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Abstract. Let I = I(G) be the edge ideal of a graph G. We give various general upper
bounds for the regularity function reg Is, for s ≥ 1, addressing a conjecture made by the
authors and Alilooee. When G is a gap-free graph and locally of regularity 2, we show that
reg Is = 2s for all s ≥ 2. This is a slightly weaker version of a conjecture of Nevo and Peeva.
Our method is to investigate the regularity function reg Is, for s ≥ 1, via local information
of I.

1. Introduction

During the last few decades, studying the regularity of powers of homogeneous ideals has
evolved to be a central research topic in algebraic geometry and commutative algebra. This
research program began with a celebrated theorem, proved independently by Cutkosky-
Herzog-Trung [9] and Kodiyalam [25], which stated that for a homogeneous ideal I in a
standard graded algebra over a field, the regularity function reg Is is asymptotically a lin-
ear function (see also [3, 34]). Although despite much effort from many researchers, this
asymptotic linear function is far from being well understood. In this paper, we investigate
this regularity function for edge ideals of graphs. We shall explore several classes of graphs
for which this regularity function can be explicitly described or bounded in terms of combi-
natorial data of the graphs. This problem has been studied recently by many authors (cf.
[1, 2, 4, 5, 6, 12, 13, 21, 22, 23, 24, 28, 31]).

Our initial motivation for this paper is the general philosophy that global conclusions
often could be derived from local information. Particularly, local conditions on an edge ideal
I (i.e., conditions on reg(I : x), for x ∈ V (G)) should give a global understanding of the
function reg Is, for s ≥ 1. Our motivation furthermore comes from the following conjectures
(see [5, 29, 30]), which provide a general upper bound for the regularity function of edge
ideals, and describe a special class of edge ideals whose powers (at least 2) all have linear
resolutions.

Conjecture 1.1. Let G be a simple graph with edge ideal I = I(G).

(1) (Alilooee-Banerjee-Beyarslan-Hà) For any s ≥ 1, we have

reg Is ≤ 2s+ reg I − 2.

(2) (Nevo-Peeva) Suppose that G is gap-free and reg I = 3. Then, for all s ≥ 2, we have

reg Is = 2s.
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We shall use the local-global principle to investigate Conjecture 1.1. We shall see that
at times it suffices to consider reg(I : x) for a specific vertex x ∈ V (G), while at times it
requires information of reg(I : x) for all x ∈ V (G), to get meaningful statements for the
regularity function reg Is, for s ≥ 1. More specifically, we shall:

(1) Establish a weaker general upper bound than that of Conjecture 1.1.(1);
(2) Prove Conjecture 1.1.(1) for the class of vertex-decomposable graphs;
(3) Give a slightly weaker version of Conjecture 1.1.(1) for gap-free graphs; and
(4) Establish a slightly weaker version of Conjecture 1.1.(2).

Conjecture 1.1.(1) was particularly of interest when it is coupled with the general lower
bound given in [6]. This general lower bound showed that for any graph G with induced
matching number ν(G) and any s ≥ 1, we have

reg I(G)s ≥ 2s+ ν(G)− 1. (1.1)

Our first main result provides a weaker general upper bound than that of Conjecture 1.1.(1).
The motivation for this result comes from an upper bound for the regularity of I(G) given
by Adam Van Tuyl and the last author, namely reg I(G) ≤ β(G) + 1, where β(G) denotes
the matching number of G (see [16]). We extend this upper bound to get a general upper
bound for the regularity of all powers of I(G).

Theorem 3.4. Let G be a graph with edge ideal I = I(G), and let β(G) be its matching
number. Then, for all s ≥ 1, we have

reg Is ≤ 2s+ β(G)− 1.

As a consequence of Theorem 3.4, for the class of Cameron-Walker graphs, where ν(G) =
β(G), we have

reg Is = 2s+ ν(G)− 1 ∀ s ≥ 1.

Our next main result settles Conjecture 1.1.(1) affirmatively for vertex-decomposable
graphs and, as a consequence, recovers a recent result of Jayanthan and Selvaraja [23] (see
Corollary 3.9) which computes reg I(G)s, for all s ≥ 1, when G is a sequentially Cohen-
Macaulay bipartite graph. For gap-free graphs, we also prove a slightly weaker statement,
making use of the local-global principle. A graph G is said to be locally of regularity at most
r − 1 if reg(I(G) : x) ≤ r − 1 for all vertex x in G. Note that, by [8, Proposition 4.9], if G
is locally of regularity at most r − 1 then reg I(G) ≤ r. Our next theorems are stated as
follows.

Theorems 3.7 and 4.2. Let G be a simple graph with edge ideal I = I(G).

(1) Suppose that G is vertex-decomposable. Then for any s ≥ 1, we have

reg Is ≤ 2s+ reg I − 2.

(2) Suppose that G is gap-free and locally of regularity at most r − 1, for some r ≥ 2.
Then, for any s ≥ 1, we have

reg Is ≤ 2s+ r − 2.
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Theorem 3.7 gives a particularly nice application to the class of chordal graphs. This class
of graphs is of interest partly due to the fact that they (or more precisely, their complements)
characterize edge ideals with linear resolutions.

Corollary 3.8. Let G be a chordal graph with edge ideal I = I(G). Let ν(G) denote the
induced matching number of G. Then, for all s ∈ N, we have

reg Is = 2s+ ν(G)− 1.

It is an easy observation that if I(G)s has a linear resolution for some s ≥ 1 then G
must be gap-free. Conjecture 1.1.(2) serves as a converse statement to this observation, and
has remained intractable. By applying the local-global principle, we prove a slightly weaker
statement, in which the condition reg I = 3 is replaced by the condition that G is locally
linear (i.e., locally of regularity at most 2). Our main result toward Conjecture 1.1.(2) is
stated as follows.

Theorem 4.5. Let G be a simple graph with edge ideal I = I(G). Suppose that G is
gap-free and locally linear. Then for all s ≥ 2, we have

reg Is = 2s.

As a consequence of Theorem 4.5, we quickly recover a result of Banerjee, which showed
that if G is gap-free and cricket-free then I(G)s has a linear resolution for all s ≥ 2 (see
Corollary 4.6).

