
SINGULAR DIRECTIONS OF BRODY CURVES

DO DUC THAI AND PHAM NGOC MAI

Abstract. In this paper, we establish the existence of singular directions of Brody

curves into algebraic varieties. Moreover, we also give a version of ”angular domain”

type for the results of B. F. P. Da Costa and J. Duval [2] for Brody curves into a complex

projective variety in PN (C) intersecting hypersurfaces.

1. Introduction

The problem of singular directions of meromorphic functions on C has a long history,

dating back to G. Julia [6], H. Milloux [7], G. Valiron [10].

In 1919, G. Julia [6] proved the following famous theorem.

Theorem A. Let f(z) be a transcendental entire function on C. Then there exists a ray

J(θ) = {z : arg z = θ} such that for any ε with 0 < ε < π and for all a with at most one

exception on C,
lim
r→∞

n(r,Ω(θ, ε), f = a) =∞,

where Ω(θ, ε) = {z : θ − ε < arg z < θ + ε} and n(r,Ω(θ, ε), f = a) is the number of

solutions of f(z) = a in Ω(θ, ε) ∩ {|z| < r} counting multiplicities.

H. Milloux [7] generalized Theorem A to meromorphic functions on C.
Theorem B. Let f(z) be a transcendental meromorphic function on C with an asymptotic

value in P1(C). Then there exists a ray J(θ) = {z : arg z = θ} such that for any ε with

0 < ε < π and for all a with at most two exceptions on P1(C),

lim
r→∞

n(r,Ω(θ, ε), f = a) =∞,

where Ω(θ, ε) = {z : θ − ε < arg z < θ + ε} and n(r,Ω(θ, ε), f = a) is the number of

solutions of f(z) = a in Ω(θ, ε) ∩ {|z| < r} counting multiplicities.

Here α ∈ P1(C) is called an asymptotic value for a meromorphic function f(z) on

C at a point a if there exists a continuous path L : z = z(t), 0 ≤ t < 1 such that

limt→1−0 z(t) = a and limt→1−0 f(z(t)) = α. Since a transcendental entire function always

has the asymptotic value ∞ in P1(C), it implies that Theorem B is a generalization of
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Theorem A. Without the assumption on the existence of an asymptotic value in P1(C),

A. Ostrowski [8] gave a counterexample to Theorem B.

The ray J(θ) in Theorem A or Theorem B is called to be a Julia direction of f.

Theorem A is a refinement of the Picard theorem for transcendental entire functions.

In order to get a similar refinement for the Borel theorem, a more refined notion of Borel

directions was introduced by G. Valiron in 1928. Namely, a ray J(θ) = {z : arg z = θ} is

called a Borel direction of order ρ for f if for every ε with 0 < ε < π,

lim sup
r→∞

n(r,Ω(θ, ε), f = a)

log r
≥ ρ,

for all a on P1(C) with at most two exceptions. It is well known that f has at least

one Borel direction in the case where the growth ρ of Nevanlinna characteristic T (r, f)

satisfying 0 < ρ <∞ (see G. Valiron [10]).

Much attention has been given to the study of singular directions in general context

for non-constant holomorphic curves on C into Pn(C), and several remarkable results on

this topic have obtained (see A. Eremenko [3], Zh-H. Tu [9], J. Zheng [11],...).

For instance, in 1996, Zh-H. Tu [9] defined that a ray J(θ) = {z : arg z = θ} is

called a Julia direction for a holomorphic curve f : C → Pn(C) if in any open sector

with vertex z = 0 containing J(θ), f misses at most 2n hyperplanes in Pn(C) in general

position. He showed that if f(z) is a transcendental entire holomorphic curve with an

asymptotic value in Pn(C), then there exists a Julia direction for f(z). Here, we say

that a holomorphic curve f : C → Pn(C) has an asymptotic value in Pn(C) if there

exist a continuous path z = z(t) (0 ≤ t < 1) satisfying limt→1 z(t) = ∞ and a reduced

representation f̃(z) = (f0(z), f1(z), · · · , fn(z)) such that limt→1 fi(z(t)) = ai (0 ≤ i ≤ n)

with the property that (a0, a1, · · · , an) induces a point in Pn(C).

We now formulate the recent result of J. Zheng [11] which is the best result available

at present. First of all, recall the following.

