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Abstract. We present a close relationship between matching number, cov-
ering numbers and their fractional versions in combinatorial optimization and
ordinary powers, integral closures of powers, and symbolic powers of mono-
mial ideals. This relationship leads to several new results and problems on the
containments between these powers.
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Introduction

Let M be an n×m matrix of non-negative integers and a ∈ Nn. Consider the
integer programming problems

(1) maximize 1m · y,
subject to M · y ≤ a, y ∈ Nm

(2) minimize a · z,
subject to MT · z ≥ 1n, z ∈ Nn

where 1m = (1, ..., 1) ∈ Nm and 1n = (1, ..., 1) ∈ Nn.

Let νa(M), τa(M) and ν∗a(M), τ ∗a(M) denote the optimal values of these integer
programming problems and their fractional relaxations, respectively. Then

νa(M) ≤ ν∗a(M) = τ ∗a(M) ≤ τa(M),

where the middle equality follows from the duality in linear programming. The
numbers νa(M), τa(M), ν∗a(M), τ ∗a(M) are important invariants in combinatorial
optimization. For instance, if M is the incidence matrix of a hypergraph H and
a = 1n, then νa(M) and τa(M) are the matching and covering numbers ν(H) and
τ(H) of H.

Let I be a monomial ideal in a polynomial ring R over a field K. For k ≥ 1,
let Ik and I(k) denote the integral closure of Ik and the k-th symbolic power of I.
We may call Ik the k-th integral power of I. Define νa(I), τa(I), ν∗a(I), τ ∗a(I) to
be νa(M), τa(M), ν∗a(M), τ ∗a(M), respectively, where M is the exponent matrix
of the monomial generators of I. The main goal of this paper is to show that the
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invariants νa(I), τa(I), ν∗a(I), and τ ∗a(I) can be used to study the behavior of Ik,

Ik and I(k).

Throughout the paper, R = K[x1, ..., xn] denotes a polynomial ring over a field
K. For a vector a = (α1, ..., αn) ∈ Nn, set xa = xα1

1 · · ·xαn
n . Our work hinges on

the following effective membership criteria for a monomial xa to be in Ik, Ik and
I(k).

Propositions 1.1 and 1.5. Let I be an arbitrary monomial ideal in R. Then

(i) xa ∈ Ik if and only if νa(I) ≥ k,

(ii) xa ∈ Ik if and only if ν∗a(I) ≥ k.

Moreover, if I is a squarefree monomial ideal, then

(iii) xa ∈ I(k) if and only if τa(I) ≥ k.

If I is squarefree monomial ideal, then νa(I), τa(I), ν∗a(I), and τ ∗a(I) are equal
to the matching, covering, fractional matching, and fractional covering numbers
of a hypergraph. The gaps between these invariants have been studied extensively
in combinatorial optimization (see, for example, the survey [10]).

We shall combine gap estimates between (fractional) matching and covering
numbers of hypergraphs with the membership criteria mentioned above to derive
containments between the corresponding powers of I. Specifically, by letting
d(I) denote the maximum degree of the minimal generators of I, we obtain the
following result.

Theorem 3.3. Let I be a squarefree monomial ideal, and let r = d(I). Then,
for any k ≥ 1, we have

(i) I(r−1)(k−1)+
⌈

k
r

⌉
⊆ Ik;

(ii) I(d(1+
1
2
+···+ 1

r
)ke) ⊆ Ik;

(iii) I(rk−r+1) ⊆ Ik.

The containments in Theorem 3.3 are new, even in the case where r = 2, i.e.,
when I is the edge ideal of a graph. Furthermore, the containment I(rk−r+1) ⊆
Ik yields a new bound on the resurgence number of I; this invariant, for any
homogeneous ideal I ⊆ R, was defined by Bocci and Harbourne [6] to be

ρ(I) := sup
{h
k
| I(h) 6⊆ Ik

}
.

Corollary 3.6. Let I an arbitrary squarefree monomial ideal. Then

ρ(I) ≤ d(I).

On the other hand, we shall also use known containments of powers of ideals
to provide new estimates for gaps between the invariants νa(I), ν∗a(I), τa(I),
and τ ∗a(I). Particularly, thanks to the celebrated Briançon-Skoda theorems of
Lipman and Sathaye [23] and Lipman and Teissier [24] (see also [21]), we have

Ik+min{m,n}−1 ⊆ Ik for all k ≥ 1, where m is the minimal number of generators

2



of I. Applying the membership criteria for Ik and Ik, we obtain the following
bound for the gap between νa(M) and ν∗a(M), which seems to be unknown in
combinatorial optimization.

Theorem 4.1. Let M be an n ×m matrix of non-negative integers. Then for
all a ∈ Nn,

ν∗a(M) < νa(M) + min{m,n}.

If I is a squarefree monomial ideal, it is known that I(hk−h+1) ⊆ Ik for all k ≥ 1,
where h is the maximal height of an associated prime of I. This containment gives
a positive answer to a conjecture of Harbourne (see [2, 8]). We show that it yields
the following estimate for the gap between τa(M) and νa(M).

Theorem 4.2. Let M be the incidence matrix of a simple hypergraph H. Let h
be the maximal size of a minimal cover of H. Then for all a ∈ Nn,

τa(M) ≤ hνa(M).

One of the famous unsolved problems in combinatorics is Ryser’s conjecture
[19], which states that for an r-partite r-uniform graph H,

τ(H) ≤ (r − 1)ν(H).

Using the membership criteria for Ik and I(k), we can reformulate this conjec-
ture as a problem on the containment between ordinary and symbolic powers of
squarefree monomial ideals.

Conjecture 4.8. Let I be the edge ideal of an r-partite hypergraph of rank ≤ r.
Then for all k ≥ 1,

I((r−1)(k−1)+1) ⊆ Ik.

The containment in Conjecture 4.8 is true if we replace Ik by Ik or I((r−1)(k−1)+1)

by I(r−1)(k−1)+1 (see Theorem 4.10).

The membership criteria in Propositions 1.1 and 1.5 further allow us to study
equalities between Ik, Ik, and I(k), and their combinatorial interpretations.

Following the terminology in combinatorial optimization [10, 30], we say that
an n×m matrix M of non-negative integers has the integer round-down property
if νa(M) = bν∗a(M)c for all a ∈ Nn. On the other hand, we call a hypergraph H
Mengerian (respectively, König) if νa(M) = τa(M) for all a ∈ Nn (respectively,
for a = 1n), where M is the incidence matrix ofH. Similarly, we call a hypergraph
H Fulkersonian if τ ∗a(M) = τa(M) for all a ∈ Nn. A hypergraph obtained from
H by a sequence of deleting and contracting vertices is called a minor of H.

The membership criteria for Ik, Ik and I(k) immediately yield the following
results.

Theorem 5.2. [11, 32] Let I be an arbitrary monomial ideal. Then Ik = Ik

for all k ≥ 1 if and only if the exponent matrix of I has the integer round-down
property.
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Theorem 5.4 [16, 18, 31] Let I be the edge ideal of a hypergraph H. Then

(i) I(k) = Ik for all k ≥ 1 if and only if H is Mengerian,

(ii) I(k) = Ik for all k ≥ 1 if and only if H is Fulkersionian.

As an application, we give an algebraic version of the long-standing conjecture
of Conforti and Cornuéjols, which states that a hypergraph H is Mengerian if
and only if all minors of H are König [7]. For a monomial ideal I, we denote by
mon-grade(I) the maximal length of a regular sequence of monomials in I.

