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SUMMARY

This paper establishes a novel online fault detection and identification (FDI) strategy for a class of continuous
piecewise affine systems (PWA), namely bimodal and trimodal PWA systems. The main contributions with
respect to the state of the art are the recursive nature of the proposed scheme and the consideration of
parametric uncertainties in both partitions and in subsystems parameters. In order to handle this situation,
we recast the continuous PWA into its max-form representation and we exploit the recursive Newton-Gauss
algorithm on a suitable cost function to derive the adaptive laws to estimate online the unknown subsystem
parameters, the partitions and the loss in control authority for the PWA model. The effectiveness of the
proposed methodology is verified via simulations applied to the benchmark example of a wheeled mobile
robot. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the increased demand of reliability for control systems, much attention has been devoted by the
control community in fault detection techniques for complex systems [1, 2, 3, 4]. Piecewise affine
(PWA) systems constitute a special class of complex (in particular, hybrid) systems that has been
extensively studied in the literature in many application domains: production control systems [5],
robotics [6] and flight control systems [7], among others. A classical problem in the aforementioned
application domains is the detection and identification of faults which might appear in the form
of plant structural changes (usually associated to variations in the state matrix) or actuator faults
(usually associated to changes in the input matrix). In the classical (non-hybrid) setting, the fault
detection and identification (FDI) problem can be reformulated in terms of an estimation problem,
i.e. it is assumed that faults in the system are reflected in a change of the parameters of the system
model [8]. The situation with PWA systems is however more complex than classical estimation,
because an extra uncertainty might occur: i.e. the partitions describing the switching from one
mode to another might be uncertain or even change with time. Therefore, FDI of a PWA system
involves the estimation of both the parameters of the submodels and the regions (hyperplanes)
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2 N. MOUSTAKIS, B. ZHOU, T. LE QUANG, & S. BALDI

defining the partition of the state space. In other words, despite the more complex setting, also
the fault detection and identification for PWA systems can be, in principle, reformulated as a
parametric estimation problem. With reference to partitioning, two alternative assumptions can
be distinguished: the partition is assumed known and fixed a priori, or the partition is unknown
along with the unknown submodels. For the first case, estimation of the submodels can be carried
out using standard linear identification techniques, therefore, no particular challenge appears. For
the second case, both the subsystems and the partitions corresponding to each subsystem must be
estimated. This issue implies a classification problem where each data point must be associated to
the most suitable mode. Then, the regions are shaped to clusters of data where the strict relation
among data classification, parameter estimation and region estimation makes the fault detection
and identification problem hard to solve [9]. Despite the challenging task, there is a number of
approaches in the literature of PWA systems dealing with this problem: the authors in [10] propose
a statistical clustering approach to classify the data points and estimate the submodel parameters
in order to reconstruct the polyhedral partition of the regressor domain. Further results dealing
with the estimation problem include the bayesian statistical-based approach [11], the bounded-error
procedure [12], the mixed-integer programming procedure [13]. A survey on further recent results
for the estimation of PWA systems can be found in [14]. It has to be noted thought, that the vast
majority of results for the estimation of PWA systems focuses on the development of estimation
algorithms that work offline, i.e. from batches of data.

On the other hand, literature has provided also alternative sets of tools (non necessarily based
on parameter estimation) for FDI in complex systems: a brief overview is given here. Model-
based tools focusing on the detection and identification of the partial loss of control authority
in PWA systems, frequently used to model actuator faults, are studied in [15, 16]. An observer-
based fault estimation approach for discrete PWA systems is presented in [17], while [18] provides
sufficient conditions in terms of linear matrix inequalities for the input-to-state stability of the
estimator. A message passing algorithm for automatically propagating the effects of uncertainties
in interconnected bilinear systems and derive probabilistic fault thresholds is proposed in [19]. In
[20], a clustering approach based on the maximized expectation algorithm is used, and it is proven
to identify effectively sudden or pre-existing faults into a hybrid, mixed discrete modes-continuous
time states, setting. An online learning algorithm using a Lyapunov-based approach is carried out
in [21], to prove robust fault detection for the case of multi input-multi output nonlinear systems.
Estimation-based and observer-based FDI of PWA systems with parametric uncertainties, but with
known partitions, is studied in [22] and [23], respectively. A map-based approach using parameter-
estimation techniques is presented in [24], where the unknown parameters are estimated online and
they are used to detect faults in the model. A dual estimation scheme is developed in [25] to detect
parametric changes with partial state information. A comprehensive review presenting the state-
of-the art FDI methods in the literature and their applications are given in [26, 27]: none of the
aforementioned FDI approaches can deal with PWA systems with parametric uncertainties in both
partitions and in subsystems parameters.