Let f : C → PN(C) be a holomorphic curve. Let f̃ = (f0, ..., fN) be a reduced

representation of f, where f0, ..., fN are entire functions on C and have no common zeros.

Put

ν(z) = max{log |f0(z)|, · · · , log |fN(z)|}, z ∈ C.

The Nevanlinna-Cartan characteristic function T (r, f) is defined by

T (r, f) =
1

2π

2π∫
0

ν(reiθ)dθ − ν(0).

For 0 ≤ θ ≤ 2π, by Ω(θ, ε) we denote by the angular domain

Ω(θ, ε) = {z : θ − ε < arg z < θ + ε}
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and by Ω(θ, ε) its closure. Sometimes, without occurrence of any confusion in the context,

we write simply Ω instead of Ω(θ, ε).

Let H be a hyperplane in PN(C) given by

H := {[z0 : z1 : · · · : zN ] ∈ PN(C) : a0z0 + a1z1 + · · ·+ aNzN = 0}.

Put

H(f)(z) = a0f0(z) + a1f1(z) + · · ·+ aNfN(z).

Denote by nΩ(θ,ε)(r,H, f) the number of zeros of H(f) in the domain {|z| < r} ∩Ω(θ, ε),

counting multiplicity. We also define the counting function

NΩ(θ,ε)(r,H, f) =

r∫
0

nΩ(θ,ε)(t,H, f)− nΩ(θ,ε)(0, H, f)

t
dt+ nΩ(θ,ε)(0, H, f) log r.

Definition 1.1. (see [11]) A ray J(θ) = {z : arg z = θ} is a T -direction for a holomorphic

curve f : C→ PN(C) if for any ε (0 < ε < π), we have

lim sup
r→∞

NΩ(θ,ε)(r,H, f)

T (r, f)
= 0,

for at most 2N hyperplanes H in general position in PN(C).

Theorem C. (see [11]) Let f : C→ PN(C) be a holomorphic curve such that

lim sup
r→∞

T (r, f)

(log r)2
= +∞.

Then the holomorphic curve f has at least one T -direction.

Our main aim in this paper is to study singular directions for Brody holomorphic curves

into a complex projective variety V in PN(C) sharing hypersurfaces in general position

in V . To state our results, we recall the following.

Let f : C → PN(C) be a holomorphic curve. Let f̃ = (f0, ..., fN) be a reduced

representation of f, where f0, ..., fN are entire functions on C and have no common zeros.

Put

‖f‖2 =
N∑
j=0

|fj|2.

The Fubini-Study derivative ‖f ′‖ measures the length distortion from the Euclidean

metric in C to the Fubini-Study metric in PN(C). The explicit expression is

‖f ′‖2 = ‖f‖−4
∑
i<j

|f ′ifj − f ′jfi|2.

A holomorphic curve is called a Brody curve if its Fubini-Study derivative is bounded.



4 DO DUC THAI AND PHAM NGOC MAI

It is well-known that the Nevanlinna-Cartan characteristic function T (r, f) is also given

by

T (r, f) =

r∫
0

dt

t

 1

π

∫
|z|≤t

‖f ′‖2(z)dm(z)

 ,

where dm is the area element in C .

Let D be a hypersurface in PN(C) of degree d. Let Q be the homogeneous polynomial

(form) of degree d defining D. Denote by nΩ(θ,ε)(r,D, f) the number of zeros of Q ◦ f̃ in

the domain {|z| < r} ∩ Ω(θ, ε), counting multiplicity, where 0 ≤ θ ≤ 2π and Ω(θ, ε) =

{z : θ − ε < arg z < θ + ε}. We also define the counting function

NΩ(θ,ε)(r,D, f) =

r∫
0

nΩ(θ,ε)(t,D, f)− nΩ(θ,ε)(0, D, f)

t
dt+ nΩ(θ,ε)(0, D, f) log r.

Now we give the following definition of Tm-direction for a holomorphic curve.

Definition 1.2. Let m be a natural number. A ray J(θ) is said to be a Tm-direction for

a holomorphic curve f : C→ PN(C) if for any ε(0 < ε < π), we have

lim sup
r→∞

NΩ(θ,ε)(r,D, f)

T (r, f)
= 0,

for at most m hypersurfaces D in general position in PN(C).