We end the paper by exhibiting an evidence for Conjecture 1.1.(1) at the first nontrivial
value of s, i.e., s = 2, for all graphs.

Theorem 5.1. Let G be a graph with edge ideal I = I(G). Suppose that G is locally of
regularity at most r − 1. Then, for any edge e ∈ E(G), reg(I2 : e) ≤ r. Particularly, this
implies that reg(I2) ≤ r + 2.

Our paper is structured as follows. In the next section we give necessary notation and
terminology. The reader who is familiar with previous work in this research area may want to
proceed directly to Section 3. In Section 3, we discuss general upper bound for the regularity
function, aiming toward Conjecture 1.1.(1). Theorems 3.4 and 3.7 are proved in this section.
In Section 4, we focus further on gap-free graphs, investigating both Conjectures 1.1.(1) and
1.1.(2) using the local-global principle. Theorems 4.2 and 4.5 are proved in this section. We
end the paper with Section 5, proving Theorem 5.1 and discussing briefly how an effective
bound on the regularity of I(G)2 may give us information on the regularity of the second
symbolic power I(G)(2). This gives a glimpse into future work on the regularity function of
symbolic powers of edge ideals.

Acknowledgement. Part of this work was done while the first named and the last named
authors were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM).
We would like to express our gratitude toward VIASM for its support and hospitality.
The last named author is partially supported by Simons Foundation (grant #279786) and
Louisiana Board of Regents (grant #LEQSF(2017-19)-ENH-TR-25).
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2. Preliminaries

In this section, we collect notations and terminology used in the paper. For unexplained
notions, we refer the reader to standard texts [7, 11, 18, 27, 32, 36].

Graph Theory. Throughout the paper, G shall denote a finite simple graph with vertex
set V (G) and edge set E(G). A subgraph G′ of G is called induced if for any two vertices
u, v in G′, uv ∈ E(G′) ⇔ uv ∈ E(G). For a subset W ⊆ V (G), we shall denote by GW the
induced subgraph of G over the vertices in W , and denote by G−W the induced subgraph
of G on V (G) \W . When W = {w} consists of a single vertex, we also write G − w for
G − {w}. The complement of a graph G, denoted by Gc, is the graph on the same vertex
set V (G) in which uv ∈ E(Gc)⇔ uv 6∈ E(G).

Definition 2.1. Let G be a graph.

(1) A walk in G is a sequence of (not necessarily distinct) vertices x1, x2, . . . , xn such
that xixi+1 is an edge for all i = 1, 2, . . . , n. A circuit is a closed walk (i.e., when
x1 ≡ xn).

(2) A path in G is a walk whose vertices are distinct (except possibly the first and the
last vertices).

(3) A cycle in G is a closed path. A cycle consisting of n distinct vertices is called an
n-cycle and often denoted by Cn.

(4) An anticycle is the complement of a cycle.

A graph in which there is no induced cycle of length greater than 3 is called a chordal
graph. A graph whose complement is chordal is called a co-chordal graph.

Definition 2.2. Let G be a graph.

(1) A matching in G is a collection of disjoint edges. The matching number of G, denoted
by β(G) is the maximum size of a matching in G.

(2) An induced matching in G is a matching C such that the induced subgraph of G
over the vertices in C does not contain any edge other than those already in C. The
induced matching number of G, denoted by ν(G), is the maximum size of an induced
matching in G.

Definition 2.3. Let G be a graph.

(1) Two disjoint edges uv and xy are said to form a gap in G if G does not have an edge
with one endpoint in {u, v} and the other in {x, y}.

(2) If G has no gaps then G is called gap-free. Equivalently, G is gap-free if and only if
ν(G) = 1 (i.e., Gc contains no induced C4).

For any integer n, Kn denotes the complete graph over n vertices (i.e., there is an edge
connecting any pair of vertices). For any pair of integers m and n, Km,n denotes the complete
bipartite graph; that is, a graph with a bipartition (U, V ) of the vertices such that |U | =
m, |V | = n and E(Km,n) = {uv | u ∈ U, v ∈ V }.

Definition 2.4.
4



(1) A graph isomorphic to K1,3 is called a claw. A graph without any induced claw is
called a claw-free graph.

(2) A graph isomorphic to the graph with vertex set {w1, w2, w3, w4,
w5} and edge set {w1w3, w2w3, w3w4, w3w5, w4w5} is called a cricket. A graph without
any induced cricket is called a cricket-free graph.

Observation 2.5. A claw-free graph is cricket-free.

Notation 2.6. Let G be a graph, let u, v ∈ V (G), and let e = xy ∈ E(G).

(1) The set of vertices incident to u, the neighborhood of u, is denoted by NG(u). Set
NG[u] = NG(u) ∪ {u}.

(2) The set of vertices incident to an endpoint of e, the neighborhood of e, is denoted by
NG(e). Set NG[e] = NG(e) ∪ {x, y}.

(3) The degree of u is degG(u) =
∣∣NG(u)

∣∣. An edge is called a leaf or a whisker if any of
its vertices has degree exactly 1.

(4) The distance between u and v, denoted by d(u, v), is the fewest number of edges that
must be traversed to travel from u to v in G.

We can naturally extend these notions to get NG(W ), NG[W ], NG(E) and NG[E ] for a
subset of the vertices W ⊆ V (G) or a subset of the edges E ⊆ E(G).

Definition 2.7. Let G be a graph.

(1) A collection W of the vertices in G is called an independent set if there is no edge
connecting two vertices in W .

(2) The independent complex of G, denoted by ∆(G), is the simplicial complex whose
faces are independent sets of G.

Let ∆ be a simplicial complex, and let σ ∈ ∆. The deletion of σ in ∆, denoted by del∆(σ),
is the simplicial complex obtained by removing σ and all faces containing σ from ∆. The
link of σ in ∆, denoted by link∆(σ), is the simplicial complex whose faces are

{F ∈ ∆ | F ∩ σ = ∅, σ ∪ F ∈ ∆}.

Definition 2.8. A simplicial complex ∆ is recursively defined to be vertex-decomposable if
either:

(i) ∆ is a simplex; or
(ii) there is a vertex v in ∆ such that both link∆(v) and del∆(v) are vertex decomposable,

and all facets of del∆(v) are facets of ∆.