Conjecture 5.8. Let I be a squarefree monomial ideal such that mon-grade(J) =
ht(J) for all monomial ideals J obtained from I by setting some variables equal
to 0 or 1. Then I is a normal ideal.

Finally, to give an application of the membership criteria in a topic other than
containments between powers of ideals, we study the problem of whether for any
squarefree monomial ideals I, d(I(k)) ≤ kd(I) for all k ≥ 1. This problem is
motivated by a similar question of Huneke [22] for homogeneous prime ideals.
We show that this problem is amount to whether n ≤ ht(I)d(I), where n is the
number of variables appearing in the generating monomials of I. This leads us to
counter-examples to the aforementioned question, in which the difference d(I(k))−
kd(I) can be arbitrarily large. Other counter-examples were given recently by
Asgharzadeh [1] (with an attribute to Hop D. Nguyen).1

The paper is divided into 6 sections. Section 1 presents the membership crite-
ria for Ik, Ik, I(k) in terms of the numbers νa(I), ν∗a(I), τa(I), τ ∗a(I). In Section 2
we shows that these numbers are the matching and covering numbers of a hyper-
graph. Section 3 is devoted to containments between different powers of I, that
arise from estimates for the gaps between νa(I), ν∗a(I), τa(I), and τ ∗a(I). Section
4 is to deduce new estimates for the gaps between these numbers from known
containments between different powers of I. Section 5 examines the equalities
between Ik, Ik, and I(k). Section 6 deals with the generating degrees of symbolic
powers and the aforementioned question of Huneke.

Acknowledgement. This paper started during a research stay of the authors at
Vietnam Institute for Advanced Study in Mathematics. The authors would like
to thank the institute for its support and hospitality. The first author is partially
supported by Simons Foundation (grant # 279786) and Louisiana Board of Re-
gents (grant # LEQSF(2017-19)-ENH-TR-25). The second author is supported
by Vietnam National Foundation for Science and Technology Development (grant
# 101.04-2017.19).

1. Membership problems for powers of monomial ideals

Let I be a monomial ideal in R = K[x1, ..., xn] and let xa1 , ..., xam be the
minimal monomial generators of I. We call the matrix M , whose columns are

1Our examples were obtained independently, and that was communicated to Huneke on
August 8, 2017.
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the vectors a1, ..., am, the exponent matrix of I. By definition,

νa(I) := max{1m · y | y ∈ Nm,M · y 6 a},
ν∗a(I) := max{1m · y | y ∈ Rm

≥0,M · y 6 a},
τa(I) := min{a · z | z ∈ Nn,MT · z ≥ 1m},
τ ∗a(I) := min{a · z | z ∈ Rn

≥0,M
T · z ≥ 1m},

where N denotes the set of natural numbers, including 0, and R≥0 is the set of
non-negative real numbers.

The aim of this section is to give effective conditions for a monomial xa to be
an element of Ik, Ik, or I(k), k ≥ 1, in terms of the aforementioned invariants
associated to I and a. These criteria were already presented without proofs in
the lecture note [32].

Proposition 1.1. [32, Proposition 3.1] Let I be an arbitrary monomial ideal.
Then

(i) xa ∈ Ik if and only if νa(I) ≥ k,

(ii) xa ∈ Ik if and only if ν∗a(I) ≥ k.

Proof. (i) It is clear that xa ∈ Ik if and only if xa is divisible by a monomial of
the form (xa1)β1 · · · (xam)βm with β1 + · · ·+ βm ≥ k. The divisibility means that
β1a1 + · · · + βmam ≤ a. Set y = (β1, ..., βm). Then β1 + · · · + βm = 1m · y and
β1a1 + · · ·+ βmam = M · y. From this observation we can conclude that xa ∈ Ik
if and only if νa(I) ≥ k.

(ii) It is well-known that xa ∈ Ik if and only if there is an integer q ≥ 1 such
that xqa ∈ Iqk. By (i), this means that νqa(I) ≥ qk. This condition implies the
existence of y ∈ Nm such that 1m · y ≥ qk and M · y ≤ qa. Since 1

q
y · 1m ≥ k

and M · 1
q
y ≤ a, we obtain ν∗a(I) ≥ k.

Conversely, if ν∗a(I) ≥ k, then there exists y′ ∈ Rn
+ such that 1m · y′ ≥ k and

M · y′ ≤ a. Since M is a matrix of integers and a ∈ Nn, we may choose y′ to be
a rational vector. Then y′ = 1

q
y for some y ∈ Nm and q ∈ N. Since y · 1m ≥ qk

and M · y ≤ qa, we obtain νqa(I) ≥ qk. That is, xqa ∈ Iqk and, so, xa ∈ Ik.

Hence, we can conclude that xa ∈ Ik if and only if ν∗a(I) ≥ k. �

Remark 1.2. The proof of Proposition 1.1(ii) shows that

ν∗a(I) = max
q≥1

νqa(I)

q
.

To present an effective criterion for xa ∈ I(k) we first need to know the minimal
primes of I. Let Min(I) denote the set of minimal associated primes of I. For
every prime ideal P ∈ Min(I), there is a subset F ⊆ [1, n] such that P = PF ,
where PF denotes the ideal generated by the variables xi, i ∈ F . We denote by IP
the ideal generated by the monomials obtained from the generators xa1 , . . . , xam

of I by setting xi = 0 for all i 6∈ F .
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Proposition 1.3. Let I be an arbitrary monomial ideal. Then xa ∈ I(k) if and
only if νa(IP ) ≥ k for all P ∈ Min(I).

Proof. It is easy to see that IP is the P -primary component of I. By [17, Lemma
3.1], we have

I(k) =
⋂

P∈Min(I)

IkP .

Therefore, xa ∈ I(k) if and only if xa ∈ IkP for all P ∈ Min(I). By Proposition
1.1(i), this condition means that νa(IP ) ≥ k for all P ∈ Min(I). �

If I is a squarefree monomial ideal then we have a simpler criterion for xa ∈ I(k).
Before stating this criterion, we shall recall some basic fact from hypergraph
theory.

Recall that a hypergraph H consists of a vertex set and a collection of nonempty
subsets of the vertex set. These subsets are called edges (or hyperedges) of H.
Graphs are hypergraphs whose edges have size 2. A hypergraph is simple (or a
clutter) if there are no nontrivial inclusion among the edges.

Unless otherwise specified, we shall always assume that H is a simple hyper-
graph on the vertex set [1, n] = {1, . . . , n}.

For every subset F ⊆ [1, n] we denote by eF the incidence vector of F , whose
i-th coordinate equals 1 if i ∈ F and 0 if i 6∈ F . To every hypergraph H one
can assign a squarefree monomial ideal which is generated by the monomials xeF ,
where F is an edge in H. This ideal is called the edge ideal of H, and denoted by
I(H). It is clear that every squarefree monomial ideal can be viewed as the edge
ideal of a hypergraph.

A subset F ⊆ [1, n] is called a (vertex) cover or blocking set of H if F meets
every edge of H. We denote by H∨ the hypergraph whose edges are minimal
vertex covers of H. This is also a simple hypergraph, called the blocker of H.
Note that (H∨)∨ = H.

Lemma 1.4. Let I be the edge ideal of a hypergraph H. Then

τa(I) = min{a · eF | F ∈ H∨}.