Closely related to FDI, special attention has been devoted to fault-tolerant controller (FTC)
synthesis for complex systems, which aim to cope with the identification of partial loss of the control
action and compensate for the later in the closed-loop hybrid or PWA systems. FTC architectures
can be divided into two main categories; passive FTC methods which provide controller synthesis
proven to guarantee stable performance both when the system works in nominal operation and
under faulty conditions, and active FTC methods which are characterized by the reconfiguration
of the controller when faulty conditions are detected [28]. An active FTC approach is adopted in
[29]: set-valued observers detect faults by evaluating the inconsistency of input-output data and a
multiple-model adaptive controller designed for the degraded system is connected to the loop with
proven closed-loop stability. In [30], a fault-tolerant controller is proposed to guarantee stabilization
and satisfactory system performance in case of partial loss of control authority in the control loop.
A reconfigurable control approach for continuous PWA systems susceptible to actuator and sensor
faults is given in [31]: by solving a set of linear matrix inequalities, this approach is proven robust to
closed-loop stability and guarantees reference tracking. The authors in [32] investigate the adaptive
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FDI FOR CONTINUOUS PWA SYSTEMS WITH UNKNOWN SUBSYSTEMS AND PARTITIONS 3

fault-tolerant control problem in the presence of time-varying actuator faults. A robust control
approach is carried out to prove asymptotic stability and robust performance in the case of combined
actuator failures and disturbances. The adaptive FTC scheme in [33] is formulated to model actuator
failures as Markovian jump systems subjected to stochastic noise. Then, a backstepping technique
ensures boundedness of the closed-loop signals. A supervisor FTC scheme for the discrete event
systems case is studied in [34]. The control goal of this work, is a desired, predetermined non-
faulty behavior for the overall system, for any fault occurring within a bounded known delay. In
[35], an intelligent-based (neural-network, fuzzy) FTC design with adaptive online estimation and
control for linearized time-varying systems is introduced, and asymptotic tracking and uniform
signals boundedness is evaluated under certain conditions on the system’s dynamics. An overview
of the diverse FTC schemes and their applications are given by [36, 37]: none of the aforementioned
FTC approaches can deal with PWA systems with parametric uncertainties in both partitions and in
subsystems parameters.

Therefore, to the best of the authors’ knowledge, there is currently no online fault detection and
identification technique developed for continuous PWA systems with joint unknown subsystems
and partitions. The main contribution of this work is tackling, in a parameter estimation framework,
the fault detection and identification problem for a class of continuous-time PWA systems, namely
bimodal and trimodal continuous PWA systems, where the subsystems and the partition are jointly
unknown. Without loss of generality, the unknown system partition is assumed to be generated
by the so-called “centers”, as defined in [38]. By exploiting this particular description, a novel
parametric model is derived via the max-form of the PWA system, and consequently, a cost function
depending on the estimation error is derived which is used to develop a recursive Gauss-Newton
algorithm to obtain online the adaptive laws for all the parameters (i.e. the subsystem parameters and
also the centers). It has to be noted that, differently from literature on estimation in PWA systems,
the developed algorithm is completely online. Online FDI algorithms produce unknown system
estimates at each time instant, by processing and evaluating the current measurements of signals.
Because of this, they are commonly referred to as recursive FDI algorithms, to be distinguished
from the offfine or nonrecursive ones. For the latter case, also found in the literature as the batch
FDI estimation algorithms, all signals’ measurements are collected offline over large time interval
horizons. In both online or offline methods, the unknown parameters are calculated by using
optimization techniques on some appropriately chosen cost function. However, while parameter
values estimated using online fault detection and parameter estimation architectures can vary with
time as new data arrive, the parameters estimated using offline techniques do not (unless new batches
of data are collected). Compared to the offline scheme, online recursive algorithms measure the
system’s signals continuously so as to update and correct the parameter estimates. Because they can
update for fault occurrence incidents in the system and compensate for their resultant detrimental
effect while the system is in operation, online estimation algorithms are conceptually superior for
fault detection problems, as compared to the offline ones [39, 40].

