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ABSTRACT. We extend a recent non-existence result for an Einstein constraint-type sys-
tem due to Dahl–Gicquaud–Humbert (Class. Quantum Grav. 30, 075004) from non-
vanishing, non-positive metrics to metrics with non-positive Yamabe constant.

1. INTRODUCTION

Of importance in general theory of relativity is the study of the initial value problem.
Mathematically, this problem asks: for given a Riemannian manifold (M, g) of dimension
n, whether we can construct a globally hyperbolic spacetime (M , g) of dimension n+1 in
which (M, g) can be embedded as a spacelike hypersurface such that the vacuum Einstein
equation

Ricg −
1

2
g Scalg = 0 (E)

holds. Consequently, it is natural to ask: (a) how could we construct a spacetime (M , g)
from a suitable spacelike (M, ĝ) and (b) under what conditions for (M, ĝ) the answer for
part (a) is positive. To answer part (a), we observe from the Gauss and Codazzi equations
that the “induced” metric ĝ and the second fundamental form K̂ of the embedding must
satisfy the so-called constraint equations. These equations can be formulated as followsScalĝ +(trĝ K̂)2 − |K̂|2ĝ = 0,

divĝ K̂ − d(trĝ K̂) = 0;

(1.1a)

(1.1b)

see [BI04]. Concerning to the part (a), the answer is affirmative by the two celebrated
papers by Choquet-Bruhat [FB52] and Choquet-Bruhat–Geroch [CBG69]. In these papers,
the authors proved that if the pair (ĝ, K̂) solves (1.1), then the Cauchy problem is well-
posed and there do exist a unique, maximal spacetime (M , g) such that (E) holds. To
answer the part (b), we first observe that (1.1) forms an under-determined system; hence it
is difficult to solve (1.1).

The most efficient way to look for solutions of (1.1) is to make use of the conformal
method developed by Lichnerowicz [Lic44] and Choquet-Bruhat and York [CBY80]. The
idea of the conformal method is as follows: First we look for ĝ = φ4/(n−2g in the confor-
mal class represented by some fixed metric g. Then we split K̂ = τ ĝ/n+ φ−2(σ̂ + LW )
where τ is the mean curvature of the hypersurfaceM , σ̂ is some trace-free and divergence-
free symmetric 2-tensor on M , and W is a vector field on M . Note that in the decomposi-
tion of K̂ above, by L we mean the Killing operator acting on vector fields through

LWij := ∇iWj +∇jWi −
2

n
∇kWkgij ,
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where ∇ is the Levi–Civita connection associated to the background metric g. In terms of
(φ,W ), we can reformulate (1.1) into the following system

−4(n− 1)

n− 2
∆gφ+ Scalg φ = −n− 1

n
τ2φ

n+2
n−2 + |σ + LW |2gφ−

3n−2
n−2 ,

divg(LW ) =
n− 1

n
φ

2n
n−2 dτ,

(1.2a)

(1.2b)

where ∆g = divg(∇) is the Laplace–Beltrami operator. In general, the system (1.2) is
coupled except in the case when τ is constant, called the CMC case. In such situation,
a complete and beautiful existence result for solutions of (1.2) was obtained by Isenberg
[Ise95]. When τ is no longer constant, much less is known for solutions for (1.2). The first
set of existence results for near-CMC cases was obtained by Isenberg–Moncrief [IM96]
for metrics with negative Yamabe constant and by Allen–Clausen–Isenberg [ACI08] for
metrics with non-negative Yamabe constant.

In a slow progress of studies for non-CMC cases, two major breakthroughs for far-
from-CMC cases were obtained. The first breakthrough was achieved by Holst–Nagy–
Tsogtgerel [HNT09] for compact manifolds without boundary via introducing the notion
of global super-/sub- solutions for coupled systems. The analysis in [HNT09] was then
refined by Maxwell in [Max09]. This remarkable method works also very well in other
situations, for example, it can be applied for compact manifolds with boundary [HT13],
asymptotically Euclidean manifolds in [DIMM14], for asymptotically cylindrical mani-
folds [Lea14], and for asymptotically Euclidean manifolds with boundary in [HM15]. The
second breakthrough was found by Dahl–Gicquaud–Humbert [DGH12] for compact man-
ifolds without boundary by introducing for the first time the limit equation associated to
(1.2). This method was then simplified by Nguyen in [Ngu15]. This method was success-
fully adapted to other contexts such as asymptotically cylindrical manifolds in [DL14] and
asymptotically hyperbolic manifolds [GS12].

