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Abstract. In this paper, we propose a novel approach to study finite-time stability of fractional
differential equations (FDEs) with delays via Laplace transforms and LMI techniques. The advantage
of our proposed method is that we can construct a simple Lyapunov functional to derive delay-
dependent stability conditions for the systems with interval time-varying delay. The conditions are
presented in terms of the Mittag-Leffler function and linear matrix inequalities (LMIs), which are less
conservative and more easier to verify than the existing ones. The proposed method is also applicable
for finite-time stability of linear uncertain time-varying delay FDEs. A numerical example is given
to show the validity and effectiveness of the proposed results.
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1. Introduction. Over the last decades, considerable attention has been paid
to stability theory of fractional differential equations (FDES)(see [1-3] and the re-
frences therein). Stability analysis of FDEs is more complicated than that of ordinary
differential equations, because fractional derivatives are nonlocal and have weakly
singular kernels. In recent years, various effective methods have been employed to
derive stability criteria for the FDEs. The most well-known one is the Lyapunov
function method, which was used in [4,5] by applying the Lyapunov stability theorem
extended to FDEs. In addition, Laplace transform and Lambert functions approach
([6,7]), Gronwall’s approach ([8-10]) and Razumikhin approach ([5, 11, 12]) are also
used to investigate the stability of FDEs. On the other hand, there has been a con-
siderable research interest in study of FDEs with time-varying delays. The stability
analysis of FDEs with time-varying delays are typical required. It is no doubt that
the Lyapunov function method provides a very effective tool to analyze stability of
nonlinear systems. However, this method is not effectively applied for FDEs with
time-varying delays. In fact, it is very difficult to construct a Lyapunov-Krasovskiii
functional and calculate its fractional-order derivative for FDEs with delays. This
is the main reason that there are very few delay-dependent criteria for asymptotic
stability of FDEs with delays. In [13, 14], to overcome the difficulty of calculat-
ing the fractional-order derivative the authors attempt to construct an appropriate
Lyapunov-Krasovskii functional associated with the RiemannLiouville fractional inte-
gral. However, the proof of the main theorems in these papers contains a gap, that is,
the positive definiteness of the constructed Lyapunov-Krasovskii functional can not
be guaranteed by the positivity of the RiemannLiouville fractional-order integral and
the definite integral functionals. Very recently, the authors of [15] tried to overcome
this difficulty by proving a Lyapuov stability theorem for FDEs with delays (Theorem
1 and Theorem 2 in [15]), unfortunately, the obtained result is also incorrect, since
their proof is based on a wrong derivation, that is, the definite positiveness of the Lya-
punov functional for systems with delays V (xt) defined on infinite-dimensional space
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C([−h, 0] and the Lyapunov functional for systems without delays V (x(t)) defined on
finite-dimensional space Rn are different.

Motivated by the above discussion, we study finite-time stability problem of a
class of nonlinear FDEs with delay. A central analysis technique is enabled by propos-
ing Laplace transform approach combining with Lyapunov function method to study
finite-time stability of FDEs with interval time-varying delay. The approach is used
to derive new delay-dependent sufficient conditions for finite-time stability in terms of
the Mittag-Leffler function and LMIs, which are less conservative and more easier to
verify than the existing ones. The obtained results are applied to finite-time stability
of linear uncertain time-varying delay systems. A numerical example is given to show
the effectiveness of the obtained result.

The paper is organized as follows. In Section 2, we provide some preliminaries on
the fractional-order derivative, the Laplace transform, the finite-time stability problem
and some auxiliary lemmas needed in next section. In Section 3, delay-dependent
sufficient conditions for finite-time stability of FDEs with time-varying delays are
established. The validity and effectiveness of the theoretical result is illustrated by a
numerical example.