The rest of this paper is organized as follows: Section 2 presents preliminaries for the PWA
system representation and Sections 3 and 4 present the online fault detection and identification
problem and the main result of this work, for bimodal and trimodal PWA systems respectively.
The effectiveness of the online identification methodology is illustrated via simulations in Section
5. Finally, Section 6 concludes this paper summarizing the main findings and giving some
recommendations for future work.

The notations used in this paper are standard:
R: the set of real numbers;
N: the set of nonnegative integers;

. T ) .
Givenavectorz = [z1 @2 -+ xn| € R™, the superscript 7' denotes its transpose and
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T 0 N 0

0 z3 - 0
diag (z) = ;

0 0 0

0 0 - zp

r;(X): denotes the i*" row of matrix X.

2. PRELIMINARIES IN PWA SYSTEMS

We consider the bimodal PWA system of the form
i— Aix + BiAju+ e lf(l',u) e X (1)
B Aoz + BoyAsu + ey lf(ib,u) e X,

where x € R" is the state, u € R™ is the input, B; € R"*™ are known matrices, A; € R"*",
e; € R" i € {1,2} are unknown matrices, A; € R™*"™ are unknown diagonal matrices. The term
B;A; models partial loss of control authority, and {X}, X>} are polyhedral partitions of the state-
input space. We take the regions X, X» are polyhedral partitions in to R”*™ (the state-input space),
generated by the centers as defined in [38]. In fact, for general PWA systems (non necessarily
bimodal), given N € N, N > 2 vectors ¢, ca,...,cy € R"™™ representing the centers, for each

point z = [a:, u] T e R in the state-input space, the polyhedral regions are defined as

X; = {z € R | HZ—CJ‘H2 <z = ckll }a k#j

2
:{zeR”“" |Ajz§qj} @

where
A: =2
j [Cl—Cj Cag—Cj -+ CN—CJ‘]

g =|B; Boj -+ Bnjl,

7

with 8y, ; = ¢ ex — ¢] ¢ forj = 1,2, ..., N. For bimodal PWA systems with partitions X} and X we
have only two centers, ¢; and cs from (2). The regions &', X are given by the following relations:

X = {(z,0) | 2(cs — )T m —(Fey— Fey) <0} (3a)

Xy = {(z,0) | 2(cs — )T m Ly — Tey) > 0) (3b)

The system (1) is an extension in a PWA sense of classical uncertain systems used in adaptive
and fault-tolerant control of multivariable linear systems [41, 42]. Fault detection and identification
in classical uncertain systems can be performed by using parameter estimation techniques, e.g.
by assuming that faults in the system are be reflected in a change of the (non-faulty) parameters
in the system model [43]. A similar idea applies (albeit the more challenging task) to the PWA
extension (1): the FDI problem then involves detecting any change in the system parameters of (1),
as formulated in the following.

Problem 1

Derive a recursive (online) FDI algorithm with the capability of estimating the unknown system
parameters, the unknown loss of control authority, and the unknown partitions of the PWA system
(1). Also, embed in the FDI algorithm a finite-memory (or forgetting) mechanism so as to be able
to detect (slowly) changes in the system parameters.
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FDI FOR CONTINUOUS PWA SYSTEMS WITH UNKNOWN SUBSYSTEMS AND PARTITIONS 5

2.1. Max-form representation of bimodal PWA systems

It is assumed that the system (1) is continuous in the state space. By referring to [44], continuity of
the system is equivalent to the existence and uniqueness of an h € R™ such that