Proof. Note that F is a cover of H if and only ai ·eF ≥ 1 for all i = 1, ...,m. This
condition can be rewritten as MT · eF ≥ 1m, where M is the exponent matrix of
I. It is clear that the program of minimizing a ·z subject to MT ·z ≥ 1m, z ∈ Nn,
has its optimal solution for a 0-1 vector z such that supp(z) is of minimal size.
Therefore, such a vector z must be the incidence vector eF of a minimal cover F
of H. From this it follows that

τa(I) = min{a · eF | MT · z ≥ 1m, z ∈ Nn} = min{a · eF | F ∈ H∨}.
�

Proposition 1.5. [32, Lemma 3.5(3)] Let I be a squarefree monomial ideal. Then
xa ∈ I(k) if and only if τa(I) ≥ k.
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Proof. Since I is a squarfree monomial ideals, we may consider I as the edge ideal
of a hypergraphH. Actually, H is the hypergraph of the supports of the exponent
vectors of the monomial generators of I. It is easy to see that PF is a minimal
prime of I if and only if F is a minimal cover of H. Therefore, I =

⋂
F∈H∨ PF .

From this it follows that
I(k) =

⋂
F∈H∨

P k
F .

Therefore, xa ∈ I(k) if and only if xa ∈ P k
F for all F ∈ H∨. We have xa ∈ P k

F if
and only if eF · a ≥ k. Hence, xa ∈ I(k) if and only if min{eF · a| F ∈ H∨} ≥ k.
Applying Lemma 1.4 we obtain the conclusion. �

2. Matching and covering numbers

Let H be a hypergraph. A family of disjoint edges is called a matching of H.
The minimal size of a maximal matching of H is called the matching number of
H, denoted by ν(H). The maximal size of a cover of H is called the covering
number of H, denoted by τ(H).

Let M be the incidence matrix of H whose columns are the incidence vectors
of the edges of H. It is well-known that

ν(H) = max{y · 1m | M · y ≤ 1n,y ∈ Nm},
τ(H) = min{z · 1n | MT · z ≥ 1m, z ∈ Nn}.

The following numbers are called the fractional matching number or the fractional
covering number of H:

ν∗(H) := max{1m · y | M · y ≤ 1n,y ∈ Rm
≥0},

τ ∗(H) := min{1n · z | MT · z ≥ 1m, z ∈ Rn
≥0}.

In this section, we shall see that if I is the edge ideal of a hypergraphH then the
invariants νa(I), τa(I), ν∗a(I), and τ ∗a(I) can be viewed as the matching number,
the covering number, and their fractional versions of a hypergraph associated to
H and a.

Specifically, let Ha denote the hypergraph on the vertex set V = {(i, j)| j =
1, ..., αi, i = 1, ..., n}, whose edges are subsets of V of the form {(i1, j1), ..., (is, js)},
where {i1, ..., is} is an edge of H and j1 = 1, ..., αi1 , ..., js = 1, ..., αis . The hyper-
graph Ha is called the parallelization of H with respect to a. Note that H = Ha

if a = 1n.

Example 2.1. Let H be a graph on 4 vertices and a = (1, 1, 2, 1). Then H and
Ha can be illustrated as in Figure 1.

For every set E ⊆ V we define p(E) := {i| there is j such that (i, j) ∈ E}. Let
A = supp(a). Then p induces a map from Ha to HA, where HA denotes the
hypergraph on the vertex set A which consists of edges F ⊆ A of H.

The maximal matchings and minimal covers of Ha can be described in terms
of H and a as follows.
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Figure 1

Lemma 2.2. Let Ha be a parallelization of a hypergraph H. Then

(i) A family of disjoint edges E1, ..., Es of Ha is a maximal matching of Ha

if and only if p(E1), ..., p(Es) is maximal among sequences F of (not necessarily
different) edges of H with the property |{F ∈ F| i ∈ F}| ≤ ai for all i = 1, ..., n.

(ii) A set E ⊆ V is a minimal cover of Ha if and only if E = p−1(F ) for a
minimal cover F of HA.

Proof. (i) If E1, ..., Es is not a maximal matching, then there is a larger matching
E1, ..., Es+1. Let F be the family p(E1), ..., p(Es+1). Since E1, ..., Es+1 are disjoint,
we have |{F| i ∈ F}| ≤ |p−1(i)| = ai for all i = 1, ..., n.

Conversely, if p(E1), ..., p(Es) is not maximal among sequences F of not nec-
essarily different edges of H with the property |{F ∈ F| i ∈ F}| ≤ ai for
all i = 1, ..., n. Put Fj = p(Ej), j = 1, ..., s. Then there exists an edge
Fs+1 of H such that the family F of the edges F1, ..., Fs+1 satisfies the prop-
erty |{F ∈ F| i ∈ F}| ≤ ai. By the definition of Ha, we can find an edge
Es+1 ∈ p−1(Fs+1) disjoint to the edges E1, ..., Es. Hence, E1, ..., Es is not a max-
imal matching.

(ii) Let E be a minimal cover of Ha. Then p(E) must be a minimal cover of
HA. Let F be a minimal cover of H containing p(E). Then E ⊆ p−1(F ). If
E 6= p−1(F ), there is v ∈ p−1(F ) \ E and v′ ∈ E such that p(v′) = p(v). Since
E is a minimal cover and since v, v′ do not belong to any edge of Ha, every edge
of Ha containing v must meet E \ v′. By the definition of Ha, every edge of Ha

containing v′ must meet E \v′, too. Therefore, we can remove v′ from E and still
get a cover of Ha, which is a contradiction to the minimality of E as a cover of
Ha.

Conversely, let E = p−1(F ) for a minimal cover F of HA. Then E is a cover
of Ha. If E is not a minimal cover, there is v ∈ V such that E \ v is a cover of
Ha. Since p(E \ v) is a cover of Hsupp(a), we must have p(E \ v) = p(E). Let [v]
denote the set of all v′ ∈ V with p(v′) = p(v). Similarly as above, we can show
that E \ [v] is a cover of Ha. From this it follows that p(E \ [v]) = p(E) \ p(v)
is a cover of HA, which is a contradiction to the minimality of p(E) as a cover of
HA. �

Proposition 2.3. Let I be the edge ideal of a hypergraph H. Then
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(i) νa(I) = ν(Ha),
(ii) ν∗a(I) = ν∗(Ha),
(iii) τ ∗a(I) = τ ∗(Ha),
(iv) τa(I) = τ(Ha).

Proof. (i) Assume that H = {F1, ..., Fm}. We may represent any sequence F of
not necessarily different edges of H as a vector y = (β1, ..., βm) ∈ Nm

+ such that
for j = 1, ...,m, bj is the times Fj appears in F . Let M be the exponent matrix
of I. We may choose M to be the m×n matrix whose columns are the incidence
vectors of F1, ..., Fm. Then |{F ∈ F| i ∈ F}| ≤ ai for all i = 1, ..., n if and only
if M · y ≤ a. By Lemma 2.2(i), we have

ν(Ha) = max{1m · y| y ∈ Nm,M · y ≤ a} = νa(I).

(ii) Let Ia denote the edge ideal of Ha. Then ν∗(Ha) = ν∗1s(Ia), where s is the
number of vertices of Ha. For every integer q ≥ 1, we can interpret νq1s(Ha) as
the maximal size of a family E of not necessary different edges of Ha such that
every vertex of V appears at most q times in the edges of E . Similarly as above,
we show that

νq1s(Ha) = max{1m · y| y ∈ Nm,M · y ≤ qa} = νqa(I).