2. Prilimeries. The following are some notations and definitions used in this
paper. N denotes the set of all non-negative integers, C denotes the complex space;
Rn×r denotes the space of all (n×r)− matrices; λ(A) denotes the set of all eigenvalues
of A; λmax(A) = max{Re(λ) : λ ∈ λ(A)}; λmin(A) = min{Re(λ) : λ ∈ λ(A)}; ∥A∥
denotes the spectral norm defined by

√
λmax(A⊤A); C([h, 0], Rn) denotes the set of

all Rn-valued continuously functions on [h, 0]; [a] denotes the integer part of number
a.

We first give some basic concepts of fractional calculus used in the paper.

Definition 2.1. ([1]) The Caputo fractional derivative is defined by

Dαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, t ≥ 0, n− 1 < α ≤ n.

where n ∈ N,Γ(.) is the gamma function, Γ(s) =
∞∫
0

e−tts−1dt, s ∈ C, Re(s) > 0. In

particular, for 0 < α < 1, we have

Dαf(t) =
1

Γ(1− α)

∫ t

0

ḟ(s)

(t− s)α
ds, t ≥ 0.

Lemma 2.2. [1]. For α ∈ (0, 1), and z ∈ C, Re(z) > 0, we have
(i) The Gamma function converges in the right haft of the complex plane Re(z) > 0.
(ii) Γ(z + 1) = zΓ(z). In particular,

Γ(n+ 1) = n!, n = 1, 2, . . . , Γ(1) = 1.

The Mittag-Lefller function with two parameters is defined by

Eα,β(z) =
∞∑

n=0

zn

Γ(nα+ β)
,
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where α > 0, β > 0, and z ∈ C. For β = 1, we denote Eα(z) := Eα,1(z).

Lemma 2.3. [1]. Given α > 0, we have
(i) Eα(z) ≥ 1, ∀z ∈ R+,
(ii) Eα(z) is a increasing function on R+.

The Laplace transform L[f(t)](s) of the integrable function f(.), which is defined
by

F (s) = L[f(t)](s) =
∞∫
0

e−stf(t)dt.

Lemma 2.4. [1]. Let f(.) : R+ → R be a integrable function, α ∈ (0, 1), β > 0,
we have
(i)

L[Dαf(t)](s) = sαL[f(t)](s)− sα−1f(0),

(ii)

L[tαk+β−1E
(k)
α,β(ht

α)](s) =
k!sα−β

sα − h)k+1
, k = 0, 1, 2, ... provided Re(s) > h1/α.

(iii)

L[f ∗ g(t)](s) = L[f(t)](s) · L[g(t)](s),

where f(t), g(t) are integrable functions on R+, the convolution of f(t) and g(t) is

defined by f ∗ g(t) =
t∫
0

f(t− τ)g(τ)dτ.

Consider a fractional differential equation with delay of the form

(2.1)

{
Dαx(t) = Ax(t) +Dx(t− h(t)) + f(t, x(t), x(t− h(t))),

x(θ) = φ(θ), θ ∈ [−h2, 0],

where α ∈ (0, 1), x(t) ∈ Rn, the delay function h(t) is continuous and satisfies the
following condition:

0 < h1 ≤ h(t) ≤ h2, t ≥ 0,

the constant matrices A,D ∈ Rn×n, the initial function φ ∈ C([−h2, 0], R
n) with the

norm

∥φ∥ = sup
t∈[−h2,0]

∥φ(t)∥.

The nonlinear function f : R+ ×Rn ×Rn → Rn satisfies the following condition

(2.2) ∃E1, E2 ∈ Rn×n : f(t, x, xh)
T f(t, x, xh) ≤ xTET

1 E2x(t) + xT
hE

T
2 E2xh(t),

for all (t, x, xh) ∈ R+ ×Rn ×Rn.
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Lemma 2.5. [16]. Assume that the initial function φ(t) ∈ C([−h, 0], Rn), then the
fractional differential delay equation (2.1) under the assumption (2.2) has a unique
solution.

Definition 2.6. For given positive numbers c1, c2, T, the system (2.1) is finite-
time stable w.r.t. (c1, c2, T ), if

sup
s∈[−h2,0]

φ(s)Tφ(s) ≤ c1 ⇒ x(t)Tx(t) ≤ c2, ∀t ∈ [0, T ].