[A1 BiAi] — [Ay BaAs| =2h(c — 1) (4a)

e1 —eg = —h(cQTcQ — cchl). (4b)

In view of (4), system (1) can be written into its max-form representation as follows:
i = [Ag BgAg] [ﬂ + ey — hmax {2(61 — )T [i] —(cFey — CQTCQ),O}. ®))

One can see that there are infinitely many pairs of centers (c1, ¢) that can generate the polyhedral
regions &} and A5 in (3). However, if we fix one center to an arbitrary value, the other center is
uniquely determined. Therefore, without loss of generality, we fix the center ¢y to be equal to a
given value ¢ and we use the notations ¢, A, B, e, A in place of ¢1, Az, B, €3, Ag, respectively. Then,
(5) becomes

i = Az + Bdiag (u)A + e — hmax {2(c — or [i] — (e~ ETE),O}, (6)

where A € R™ in (6) is defined in vector formas A = A1 Aa -+ Ay T, such that A = diag()\).

Remark 1

Note that the clear benefit of (6) with respect to (1) is its economy with respect to parameters. In
fact, in (1) we need to estimate 2(n? + m + n) parameters for the subsystems and (n + m + 1)
parameters for the partitions: on the other hand, in (6) we have n? + m + n parameters for the
subsystem (A, BA, e) and 2n + m parameters for 4 and c. This is because (6) exploits explicitly the
continuity of the PWA system.

3. ONLINE IDENTIFICATION OF BIMODAL PWA SYSTEMS

By following a FDI approach based on parameter estimation, as in [43], Problem 1 for the PWA
system (6) can be recast to the minimization of the following cost function

1 [t L
J(t,0) = 5/ emt(t=9) ‘x(s)—:ﬁ(s,ﬁ) ds
0
which can be component-wisely written as
1 - R
J(t,0) =5 /O e—f<t—s>; (#:(5,0) — z4(5)) *ds (7)

where ¢ > 0 corresponds to the forgetting factor which is a design parameter, 6 denotes the unknown
parameter which contains all the healthy (non-faulty) or faulty values of the parameters, which
appear in the form of plant structural changes (associated to variations in the state matrix A and
the affine vector e), actuator faults (associated to changes in the input vector \), or mode partition
faults (associated to changes in the vector & and the center ¢). In addition, after collecting the true
parameters in

61
: ri(A)"
0=lg,|  witho; = e; fori =1,2,...,n, (8)
A hi
c
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6 N. MOUSTAKIS, B. ZHOU, T. LE QUANG, & S. BALDI

where e; and h; in (8) are the scalar components of the vectors e and h, we have that 6 are the
estimated values of § computed by the minimization of (7). The state Z(s, §) is the observed state
for the system (6), which is computed through the following Luenberger-like observer

i(s,0) = Api(s,0) + (A — Ap)x(s) + Bdiag(u(s))A +é o)
— hmax {w(e, x(s). u(s)),0}

where W (¢, z(s),u(s)) =2(¢— )T [igz;] —(eTe—¢Te) and A,, is a Hurwitz matrix. The
Luenberger-like observer (9) is an extension in PWA sense of the parallel-series estimator used
for classical linear systems [45]. The solution of (9) can be calculated explicitly as follows:

i‘(s,é) =efmg +/ eAm(s_T){
0

Tl(A — Am)
€1
[#71 —max{¥,0}]--- 0 hy
0 0 : (10)
0 [z —max{¥, 0}] || r, (A — A,)
€n
}Al/n

+ B diag(u)j\}dr.