By Remark 1.2 we have

ν∗(Ha) = max
q≥1

νq1s(Ia)

q
= max

q≥1

νqa(I)

q
= ν∗a(I).

(iii) follows from (i) because ν∗a(I) = τ ∗a(Ha) and ν∗(Ha) = τ ∗(Ha) by the
duality of linear programming.

(iv) Let s be the number of edges of Ha. Using Lemma 1.4, we have

τ(Ha) = min{1s · eE| E ∈ (Ha)∨}.

By Lemma 2.2(ii), (Ha)∨ = {p−1(F )| F ∈ (HA)∨}. If E = p−1(F ) then we have
1s · eE = a · eF . Therefore,

τ(Ha) = min{a · eF | F ∈ (HA)∨}.

By Lemma 1.4, we also have

τa(I) = min{a · eG| G ∈ H∨}.

For every minimal cover F of HA, we consider the hypergraph H′ of the edges
of H not meeting F . Since [1, n] \A is a cover of H′, there is a minimal cover F ′

of H′ in [1, n] \ A. It is easy to check that G = F ∪ F ′ is a minimal cover of H
with G ∩ A = F . Since a · eF = a · eG, we get τ(Ha) ≥ τa(I).

On the other hand, for every minimal cover G of H, F = G ∩ A is a minimal
cover of HA and a · eG = a · eF . Therefore, τa(I) ≥ τ(Ha). Hence, τ(Ha) =
τa(I). �
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3. From gap estimates to containments between of ideals

In general, we have the following correspondence between containments of
monomial ideals and bounds on invariants for membership criteria. This corre-
spondence applies directly to the containments between powers, integral powers,
and symbolic powers of a monomial ideal.

Lemma 3.1. Let {Ik}k≥1 and {Jk}k≥1 be two filtrations of monomial ideals in
R. Assume that there are functions µ(a) and ρ(a) from Nn to R+ such that

• xa ∈ Ik if and only if µ(a) ≥ k;
• xa ∈ Jk if and only if ρ(a) ≥ k.

Let f : N −→ R+ be a non-decreasing function. Then

(i) Ik ⊆ Jbf(k)c for all k ≥ 1 if and only if ρ(a) ≥ bf(bµ(a)c)c for all a ∈ Nn;
(ii) Idf(k)e ⊆ Jk for all k ≥ 1 if and only if µ(a) < df(bρ(a)c + 1)e for all

a ∈ Nn.

Proof. (i) Assume that ρ(a) ≥ bf(bµ(a)c)c for all a ∈ Nn. For an arbitrary
monomial xa ∈ Ik, we have bµ(a)c ≥ k. Hence, f(bµ(a)c) ≥ f(k), which implies
that ρ(a) ≥ bf(k)c. Therefore, xa ∈ Jbf(k)c. Conversely, assume that Ik ⊆ Jbf(k)c
for all k ≥ 1. Consider an arbitrary a ∈ Nn, and set k = bµ(a)c. Then xa ∈ Ik.
Hence, xa ∈ Jbf(k)c, which implies that ρ(a) ≥ bf(bµ(a)c)c.

(ii) Assume that µ(a) < df(bρ(a)c + 1)e for all a ∈ Nn. For an arbitrary
monomial xa ∈ Idf(k)e, we have µ(a) ≥ df(k)e. Thus, df(bρ(a)c + 1)e > df(k)e.
This implies that f(bρ(a)c + 1) > f(k). Therefore, bρ(a)c + 1 > k. Hence,
ρ(a) ≥ k and xa ∈ Jk. Conversely, assume that Idf(k)e ⊆ Jk for all k ≥ 1. If
there exists a ∈ Nn such that µ(a) ≥ df(bρ(a)c + 1)e then xa ∈ Idf(bρ(a)c+1)e
and, since bρ(a)c + 1 > ρ(a), xa 6∈ Jbρ(a)c+1. This implies that Idf(k)e 6⊆ Jk with
k = bρ(a)c+ 1, a contradiction. �

In practice, Lemma 3.1(ii) sometimes is less applicable than the following
weaker version, especially when only one direction of implication is of interest.

Corollary 3.2. Let {Ik}k≥1, {Jk}k≥1, µ(a), and ρ(a) be as in Lemma 3.1. Let
f : N −→ R+ be a strictly increasing function. Then Idf(k)e ⊆ Jk for all k ≥ 1 if
µ(a) ≤ f(ρ(a)) for all a ∈ Nn.

Proof. If µ(a) ≤ f(ρ(a)), then µ(a) < f(bρ(a)c + 1) because ρ(a) < bρ(a)c + 1
and f is strictly increasing. Therefore, µ(a) < df(bρ(a)c+1)e and the conclusion
follows from Lemma 3.1. �

Let H be a hypergraph. It follows from the definition of matching and covering
numbers (see Section 2) and the duality in linear programming that

ν(H) ≤ ν∗(H) = τ ∗(H) ≤ τ(H).

10



The gaps between these invariants has been a major research topic in hypergraph
theory (cf. [10, 30]). Estimates for these gaps are often given as bounds for one
invariant by a function of another.

If I is the edge ideal ofH then, in light of Proposition 2.3, applying such bounds
to the parallelization Ha of H, for a ∈ Nn, yields bounds on the invariants τa(I),
τ ∗a(I) = ν∗a(I), and νa(I) for all a ∈ Nn. As we have seen in Section 1, these

invariants determine whether xa belongs to the ideals Ik, Ik, and I(k). Therefore,
Lemma 3.1 allows us to derive new containments between these ideals from known
bounds on the matching, covering and fractional matching (covering) numbers of
hypergraphs.

We will apply this method only to those bounds on ν(H), ν∗(H) = τ ∗(H) and
τ(H), which involve the rank of H. Recall that the rank of H, denoted by rk(H),
is the maximum cardinality of an edge in H. By the definition of parallelization,
rk(Ha) ≤ rk(H) for all a ∈ Nn. Therefore, we would get bounds on the invariants
τa(I), τ ∗a(I) = ν∗a(I), and νa(I), which also involve rk(H). On the other hand,
rk(H) is just the maximal generating degree d(I), which denotes the maximum
degree of a minimal monomial generator of I.

Theorem 3.3. Let I be a squarefree monomial ideal, and let r = d(I). Then,
for any k ≥ 1, we have

(i) I(r−1)(k−1)+
⌈

k
r

⌉
⊆ Ik;

(ii) I(d(1+
1
2
+···+ 1

r
)ke) ⊆ Ik;

(iii) I(rk−r+1) ⊆ Ik.

Proof. Let H be the hypergraph associated to I. Note that rk(Ha) ≤ rk(H) = r
for all a ∈ Nn.

(i) Let f : N −→ R+ be the function defined by

f(k) := (r − 1)(k − 1) +
k

r
=
r2 − r + 1

r
(k − 1) +

1

r
.

Clearly, f is a non-decreasing function. It follows from [15, Theorem 1.2] that

ν∗(Ha) ≤ r2 − r + 1

r
ν(Ha).

This, together with Proposition 2.3, implies that for all a ∈ Nn, we have

ν∗a(I) ≤ r2 − r + 1

r
νa(I) <

r2 − r + 1

r
νa(I) +

1

r
= f(νa(I) + 1).