It is clear that J(θ) is a T -direction if J(θ) is a T2N -direction; and if J(θ) is a Tm-

direction, then J(θ) is also a Tk-direction for all k ≥ m. Moreover, a T -direction must

be a Julia direction.

Definition 1.3. (see [2]) Let f : C → PN(C) be a Brody curve. We say that f has a

positive energy if

lim sup
r→∞

T (r, f)

r2
> 0.

Definition 1.4. Let V be a complex projective variety in PN(C) of dimension n ≥ 1.

(i) Let D1, ..., Dq be hypersurfaces in PN(C), where q > n. The hypersurfaces D1, ..., Dq

are said to be in general position in V if for every subset {i0, ..., in} ⊂ {1, ..., q}, we have

V ∩ suppDi0 ∩ ... ∩ suppDin = ∅,

where suppD means the support of the hypersurface D.

(ii) Let D1, ..., Dk(k ≤ n) be hypersurfaces in PN(C). The hypersurfaces D1, ..., Dk are

said to be in general position in V if dim{V ∩ suppD1 ∩ ... ∩ suppDk} = n− k.
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Definition 1.5. Let V be a complex projective variety in PN(C) of dimension n ≥ 1.

Let f : C → V be a Brody curve. A ray J(θ) is called a T -direction for f if for any

ε (0 < ε < π), we have

lim sup
r→∞

NΩ(θ,ε)(r,D, f)

T (r, f)
= 0,

for at most n− 1 hypersurfaces D located in general position in V .

It is clear that if J(θ) is a T -direction, then J(θ) is also a TN−1-direction.

We now prove the main result of this paper.

Theorem 1.6. Let V be a complex projective variety in PN(C) of dimension n ≥ 1.

Let f : C → V be a Brody curve. If f has a positive energy, then f has at least one

T -direction. In particular, if f : C → PN(C) is a Brody curve having a positive energy,

then f has at least one TN−1-direction.

In the second part of this paper, we give a version of ”angular domain” type for the

results of B. F. P. Da Costa and J. Duval [2] for Brody curves into a complex projective

variety in PN(C) intersecting hypersurfaces. Recall now the following.

Let f : C → PN(C) be a holomorphic curve. Let f̃ = (f0, ..., fN) be a reduced

representation of f. Consider the subharmonic function

ν(z) = max{log |f0(z)|, · · · , log |fN(z)|}, z ∈ C.

Denote by 4ν the Riesz measure of ν, i.e. 4ν :=
1

2π
Dν, where D is the Laplacian.

Denote D = {z : |z| ≤ 1} and rD = {z : |z| ≤ r}. It is well-known that

T (r, f) =

r∫
1

4ν(rD)dr +O(1).

We also define

T (r,Ω(θ, ε), f) =

r∫
1

4ν(Ω(θ, ε) ∩ rD)dr +O(1)

for an angular domain Ω(θ, ε) ⊂ C. It is well-known that

T (r,Ω(θ, ε), f) =

r∫
0

dt

t

 1

π

∫
{|z|≤t}∩Ω(θ,ε)

‖f ′‖2(z)dm(z)

 .

We will prove the following.

Theorem 1.7. Let V be a complex projective variety in PN(C) of dimension n ≥ 1. Let

f : C → V be a Brody curve. Let D1, ..., Dq be q hypersurfaces of degree d1, ..., dq in
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PN(C) located in general position in V . Let Ω(θ, ε) be any angular domain in C. Then

we have

(q − n+ 1)T (r,Ω(θ, ε), f) ≤
∑

1≤i≤q

1

di
NΩ(θ,ε)(r,Di, f) + o(r2).

2. Some lemmas

First of all, we recall some definitions concerning subharmonic functions.

Let u be a subharmonic function in a domain Ω ⊂ C. Let 4u be the Riesz measure

of u. The term ”quasi-everywhere” means ”everywhere except for a set of capacity 0”. A

function ν defined quasi-everywhere in Ω is called δ-subharmonic if ν can be represented

as the difference of two functions that are subharmonic in Ω. The Riesz charge of ν is

the difference of the Riesz measures.

We need some following lemmas

Lemma 2.1. (Grishin [4]). If ν ≥ 0 is δ-subharmonic in Ω and ν(z) = 0 on some Borel

set X, then the restriction to X of the Riesz charge of ν is a nonnegative measure.