A vertex satisfying condition (2) is called a shedding vertex, and the recursive choice of
shedding vertices is called a shedding order of ∆.

A graph G is called vertex-decomposable if its independent complex ∆(G) is vertex-
decomposable.

Commutative Algebra. Let G be a simple graph over the vertices V (G) = {x1, . . . , xn}.
By abusing notation, we shall identify the vertices of G with the variables in a polynomial
ring S = k[x1, . . . , xn], where k is any infinite field. Particularly, we shall use uv to denote
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both the edge uv in G and the monomial uv in S (the choice would be obvious from the
context).

Definition 2.9. Let G be a graph over the vertices V (G) = {x1, . . . , xn}. The edge ideal of
G is defined to be

I(G) = 〈xy | xy ∈ E(G)〉 ⊆ S.

Castelnuovo-Mumford regularity is the invariant being investigated in this paper. We
shall give a definition most suitable for our context.

Definition 2.10. Let S be a standard graded polynomial ring over a field k. The regularity
of a finitely generated graded S module M , written as regM , is given by

reg(M) := max{j − i|Tori(M,k)j 6= 0}.

For a graph G, we shall use reg I(G) and regG interchangeably. The following simple
bound is often used without references.

Lemma 2.11 (See [15, Lemma 3.1]). Let G be a simple graph and let H be an induced
subgraph of G. Then

reg I(H) ≤ reg I(G).

Particularly, for any vertex v ∈ V (G), we have that reg I(G− v) ≤ reg I(G).

A standard use of short exact sequences yields the following result, which we shall also
often use.

Lemma 2.12. Let I ⊆ S be a monomial ideal, and let m be a monomial of degree d. Then

reg I ≤ max{reg(I : m) + d, reg(I,m)}.
Moreover, if m is a variable appearing in I, then reg I is equal to one of the right-hand-side
terms.

Remark 2.13. When I = I(G) and x is a vertex in G then (I, x) = I(G − x) + (x) and
(I : x) = I(G−NG[x]) + (y

∣∣ y ∈ NG[x]). Particularly, we have

reg(I, x) = reg I(G− x) and reg(I : x) = reg I(G−NG[x]).

We shall use these facts often in the paper without any further explanation.

Definition 2.14. Let r ∈ N. A graph G is said to be locally of regularity ≤ r if for every
vertex x ∈ V (G), we have reg(I(G) : x) ≤ r. A graph which is locally of regularity ≤ 2 is
called locally linear.

Auxiliary Results. We next recall a few results that are useful for our purpose.

We shall make use of the following characterization for edge ideals of graphs with linear
resolutions. This characterization was first given in topological language by Wegner [37] and
later, independently, by Lyubeznik [26] and Fröberg [14] in monomial ideals language.

Theorem 2.15 (See [14, Theorem 1]). Let G be a simple graph. Then reg I(G) = 2 if and
only if G is a co-chordal graph.
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In the study of powers of edge ideals, Banerjee developed the notion of even-connection
and gave an important inductive inequality in [4]. This inductive method has proved to be
quite powerful, which we shall make use of often.

Theorem 2.16. For any finite simple graph G and any s ≥ 1, let the set of minimal
monomial generators of I(G)s be {m1, ....,mk}, then

reg I(G)s+1 ≤ max{reg(I(G)s+1 : ml) + 2s, 1 ≤ l ≤ k, reg I(G)s}.

The ideal (I(G)s+1 : m) in Theorem 2.16 and its generators are understood via the
following notion of even-connection.

Definition 2.17. Let G = (V,E) be a graph. Two vertices u and v (u may be the same
as v) are said to be even-connected with respect to an s-fold product e1 · · · es where ei’s are
edges of G, not necessarily distinct, if there is a path p0p1 · · · p2k+1, k ≥ 1 in G such that:

(1) p0 = u, p2k+1 = v.
(2) For all 0 ≤ l ≤ k − 1, p2l+1p2l+2 = ei for some i.
(3) For all i,

∣∣{l ≥ 0 | p2l+1p2l+2 = ei}
∣∣ ≤ ∣∣{j | ej = ei}

∣∣.
(4) For all 0 ≤ r ≤ 2k, prpr+1 is an edge in G.

It turns out that (I(G)s+1 : m) is generated by monomials in degree 2.

Theorem 2.18 ([4, Theorem 6.1 and Theorem 6.7]). Let G be a graph with edge ideal
I = I(G), and let s ≥ 1 be an integer. Let m be a minimal generator of Is. Then (Is+1 : m)
is minimally generated by monomials of degree 2, and uv (u and v may be the same) is a
minimal generator of (Is+1 : m) if and only if either {u, v} ∈ E(G) or u and v are even-
connected with respect to m.

3. General Upper Bounds for Regularity Function

The aim of this section is to settle Conjecture 1.1.(1) for vertex-decomposable graphs and
for locally linear graphs. In general, we shall also give weaker bounds than the conjectured
bound.

The heart of many studies on regularity of powers of edge ideals is to understand the
colon ideal J = I(G)s : e1 . . . es−1 in making use of Banerjee’s inductive method, Theorem
2.16. We start by examining a local property for J .

Lemma 3.1. Let G be a simple graph with edge ideal I = I(G) and let s ∈ N. Let
e1, . . . , es−1 ∈ E(G), J = Is : e1 . . . es−1, and let G′ be the graph associated to the polar-
ization of J . Let w ∈ V (G).

(1) If e1 is a leaf of G then J = Is−1 : e2 . . . es−1.
(2) Suppose that w 6∈ NG[{e1, . . . , es−1}]. Then

J : w = I(G−NG[w])s : e1 . . . es−1 + (u
∣∣ u ∈ NG[w]).

(3) Suppose that w ∈ NG[e1]. Then

J : w = (I(G−NG′ [w])t : f1 . . . ft−1) + (u
∣∣ u ∈ NG′(w))
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for some t ≤ s, and a subcollection {f1, . . . , ft−1} of {e2, . . . , es−1}. Moreover, in
this case, the graph associated to the polarization of I(G−NG′ [w])t : f1 . . . ft−1 is an
induced subgraph of that associated to the polarization of I(G−NG[w])t : f1 . . . ft−1.