Lemma 2.7. [17]. Assume that α ∈ (0, 1), let x(t) ∈ Rn be a continuously
differentiable vector function, P = PT > 0, P ∈ Rn×n, then the following inequality
holds:

Dα
(
x(t)TPx(t)

)
≤ 2x(t)TPDα(x(t)), t ≥ 0.

Lemma 2.8. Let T, h1 > 0, a ≥ 1, b ≥ 0 and G(t) : [−h1, T ] → R+ be a
non-decreasing function satisfying

G(t) ≤ aG(0) + bG(t− h1), ∀t ∈ [0, T ],

then, we have

G(t) ≤ G(0)a

[T/h1]+1∑
j=0

bj , ∀t ∈ [0, T ].

Proof. For each t ∈ [0, T ], there is m ∈ N such that

mh1 ≤ t < (m+ 1)h1.

By induction we obtain that

G(t) ≤

{[
a+ ba+ · · ·+ bma

]
G(0) + bm+1G(t− (m+ 1)h1) m ≥ 1,

aG(0) + bG(t− (m+ 1)h1) m = 0.

since G(t) is nondecreasing on −h1 ≤ t− (m+ 1)h1 < 0, we get

G(t− (m+ 1)h1) ≤ G(0).

Hence,

G(t) ≤

{[
a+ ba+ · · ·+ bma+ bm+1a

]
G(0) m ≥ 1,

(a+ ba)G(0) m = 0,

=a
m+1∑
j=0

bjG(0).

Besides, t ≤ T leads to m ≤ [T/h1] and G(t) ≤ a
[T/h1]+1∑

j=0

bjG(0). This completes the

proof.
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3. Main result. In this section, we present delay-dependent conditions for finite-
time stability of system (2.1). The conditions are presented in terms the Mittag-Leffler
function and LMIs.

Theorem 3.1. The system (2.1) is finite-time stable w.r.t. (c1, c2, T ) if there
exist a positive scalar γ, symmetric positive definite matrices P,Q ∈ Rn×n satisfying
the following conditionsPA+ATP − h2P + γET

1 E1 + γET
2 E2 PD P

DTP −Q 0
P 0 −γI

 < 0,(3.1)

Q+ γET
2 E2 < h2P,(3.2)

Cond(P )

[ T
h1

]+1∑
j=0

(Eα(h2T
α)− 1)jEα(h2T

α) ≤ c2
c1

,(3.3)

where Cond(P ) =
λmax(P )

λmin(P )
.

Proof. Consider the following quadratic non-negative function

V (t, x(t)) = x(t)TPx(t), t ≥ 0.

Taking the fractional-order of α derivative of V (·) in t along the solution of the system
and using Lemma 2.7 and condition (2.2), we have

Dα(V (t, x(t))) ≤2x(t)TPDα(x(t)) = 2x(t)TP
(
Ax(t) +Dx(t− h(t)) + f(·)

)
≤2x(t)TP

(
Ax(t) +Dx(t− h(t)) + f(·)

)
− x(t− h(t))TQx(t− h(t)) + x(t− h(t))TQx(t− h(t))

− γf(·)T f(·) + γxTET
1 E1x(t) + γx(t− h(t))TET

2 E2x(t− h(t))

=ξ(t)T

PA+ATP − h2P + γET
1 E1 + γET

2 E2 PD P
DTP −Q 0
P 0 −γI

 ξ(t)

+ h2x(t)
TPx(t) + x(t− h(t))T [Q+ γET

2 E2]x(t− h(t)).

where ξ(t) =
[
x(t)T x(t− h(t))T f(·)

]T
.

Using the conditions (3.1), (3.2) gives

Dα(V (t, x(t))) ≤ h2V (t, x(t)) + h2x(t− h(t))TPx(t− h(t)).