Lemma 2.2. (Da Costa-Duval [2]). If ν ≥ 0 is δ-subharmonic in Ω such that 4ν is L∞

on ν = 0, then 4ν = 0 on {ν = 0}.

Lemma 2.3. Let q, n be positive integers. Let νi and ν be q subharmonic functions in Ω.

Assume that 4ν is L∞ on Ω and ν = maxIνi for any subset I ⊂ {1, ..., q}, |I| = n. Then∑
νi − (q − n+ 1)ν is subharmonic in Ω.

Proof. Without loss of generality we can assume that q ≥ n. Put ωi = ν − νi. Then ωi

is nonnegative δ-subharmonic in Ω. By Lemma 2.1, we have 4ωi = 4v − 4vi ≥ 0 on

{ωi = 0}. Since 4ν is L∞ on Ω, it follows that 4νi is L∞ on {ν = νi}.
Since ν = maxIνi for any subset I ⊂ {1, ..., q}, |I| = n, it implies that, for each z ∈ Ω,

there exist at most n− 1 indeces i such that νi(z) < ν(z). In the other words, there are

at least q − n + 1 indeces j such that νj(z) = ν(z). For each subset J ⊂ {1, ..., q}, |J | =
q − n + 1, put ΩJ = {z ∈ Ω : νj(z) = ν(z),∀j ∈ J}. Then ΩJ is a Borel subset of Ω.

Repeating the above argument, we have Ω = ∪ΩJ .

By using Lemma 2.2, we obtain

4
[∑

νi − (q − n+ 1)ν
]

=
∑
i∈J

4(νi − ν) +
∑
i/∈J

4νi

is a nonnegative measure in ΩJ . Therefore
∑
νi− (q−n+ 1)ν is subharmonic in Ω. This

completes the proof of Lemma 2.3. �



7

Let V ⊂ PN(C) be a complex projective variety of dimension n ≥ 1. Let f : C → V

be a holomorphic curve. Let f̃ = (f0, ..., fN) be a reduced representation of f, where

f0, ..., fN are entire functions on C and have no common zeros. Put u = log ‖f̃‖.
Let D1, ..., Dq be q hypersurfaces in PN(C) of degree dj, located in general position

in V . Let Qj (1 ≤ j ≤ q) be the homogeneous polynomials in [X0, ..., XN ] of degree

dj defining Dj. Replacing Qj by Qd/dj if necessary, where d is the l.c.m of d′js, we can

assume that Q1, ..., Qq have the same degree d. For every 1 ≤ i ≤ q, define

ui =
1

d
log |Qi ◦ f̃ | =

1

d
log |Qi(f0, ..., fN)|.

Lemma 2.4. Let ui, u be q+1 subharmonic functions defined as above. Then maxi∈Iui =

u+O(1) for all subset I ⊂ {1, ..., q}, |I| = n+ 1.

Proof. Let π : CN+1 \ {0} → PN(C) be the standard projection. Let I ⊂ {1, ..., q}, |I| =
n+1. The set K = {z ∈ π−1(V ) : ‖z‖ = 1} is a compact subset of CN+1. Since D1, ..., Dq

are hypersurfaces located in general position in V and K is compact, it follows that there

exist two positive constants C1 and C2 such that

C1 ≤ maxi∈I |Qi(z)|1/d ≤ C2.

Moreover, since Qj are homogeneous polynomials with the same degree d, we obtain

C1‖f̃(z)‖ ≤ maxi∈I |Qi ◦ f̃(z)|1/d ≤ C2‖f̃(z)‖,∀z ∈ C.

It implies that maxi∈Iui = u+O(1). This completes the proof of Lemma 2.4. �

3. Proof of Theorem 1.6

Since the Brody curve f has a positive energy, there exists a sequence rk → ∞ such

that

lim sup
k→∞

T (rk, f)

r2
k

> 0. (1)

We now prove that there exists a ray J(θ) such that

lim sup
k→∞

T (rk,Ω(θ, ε), f)

T (rk, f)
> 0, ∀ε > 0, (2)

where Ω(θ, ε) = {z : θ − ε < arg z < θ + ε}.
Indeed, suppose that this fact does not hold. This means that for each ray J(θ), there

exists ε(θ) such that

lim sup
k→∞

T (rk,Ω(θ, ε(θ)), f)

T (rk, f)
= 0.