Thus, (i) follows by invoking Lemma 3.1(ii).

(ii) Let f : N −→ R+ be the function defined by

f(k) :=
(
1 +

1

2
+ · · ·+ 1

r

)
k.

11



Then f(k) is a strictly increasing function. By [29, Proof of Lemma 1.6.4], we
have

τ(Ha) ≤
(
1 +

1

2
+ · · ·+ 1

r

)
τ ∗(Ha).

for all a ∈ Nn. Proposition 2.3 now implies that

τa(I) ≤
(
1 +

1

2
+ · · ·+ 1

r

)
ν∗a(I) = f(ν∗a(I)).

Hence, (ii) follows from Corollary 3.2.

(iii) It is a basic fact (and easy to see) that τ(H) ≤ rν(H). Applying this to
the parallelization Ha we obtain

τ(Ha) ≤ rν(Ha).

By Proposition 2.3, it follows that for all a ∈ Nn,

τa(I) ≤ rνa(I) < r(νa(I) + 1)− r + 1.

Let f : N −→ R+ be the function defined by

f(k) := rk − r + 1.

Then f is a non-decreasing function and

τa(I) < f(ν(a) + 1).

Hence, (iii) is a consequence of Lemma 3.1(ii). �

Even for edge ideals of graphs, Theorem 3.3 appears to be new and interesting.

Corollary 3.4. Let I be the edge ideal of a graph. Then for any k ∈ N, we have

(i) Id
3
2
ke−1 ⊆ Ik;

(ii) I(d
3
2
ke) ⊆ Ik;

(iii) I(2k−1) ⊆ Ik.

For instance, Corollary 3.4(i) implies a surprising fact that I2 = I2, i.e. I2 is
integrally closed.

Example 3.5. The containments in Corollary 3.4 and, thus, in Theorem 3.3 are
sharp as seen from the following examples. Let R = Q[x1, . . . , x8].

(i) Consider the edge ideal

I = (x1x2, x2x3, x1x5, x2x5, x1x6, x2x6, x3x6, x5x6, x4x7, x5x7, x4x8, x7x8) ⊆ R.

Direct computation with Macaulay2 shows that I3 6⊆ I3, while Corollary 3.4(i)

gives I4 ⊆ I3.

(ii) Consider the edge ideal

I = (x1x4, x2x6, x2x7, x3x7, x5x7, x6x7, x1x8, x2x8, x5x8, x6x8, x7x8) ⊆ R.

Then direct computation with Macaulay2 shows that I(2) 6⊆ I2 and I(5) 6⊆ I4,
while Corollary 3.4(ii) gives I(3) ⊆ I2 and I(6) ⊆ I4.

12



(iii) Consider the edge ideal

I = (x1x2, x1x3, x2x3, x1x4, x2x4, x3x4, x1x5, x2x5, x3x5, x4x5

x2x6, x3x6, x5x6, x4x7, x6x7) ⊆ R.

Direct computation with Macaulay2 shows that I(2) 6⊆ I2 and I(4) 6⊆ I3, while
Corollary 3.4(iii) gives I(3) ⊆ I2 and I(5) ⊆ I3.

As a corollary of Theorem 3.3(iii), we further obtain a bound for the resurgence
number of squarefree monomial ideals. Recall that for an arbitrary homogeneous
ideal I, the resurgence number of I is defined to be

ρ(I) = sup
{h
k

∣∣∣ I(h) 6⊆ Ik
}
.

This notion was due to Harbourne and Bocci [6]. Instead of ρ(I), we propose to
study the following closely related invariant:

ρinf(I) = inf
{h
k

∣∣∣ I(h) ⊆ Ik
}
,

which is more in line with the containments between powers of I as being dis-
cussed. It is clear that ρ(I) ≤ ρinf(I).

Corollary 3.6. Let I a squarefree monomial ideal. Then

ρinf(I) ≤ d(I).

Proof. It follows from Theorem 3.3 that

ρinf(I) ≤ inf
k≥1

{d(I)k − d(I) + 1

k

}
= inf

k≥1

{d(I)(k − 1) + 1

k

}
≤ d(I).

Thus, the inequality holds. �

Specializing to edge ideals of graphs, Corollary 3.6 gives us the following state-
ment.

Corollary 3.7. Let I be the edge ideal of a graph. Then

ρ(I) ≤ 2.

Remark 3.8. Let G be a graph and let I = I(G). Let χf (G) denote the fractional
chromatic number of G (see [29] for more details on fractional chromatic numbers
of graphs). Then, it follows from [6, Theorem 1.2.1] and [5, Theorem 4.6] that2

ρ(I) ≥ 2(χf (G)− 1)

χf (G)
.

Thus, by taking graphs with large fractional chromatic numbers, we can make
ρ(I) to be arbitrarily close to 2. That is, the bound for ρ(I) in Corollary 3.7 and,
hence, Corollary 3.6 is sharp.

2The authors thank Adam Van Tuyl for pointing them to this inequality.
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Question 3.9. Are there similar containments as those in Theorem 3.3 (involving
d(I)) for an arbitrary homogeneous radical (or prime) ideals?

It is interesting to note that containments between powers of ideals have been
studied usually from a different angle, involving different invariants, for example,
the minimal number of generators [21, 23, 24] or the maximal height of the min-
imal primes [12, 20, 27], but not the maximal generating degree as in Theorem
3.3.

4. From containments between ideals to gap estimates

This section is a continuation of the previous section. Making use of known
containments between powers of a monomial ideal, we derive bounds for the inte-
grality gap of certain linear programming problems, and estimate the gap between
the matching and covering numbers of hypergraphs. Based on the equivalences
given in Lemma 3.1, we also present an equivalent algebraic reformulation for
Ryser’s conjecture, a long standing conjecture in hypergraph theory.

Let M be an n ×m matrix of non-negative integers and a ∈ Nn. The integer
programming problem

maximize y · 1m,

subject to M · y ≤ a, y ∈ Nm

is called the packing problem in combinatorial optimization. Recall that the op-
timal solution of this integer programs and its relaxation to y ∈ Rn

≥0 are denoted
by νa(M) and ν∗a(M).

The real optimal solution ν∗a(M) can be computed quite easily by tools from
Linear Programming. The more intriguing question is how far νa(M) differs from
ν∗a(M). Using the celebrated Briançon-Skoda theorem in algebra we give the
following estimate which appears not yet known in combinatorics.

Theorem 4.1. Let M be an n×m matrix of non-negative integers. Then

ν∗a(M) < νa(M) + min{m,n}.

Proof. Let a1, . . . , am be the columns of M . Let I be the monomial ideal gen-
erated by {xa1 , . . . , xam}. Then νa(M) = νa(I) and ν∗a(M) = ν∗a(I). By the
Briançon-Skoda theorem (cf. [21, 23, 24]), we have for all k ≥ 1,

Ik+min{m,n}−1 ⊆ Ik.

Let f(k) := k + min{m,n} − 1. Applying Lemma 3.1(ii) to the ideals Ik, Ik, the
functions ν∗a(M), νa(M), and f(k), we obtain

ν∗a(I) < f(νa(I) + 1) = νa(I) + min{m,n},
which proves the assertion. �

Another gap estimate is related to a conjecture of Harbourne (see, for example,
[2]), which asks whether the containment I(hk−h+1) ⊆ Ik holds for every proper
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homogeneous ideal I and k ≥ 1, where h denotes the maximal height of an
associated prime of I. This conjecture is inspired by the formula I(hk) ⊆ Ik,
which was discovered by Ein, Lazarsfeld, and Smith [12], Hochster and Huneke
[20], Ma and Schwede [27]. The conjecture of Harbourne has an affirmative answer
when I is a squarefree monomial ideal (see [2, 8]). Making use of this result, we
deduce the following estimate for the gap between τa(M) and νa(M).