The unknown parameter 6 is estimated with the recursive Gauss-Newton algorithm. Then, 6 is
updated online via the following adaptive law

8J(t,0)

. o1
o(t)=-ru)y~'e) | : 50120 (11)
8J(t,0) -

O n,

where I' > 0 is the adaptation gain decided by the designer and

U(t) = —€U(t) + et ()", U(0) =0 (12)
with
[021(t,0) 922(t.0) . 0&n(t.6) ]
a6, _ a6, _ 30,
921(t,0) 9Ea(th) . 0dn(t.6)
904 902 804
o(t) = : : ; ; : (13)
ox o AN
6@1(75,9) 6:2’2(t,9) . 6i’n(t,9)
rE e o

In order to calculate recursively all the terms in (13), one can see that Z (¢, §) can be written in the
following form

2(t,0) = go(t) + g1(£)0 + g2 A (14)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
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FDI FOR CONTINUOUS PWA SYSTEMS WITH UNKNOWN SUBSYSTEMS AND PARTITIONS 7
with ,
go(t) = eftmizy — Am/ eAn ="y (1) dr,
0
. [#(7)T1 —max{¥,0}} - 0
nlt)= et 0 0 d-.
0 0 -+ [z(r)T1 —max{¥, 0}]
t
ga(t) = / A= B diag(u(r))dr.
0
where ¥ is intended as ¥ (¢, z(7), u(7)). By using (10), the following relations are true:
di(t,0)
— =g1(t 15a
o0 g1(t) (152)
i(t,0) = x(t) = go(t) — 2(t) + 91(£)0 + ga(t)A (15b)
di(t,0)
— = gaft 15¢
X 92(t) (15¢)
and .
. . wy (1)
818(15: 0 _ / pAm (-1}, : dr (15d)
oc 0 ‘
Wy (T)
where
2x; (1) — 2¢; U(é,T) = U(¢
w;(r) = x; (1) —2¢;(1) ,¥(¢, 7-). max{¥(¢,7),0)} (16)
0, , otherwise
for j =1,2,...,n, where
zi(7 =12 ..n
x;(1) = i(7) .
ujn(T) ,j=n+1,.,n+m
From (7) and (15b) it can be proven
d 0J(t,0)\ 9J(t0) - A .
S (F55) = €75+ a0(t) —a(t) + 91 (D0(0) + 92 (D) )
and because of (13), (15a), (15¢), (15d), relation (13) is equivalently represented by
g?(t)
(t) = | 92 (t) (18)
oz(t) T
dé
To update go, g1, g2 and 02—(;) we use the fact that
go = Amgo — An, 90(0) = *L(O) (19&)
[z71 —max{¥,0}] - - 0
A+ .
g1 g1 0 . . 0 (19b)
0 -+ 2" 1 —max{¥, 0}]
g1 (O) =0
9.2 = Am.92 + B dlag(u)7 92(0) =0. (190)
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
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8 N. MOUSTAKIS, B. ZHOU, T. LE QUANG, & S. BALDI

d /03 i w 1" 0i

Iy T - iy

()= k| | S0)= !
dt(aé) 2c M| ge(0) =0 (19d)

Wn+m

with wy, wa, ..., Wy4m, defined in (16). The recursive design is complete and the local optimality of
the resulting fault detection and identification method for PWA systems is remarked hereafter.

Remark 2

Because (1) is nonlinear with respect to the estimated parameters, the cost function (17) is
nonconvex with respect to 6, even after the max-form representation (6). As a consequence, a global
optimum minimizing the cost function (17) cannot be guaranteed for every initial condition (even in
the presence of persistency of excitation). In other words, only convergence to local optima can be
guaranteed in general: therefore, the Gauss-Newton algorithm will exhibit best performance when
the initial estimate 6, lies in a small neighborhood of 6. To the best of the authors” knowledge, there
is no estimation method for PWA systems with joint unknown subsystems and partitions that can
guarantee global optimality.

Remark 3

Note that in case the partitions {7, X2} are known, the parameter ¢ is given, and (6) results in a
linear-in-the-parameter model for which standard converge results apply [46], after a slight revision
of the proposed method in order to get rid of 62—(;).