By the compactness of [0, 2π], it follows that there exists a finite family of angles

θ1, ..., θm such that

C ⊂ ∪1≤i≤mΩ(θi, ε(θi)).
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Therefore

1 ≤ lim sup
k→∞

∑
T (rk,Ω(θi, ε(θi)), f)

T (rk, f)
≤
∑

lim sup
k→∞

∑
T (rk,Ω(θi, ε(θi)), f)

T (rk, f)
= 0.

This is a contradiction. Hence (2) is proved. Consequently, by combining (1) and (2),

there exists a ray J(θ) such that

lim sup
k→∞

T (rk,Ω(θ, ε), f)

r2
k

> 0. (3)

Since θ is constant, we set Ωε = Ω(θ, ε).

Let D0, ..., Dn−1 be any n hypersurfaces in PN(C) of degree dj, located in general

position in V . Let Dn be a hypersurface in PN(C) of degree dn such that D0, ..., Dn

located in general position in V . Let Qj (0 ≤ j ≤ n) be the homogeneous polynomials in

[X0, .., XN ] of degree dj defining Dj.

The following lemma is an immediate corollary of Theorem 1.7

Lemma 3.1. Let V be a complex projective variety in PN(C) of dimension n ≥ 1. Let

f : C→ V be a Brody curve. Let D0, ..., Dn−1 be any n hypersurfaces in PN(C) of degree

dj, located in general position in V . Then, for each ε > 0, we have

T (r,Ωε, f) ≤
∑

0≤i≤n−1

1

di
NΩε(r,Di, f) + o(r2).

From (3) and Lemma 3.1, it implies that

0 < lim sup
k→∞

∑
0≤i≤n−1

NΩε(rk, Di, f)

diT (rk,Ωε, f)
.

So J(θ) is a T -direction.

This completes the proof of Theorem 1.6.

4. Proof of Theorem 1.7

Let f̃ = (f0, ..., fN) be a reduced representation of the Brody curve f . Put u = log ‖f̃‖.
Let π1 : CN+1 \ {0} → PN(C) and π2 : Cn+1 \ {0} → P n(C) be the standard projections.

Without loss of generality, we also assume that dj = d, 1 ≤ j ≤ q.

Lemma 4.1. Let D0, ..., Dn−1 be any n hypersurfaces in PN(C) of degree d, located in

general position in V. Let Dn be a hypersurface in PN(C) of degree d such that D0, ..., Dn

located in general position in V. Let Qj (0 ≤ j ≤ n) be homogeneous polynomials in

C[X0, .., XN ] of degree d defining Dj. For every 0 ≤ i ≤ n, define

ui =
1

d
log |Qi ◦ f̃ | =

1

d
log |Qi(f0, ..., fN)|.
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Let rk be a sequence of positive real numbers which converges to +∞. Let hk be the

smallest harmonic majorant of u in the disk 2Drk and λk : C → C be the map given by

λk(z) = 2rkz,∀z ∈ C. Then, there exist subsequences of the sequences 1
r2k

(ui − hk) ◦ λk
and 1

r2k
(u − hk) ◦ λk which converge to subharmonic functions νi and ν respectively, and

max0≤i≤n−1νi = ν.

Note that the functions u and ν depend only on f.

Proof. Denote Q̃ = (Q0, ..., Qn) : CN+1 → Cn+1. Let Q : PN(C)→ P n(C) be a morphism

defined by π2◦Q̃ = Q◦π1. Note that Q is a meromorphic mapping, but Q is a holomorphic

mapping on V . Denote g = Q ◦ f : C → P n(C) and g̃ = Q̃ ◦ f̃ : C → Cn+1. It is clear

that g = Q ◦ f = π2 ◦ g̃ is a holomorphic curve and g̃ = (g0, g1, ..., gn) : C → Cn+1 is a

reduced representation of the holomorphic curve g. Since f is a Brody curve and Q is

a holomorphic mapping on the compact complex projective variety V and g = Q ◦ f, it

follows that g : C→ P n(C) is also a Brody curve.

By Lemma 2.4, we have u = 1
d

log ‖g̃‖+O(1) and ui = 1
d

log |gi|.
Consider the sequence of subharmonic functions ≤ 0 on 2D defined by 1

r2k
(u− hk) ◦ λk.