Proof. (1) It follows from Theorem 2.18 that J is obtained by adding to I quadratic gen-
erators uv, where u and v are even-connected in G with respect to e1 . . . es−1. If e1 is an
isolated edge then clearly, by definition, the even-connected path between u and v does not
contain e1. Thus, uv ∈ Is−1 : e2 . . . es−1 and (1) is proved.

(2) It can be seen that if w 6∈ NG[{e1, . . . , es−1}] then w is not in any even-connected path
with respect to e1 . . . es−1. Thus, even-connected paths with respect to e1 . . . es−1 between
two vertices that are not in NG[w] are even-connected path with respect to e1 . . . es−1 in
G − NG[w]. Furthermore, any edge uv ∈ J , for which u ∈ NG[w] (similarly if v ∈ NG[w]),
would be divisible by u ∈ J : w and, thus, subsumed into the ideal (u

∣∣ u ∈ NG[w]).
Therefore, (2) follows.

u v

e1

w

ei1 eip

even-connected

even-connected

Figure 1. When w ∈ e1

u
w v

ei1 e1 eip

even-connected

even-connected

Figure 2. When w ∈ NG(e1)

(3) We first observe that for any subcollection {f1, . . . , ft−1} of {e1, . . . , es−1} (for some
t ≤ e), by the definition of even-connection, we have

I(G−NG′ [w])t : f1 . . . ft−1 ⊆ J ⊆ (J : w).

Moreover, for any u ∈ NG′(w), u and w are even-connected with respect to e1 . . . es−1, and
so uw ∈ J , i.e., u ∈ (J : w). Thus, we have the inclusion

(I(G−NG′ [w])t : f1 . . . ft−1) + (u
∣∣ u ∈ NG′(w)) ⊆ (J : w).

To prove the other inclusion, let us analyse the minimal generators of (J : w) more closely.
Consider any uv ∈ J , where u and v are even-connected with respect to e1 . . . es−1. If v ≡ w
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(similarly if u ≡ w) then u ∈ NG′(w). If u, v 6≡ w, but v ∈ NG′(w) (similarly if u ∈ NG′(w)),
then uv is subsumed in the ideal (u

∣∣ u ∈ NG′(w)).

Suppose now that u, v 6∈ NG′ [w]. Then u, v ∈ G−NG′ [w], which are even-connected with
respect to e1 . . . es−1. Observe that if the even-connected path between u and v contains e1

then, by considering a subpath of this path, either u and w or v and w are even-connected
with respect to e1 . . . es−1 (see Figures 1 and 2). That is, either u or v is in NG′(w), and so
uv is again subsumed in the ideal (u

∣∣ u ∈ NG′(w)). Therefore, we may assume that u and v
are even-connected with respect to a subcollection {f1, . . . , ft−1} of {e2, . . . , es−1}. That is,
uv ∈ I(G−NG′ [w])t : f1 . . . ft−1.

u v

fj

w′

w

even-connected

even-connected

even-connected

Figure 3. When an even-connected path u — v contains w′ ∈ NG′ [w]

To establish the last statement, consider any two vertices u and v which are even-connected
in G − NG[w] with respect to f1 . . . ft−1. If the even-connected path between u and v does
not contain any vertex in NG′ [w] \ NG[w] then u and v are even-connected in G − NG′ [w].
If the even-connected between u and v contain a vertex w′ ∈ NG′ [w] \NG[w] (see Figure 3)
then, by combining with the even-connected path from w to w′, either u and w or v and w
are even-connected in G′. That is, either u or v is already in NG′ [w] (or equivalently, not in
G−NG′ [w]). Hence, the graph associated to the polarization of I(G−NG′ [w])t : f1 . . . ft−1 is
an induced subgraph of that associated to the polarization of I(G−NG[w])t : f1 . . . ft−1. �

By understanding local properties of J in Lemma 3.1, we are able to give a general upper
bound for the regularity function based on well chosen numerical functions on families of
graphs. Specific interesting general bounds are then obtained by picking these numerical
functions suitably.

Definition 3.2. A collection F of simple graphs is a hierarchy if for any nonempty graph
G ∈ F , there exists a vertex u ∈ V (G), such that both G− u and G−NG[u] are in F .

Theorem 3.3. Let F be a hierarchy family of simple graphs. Let f : F −→ N be a function
satisfying the following properties:

(1) for any G ∈ F , reg I(G) ≤ f(G); and
(2) for any G ∈ F not the empty graph, there exists a vertex w ∈ V (G) such that

(a) G− w and G−NG[w] are both in F ; and
(b) f(G− w) ≤ f(G) and f(G−NG[w]) ≤ max{f(G)− 1, 2}.
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Then, for any G ∈ F and any s ≥ 1, we have

reg I(G)s ≤ 2s+ f(G)− 2.

Proof. Fix a graph G ∈ F and let I = I(G). If f(G) ≤ 2 then the result is immediate from
[19]. Assume that f(G) ≥ 3. Then the condition on f(G − NG[w]) reads f(G − NG[w]) ≤
f(G)− 1.

By Theorem 2.16 and the hypothesis that reg I(G) ≤ f(G), it suffices to show that for
any collection of edges e1, . . . , es−1 in G (not necessarily distinct), we have

reg(Is : e1 . . . es−1) ≤ f(G). (3.1)

We shall prove (3.1) by induction on s and on the size of the graph G. Let J = Is : e1 . . . es−1.
The statement is trivial if s = 1 (whence, J = I) or ifG is the empty graph (whence, J = (0)).
Suppose that s ≥ 2 and G is not the empty graph.

By the hypothesis, there exists a vertex w ∈ V (G) such that G − w,G − NG[w] ∈ F ,
f(G− w) ≤ f(G) and f(G−NG[w]) ≤ f(G)− 1. Utilizing Lemma 2.12 with J and w, it is
enough to establish the following inequalities:

reg(J, w) ≤ f(G) and reg(J : w) ≤ f(G)− 1.

Observe that (J, w) = (I(G − w)s : e1 . . . es−1) + (w). Thus, reg(J, w) = reg(I(G − w)s :
e1 . . . es−1). Since G− w ∈ F , by induction on the size of the graphs, we have

reg(J, w) ≤ f(G− w) ≤ f(G).