4. ONLINE IDENTIFICATION OF TRIMODAL PWA SYSTEMS

The proposed framework can be extended to trimodal continuous PWA systems with minor
modifications. Similarly to the bimodal PWA system case studied in Section 2, the trimodal PWA
system reads as
A1z + Bihu+ e if(z,u) € X4
T =< Asx + BoAou+ex if (x,u) € Xy (20)
Asx + BsAsu+e3 if (z,u) € X3

where o
X = {(l‘vu) |2(ca —e1)” 2 —(c3ea —ciey) <0,
2(cs — 1) 7] = (Fes — T ) < 0},
Xy = {(:v,u) | 2(c2 — Cl)T z — (C;CQ - C{Cl) >0,
2(cs —c2)" || = (ches — 5 ez) <0},
Az = {(-77’“) | 2(c3 — Cz)T e (C3T(:3 — (:2T(:2) >0,
=
2cg — )T —(cFez —cTey) > O},

4.1. Max-form representation of trimodal PWA systems
In order to write the max-form presentation of the PWA system in (20), one has to distinguish
between two cases:

Case 1: The centers ci, co, c3 lie on a line. Without loss of generality, it is assumed that the
center ¢y lies on the segment [cq, c3]. Similarly to the bimodal PWA system case, the continuity of

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
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FDI FOR CONTINUOUS PWA SYSTEMS WITH UNKNOWN SUBSYSTEMS AND PARTITIONS 9

the PWA system (20) is equivalent to the existence and uniqueness of hy, ho € R™ such that (20)
can be equivalently written as

T = [AQ BQAQ} [z:| + €2
— hi max {2((32 —c))? [Z] —(cFey — c{cl),()} (22)
— hgmax {2(c; — cs)? [i] —(cFey — 0503),0}.

Case 2: The centers c1, ca, c3 do not lie on a line. The continuity of (20) is equivalent to the existence
and uniqueness of h1, ko, hy € R™ such that

[A1 BiAy] — [Ay BaAs] =2hi(c2 — 1),

(23a)
er — ez =—hi(cgca — cf 1),
[Ay ByAs| — [As  BsAs| =2ha(cs —c2)”, (23b)
ey — e3 = — hg((:3T(23 — 0502),
[As BsAs] — [A1 BiAy] =2hs(cs —c1)”, (230)
e3 —e;] = — hg(cg:c?, — c{cl).
Lemma 1
For the vectors hy, ha, hg in (23), it is true
hy = ho = —hgs. 24)
Proof
Relation (23) gives
(hg 4 ha)cd + (hy — ha)cd — (hy 4 h3)el = 0. (25)
If ¢1, ca, c3 are linearly independent, it follows from (25) that hy = ho = —hg3. For the case ¢1, ¢2, ¢3

are linearly dependent, one center can be written as a linear combination of the two other centers.
Without loss of generality, let cs = acy + Bea, with a, 5 € R such that o + 5 # 1. It follows that

(h3 + hg)c3T = Oz(h3 + hg)cf + ,B(hg + hz)cg,

(26)
(hs + ha)ck = (hy + h3)ct + (hy — hy)ck,

implying h2 + hg = (o + 8)(h2 + h3), and hence hy = —hs. Substituting this result in (25), it
follows h; = ho and the lemma is proved.
O

In view of (23) and Lemma 1, if we define h; = ho = —hg = h, then the PWA system (20) is
given in its max-form presentation as

i = [As BsAs] m + e3 — hmax {2(02 —e3)T m

u

(27)
— (c%cz — 0503), 2(eq — 03)T {ﬂ — (cfcl — cgc:;), 0}.

Remark 4

As demonstrated from the above discussion, the max-form presentation of the trimodal PWA system
in (20) can have two different forms, (22) or (27), depending on whether the centers lie on a line
or not. Once the appropriate max-form is determined, the adaptive update laws are developed in
similar fashion as in the bimodal PWA system case.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
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10 N. MOUSTAKIS, B. ZHOU, T. LE QUANG, & S. BALDI

5. SIMULATION RESULTS

5.1. Bimodal PWA system

In this section we evaluate the effectiveness of the online fault detection and identification technique
on the wheeled mobile robot (WMR) shown in Fig. 1, and presented in [47].