Theorem 4.2. Let M be the incidence matrix of a simple hypergraph H. Let h
be the maximal size of a minimal cover of H. Then for all a ∈ Nn,

τa(M) ≤ hνa(M).

Proof. Let I be the edge ideal of H. Then for all a ∈ Nn, we have τa(M) = τa(I)
and νa(M) = νa(I). It follows from [2, Example 8.4.5] (see also [8, Corollary 4.4])
that

I(hk−h+1) ⊆ Ik

for all k ≥ 1. Put f(k) := h(k − 1) + 1. Applying Lemma 3.1(ii) to the ideals
I(k), Ik, the functions τa(I), νa(I), and f(k), we obtain

τa(I) < f(νa(I) + 1) = hνa(I) + 1.

Since τa(I) and νa(I) are integers, this implies τa(I) ≤ hνa(I). The conclusion
follows. �

In Theorem 4.2, we cannot replace h by the minimal size of a minimal cover of
H, which is τ(H). Algebraically, this means that the formula

I(ht(I)k−ht(I)+1) ⊆ Ik

does not hold for any squarefree monomial ideal I and all k ≥ 1.

Example 4.3. Let G be the hypergraph whose edges are {1, 2} and all 5-subsets
of [1, 8] not containing {1, 2}. Let H be the hypergraph whose edges are subsets
of [1, 8] of the form {1, 2, i, j}, {1, i, j, t} and {2, i, j, t}, where 3 ≤ i, j, t ≤ 8 are
different numbers. It is easy to check that edges in H are the minimal covers of
G. That is, H = G∨. Thus, G = H∨. In particular, τ(H) = 2.

Let I be the edge ideal of H in K[x1, ..., x8]. Then

I(k) =
⋂
F∈G

P k
F .

It is easy to see that f := x31x
2
2x3 . . . x8 ∈ I(5). Since deg(f) = 11, f 6∈ I3 because

I is generated by monomials of degree 4. Therefore, I(2k−2+1) = I(2k−1) 6⊆ Ik for
k = 3. By Lemma 3.1(ii), we conclude that inequality τa(M) ≤ 2νa(M) does not
hold for all a ∈ N8, where M is the incident matrix of H.

Remark 4.4. If M is the incidence matrix of a hypergraph H and if a = 1n then
the bounds in Theorems 4.1 and 4.2 are trivial. In this case, we have

ν∗a(H) ≤ τa(H) = τ(H) ≤ min{m,n},
τa(H) = τ(H) ≤ h.
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Hence, these results are interesting only for more general a ∈ Nn.

In the study of parallelization of hypergraphs, it is often of interest to ask the
following question: given a hypergraph G, which hypergraph H has the smallest
number of vertices such that G = Ha for some positive integral vector a? In
investigating this question, the following notions prove to be of importance.

Two vertices u and v of G are said to be clones if u, v are not contained in any
edge of G, and F is an edge in G containing u if and only if F − u+ v is an edge
in G. This terminology clone is adapted from [28]. In particular, if G is a graph,
then u, v are clones if and only if u, v are twins, i.e. they share the same open
neighborhood. It follows from the definition that if G = Ha for a hypergraph H
and a positive integral vector a = (α1, . . . , αn), then for each i ∈ supp(a) with
αi ≥ 2, the vertices {i1, ..., iαi

} of G are pairwise clones.

Now, for each vertex u ∈ G we denotes by [u] the class of the clones of u. Let
H denote the hypergraph whose vertices are the clone classes [u] and whose edges
are sets of the form {[u1], ..., [us]} with {u1, ..., us} being an edge of G. Assume
that G has n different clone classes [u] whose cardinality are α1, ..., αn. It is easy
to see that G = Ha for a = (α1, ..., αn). It can be shown that H is a hypergraph
with the smallest number of vertices such that G = Ha for some positive integral
vector a. For simplicity, we call H the reduced clone-free hypergraph of G.

Using the reduced clone-free hypergraph we can improve the bound of Theorem
4.2 as follows.

Theorem 4.5. Let G be an arbitrary hypergraph. Let h∗ denote the maximum
cardinality of minimal covers of the reduced clone-free hypergraph of G. Then

τ(G) ≤ h∗ν(G).

Proof. Let H be the reduced clone-free hypergraph of G, and suppose that H
contains n vertices. Let a ∈ Nn be such that G = Ha. Let M be the incidence
matrix of H. By Proposition 2.3, τa(M) = τ(G) and νa(M) = ν(G). Applying
Theorem 4.2 to H, we obtain

τa(M) ≤ h∗νa(M).

Therefore, τ(G) ≤ h∗ν(G). �

By Lemma 2.2(ii), the maximum cardinality of minimal covers of the reduced
clone-free hypergraph of G is less than the maximum cardinality of minimal covers
of G. In fact, the difference between these invariants could be made arbitrarily
large as seen in the following example. This exhibits the fact that the conclusion
of Theorem 4.5, in practice, is significantly stronger than that of Theorem 4.2.

Example 4.6. Let G = K1,p be the complete bipartite graph on {x; y1, . . . , yp}.
Clearly, {y1, . . . , yp} is a minimal vertex cover of G. Thus, the invariant h in
Theorem 4.2 for this example is p. On the other hand, let H be the graph
consisting of a single edge {x, y}, and let a = (1, p) ∈ N2. Then G = Ha and, so,
the invariant h∗ in Theorem 4.5 for this example is 1.
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We now turn our attention to a long standing open conjecture in hypergraph
theory, the Ryser’s conjecture. Recall that a hypergraph H is said to be r-partite
if there is a partition of its vertex set into r parts such that no edge in H contains
two vertices from the same part.

Conjecture 4.7 (Ryser). Let H be an r-partite hypergraph of rank ≤ r. Then

τ(H) ≤ (r − 1)ν(H).

This conjecture is often formulated for r-partite hypergraphs which are r-
uniform, i.e., all edges are of the same size r. In fact, we can always add new
and distinct vertices to edges of an r-partite hypergraph of rank ≤ r to get an
r-uniform r-partite hypergraph with the same matching and covering numbers.

In connection to Ryser’s conjecture, we shall make the following conjecture on
the containment between symbolic and ordinary powers of squarefree monomial
ideals.

Conjecture 4.8. Let I be the edge ideal of an r-partite hypergraph of rank ≤ r.
Then, for all k ∈ N, we have

I((r−1)(k−1)+1) ⊆ Ik.

Theorem 4.9. Ryser’s conjecture is equivalent to Conjecture 4.8.

Proof. Observe that if H is an r-partite hypergraph of rank at most r, then so
is Ha for any a ∈ Nn. By Proposition 2.3, we have τa(I) = τ(Ha) and νa(I) =
ν(Ha), where I is the edge ideal of H. Therefore, Ryser’s conjecture can be
rewritten as

τa(I) < (r − 1)νa(I) + 1

for all a ∈ Nn, where I is the edge ideal of a r-partite hypergraph of rank at most
r. Put f(k) = (r − 1)(k − 1) + 1. Then

f(ν(a) + 1) = (r − 1)ν(a) + 1.