Let us now focus on reg(J : w). If w 6∈ NG[{e1, . . . , es−1}] then by Lemma 3.1, we have

J : w = (I(G−NG[w])s : e1 . . . es−1) + (u
∣∣ u ∈ NG[w]).

Thus, since G−NG[w] ∈ F , by induction on the size of the graphs, we have

reg(J : w) = reg(I(G−NG[w])s : e1 . . . es−1) ≤ f(G−NG[w]) ≤ f(G)− 1.

If, on the other hand, w ∈ NG[{e1, . . . , es−1}] then, without loss of generality, we may
assume that w ∈ NG[e1]. Let G′ and {f1, . . . , ft−1} (for some t ≤ s) be as in Lemma
3.1. It follows from Lemma 3.1 that the graph associated to the polarization of I(G −
NG′ [w])t : f1 . . . ft−1 is an induced subgraph of that associated to the polarization of I(G−
NG[w])t : f1 . . . ft−1. Thus, by Lemma 2.11 and the fact that polarization does not change
the regularity, we have

reg(J : w) = reg(I(G−NG′ [w])t : f1 . . . ft−1) ≤ reg(I(G−NG[w])t : f1 . . . ft−1).

Moreover, since G−NG[w] ∈ F , by induction on the size of the graphs, we again have

reg(J : w) ≤ reg(I(G−NG[w])t : f1 . . . ft−1) ≤ f(G−NG[w]) ≤ f(G)− 1.

The inequality (3.1) and, hence, the theorem are proved. �

By taking f(G) in Theorem 3.3 based on known bounds for reg I(G), given in [16, 17], in
terms of matching number and star packing of graphs, we obtain the following interesting
bounds for the regularity function.
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Theorem 3.4. Let G be a simple graph with edge ideal I = I(G). Let β(G) denote the
matching number of G. Then, for all s ≥ 1, we have

reg Is ≤ 2s+ β(G)− 1.

Proof. Let F be the family of all simple graphs. Then F clearly is a hierarchy. Let f(G) =
β(G) + 1 for all G ∈ F . It is easy to see that:

(1) reg I(G) ≤ f(G) by [16]; and
(2) if w is a vertex of degree at least 1 in G then clearly β(G − w) ≤ β(G), and we

can always add an edge incident to w to any matching of G−NG[w] to get a bigger
matching, and so f(G−NG[w]) ≤ f(G)− 1.

Hence, the statement follows from Theorem 3.3. �

A particular interesting application of Theorem 3.4 is for the class of Cameron-Walker
graphs introduced in [10]. These are graphs for which ν(G) = β(G). See [20] for a further
classification of Cameron-Walker graphs.

Corollary 3.5. Let G be a Cameron-Walker graph and let I = I(G) be its edge ideal. Then,
for all s ≥ 1, we have

reg Is = 2s+ ν(G)− 1.

Proof. The conclusion is an immediate consequence of Theorem 3.4 noting that ν(G) = β(G)
if G is a Cameron-Walker graph. �

For a graph G, let ζ(G) be the invariant defined in [17] by star packing in G. Noticing
that ζ(G) ≤ β(G), the following result gives a slightly better bound than that of Theorem
3.4.

Theorem 3.6. Let G be a simple graph with edge ideal I = I(G). Let ζ(G) be defined as in
[17]. Then for any s ≥ 1, we have

reg Is ≤ 2s+ ζ(G)− 1.

Proof. The proof goes in exactly the same way as that of Theorem 3.4 replacing β(G) by
ζ(G), and picking w to be the center of the last star in a maximal star packing of G, noting
that the bound reg I(G) ≤ ζ(G) + 1 was proved in [17, Theorem 1.6]. �

Theorem 3.3 also allows us to settle Conjecture 1.1.(1) for the class of vertex-decomposable
graphs.

Theorem 3.7. Let G be a vertex-decomposable graph with edge ideal I = I(G). Then, for
all s ≥ 1, we have

reg Is ≤ 2s+ reg I − 2.

Proof. Let F be the family of vertex-decomposable graphs. By definition, F is a hierarchy.
Define f : F −→ N by f(G) = reg I(G).

Consider any vertex-decomposable G ∈ F . If G is the empty graph then the conclusion
is vacuously true. Assume that G is not the empty graph. It follows from [17, Theorem
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1.5] that there exists a vertex w ∈ V (G) such that G − w and G − NG[w] are both vertex-
decomposable, and that reg I(G) = max{reg(I(G) : w) + 1, reg(I(G), w)}. In particular, we
have reg I(G) ≥ reg I(G−NG[w]) + 1. That is,

f(G−NG[w]) ≤ f(G)− 1.

Hence, f satisfies the conditions of Theorem 3.3, and the conclusion follows from that of
Theorem 3.3. �

The class of chordal graphs attracts significant interest in the study of regularity of edge
ideals and their powers. This is partly due to their nice combinatorial structures and the fact
that their complements characterize edge ideals with linear resolutions. As a consequence
of Theorem 3.7, we can explicitly compute the regularity function for edge ideals of chordal
graphs, addressing [5, Question 7.9].

Corollary 3.8. Let G be a chordal graph with edge ideal I = I(G). Let ν(G) denote the
induced matching number of G. Then, for all s ∈ N, we have

reg Is = 2s+ ν(G)− 1.

Proof. It is proved in [38] that chordal graphs are vertex-decomposable. Thus, by Theorem
3.7, for all s ≥ 1, we have reg Is ≤ 2s + reg I − 2. The exact formula is now obtained from
the general lower bound (1.1) and [16, Theorem 6.8], which shows that for a chordal graph
G, reg I(G) = ν(G) + 1. �

As a immediate consequence of Theorem 3.7, we also recover the main result of a recent
work of Jayanthan and Selvaraja [23].

Corollary 3.9. Let G be a sequentially Cohen-Macaulay bipartite graph with edge ideal
I = I(G). Let ν(G) denote the induced matching number of G. Then, for all s ≥ 1, we have

reg Is = 2s+ ν(G)− 1.

Proof. It is known from [35] that sequentially Cohen-Macaulay bipartite graphs are vertex-
decomposable. Thus, by Theorem 3.7, for all s ≥ 1, we have reg Is ≤ 2s + reg I − 2. The
conclusion now follows from the general lower bound (1.1) and the fact (see also [35]) that
for a sequentially Cohen-Macaulay bipartite graph G,

reg I(G) = ν(G) + 1.