F 3

X

\ 4

Figure 1. Schematic representation of the Wheeled Mobile Robot (WMR) [47]

The WMR is assumed to be rigid and it is driven by a torque 7" to control the heading angle 1.
The forward velocity of the robot, ug, is in the direction of the X —body axis and is assumed to
be constant, by designing appropriately a cruise controller. The heading angle of the WMR v is
measured with respect to the positive X -axis in the inertial frame. The kinematic equations for the
WMR are

) = ug sin(y
= uosiny) (28)
Y =R
and the dynamic equation of the WMR is
. 1
R= 0.757T (29)

where T is the input to the system, corresponding to the torque generated by the DC motors, 0.75 is
the unknown actuator effectiveness, and I = 1 kg - m? (which is known) corresponds to the moment
of inertia of the WMR with respect to the center of its mass. Inspired by this example, we consider
as the actual system the bimodal PWA system in the form (1), with

0 2uy 0 0 —2uy 0
A;=10 0 1|,A=|0 0 1f,
0 0 0 0o 0 0

Bi=B,=1[0 0 47, A=A =075

0 QUQ
e = 0 , €2 = 0 s
0 0

with ug = 1 which is unknown. The matrices above arise from approximating, in the range
[—7r /2,3m/ 2], the sinusoid with two straight lines (one straight line passes though the origin with
slope 2/7, while the other one passes though the point (7, 0) with slope —2/7). As a consequence,
the switching surface between the two subsystems is given by

1
2 T2
o 2 0 0 v 150, (20) (30)
U
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
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where [z1 o z3 u]l =[y ¢ R T)]. The surface can be equivalently expressed by the two centers
c1, ¢, defined as follows:

~025 025 0.25]",
+0.25 025 0.25]".

¢ =[0.25
e =[0.25

d
2
T
2
Note that the definition of ¢; and cs is not unique: however, by fixing ¢, the other center ¢; would
be uniquely determined. We acknowledge that, in this particular example, the partitions might be
known: however, to be consistent with our setting and illustrate the proposed method, we assume
that the partitions are unknown.

In view of the structure of the matrices, only five parameters are unknown and need to
be determined: the nonzero term in the first row of A,, the nonzero term in es (representing
uncertainties or changes in the cruise speed), the scalar term A, (representing uncertainties or
changes in the actuator effectiveness), the unique nonzero term in h, and the second entry of ¢;
(representing uncertainties in the partition). Therefore, by defining 6 properly, it is possible to use a
priori knowledge of the matrix structure and derive a Gauss-Newton method that estimates only the
relevant five parameters (details are not shown for compactness). The design parameters have been
taken as:

0 —0.637 0
An =1 0 0 1 |, &=05, I =diag (0.01,0.03,0.85,0.03,0.01)
0.003 —0.054 —0.114

where the eigenvalues of A,,, are stable (one real eigenvalue and one complex conjugate pair). The
initial state is taken as 7o = [I 7/2 0]7. In order to provide enough persistency of excitation, the
input is a series of steering and counter-steering sinusoids at frequency 0.2, 0.8 and 1.6 rad/s.

In order to check consistency of the approach we have selected many 6(0) randomly (zero
mean Gaussian noise with covariance 0.1) in a neighborhood of 6. For all initial conditions the
convergence was consistent, and Figs. 2 and 3 show one simulation. In addition, Figs. 4 and 5 show
the capability to track some (slow) variation in time of the parameters: these variations have been
simulated by slightly increasing ug and decreasing the actuator effectiveness).

0.2

021 T
-04r1 T

0.6 3

-0.8

20 40 60 80 100 120 140 160 180 200

14 - - - - - - : : :
1F ]

L} - -

g 09

E - -

508 .