Note that hk(0) =
∮

2rk
u = O(r2

k) because f is a Brody curve. Hence 1
r2k

(u(0)− hk(0)) >

−∞. So the sequence 1
r2k

(u − hk) ◦ λk does not converge locally uniformly to −∞. By

using a result of Hormander [5, Theorem 4.1.9], it follows that there exists a subsequence

of the sequence 1
r2k

(u−hk)◦λk which converges to a subharmonic function ν. By the same

argument, there exists a subsequences of the sequence 1
r2k

(ui − hk) ◦ λk which converges

to a subharmonic functions νi. By applying a result of Da Costa [1, Lemma 22] to the

Brody curve g, we have max0≤i≤n−1νi = ν. �

Lemma 4.2. The Riesz measure 4ν is L∞ on 2D.

Proof. Take any D(z, δ) ⊂ 2D . Then we have

4ν(D(z, δ)) ≤ lim inf
r→∞

4u(D(rz, rδ))

ρ2r2
≤ lim inf

r→∞

(rδ)2O(1)

r2
= O(1)δ2,

where O(1) depends only on the absolute value of the Fubini-Study derivative ‖f ′‖. Hence

4ν is L∞ on 2D. This completes the proof of Lemma 4.2. �

We now come back to the proof of Theorem 1.7.

Without loss of generality, we also assume that dj = d, 1 ≤ j ≤ q.

For every 1 ≤ i ≤ q, define

ui =
1

d
log |Qi ◦ f̃ | =

1

d
log |Qi(f0, ..., fN)|.
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It is easy to see that the conclusion of Theorem 1.7 can be written in the following

(q − n+ 1)T (r,Ω(θ, ε), f) ≤
∑

1≤i≤q

1

d
NΩ(θ,ε)(r,Di, f) + o(r2). (4)

By the argument as in Lemma 4.1, for each 1 ≤ i ≤ q, we also define νi corresponding

to ui and Di, i.e. there exists a subsequence of the sequence 1
r2k

(ui − hk) ◦ λk which

converges to a subharmonic function νi. Also by Lemma 4.1, we obtain maxi∈Iνi = ν for

all subset I ⊂ {1, ..., q}, |I| = n.

We now prove that

lim sup
1

r2

[
(q − n+ 1)4 u(Dε

r)−
∑
4ui(Dε

r)
]
≤ 0, where Dε

r = Ωε ∩ {|z| < r}. (5)

Indeed, assume that rk → +∞ such that 1
r2k

[
(q − n+ 1)4 u(Dε

rk
)−

∑
4ui(Dε

rk
)
]

con-

verges. Combining Lemmas 2.2, 2.3, 4.1 and 4.2, we obtain that
∑

1≤i≤q
νi − (q − n + 1)ν

is subharmonic in 2D. So
∑

1≤i≤q
νi − (q − n+ 1)ν is also subharmonic in 2Dε(= 2D ∩ Ωε).

Fix δ, ε > 0 with 0 < δ < ε2 and a nonnegative smooth function χ in Dε such that

χ = 1 in Dε
δ = (1 − δ)D ∩ Dε−δ ∩ {|z| > δ} and suppχ is a compact subset in Dε. Since∑

1≤i≤q
νi − (q − n+ 1)ν is subharmonic, it implies that for k large enough, we get

(q− n+ 1)

∫
χ4 (u ◦ λk) ≤

∑∫
χ4 (ui ◦ λk) + εr2

k, where integration is taken on Dε.

Hence (q − n + 1)4 ν(rkDε
δ) ≤ 1

d

∑
nrkDε(rk, Di, f) + εr2

k, where rkDε = rkD ∩ Ωε and

nrkDε(rk, Di, f) is the number of zeros of Qi(f̃) in the domain rkDε, counting multiplic-

ity. Moreover, since the holomorphic curve f is Brody, we deduce that 4ν(rkDε) ≤
4ν(rkDε

δ) + δO(r2
k). Thus, we have

lim
k→+∞

1

r2
k

[
(q − n+ 1)4 u(Dε

rk
)−

∑
4ui(Dε

rk
)
]
≤ 0.

This yields that the assertion (5) holds. Therefore, we get

(q − n+ 1)4 ν(rkDε) ≤ 1

d

∑
nrkDε(rk, Di, f) + o(r2

k).

Taking integration of two hand sides, we deduce that (4) holds. This completes the proof

of Theorem 1.7.
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