Let us set

(3.4) M(t) = Dα(V (t, x(t)))− h2V (t, x(t)),

we have

M(t) ≤ h2x(t− h(t))TPx(t− h(t)), t ≥ 0.
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Applying the Laplace transform to both side of (3.4), by Lemma 2.4 (ii), we have

sαV(s)− V (0, x(0))sα−1 = h2V(s) +M(s),

where V(s) = L[V (t, x(t))](s), M(s) = L[M(t)](s), and hence

(3.5) V(s) = (sα − h2)
−1(V (0, x(0))sα−1 +M(s)).

On the other hand, we can verify the correctness of following relations

(t− τ)α−1Eα,α(h2(t− τ)α) ≥ 0 ∀t ≥ 0, τ ∈ [0, t], h2 > 0,

sup
0≤τ≤t

M(τ) ≤h2 sup
0≤τ≤t

x(τ − h(τ))TPx(τ − h(τ)),

t∫
0

(t− τ)α−1Eα,α(h2(t− τ)α)dτ =

t∫
0

uα−1Eα,α(h2u
α)du

=
1

α

tα∫
0

Eα,α(h2v)dv =
1

α

tα∫
0

∞∑
n=0

(h2v)
n

Γ(αn+ α)
dv

=
1

h2

∞∑
n=0

(h2v)
n+1

Γ(αn+ α)

1

(n+ 1)α

∣∣∣v=tα

v=0
=

Eα(h2t
α)− 1

h2
.

Taking the inverse Laplace transform to both sides of equation (3.5), by Lemma 2
(ii)-(iii), we have

V (t, x(t)) =V (0, x(0))Eα(h2t
α) +

t∫
0

M(τ)(t− τ)α−1Eα,α(h2(t− τ)α)dτ

≤V (0, x(0))Eα(h2t
α) + sup

0≤τ≤t
M(τ)

t∫
0

(t− τ)α−1Eα,α(h2(t− τ)α)dτ

≤V (0, x(0))Eα(h2t
α) +

(
Eα(h2t

α)− 1
)

sup
0≤τ≤t

x(τ − h(τ))TPx(τ − h(τ))

≤V (0, x(0))Eα(h2t
α) +

(
Eα(h2t

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)TPx(θ),

and we obtain that

x(t)TPx(t) ≤φ(0)TPφ(0)Eα(h2t
α)(3.6)

+
(
Eα(h2t

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)TPx(θ), t ≥ 0.

We now estimate the value x(t)TPx(t) on τ ∈ [−h2, t]. Firstly, note that by Lemma
2.3 the function Eα(h2t

α) ≥ 1, we have

x(τ)TPx(τ) ≤ sup
θ∈[−h2,0]

φ(θ)TPφ(θ)Eα(h2t
α), τ ∈ [−h2, 0].

Since Eα(.) is non-decreasing, applying the derived condition (3.6) for 0 ≤ τ ≤ t,
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we get

x(τ)TPx(τ) ≤ φ(0)TPφ(0)Eα(h2τ
α) +

(
Eα(h2τ

α)− 1
)

sup
−h2≤θ≤τ−h1

x(θ)TPx(θ)

≤ sup
θ∈[−h2,0]

φ(θ)TPφ(θ)Eα(h2t
α) +

(
Eα(h2t

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)TPx(θ),

which implies

sup
−h2≤θ≤t

x(θ)TPx(θ) ≤ sup
θ∈[−h2,0]

φ(θ)TPφ(θ)Eα(h2t
α)

+
(
Eα(h2t

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)TPx(θ)

≤ sup
θ∈[−h2,0]

φ(θ)TPφ(θ)Eα(h2T
α)

+
(
Eα(h2T

α)− 1
)

sup
−h2≤θ≤t−h1

x(θ)TPx(θ).

