlab (R2015a) and run on PC with Intel(R) Core(TM) i3-370M
Processor 2.40 GHz. We apply Algorithms 3.1 and 3.2 to solve the variational inequality
problem (VI) and compare our algorithms with other ones. In the numerical results reported
in tables, ‘Iter.’ and ‘Sec.’ denote the number of iterations and the cpu time in seconds,
respectively.

Example 3 Assume that A : Rm → Rm is defined by A(x) = Mx+ q, which is taken from
[13] and has been considered by many authors for numerical experiments (see, for example,
[38] with M = BBT +S+D), B is a m×m matrix, S is a m×m skew-symmetric matrix, D
is a m×m diagonal matrix, whose diagonal entries are positive (so M is positive definite), q
is a vector in Rm, and

C :=
{

x ∈ Rm : Qx≤ b
}
,

where Q is an l×m matrix and b is a nonnegative vector.

It is clear that A is monotone and Lipschitz continuous with the Lipschitz constant L =
||M||. For q = 0, the unique solution of the corresponding variational inequality is {0}. We
will compare Algorithm 3.1 (SEGM) with the Tseng’s algorithm in [37] (Tseng algorithm).
All entries of the matrices B,S, and D are generated randomly. We use

(i) the same stopping rule ‖yn− xn‖2 < 10−6;
(ii) the same starting point x0 = (1,1, ...,1) ∈ Rm.

The results are described in Table 4.1 and Figures 1-3.

m = 10 m = 50 m = 80

Sec. Iter. Sec. Iter. Sec. Iter.

EGM 3.4944 97 10.0465 76 33.2126 124
SEGM 1.4976 44 3.2916 23 19.2349 69

Table 4.1: Comparison of the two algorithms with different m

The convergence behavior of the algorithms with different starting points is given in
Figures 1-3, where the values of error ‖xn− 0‖ (for both algorithms) are presented on the
y-axis and the numbers of iterations are presented on the x-axis.
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Fig. 1: Comparison of the two algorithms in Example 3 with m = 10.
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Fig. 2: Comparison of the two algorithms in Example 3 with m = 50.
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Fig. 3: Comparison of the two algorithms in Example 3 with m = 80.

Example 4 Suppose that H = L2([0,1]). It is known that

PC(x) =


b−〈a,x〉
‖a‖

a+ x, if 〈a,x〉> b,

x, if 〈a,x〉 ≤ b,

where C :=
{

x ∈ L2([0,1]) : 〈a,x〉 ≤ b
}

, 0 6= a ∈ L2([0,1]), and b ∈ R.
Let

C :=
{

x ∈ L2([0,1]) :
∫ 1

0
(t2 +1)x(t)dt ≤ 1

}

and A : C→ H be defined by (Ax)(t) = max{0,x(t)}.
It is easy to see that A is 1-Lipschitz continuous and monotone on C and the set of the

solutions of the variational inequality (VI) is Sol(VI)= {0}.
We will apply Algorithm 3.2 (MSEGM), Shehu’s algorithm [34] (Shehu algorithm), and

Tseng’s Algorithm [37] (Tseng algorithm) to solve (VI). We use

(ii) the same stopping criterion ‖yn− xn‖< 10−3;
(iii) the same initial point x0.

Moreover, for Algorithm 3.2, we take αn = 1
n+1 , βn = 0.5 ∗ (1−αn). We also choose the

same αn =
1

n+1 for Tseng’s algorithm and Shehu’s algorithm. We now make comparison of
the three algorithms with different x0 and report the results in Table 4.2 and Figures 4-6.
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x0 = sin(−3t)+ cos(−10t) x0 =
1
85 (t

3 +1)e3t x0 = 2(t4− e−t)

Sec. Iter. Sec. Iter. Sec. Iter.

Shehu algorithm 0.093601 10 0.4056 49 0.1404 13
Tseng algorithm 0.093601 10 0.4056 49 0.1248 13
MSEGM 0.0468 7 0.2652 29 0.078 9

Table 4.2: Comparison of the three algorithms in Example 4

Number of iterations
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r
r
o
r
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Fig. 4: Comparison of the three algorithms in Example 4 with x0 = sin(−3t)+ cos(−10t).
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Fig. 5: Comparison of the three algorithms in Example 4 with x0 =
1

85 (t
3 +1)e3t .
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Fig. 6: Comparison of the three algorithms in Example 4 with x0 = 2(t4− e−t).

In Figures 4-6 the values of error ‖xn− yn‖ (for the three algorithms) are presented on
the y-axis and the numbers of iterations are presented on the x-axis. From Tables 4.1 and
4.2, we observe that the number of iterations and CPU time required for our algorithms are
less than that of Tseng’s algorithm and Shehu’s algorithm.
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5 Conclusions

In this paper, we introduce two algorithms of the type of subgradient extragradient method
for solving variational inequalities in real Hilbert spaces. The first algorithm converges
weakly under pseudomonotonicity and uniform continuity assumptions. The strong con-
vergence with a Q-linear rate is also guaranteed under κ-strong pseudomonotonicity and
Lipschitz continuity. The second one converges strongly even under the same assumptions
as for the above weak convergence together with an additional condition on the new param-
eters in the last step added to each iteration. The obtained results extend some recent ones in
the literature. The implementation and also some advantages of the proposed algorithms are
illustrated by numerical experiments for variational inequalities in both cases of finite and
infinite dimensional spaces.
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