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ABSTRACT. The purpose of this article is to prove that there exists a real
smooth pseudoconvex hypersurface germ (M, p) of D’Angelo infinite type in
C™*1 such that it does not admit any (singular) holomorphic curve in C**1!
tangent to M at p to infinite order.

1. INTRODUCTION

Let (M, p) be a smooth real hypersurface germ at p in C"*! and let r be a local
defining function for M near p. Suppose that (M, p) is of D’Angelo infinite type, i.e.,
there exists a sequence of nonconstant holomorphic curves 7, : (C,0) — (C**1, p)

v(r o Ym)

such that — 400 as m — oo, where v(f) denotes the vanishing order of

fat0. Itis nz‘:{lral to ask whether there exists a nonconstant holomorphic curve
v:(C,0) — (C™*1,p) tangent to M at p to infinite order, i.e. v(ro~y) = +oo.

This question plays a crucial role in the regularity of -Neumann problems over
pseudoconvex domains (see [D’A82, Cat83, Cat84, Cat87, DK99], and the references
therein). The main results around this question are due to T. Bloom and I. Graham
[BGTT7], L. Lempert and J. P. D’Angelo [D’A93, Lem86], the first author and B.
Stensgnes [FS12], the first author, L. Lee and Y. Zhang [FLZ14], and K.-T. Kim
and the second author [KN15].

If (M, p) is real-analytic, it was shown that M contains a nontrivial holomorphic
curve v, passing through p (see [D’A93, Lem86, FS12]). For the case when (M, p)
is a smooth real hypersurface in C", the first author, L. Lee and Y. Zhang [FLZ14]
proved that there exists a formal complex curve in the hypersurface M through p.
Recently, in [KN15], K.-T. Kim and the second author proved that in general there
is no such a regular holomorphic curve. However, the hypersurface constructed in
[KN15] is not pseudoconvex.

In this paper, we ensure that this result still holds even for higher-dimensional
pseudoconvex hypersurfaces and for singular holomorphic curves. More precisely,
we prove the following theorem.

Theorem 1. Let n > 1. There exists a smooth pseudoconvex real hypersurface
germ (M,0) of D’Angelo infinite type in C**1 that does not admit any nonconstant
holomorphic curve v : (C,0) — (C"*1,0) tangent to M at 0 to infinite order.

Theorem 1 is a crucial consequence of the main result of this paper. In order
to state our main result, let us recall the notion of points of Bloom-Graham type.
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A point p € M C C""! is of Bloom-Graham type m (m is a positive integer or
+00) if m is the supremum of the orders of tangency of M and codimension one
complex submanifolds of C"*1 at p. It was proved in [BG77, Theorem 2.4] that a
point p € M is of Bloom-Graham type m if and only if p is of type m in the sense
of J. J. Kohn, defined in terms of iterated commutators of vector fields. We remark
here that for smooth real hypersurfaces in C2, D’ Angelo finite type, Bloom-Graham
finite type, and Kohn finite type are equivalent. For various notions of points of
finite type and their relationships to subelliptic estimates, we refer the reader to
[DK99] and the references therein.

Let (M, p) be a smooth real hypersurface germ at p in C**1. Suppose that (M, p)
is of Bloom-Graham infinite type. Then, (M, p) is also of D’Angelo infinite type
(see Lemma 5 in Section 3). As the above-mentioned notion of D’Angelo infinite
type, it is natural to ask whether there exists a nonconstant holomorphic curve
v : (C,0) — (C™*1 p) tangent to M at p to infinite order if (M,p) is of Bloom-
Graham infinite type. In [BG77, Counterexamples 2.14], T. Bloom and I. Graham
introduced a smooth real hypersurface germ (M, 0) of infinite type in C? that does
not admit any complex submanifold tangent to M at the origin to infinite order.

We note that the hypersurface given in [BG77] is again not pseudoconvex. In this
paper, we show that there exists a smooth pseudoconvex real hypersurface germ
(M, p) of Bloom-Graham infinite type in C"*! such that there is no any nonconstant
holomorphic curve in C**! tangent to M at p to infinite order. Namely, we prove
the following theorem as our main result.

Theorem 2. Letn > 1. There exists a smooth pseudoconvex real hypersurface germ
(M, 0) of Bloom-Graham infinite type in C"! that does not admit any nonconstant
holomorphic curve in C*t! tangent to M at 0 to infinite order.