Let us denote G(t) = sup
−h2≤θ≤t

x(θ)TPx(θ), we have

G(t) ≤ Eα(h2T
α)G(0) +

(
Eα(h2T

α)− 1
)
G(t− h1), ∀t ∈ [0, T ],

Applying Lemma 2.8 with a = Eα(h2T
α), b =

(
Eα(h2T

α)− 1
)
, we obtain that

x(t)TPx(t) ≤ G(t) ≤ G(0)q ≤ sup
θ∈[−h,0]

φ(θ)TPφ(θ)q, ∀t ∈ [0, T ],

where q = Eα(h2T
α)

[T/h1]+1∑
j=0

(Eα(h2T
α)− 1)j . On the other hand, we can see that

x(t)Tx(t) ≤ 1

λmin(P )
x(t)TPx(t), φ(θ)TPφ(θ) ≤ λmax(P )φ(θ)Tφ(θ).

Therefore, using condition (3.3), we obtain for all t ∈ [0, T ] that

x(t)Tx(t) ≤ 1

λmin(P )
x(t)TPx(t) ≤ 1

λmin(P )
q sup
θ∈[−h2,0]

φ(θ)TPφ(θ)

≤ 1

λmin(P )
q sup
θ∈[−h2,0]

φ(θ)Tφ(θ)λmax(P )

=Cond (P )q sup
θ∈[−h2,0]

φ(θ)Tφ(θ)

≤Cond (P )qc1 ≤ c2.

This completes the proof of the theorem.

REMARK 2.1. In the proof of Theorem 3.1, we choose a simple Lyapunov functional
as for systems without delay, which does not involve any integral-delay function. By
doing so, no definite positiveness of the functional is required to obtain V (t, xt) ≥
α∥x(t)∥2. Meanwhile, in [13, 14] the constructed Lyapunov-Krasovskii functional can
not be positive definite, and it shows that our method is applicable and more effective.
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REMARK 2.2. We may notice that the conditions (3.1), (3.2) in Theorem 3.1 are
LMIs, so we first find solutions P,Q, γ, by using LMI Toolbox in Matlab. Then, we
check the condition (3.3) for given c1, c2, T.

REMARK 2.3. Theorem 3.1 gives sufficient conditions for the finite-time stability.
It is of interest to minimize the trajectory bound c2(or maximize the time bound T ),
that is, the smaller the c2 is (or the bigger the time T is), the better performance the
system has. This problem can be viewed as an optimization parameter, we can give,
as [18], the following optimization algorithm to get the minimal value of c2 :

min c2

P,Q, γ

s.t.(3.1)− (3.3)

In the sequel, we give an application to a class of linear uncertain FDEs with
delay. Consider the following system with interval time-varying delay:

(3.7)

{
Dαx(t) = [A+∆A]x(t) + [D +∆D]x(t− h(t)),

x(θ) = φ(θ), θ ∈ [−h2, 0],

where the time-varying uncertainties ∆A,∆D satisfy

∆A = KAHA(t)MA, ∆D = KDHD(t)MD,

and {KA, MA, KD, MD} are known real constant matrices of appropriate dimen-
sions, and HA(t),HD(t) are unknown matrices uncertainty satisfying

HA(t)THA(t) ≤ I, HD(t)THD(t) ≤ I, t ≥ 0.

To apply Theorem 3.1, we denote f(·) = ∆Ax(t) + ∆Dx(t− h(t)). Observe that

∥f(·)∥2 ≤2x(t)T∆AT∆Ax(t) + 2x(t− h(t))T∆DT∆Dx(t− h(t))

≤x(t)TET
1 E2x(t) + x(t− h(t))TET

2 E2x(t− h(t)),

where

E1 =
√
2λmax(MATMA)λmax(KATKA) I,

E2 =
√

2λmax(MDTMD)λmax(KDTKD) I.

With the same notation stated in Theorem 1, we have the following result for the
system (3.7).

Corollary 3.2. The system (3.7) is finite-time stable w.r.t. (c1, c2, T ) if there
exist a positive scalar γ, symmetric positive definite matrices P,Q satisfying (3.1)-
(3.3).

The next numerical example demonstrates the validity and effectiveness of our
results.
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Consider system (2.1), where

A =

[
0 1
−2 0

]
, D =

[
0 0
3 4

]
,

α = 1/2, h(t) = 2, h1 = 2, h2 = 4.5,

E1 =

[
0.1 0.1
0 0.1

]
, E2 =

[
0.1 0.01
0.01 0.01

]
.