Applying Lemma 3.1(ii) to the ideals I(k) and Ik, together with the functions
τ(a), ν(a) and f(k), we immediately obtain the assertion. �

If we replace I((r−1)(k−1)+1) by I((r−1)(k−1)+1 or Ik by Ik in Conjecture 4.8 then
it has a positive answer. This follows from the following result. Note that

I((r−1)(k−1)+1) ⊆ I(d
1
2
r(k−1)e+1)

for all r ≥ 2, k ≥ 1.

Theorem 4.10. Let I be the edge ideal of a simple r-partite hypergraph. Then,
for any k ∈ N, we have

(i) I(r−1)(k−1)+1 ⊆ Ik;

(ii) I(d
1
2
r(k−1)e+1) ⊆ Ik.
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Proof. (i) Due to an unpublished result of Gyárfás [14, Corollary 5] we have

ν∗(H) ≤ (r − 1)ν(H)

for any r-partite hypergraph H. By Proposition 2.3, this implies

ν∗a(I) < f(νa(I) + 1),

where f(k) := (r− 1)(k− 1) + 1. Applying Lemma 3.1(ii) to the ideals Ik and Ik

with the functions ν∗(a) and ν(a) and this function f(k), we obtain the assertion
as in the proof of Theorem 4.9.

(ii) By a result of Lovasz in [25], we have

τ(H) ≤ 1

2
rν∗(H)

for any r-partite hypergraph H. Thus, the assertion follows from Lemma 3.1(ii)
similarly as above. �

5. Equality between powers of monomial ideals

We have dealt with the containments between the ideals Ik, Ik, I(k). In this
section we will investigate the equality between these ideals. We will use the
following simple observation.

Lemma 5.1. Let {Ik}k≥1 and {Jk}k≥1 be two filtrations of monomial ideals in
R. Assume that there are functions µ(a) and ρ(a) from Nn to R+ such that

• xa ∈ Ik if and only if µ(a) ≥ k,
• xa ∈ Jk if and only if ρ(a) ≥ k.

Then Ik = Jk for all k ≥ 1 if and only if bµ(a)c = bρ(a)c for all a ∈ Nn.

Proof. We have Ik = Jk if and only if µ(a) ≥ k is equivalent to µ(a) ≥ k for all
k ≥ 1. This equivalence just means bµ(a)c = bρ(a)c for all a ∈ Nn. �

An ideal I is called normal if Ik = Ik for all k ≥ 1. If I is a monomial ideal,
we have the following effective criterion for this property.

Theorem 5.2. [11, Corollary 4.5], [32, Theorem 3.2] Let I be a homogeneous
ideal in R. Then I is normal if and only if νa(I) = bν∗a(I)c for all a ∈ Nn.

Proof. The statement immediately follows from the membership criteria for Ik

and Ik in Proposition 1.1 and Lemma 5.1. �

In combinatorics, a matrix M of non-negative integers with n rows is said to
have the integer round-down property if νa(M) = bν∗a(M)c for all a ∈ Nn [3].
Several classes of matrices have been shown to have this property. Therefore,
Theorem 5.2 can be used to find new classes of normal ideals.

Now we will investigate the case I is the edge ideal of a hypergraph H. In this
case, we have

Ik ⊆ Ik ⊆ I(k)
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for all k ≥ 1. On the other hand, we have the inequalities

νa(M) ≤ ν∗a(M) = τ ∗a(M) ≤ τa(M)

for all a ∈ Nn, where M is the incidence matrix of H.

Following the terminology in hypergraph theory [10, 30], we say that

• H has the integer round-down property if νa(M) = bν∗a(M)c for all a ∈ Nn.
• H is called Fulkersonian (or ideal) if τa(M) = τ ∗a(M) for all a ∈ Nn.
• H is called Mengerian (or has the max-flow min-cut property) if νa(M) =
τa(M) for all a ∈ Nn.

Note that τa(M) = τ ∗a(M) is equivalent to τa(M) = bτ ∗a(M)c because

bτ ∗a(M)c ≤ τ ∗a(M) ≤ τa(M).

Remark 5.3. We do not need to check the above equalities for all a ∈ Nn. By
[4, Corollary 2.3], there is a well-determined vector b ∈ Nn (depending on M)
such that H has the integer round-down property or H is Fulkersonian if and
only if νa(M) = bν∗a(M)c or τa(M) = τ ∗a(M), respectively, for all a ≤ b. Since
H is Mengerian if and only if H has the integer round-down property and H is
Fulkersonian, we can also check the Mengerian property in a finite steps.

By Lemma 5.1, the membership criterions for Ik, Ik and I(k) immediately yield
the the following results.

Theorem 5.4. Let I be the edge ideal of a hypergraph H. Then

(i) Ik = Ik for all k ≥ 0 if and only if H has the integer round-down property
[11, Corollary 4.5], [32, Theorem 3.7(1)],

(ii) Ik = I(k) for all k ≥ 0 if and only if H is a Fulkersonian hypergraph [31,
Theorem 3.1],

(iii) Ik = I(k) for all k ≥ 0 if and only if H is a Mengerian hypergraph [16,
Corollary 3.5], [18, Corollary 1.6].

Remark 5.5. One might ask whether Ik = Ik for all k ≥ 0 if and only if
νa(I) = ν∗a(I) for all a ∈ Nn. However, the latter conditions is satisfied if and
only if H is a Mengerian hypergraph [30, Theorem 79.2].

Let V1, V2 be two arbitrary disjoint subsets of the vertex set [1, n]. We define a
hypergraph G on the set of vertices [1, n] \ (V1 ∪ V2) whose edges are the subsets
of V of the form F \ V1, where F ∈ H and F ∩ V2 = ∅. We call G a minor of H.

Recall that a hypergraph H has is König if ν(H) = τ(H) [10]. If all minors of
H are König then H is said to have the packing property [30].

It is easy to see that minors of H are exactly parallelizations Ha with a ∈
{0, 1}n. Thus, a Mengerian hypergraph has packing property. The converse was
a conjecture raised in 1993 by Conforti-Cornuéjols [7].

Conjecture 5.6 (Conforti-Cornuéjols). A hypergraph with packing property is
Mengerian.
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By definition, H is Mengerian if and only if H is Fulkersonian and has the
integer round-down property. It is known that H is a Fulkerson hypergraph if H
has packing property [30, Corollary 78.4b]. Therefore, the Conforti-Cornuéjols
conjecture is equivalent to the following conjecture.

Conjecture 5.7. A hypergraph with packing property has the integer round-down
property.

Let I be the edge ideal of a hypergraph H. It is easy to see that τ(H) = ht(I)
and ν(H) = mon-grade(I), where mon-grade(I) denotes the maximal length of
a regular sequence of monomials in I. Therefore, H is König if and only if
mon-grade(I) = ht(I).

Let G be a minor of H with respect to two disjoint subsets V1, V2 ⊆ [1, n]. By
the definition of minor, the edge ideal J of G is obtained from I by setting xi = 1
for i ∈ V1 and xi = 0 for i ∈ V2. That means J is the ideal of the monomials in
the polynomial ring K[xi| i 6∈ V1∪V2] generated from those of I by setting xi = 1
for i ∈ V1 and xi = 0 for i ∈ V2.

It is now clear that Conjecture 5.7 can be translated in algebraic terms as
follows.