�

Remark 3.10. While writing this paper, we were notified that Jayanthan and Selvaraja
also obtain the same results as our Theorems 3.6 and 3.7 in [24].

It is known, by the main theorem of [19], that if I(G) has a linear resolution then so does
I(G)s for any s ∈ N. Thus, the first nontrivial case of Conjecture 1.1.(1) is for those graphs
G such that G is locally linear and reg I(G) > 2. Recall that by [8, Proposition 4.9], in this
case, we necessarily have reg I(G) = 3. Theorem 3.3 allows us to settle Conjecture 1.1.(1)
for this class of graphs.
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Theorem 3.11. Let G be a graph with edge ideal I = I(G). Suppose that G is locally linear.
Then for all s ≥ 1, we have

reg Is ≤ 2s+ reg I − 2 ≤ 2s+ 1.

Proof. Let F be the family of locally linear graphs (including those whose edge ideals have
linear resolutions). Define f : F −→ N by f(G) = reg I(G) for all G ∈ F . By the definition
and Lemma 2.11, the edge ideal of any proper induced subgraph of G ∈ F has a linear
resolution. Thus, F is a hierarchy and f satisfies conditions of Theorem 3.3. The conclusion
now follows from that of Theorem 3.3. �

Example 3.12. Let G be a graph such that Gc is triangle-free (see, for example, Figure
4). It can be seen that for any x ∈ V (G), G − NG[x] is a complete graph (and, thus, is of
regularity 2). Therefore, G is a locally linear graph.

x1 x2 x3

x4 x5

x6

Figure 4. A graph whose complement is triangle-free

4. Regularity Function of Gap-free Graphs

In this section, we focus on gap-free graphs, investigating both Conjectures 1.1.(1) and
1.1.(2). We shall apply the local-global principle to get slightly weaker statements for these
conjectures for gap-free graphs.

We start with a stronger version of [4, Lemma 6.18]. The proof is almost the same as that
given in [4, Lemma 6.18]

Lemma 4.1. Let G be a gap-free graph with edge ideal I = I(G). Let e1, . . . , es−1 be a col-
lection of edges, let J = Is : e1 . . . es−1, and let G′ be the graph associated to the polarization
of J . Let W ⊆ V (G). Suppose that u = p0, . . . , p2k+1 = v is an even-connected path in G
with respect to e1 . . . es−1 satisfying:

(1) u, v 6∈ W ; and
(2) this path is of the longest possible length with respect to condition (1).

Then G′ − W − NG′ [u] is obtained by adding isolated vertices to an induced subgraph of
G−NG[u].
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Proof. By Theorem 2.18, uv ∈ G′−W . Consider any other edge u′v′ ∈ G′\G with u′, v′ 6∈ W .
Then, there is an even-connected path u′ = q0, . . . , q2l+1 = v′ in G with respect to e1 . . . es−1

for some 1 ≤ l ≤ k.

If there exist i and j such that p2i+1p2i+2 and q2j+1q2j+2 are the same edge in G then by
combining these two even-connected paths, either u′ or v′ will be even-connected to u. That
is, either u′ or v′ will become an isolated vertex in G′ −W − NG′ [u]. We may assume that
the two even-connected path between u, v and u′, v′ do not share any edge.

Consider p1p2 and q1q2. Since these two edges do not form a gap in G, they must be
connected. Let us now explore different possibilities for this connection.

If p1 ≡ q1 then u and v′ are even-connected with respect to e1 . . . es−1, and so v′ becomes
an isolated vertex in G′ −W −NG′ [u]. If p1 ≡ q2 (similarly for the case that p2 ≡ q1) then
u and u′ are even-connected with respect to e1 . . . es−1, and so u′ becomes an isolated vertex
in G′ −W −NG′ [u].

If p1q1 ∈ E(G) then combining the two even-connected paths between u, v and u′, v′ and
the edge p1q1, we get an even-connected path between v and v′ that is of length > k, a
contradiction. If p1q2 ∈ E(G) (similarly for the case that p2q1 ∈ E(G)) then by combining
the two even-connected paths between u, v and u′, v′ and the edge p1q2, we have an even
connected path between u′ and v that is of length > k, a contradiction.

Thus, in any case, either u′ or v′ will becomes an isolated vertex in G′−W −NG′ [u]. That
is, any edge in G′ \G will reduce to an isolated vertex in G′ −W −NG′ [u]. The statement
is proved. �

Our next main result establishes a slightly weaker version to Conjecture 1.1.(1) for gap-free
graphs.

Theorem 4.2. Let G be a graph with edge ideal I = I(G) and let r ≥ 3 be an integer.
Assume that G is gap-free and locally of regularity ≤ r − 1. Then, for all s ∈ N, we have

reg Is ≤ 2s+ r − 2.

Proof. By [8, Proposition 4.9], we have reg I ≤ r. By Theorem 2.16, it suffices to show that
for any collection of edges e1, . . . , es−1 (not necessarily distinct) in G, we have

reg(Is : e1 . . . es−1) ≤ r.

Let G′ be the graph associated to the polarization of J = Is : e1 . . . es−1. It follows from
Lemma 2.12 that, for any vertex x ∈ G′,

regG′ ≤ max{reg(G′ −NG′ [x]) + 1, reg(G′ − x)}. (4.1)

Thus, we shall show that reg(G′ − x) ≤ r and reg(G′ −NG′ [x]) ≤ r − 1.

Let u and v be even-connected in G with respect to e1 . . . es−1 such that the even-connected
path u = p0, . . . , p2k1+1 = v is of maximum possible length. By Lemma 4.1, G′ − NG′ [u] is
obtained by adding isolated vertices to an induced subgraph of G−NG[u]. Thus, by Lemma
2.11, we have reg(G′ −NG′ [u]) ≤ reg(G−NG[u]) ≤ r − 1.
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It remains to consider reg(G′ − u). Let u′ and v′ be even-connected in G with respect to
e1 . . . es−1 such that u′, v′ ∈ G′−u and there is an even-connected path u′ = q0, . . . , q2l+1 = v′

in G with respect to e1 . . . es−1 such that l is the maximum possible length. By using Lemma
4.1 again, we can deduce that reg(G′ − u − NG′ [u′]) ≤ reg(G − NG[u′]) ≤ r − 1. Thus, by
applying (4.1) to the graph G′ − u, it suffices to show that reg(G′ − {u, u′}) ≤ r.