By using LMI Toolbox in Matlab, the conditions (3.1)-(3.3) are feasible with

P =

[
19.1802 −2.3808
−2.3808 3.4955

]
, Q =

[
40.3127 0.2724
0.2724 12.9275

]
, γ = 22.6771.

For c1 = 0.01; c2 = 2e+ 176, T = 5, we can calculate

Cond(P ) = 6.2169, Eα(h2T
α) = 1.8765e+ 44, [

T

h1
] + 1 = 3,

and

c1Cond(P )

[ T
h1

]+1∑
j=0

(Eα(h2T
α)− 1)jEα(h2T

α) = 1.5417e+ 176 < c2.

Therefore, the system, by Theorem 3.1, is finite-time stable w.r.t. (0.01, 2e+176,
5). We now show that our conditions are less conservative than the existing ones.

For example, for the linear systems, i.e, f(·) ≡ 0, E1 = E2 =

[
0 0
0 0

]
, we show that

this system is finite-time stable w.r.t. (0.01, e+176, 5) , but finite-time unstable by
using the conditions obtained in [8]. In fact, by using LMI Toolbox in Matlab, LMIs
(3.1)-(3.2) are feasible with

P =

[
3.8446 −0.1918
−0.1918 1.0090

]
, Q =

[
9.6274 0.8815
0.8815 3.9804

]
, γ = 9.4453.

on the other hand, it is easy to see that

c1Cond(P )

[ T
h1

]+1∑
j=0

(Eα(h2T
α)− 1)jEα(h2T

α) = 9.6032e+ 175 < e+ 176,

which implies that the system is finite-time stable w.r.t. (0.01, e+176, 5) due to
Theorem 3.1. Besides, the system is FTS w.r.t (c1, c2, T ) by the conditions obtained
in [8] if

c1

(
1 +

(∥A∥+ ∥D∥)Tα

Γ(α+ 1)

)2 [
Eα((∥A∥+ ∥D∥)Tα)

]2
< c2.

However, we see that Γ(3/2) = 0.886, and

0.01×
(
1 +

7
√
5

0.886

)2

×
[
E1/2(7

√
5)
]2

= 8.8814e+ 213 > e+ 176,
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which implies that the system is finite-time unstable w.r.t (0.01, e+176, 5) by the
conditions of [8]. Moreover, considering special linear case of system (2.1), the authors
of [Theorem 4.2, 15] provided sufficient conditions on finite-time stability of linear
system

Dαx(t) = Dx(t− h),

in the form:

c1

(
Eα(∥D∥Tα) + Eα(∥D∥hα)

)2

< c2.

We can show that our results is less conservative than this result. Indeed, using LMI
Toolbox in Matlab, LMIs (3.1)-(3.2) are feasible with

P =

[
0.2851 0.0404
0.0404 0.1142

]
, Q =

[
0.7660 0.2246
0.2246 0.4463

]
, γ = 9.4453.

Hence, the system is finite-time stable w.r.t. (0.01,7e+175, 5) due to Theorem 3.1
from

c1Cond(P )

[ T
h1

]+1∑
j=0

(Eα(h2T
α)− 1)jEα(h2T

α) = 6.9392e+ 175 < 7e+ 175.

Besides,

c1

(
Eα(∥D∥Tα) + Eα(∥D∥hα)

)2

= 5.6144e+ 215 > 7e+ 175,

the system is finite-time unstable by using the conditions obtained in [15].

4. Conclusion. We have studied the finite-time stability of nonlinear FDEs with
interval time-varying delay. By using Laplace transform and LMI technique, we have
presented delay-dependent sufficient conditions for finite-time stability in terms of
the Mittag-Leffler function and LMIs. The result obtained is useful in the stability
analysis of FDEs with time-varying delay. Extending the results of this paper to
singular FDEs with time-varying delay is a future work.
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