The proof of Theorem 2 is split into several step. First, for an increasing sequence
of positive real numbers {a, }5°_;, we construct a C>°-smooth subharmonic function

o0
f on C such that its Taylor series at the origin is exactly . Re(a,,z™) (cf. Propo-

m=1
sition 1 in Section 2). Next, choose n suitable sequences of positive real numbers
{al ¥, ... {a?}_, and let fi,..., fn, be C*°-smooth subharmonic functions C

constructed as in Proposition 1 with respect to these sequences. Therefore, the
desired hypersurface M is defined by

M = {(z,w) € C""': Re(w) + fi(z1) + -+ + fu(zn) =0}.
As a consequence of Theorem 2, we obtain the following corollary.

Corollary 1. Let n > 1. There exists a smooth pseudoconvex real hypersurface
germ (M,0) of Bloom-Graham infinite type in C*"*! that does not admit any n-
dimensional complex submanifold tangent to M at 0 to infinite order.

2. CONSTRUCTION OF A C°°-SMOOTH SUBHARMONIC FUNCTION

This section is devoted to proving Theorem 1. To do this, we need the following
proposition.

Proposition 1. Let {a,,}50_; be an increasing sequence of positive real numbers.
Then, there exists a C*°-smooth subharmonic function f on C satisfying that its

oo
Taylor series at the origin is exactly Y, Re(amz™).
m=1



A NOTE ON PSEUDOCONVEX HYPERSURFACES OF INFINITE TYPE 3

In order to give a proof of Proposition 1, we need following lemmas. First of all,
denote by x a nonnegative C*°-smooth cut-off function on R such that

1 itt<1/4
t) =
x(t) {o it 1.

Let {a,, }2°_;be a given increasing sequence of positive real numbers. Denote by
. . e 2/m
{em }2°_, an increasing sequence of positive real numbers such that e, > max{m, a," }

for every m = 1,2,.... Then, for each m = 1,2, ..., denote u,,(z) by setting
um(2) = x (€2,2*) Re (anz™) .

Then, we have the following estimates

0%uy,

020z

(2) = X (A12P) Re (az™) + e 2Px" (E41212) Re (anz") + me (4]]%) Re (™)
= 2, (m+ DY (]2P) Re (=) + eb 220" (]2P) Re (a2™)

for all z € C*. Thus, one has the following lemma

Lemma 1. For each m =1,2,..., the following assertions hold:

1 1
i) Aup(z) =0 for all z € C with |z] < 20 or |z > —

m

1 1
i) |Aum(2)] < M for all z € C with — < |z| < —, where the constant
€m 2¢ €

1s independent ofm
Next, let us denote by A a C*°-smooth convex function on R such that
a) A(z) =0if z < -2,
b) A(z) >0if —2 <z <2,
¢) A (x) is constant if x > 2.

Define vy, (z) := C 1m

A (log |z|? + 2log €, for every m =1,2,..., where C > 0

m
will be chosen later. Then, the function v,, is subharmonic on C for every m =
1,2,.... Moreover, we obtain the following lemma.

Lemma 2. There exists a positive constant C' > 0 such that

Avp(2) > C’M

€m

1 1
for every m =1,2,... and for all z € C with S <|z] < —.
€m

m

Proof. A direct computation shows that

v, mam " 2 0 |
s (2) = C = A (log 2] + 2log ) ’3 (osl=l)
+C %A/ (1Og |2;|2 + 2log €m) aaa (IOg 2] )
mam

— O M AY (1og|z|2+210g6m) \z|2

2
> ¢ DlmEm g (log |2|? + 21og €, )
em

m
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nan€2,

>

~
m
67?’7,

1 1
for all z € C with e < |z| < —, where the positive constant is independent of
€ €
m. The proof is comfﬁete. " ([l
It follows from Lemmas 1 and 2 that if C' is chosen fixed and large enough, then
U + Uy are all subharmonic. Furthermore, we have the following lemmas.

1

Lemma 3. If |z| < o then um(2) + vm(2) = Re(amz™) for everym =1,2,....

€m

Proof. Fix a positive integer m. Then, u,,(z) = Re (amnz™) and vy, (2) = 0 for all
1

z € C with |z| < ——. Therefore, the proof follows. O

€€m

o0
Lemma 4. The sums Y. Uy, + vy are uniformly convergent on compact sets in
m=1
any C* norm.