We can continue in this fashion until all edges in G′ \ G are examined, i.e., we obtain a
collection W ⊆ V (G) such that G′ −W = G−W , and reduce the problem to showing that
reg(G′ −W ) = reg(G −W ) ≤ r. This is obviously true by Lemma 2.11 and the fact that
regG ≤ r. The theorem is proved. �

We shall now shift our attention to Conjecture 1.1.(2). We begin by an improved statement
of [8, Corollary 6.5].

Lemma 4.3. Let G be a gap-free and cricket-free graph. Then G is locally linear.

Proof. We may assume that G contains no isolated vertices. By Theorem 2.15, it suffices to
show that (G \ NG[x])c is chordal for any vertex x in G. Note that since G \ NG[x] is an
induced subgraph of G, it is gap-free and cannot have any induced anticycle of length 4.

Suppose that W = {w1, w2, . . . , wn} is such that G[W ] is an anticycle of length n ≥ 5 in
G \ NG[x]. Clearly, W ∩ NG[x] = ∅. Let y be a neighbor of x. Since G is gap-free, {x, y}
and {w1, w3} cannot form a gap. Thus, these edges must be connected in G. That is, either
{y, w1} or {y, w3} (or both) must be an edge in G.

Suppose that {y, w1} and {y, w3} are both edges in G. Then, by considering edges {x, y}
and {w2, wn} in G, either {y, w2} or {y, wn} must be an edge in G. If {y, w2} is an edge,
then the induced subgraph on {x, y, w1, w2, w3} is a cricket in G, a contradiction. Other-
wise, {y, wn} ∈ E(G). Since {x, y} and {w2, wn−1} cannot form a gap in G, we must have
{y, wn−1} ∈ E(G). Thus, the induced subgraph on {x, y, w1, wn−1, wn} is a cricket in G, a
contradiction.

If {y, w1} ∈ E(G) and {y, w3} 6∈ E(G) (similarly for the case {y, w1} 6∈ E(G) and
{y, w3} ∈ E(G)), then {y, wn} must be an edge in G; otherwise, {x, y} and {w3, wn} form
a gap in G. By considering {x, y} and {w2, wn−1}, either {y, w2} or {y, wn−1} must be
an edge in G. If {y, w2} ∈ E(G), then the induced subgraph on {x, y, w1, w2, wn} is a
cricket in G, a contradiction. Otherwise, {y, wn−1} ∈ E(G), and the induced subgraph
on {x, y, w1, wn−1, wn} is a cricket in G, a contradiction. �

Example 4.4. There are examples for locally linear gap-free graphs for which the regularity
could be either 2 or 3 (see Figure 5).

On the other hand, note that if G is not gap-free, then ν(G) ≥ 2 =⇒ reg I(G) ≥ 3.
Thus, if, in addition, I(G) is locally linear, then we have reg I(G) = 3 by [8, Proposition
4.9]. Figure 6 depicts such a graph.

We are now ready to state our main result toward Conjecture 1.1.(2). In this result, we
establish the conclusion of Conjecture 1.1.(2) replacing the condition that reg I(G) = 3 by
the condition that G is locally linear.
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x1

x2 x3

x4 x1

x2

x3

x4

x5

C4 C5

Figure 5. Locally linear gap-free graphs with regularity 2 and 3 (respectively)

x1

x2 x3 x4

x5

Figure 6. A graph that is not gap-free but locally linear with regularity 3

Theorem 4.5. If G is a graph with edge ideal I = I(G). Suppose that G is gap-free and
locally linear. Then, for all s ≥ 2, we have

reg Is = 2s.

Proof. Again, by Theorem 2.16, it suffices to show that for any collection of edges e1, . . . , es−1

(not necessarily distinct), we have

reg(Is : e1 . . . es−1) ≤ 2.

That is, the graph G′ associated to the ideal J = Is : e1 . . . es−1 is a co-chordal graph.

By [4, Lemma 6.14], G′ is also gap-free, and so G′ does not contain an anticycle of length
4. Suppose that W = {w1 . . . wn}, for n ≥ 5, is such that G′[W ] is an induced anticycle of
G′. It follows from [4, Lemma 6.15] that G[W ] is an induced anticycle of G.

Let e1 = ab. We shall consider different possibilities for the relative position of a and b
with respect W .

If a, b ∈ W , say a ≡ w1 and b ≡ wi (for i 6= 1), then since {w1, w2}, {w1, wn} 6∈ E(G′),
b 6= w2, wn. Consider the edges {a, b} and {w2, wn}. These do not form a gap (and a is
not connected to neither w2 nor wn), and so either {b, w2} ∈ E(G) or {b, wn} ∈ E(G). If
{b, w2} ∈ E(G) then w2 and w3 are even-connected with respect to e1 = ab, which implies
that {w2, w3} ∈ E(G′), a contradiction. If {b, wn} ∈ E(G) then wn−1 and wn are even-
connected with respect to e1 = ab, which implies that wn−1wn ∈ E(G′), also a contradiction.

If a ∈ W , say a = w1, and b 6∈ W (similar to the case where a 6∈ W and b ∈ W ) then by
considering the edges {a, b} and {w2, wn} again, the same arguments as above would lead to
a contradiction.

If a, b 6∈ W and either a or b is not connected to any vertices in W , then G′[W ] (being also
an anticycle in G) is an anticycle in either G−NG[a] or G−NG[b], which is a contradiction
to the local linearity of G.
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It remains to consider the case that a, b 6∈ W , and both a and b are connected to W .
Assume that aw1 ∈ E(G). Consider the pair of edges {a, b} and {w2, wn}. If either
{b, w2} ∈ E(G) or {b, wn} ∈ E(G) then, as before, we would have either {w2, w3} ∈ E(G)
or {wn−1, wn} ∈ E(G), which is a contradiction. Thus, we must have either {a, w2} ∈ E(G)
or {a, wn} ∈ E(G). Without loss of generality, we may assume that {a, w2} ∈ E(G). We
continue by considering the pair of edges {a, b} and {w3, wn}. A similar argument shows
that {a, w3} ∈ E(G). We can keep going in this fashion to get {a, wi} ∈ E(G) for all
i = 1, . . . , n − 2. Now, it can be seen that b cannot be connected to any of the wi without
creating an even-connection that gives {wi, wi+1} ∈ E(G), for some i, which is a contradic-
tion.