Conjecture 5.8. [32, p. 4] Let I be a squarefree monomial ideal such that

mon-grade(J) = ht(J)

for all monomial ideals J obtained from I by setting some variables equal to 0,1.
Then I is a normal ideal.

Other algebraic interpretations and variants of the Conforti-Cornuéjols conjec-
ture can be found, e.g., in the surveys [9, 13].

6. Maximal generating degree of symbolic powers

In this section we will use techniques developed in preceding sections to inves-
tigate the following problem.

Problem 6.1. Let I be a homogeneous radical ideal. Is d(I(k)) ≤ kd(I) for all
k ≥ 1?

This problem is originally raised for prime ideals by Huneke [22, Question 0.5].
We shall see that for squarefree monomial ideals, Problem 6.1 can be reduced to
a problem on the relationship between n and d(I).

Lemma 6.2. Let I be an arbitrary squarefree monomial ideal. For k ≥ 1, xa is
a minimal generator of I(k) if and only if τa(I) = k.

Proof. It is clear that xa is a minimal generator of I(k) if and only if xa ∈ I(k) and
xa−ei 6∈ I(k) for all i ∈ supp(a), where ei denotes the i-th unit vector in Nn. By
Proposition 1.5, this means τa(I) ≥ k and τa−ei(I) ≤ k − 1 for all i ∈ supp(a).
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By Lemma 1.4, we have

τa(I) = min{a · eF | F ∈ H∨}.
If τa(I) = k, there exists F ∈ H∨ such that a · eF = k. From this it follows that
(a−ei) ·eF = k−1 for all i ∈ supp(a). Hence, τa−ei(I) ≤ k−1 for all i ∈ supp(a).
From this it follows that xa is a minimal generator of I(k). If τa(I) > k, we can
similarly show that τa−ei(I) ≥ k for all i ∈ supp(a). Hence, xa is not a minimal
generator of I(k). �

Lemma 6.3. Let I be the edge ideal of a hypergraph H and a ∈ Nn. Let Ia denote
the edge ideal of the parallelization Ha in the polynomial ring

S = K[xij| i = 1, ..., n, j = 1, ..., αi].

Assume that xa is a minimal generator of I(k), k ≥ 1. Then

(i) ht(Ia) = k,

(ii) Every variable xij belongs to at least a minimal prime of Ia of height k.

Proof. (i) By Lemma 6.2, we have τa(I) = k. Hence, τ(Ha) = k by Proposition
2.3(iv). This implies ht(Ia) = τ(Ha) = k.

(ii) Assume that there is a variable xij which does not belong to any prime
minimal prime of Ia of height k. Then i ∈ supp(a) and (i, j) 6∈ E for all E ∈
(Ha)∨. By Lemma 2.2, (Ha)∨ = {p−1(F )| F ∈ H∨}. Hence, i 6∈ F for all F ∈ H∨.
This implies ei · eF = 0. Therefore, (a− ei) · eF = a · eF . By Lemma 1.4,

τa−ei(I) = min{a · eF | F ∈ H∨} = τa(I) = k.

Hence, xa−ei ∈ I(k) by Proposition 1.5. From this it follows that xa is not a
minimal generator of I(k), a contradiction. �

Proposition 6.4. Let f : N → N be a numerical non-decreasing function. The
following conditions are equivalent:

(i) For any squarefree monomial ideal I, d(I(k)) ≤ kf(d(I)) for all k ≥ 1.

(ii) n ≤ ht(I)f(d(I)) for every squarefree monomial ideal I in n variables such
that every variable appears in at least a minimal prime of I with minimal height.

Proof. Assume that (i) is satisfied. Let I be a squarefree monomial ideal in n
variables such that every variable appears in at least a minimal prime of I with
minimal height. Let H be a hypergraph such that I is the edge ideal. We know
that

I(k) =
⋂

F∈H∨

P k
F .

Let k = ht(I). Since every minimal prime PF of I is generated by at least k
variables, x1 · · ·xn ∈ P k. Hence, x1 · · ·xn ∈ I(k). Since every variable xi appears
in at least a minimal prime of I generated by k variables, (x1 · · ·xn)/xi 6∈ P k

F for
some F ∈ H∨. Hence, (x1 · · ·xn)/xi 6∈ I(k). From this it follows that x1 · · ·xn
is a minimal generator of I(k). Hence, n ≤ d(I(k)). Since d(I(k)) ≤ kf(d(I)), we
obtain n ≤ kf(d(I)) = ht(I)f(d(I)).
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Assume that (ii) is satisfied. Let I be an arbitrary squarefree monomial ideal.
Let H be a hypergraph such that I is the edge ideal of H. Let xa be an arbitrary
minimal generator of I(k) with deg xa = d(I(k)). Let Ia denote the edge ideal of
the parallelization Ha. Then d(Ia) ≤ d(I) by the definition of Ha and ht(Ia) = k
by Lemma 6.2(i). Since Ha has a1 + · · ·+an variables, Ia lies in a polynomial ring
S in deg xa variables. By Lemma 6.2(ii), every variable of S belongs to at least
a minimal prime of Ia of minimal height. Therefore, deg xa ≤ ht(Ia)f(d(Ia)),
which implies d(I(k)) ≤ kf(d(I)). �

If Problem 6.1 has a positive answer, we would have n ≤ ht(I)d(I) for every
squarefree monomial ideal I in n variables such that every variable appears in at
least a minimal prime of I with minimal height. To find a counter-example to
Problem 6.1, we only need to look for such a squarefree monomial ideal I with
small ht(I) and d(I) in a polynomial ring with a large number of variables.

In fact, there are squarefree monomial ideals with ht(I) = 2 such that n−2d(I)
is arbitrarily large. From this it follows that d(I(2)) − 2d(I) can be arbitrarily
large, too.

Example 6.5. Let m ≥ 2 be an arbitrary integer. Let H be the graph on
n = 3(m+ 1) vertices which consists of a triangle T and 3m leaves, where every
vertex of T is has exactly m leaves; see Figure 2.

T

m = 2

Figure 2

Let I = ∩i,j∈H(xi, xj). Then ht(I) = 2. To compute the minimal generators of
I we have to find the minimal covers of H. A minimal cover of H must contain
at least 2 vertices of T . Using this fact one can see that a minimal cover of H is
either the set of the 3 vertices of T or a set which consists of 2 vertices of T and
the m vertices adjacent to the remaining vertex of T . From this it follows that
d(I) = m+ 2. Hence,

n = 3(m+ 1) > 2(m+ 2) = ht(I)d(I).

In particular, d(I(2))− 2d(I) ≥ n− 2d(I) = m− 1 can be arbitrarily large.

Counter-examples to Problem 6.1 were found in Asgharzadeh [1] (with an at-
tribute to Hop D. Nguyen). In these examples, I is a non-monomial radical ideal
with d(I(2))− 2d(I) = 1.

Due to Example 6.5, we modify Problem 6.1 as follows.
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Problem 6.6. Let I be a squarefree monomial ideal. Does there exist a function
f : N −→ N such that d(I(k)) ≤ kf(d(I)) for all k ≥ 1?

If I is the edge ideal of a hypergraph, and if the involved invariants do not in-
crease when passing to the edge ideals of parallelizations of the given hypergraph,
then Problem 6.6 is amount to the question of whether n ≤ ht(I)f(d(I)) as in
Proposition 6.4.
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