Proof. Let K be a fixed compact subset in C and fix a positive integer m. Since
supp(um,) C {z € C: |z] < 1/ey} for every m = 1,2, ..., a computation shows that

OFupm (2) Oy, (2)
SUp ="t | = sup |
ek |0zFoz— | T 20 |9zFazR
2%
A€
< Cp—m
€m

for all 0 < k < m and 0 < j < k, where C}, is a positive constant depending on
m/2

k. Notice that a,, < €,’" and €, > m for every m = 1,2,.... Therefore, by
S k

Weierstrass M-test the following series %’;@j are uniformly convergent on
m=1

any compact subsets of C for any nonnegative integers k, j.
On the other hand, since A(z) < Cy(|z| + 1) for all z € R, where C; > 0 is a

constant and supp(vy,) C {z € C: |z] > —1}, it follows that
e€n

O v, (2) v, (2)
SUp | =——r?t | = — 7
sk |02k0zk—I |21>1/(eem) 0zk0zZk—3
<6kmamefn
Em

forall 0 < k <mand 0 < j <k, where ék is a positive constant depending on

k and K. Note that a,, < e%/Q and €, > m for every m = 1,2,.... Hence, by
oS k
Weierstrass M-test the following series > 32,:67"21,22 are also uniformly convergent
m=1

on any compact subsets of C for any nonnegative integers k, j.
Altogether, the proof is now complete. O

The following corollary immediately follows from Lemma 4.

[ee]
Corollary 2. > w4 vy, is a C* function and any derivative at 0 is the sum of

m=
the corresponding derivatives of the U, + Uy,.
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&)

Proof of Proposition 1. Define f(z) = Y um(2)+vm(2). Then, f is a C*>°-smooth
m=1

subharmonic function on C. Moreover, by Lemma 3 and Corollary 2, the Taylor

o0
series of f at the origin is exactly Y. Re(amz™). O

m=1
3. PSEUDOCONVEX HYPERSURFACE OF BLOOM-GRAHAM INFINITE TYPE
In this section, we shall give proofs of Theorem 2, Theorem 1, and Corollary 1.

Proof of Theorem 2. Let {al }2°_, ... {a}%°_, be n sequences of positive real
numbers satisfying:

(i) al, >2m™ form =1,2,..;

.. 1 2 2

@) a /(S5 o) 2 e A /(S0 @+ STl ) > e form =

1,2,. ..
Denote by {efn}frle, 1 < k < n, n sequences of positive real numbers satisfying
ek > (ak)m 1 <k<n,and e} <--- <€
For each k = 1,...,n, let fi be a C*°-smooth subharmonic function on C con-

structed in the proof of Proposition 1 for a pair of sequences {ak yo°_, and {eF }>o_,

That is, the Taylor series at the origin of fj is Z Re ( m) k=1,2,....n

We now define a hypersurface germ M at p = 0 by setting
M= { z,w) € crtl. plz,w) :=Re(w) + fi(z1) + -+ fu(zn) = O} .

Since fi,1 < k < n, are subharmonic on C, M is pseudoconvex. Moreover, (M, 0)
is of infinite type in the sense of Bloom-Graham.

Indeed, for each m = 1,2, ..., consider an n-dimensional complex submanifold
X, in C**! defined by

m
Xm = {(z,w) eCrtl: wz—Za,lng—--~—Zakzn,|zJ| < 1<] <n}
k=1

Then p |x,, (z,w) = o(]z1]™) + -+ + o(|zn|™) Vanlshes to order > m at p = 0.
Consequently, X, is tangent to M at 0 to order > m. This yields that M is of
infinite type in the sense of Bloom-Graham at p = 0.

We now prove that there does not exist a nonconstant holomorphic curve v, :=
(h1,..., hn;g) : (C,0) — (C™1,0), where g, h;,1 < j < n, are holomorphic func-
tions on a neighborhood of the origin in C, such that v(p o v ) = +00, that is,

poYeo(t) = Re(g(t)) + fi(ha(t)) + -+ + fu(hn(t))) = o(t™). (1)
Suppose otherwise that there exists such a holomorphic curve. Without loss of
generality, we may assume that g,h;,1 < j < n, are all holomorphic on the unit
disk A:={z € C: |z] < 1}.

We now consider the following cases
Case 1. h; =0 for 1 < j < n. In this case we have f;(h;(t)) =0for 1 <j < n.
Therefore, it follows from (1) that

Re(g(t)) = o(t™).
This implies that g = 0, which is impossible.
Case 2. g =0. Then, (1) becomes

Ji(ha (1)) 4+ + fu(hn(t))) = o(t™). (2)
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Expanding hq, ..., h, into the Taylor series at ¢ = 0, we obtain

oo
hi(t) =Y adt™, o), €C, 1<j<n.
m=1
Hence, by (2) one must have
ajoq + -+ +ajaf = 0;

a10p + -+ +ajay +ay(e)® + - +az(af)’ = 0;

k
Za}n Z O‘il"'a}zm“""‘k (3)

m=1 ny+-+nm,=k

N1, Mm 21

k
+ am anl "'Oé”m _O’
m=1

Ry =k
ni,..,Mm>1

Since hj,1 < j < n, are all holomorphic on the unit disk A, without loss of
generality we can assume that |af,| < 1 for every m > 1 and 1 < j < n. Moreover,
without loss of generality, we may assume that h, #Z 0 and af = 1. Therefore, one
has