We have shown that such a collection of the vertices W cannot exists. That is, G′ is a
co-chordal graph. The theorem is proved. �

Theorem 4.5 immediately recovers the following result of Banerjee [4].

Corollary 4.6 ([4, Theorem 6.7]). Let G be a gap-free and cricket-free graph. Then, for any
s ≥ 2, we have

reg I(G)s = 2s.

Proof. The conclusion follows from Lemma 4.3 and Theorem 4.5. �

Example 4.7. Let 2K2 denote a gap and let K6 denote the complete graph on 6 vertices.
Let G = 2K2 + K6 be the join of these two graphs (the join of two graphs H and K is
obtained by taking the disjoint union of H and K and connecting each vertex in H with
every vertex in K). Then, it can be seen G is locally linear but not gap-free. Particularly, it
follows that reg I(G)s 6= 2s for all s ∈ N. This gives an example of a locally linear graph G
for which reg I(G)s 6= 2s for all s ∈ N.

5. Regularity of Second Powers of Edge Ideals

We end the paper with a flavor of Conjecture 1.1.(2) when s = 2. We also take a look at
the symbolic square of edge ideals.

Theorem 5.1. Let G be a graph with edge ideal I = I(G). Suppose that G is locally of
regularity at most r − 1. Then, for any edge e ∈ E(G), reg(I2 : e) ≤ r. Particularly, this
implies that reg(I2) ≤ r + 2.

Proof. The second statement follows from the first statement and Theorem 2.16. To prove
the first statement, we shall use induction on |V (G)|. Let J = I2 : e and let G′ be the graph
associated to J .

If there are no even-connected vertices in G with respect to e, then I2 : e = I, and the
conclusion follows from [8, Proposition 4.9].

If there are edges in G′ which are not initially in G, then these edges are of the form xy
where x ∈ N(a), y ∈ N(b) or xx′ where x ∈ N(a) ∩N(b) and x′ is a new whisker vertex.

Suppose that there exists at least one new edge of the form xy for x 6= y. Observe that
J : x = I : x + (u | u ∈ N(b)). Thus reg(J : x) ≤ reg(I : x) ≤ r − 1. Furthermore,
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(J, x) = I(G \ x)2 : e. Therefore, by induction on |V (G)|, we have reg(J, x) ≤ r. Hence, by
Lemma 2.12, we have reg J ≤ r.

Suppose that the only new edges are of the form xx′, where x′ is a new whisker vertex.
Observe that, in this case,

J : x = I : x+ (u | u ∈ N(a) ∪N(b)) + (u′ | u′ is a whisker in the new edges )

(J, x) = I(G \ x)2 : e

Thus, we also have reg(J : x) ≤ reg(I : x) ≤ r − 1 and reg(J, x) ≤ r by induction. Hence,
by Lemma 2.12 again, we have reg J ≤ r. This completes the proof. �

Symbolic powers in general are much harder to handle than ordinary powers. The symbolic
square of an edge ideal appears to be more tractable. We recall and rephrase a result from
[33].

Theorem 5.2 ([33, Corollary 3.12]). For any graph G,

I(G)(2) = I(G)2 + (xixjxk | {xi, xj, xk} forms a triangle in G).

The last result of our paper is stated as follows.

Theorem 5.3. Let G be a graph with edge ideal I = I(G). Suppose that G is locally of
regularity at most r − 1. Then reg(I(2)) ≤ r + 2.

Proof. We first note that, by Theorem 5.2, I(2) ⊆ I. Let E(G) = {e1, . . . , el} and, for
0 ≤ i ≤ l, define

Ji = (I(2) + e1 · · ·+ ei) : (ei+1) and Ki = (I(2) + e1 · · ·+ ei).

Observe that Kl = I, and for all i we have the following short exact sequence.

0 −→ R

Ji
(−2) −→ R

Ki

−→ R

Ki+1

−→ 0 (5.1)

This, particularly, implies that reg(I(2)) ≤ max
1≤i≤l−1

{reg(Ji) + 2, reg I}. It follows from

Theorem 5.2 that

Ji = I2 : ei+1 + (xixjxk : ei+1 | {xi, xj, xk} forms a triangle in G).

Note that if e is an edge in the triangle {xi, xj, xk}, then (xixjxk : e) is a variable. If e shares
a vertex with the triangle, then the colon ideal is generated by an edge and (xixjxk : e) ∈ I.
If e and {xi, xj, xk} have no common vertices, then (xixjxk : e) = xixjxk ∈ I. Then, by
Theorem 2.18 we have Ji = I2 : ei+1 + (variables) and hence, reg Ji ≤ reg(I2 : e). The
conclusion now follows from Theorem 5.1 and the use of [8, Proposition 4.9]. �
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[8] G. Caviglia, H. T. Hà, J. Herzog, M. Kummini, N.Terai, N. V. Trung, Depth and regularity modulo
a principal ideal. Preprint (2017), arXiv:1706.09675. 2, 12, 14, 15, 17, 18

[9] S.D. Cutkosky, J. Herzog, and N.V. Trung, Asymptotic behaviour of the Castelnuovo-Mumford reg-
ularity. Composito Mathematica, 118 (1999), 243-261. 1

[10] K. Cameron and T. Walker, The graphs with maximum induced matching and maximum matching
the same size. Discrete Math. 299 (2005), 49-55. 11

[11] D. Eisenbud, Commutative Algebra: with a View Toward Algebraic Geometry. Springer-Verlag, New
York, 1995. 4

[12] N. Erey, Powers of edge ideals with linear resolutions. Preprint (2017), arXiv:1703.01561. 1
[13] N. Erey, Powers of ideals associated to (C4, 2K2)-free graphs. Preprint (2017), arXiv:1711.08535. 1
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