07t \Jv“\,_/ ]

0.6
0

20 40 60 80 100 120 140 160 180 200
Time

Figure 2. Online identification of As and Ay when ¢, is known (the true parameter values are shown in red
color lines)
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1.38 T T T T T T T T T

5 —/\
5 133 T~—=<
o
1.08 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
1.15 T T T T T T T T T
< 14F 4
1.05
0 20 40 60 80 100 120 140 160 180 200
Time
21 T T T T T T T T T
o 2 \\/w_/_,_/—'

0 20 40 60 80 100 120 140 160 180 200
Time

Figure 3. Online identification of ez, h and ¢; when ca is known (the true parameter values are shown in red
color lines)

0.2 T T T T T T T T T

-0.21 T

041 1

-0.6 P\ =

08 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

3
3 06

£
<05

0.3 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

Time

Figure 4. Online identification of A3 and A3 when ¢ is known for slow variations (the true parameter values
are shown in red color lines)
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1.30 I E

125 s s s s s s s s s
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0 20 40 60 80 100 120 140 160 180 200
Time

0 20 40 60 80 100 120 140 160 180 200
Time

Figure 5. Online identification of e, h and ¢; when c¢3 is known for slow variations (the true parameter
values are shown in red color lines)
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Remark 5

In order to highlight nonlinearity of the problem and the possibility of getting trapped into local
minima, Table I shows the distance between the true and the estimated parameters (at steady-state)
HH — 0y ’ / 1|0]], as a function of the variance of # — 6(0). The table highlight that when the initial

condition is very far from the true parameter, the steady state distance also increases: this happens
because the Gauss-Newton algorithm may not converge to the actual parameters.

Var [‘9 — é(O)} Avg —”ﬁ:ﬁt”
0.03 0.2%
0.1 0.4%
0.3 0.8%
1.0 4.2 %
3.0 18.8 %

Table I. Performance depending on the initial estimate

5.2. Trimodal PWA system

In order to show the effectiveness of the proposed approach also in a trimodal setting, we take the
example from [48] . This example has all the centers on a line, and notice that e; and ez have been
modified with respect to [48] so as to make the PWA system continuous. In particular, we have

0 1 0 0
M=las-o1 BT s a7 4]
o0 1 [0 ] [0 ]
A=l g | Be= 5] 2= o)
[0 1] [0 ] [0 ]
A=l o051 |0 BT |15 @7 4]

and A; = Ay = A3 = 0.75. The switching surface is defined in terms of the three centers

a=[4 0 0,

=100 0 0,

cs=[4 0 0"
By exploiting a similar form as in (22), we formulate the FDI problem as the one of estimating the
parameters of Ao, As, eo, the vectors h; and hg, and the centers ¢; and c3 (we assume that the center

¢ is known). We have used zo = [0.5 — 0.5]7, a multi-sinusoid input (with 3 sinusoids), and the
design parameters

Ay = [‘éo _010] , £€=0.05, T = diag(1,1,1,1,1,1,1,0.05,0.05, 40, 40)

where the zero components of h1, h3, ¢; and c3 are not estimated. The results from the proposed
online FDI algorithm are given in Fig. 6 (for A5 and As), Fig. 7 (for e, hy and h3), and Fig. 8 (for
c1 and c3). It is observed that all estimates converge to the correct values after some transient.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2011)
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Figure 6. Online identification of A2 and As when co is known (the true parameter values are shown in red
color lines)
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Figure 7. Online identification of ez, h1 and hs when ¢y is known (the true parameter values are shown in
red color lines)
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Figure 8. Online identification of ¢; and c3 when ¢y is known (the true parameter values are shown in red
color lines)
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6. CONCLUSION

This paper has established a novel online fault detection and identification strategy for a class
of continuous piecewise affine systems (PWA), namely bimodal and trimodal PWA systems. The
approach is estimation-based, i.e. it is assumed that faults in the system are reflected in a change of
the parameters of the system model. The main contributions with respect to the state of the art are the
recursive nature of the proposed scheme and the consideration of parametric uncertainties in both
partitions and in subsystems parameters. In order to handle this situation, we recast the continuous
PWA into its max-form representation and we exploited the recursive Newton-Gauss algorithm
on a suitable cost function to derive the adaptive laws to estimate online the unknown subsystem
parameters, the partitions and the loss in control authority for the PWA model. The effectiveness
of the proposed methodology was verified via simulations applied to the benchmark example of a
wheeled mobile robot. Future work could include the extension beyond trimodal systems: a possible
idea to deal with this situation is to have multiple bimodal or trimodal estimator and a switching
logic, according to architectures as in [49].
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