J o...q) k
E ol ap, | <k

ni+-+nm==k
N1y, >1

for every k > 1 and 1 < j < n. Hence, (3) yields that

k—1 n—1 k
laf| < k* Zaﬁl—l—ZZafn , k> 1
m=1 j=1m=1

This contradicts the condition (ii).
Case 3. g #0,h; #0 for some j € {1,2,...,n}. Then, (1) becomes

Re(g(t)) + f1(h1(t)) + - 4 fu(hn(t))) = o(t™).
Expanding g, h, ..., h, into the Taylor series at ¢ = 0, we have

oo
hi(t) =Y alt™, o, €C, 1<j<m

m=1
oo
g(t) = Z Ymt™, Ym € C.
m=1
Hence, by (1) one must have

’yl+a}a}+---+a’fa?:0;

Yo 4 ajay + - 4 atad + az(a})’ + -+ ah(af)? = 0;
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k
’yzﬁ—Za}n Z a}“-~a,11m+~~+ (4)

m=1 ni+-4n, =k
NYyeeeym > 1

k

n n n — .

+ E an, E o ay = 0;
m=1

T

N1y, m >1

Since g, hj,1 < j < n, are all holomorphic on the unit disk A, without loss of
generality we can assume that |af | < 1,|y,| < 1 for every m > 1 and 1 < j < n.
Moreover, without loss of generality, we may assume that h, # 0 and of = 1.

Therefore, one has

E Jo.qd k
anl anwz Sk

ni+-+nm==k
N1,y Mm >1

for every k > 1 and 1 < j < n. Hence, (4) yields that

k

k—1 n—1
la}| < k¥ Za:}l—ﬁ—ZZafn +1, k> 1
m=1

j=1m=1

This again contradicts the condition (i) and (ii).
Altogether, the proof is complete. O

Proof of Corollary 1. Let M be the smooth pseudoconvex real hypersurface given
in the proof of Theorem 2. Then M is of Bloom-Graham infinite type at p = 0
and moreover it does not admit any nonconstant holomorphic curve tangent to M
at p = 0 to infinite order. We shall show that M does also not admit any complex
submanifold X, of codimension one in C**! tangent to M at 0 to infinite order.
That is, p |x_, vanishes to infinite order at p = 0.

Indeed, suppose otherwise. Then, p | XooN{za=---—2,—0} Vanishes to infinite order
at p = 0. Note that Xo, N {22 = -+ = z, = 0} is locally represented as the graph
of a holomorphic curve. Therefore, there exists a nonconstant holomorphic curve
Yoo ¢ (C,0) — (C™FL,0) tangent to M at 0 to infinite order, which is a contradiction.
Hence, this completes the proof. O

In order to give a proof of Theorem 1, we need the following lemma.

Lemma 5. Let n > 1. If (M,p) is a smooth real hypersurface germ of Bloom-
Graham infinite type in C" 1, then (M, p) is of D’Angelo infinite type.

Proof. Suppose that (M, p) is a smooth real hypersurface germ of Bloom-Graham
infinite type in C**! and let r be a local defining function for M near p. By
definition, it follows that there exists a sequence {X,,}5°_; of codimension-one
complex submanifolds of C**! such that p € X,,, and

ordp(r |x,.) >m

for every m=1,2,....
For each m = 1,2,..., choose a regular holomorphic curve v, : A = {z €
C: |z| <1} = X,,, € C*! such that p = v,,,(0) and vo(V,m) = 1. Then, vo(rovy,,) >
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ordy(r |x,,) > m. This yields that the D’Angelo type of M at p equals +oc.
Therefore, the proof is complete. ([

Proof of Theorem 1. Let M be the smooth pseudoconvex real hypersurface given
in the proof of Theorem 2. Then M is of Bloom-Graham infinite type at p = 0. By
Lemma 5, M is of D’Angelo infinite type at p = 0. Hence, the proof follows from
Theorem 2. ]

Remark 1. Let X be a variety in C™ defined by fi1(z1) + -+ + fn(zn) = 0, where
fi,1 < j < n, given in the proof of Theorem 2. Following the proof of Theorem
2, we conclude that X does not admit any nonconstant holomorphic curve v :
(C,0) — (C™,0) with convergent Taylor series tangent to X at 0 to infinite order.

Moreover, let X be a formal variety in C" defined by f1(z1)+- - -+ fn(2) = 0, where
fj,1 < j < n, respectively, are the (divergent) Taylor series of smooth harmonic
functions f;,1 < j < n, given in the proof of Theorem 2. Following the proof of

Theorem 2, we also conclude that X does not contain any nonconstant holomorphic
curve v : (C,0) — (C™,0) with convergent Taylor series.
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