Very recently, by an implicit function theorem argument, Gicquaud and the author
[GN14] provided a constructive proof to offer another point of view on the methods in
[HNT09, DGH12]. The idea in [GN14] has recently been used to study solutions to
the Einstein-scalar field constraint equations, which offers some new perspectives; see
[GN16].

In contrast to the existence results mentioned above, non-existence results for (1.2) in
non-CMC cases are very few. As far as we know, the first non-existence result was obtained
by Isenberg–Ó Murchadha in [IM04, Theorem 2] when σ ≡ 0 and dτ/τ is relatively
small, the near-CMC-case, for metrics of non-negative scalar curvature. Later, this result
was enhanced in [DGH12, Theorem 1.7] and in [GN14, Theorem 2.4] for metrics of non-
negative Yamabe constant, still assuming σ ≡ 0. It turns out that these findings give a clue
for a question raised by Maxwell in [Max09, p. 630], which asks whether the requirement
σ 6≡ 0 is necessary for metrics of either positive Yamabe constant or zero Yamabe constant
with non-vanishing τ . In a very recent paper, Nguyen [Ngu15n, Corollary 1.3] disproved
this fact. Some recent non-existence results can also be found in [Max11].

Knowing the lack of non-existence results for (1.2) in non-CMC cases, Dahl–Gicquaud–
Humbert [DGH13] recently studied the following system similar to (1.2).−

4(n− 1)

n− 2
∆gφ+ Scalg φ = −n− 1

n
τ2φ

n+2
n−2 + |σ + LW |2gφ−

3n−2
n−2 ,

divg(LW ) = aφ
2n

n−2 ξ.

(1.3a)

(1.3b)

The only difference between (1.2) and (1.3) is that the 1-form dτ in (1.2b) was replaced by
some non-vanishing Lipschitz 1-form ξ, up to a constant multiple. Loosely speaking, they
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showed in [DGH13, Theorem 1.1] that for a manifold (M, g) of dimension 3 6 n 6 5,
if Scalg 6 0, Scalg 6≡ 0, and if ξ is a non-zero Lipchitz 1-form, then there exists some
constant a0 (depending mainly on τ , σ, Scalg , ξ) such that (1.3) has no solution (ϕ,W ) if
a > a0.

As indicated in [DGH13, p. 3], the condition Scalg 6 0 with Scalg 6≡ 0 implies that the
metric g has a negative Yamabe constant. Then, it is natural to ask if the result in [DGH13]
is still valid for any metric g having a negative Yamabe constant. In this note, we provide
a positive answer for this question by exploding the conformally covariant property of Eq.
(1.3a). In fact, we shall show that such a result still holds for metrics with zero Yamabe
constant. The following is our main result.

Theorem 1. Let (M, g) be a closed Riemannian manifold of dimension n > 3. We assume
further that (i) either n 6 5 if g ∈ C2(M) has a negative Yamabe constant; (ii) or n 6 4
if g ∈ C2(M) has zero Yamabe constant. Let τ ∈ L∞(M) be a positive function and
σ ∈ L2n/(n−2)(M) a symmetric traceless divergence-free (2, 0)-tensor on M . Assume
that ξ is a Lipchitz 1-form which does not vanish anywhere on M . Then there is a constant
a0 such that there does not exist any solution to the system (1.3) whenever a > a0.

As in [DGH13], the constant a0 depends on a Sobolev constant, a constant appearing
in a Schauder estimate, max |ξ|, min |ξ|, ‖Lξ‖2, ‖Lξ‖∞, ‖τ‖4n/(n−2), min τ , ‖Scalg ‖n,
‖σ‖2n/(n−2), ‖φ−‖2n/(n−2), and on ψ where φ− is the (unique) solution of the prescribed
scalar curvature equation, see Proposition 1 below,

− 4(n− 1)

n− 2
∆gφ+ Scalg φ = −n− 1

n
τ2φ

n+2
n−2 (1.4)

and ψ ∈ C∞(M) is a positive function such that the scalar curvature of the conformal
metric ψ4/(n−2)g is non-positive.

Clearly, one wishes to strengthen Theorem 1 by assuming that the metric g has a positive
Yamabe constant. Unfortunately, the prescribed scalar curvature equation (1.4) has no
solution in this setting. The role of metrics with non-positive Yamabe constant is to make
sure that the solution φ of the constraint equations (1.3) has a strictly positive lower bound
independent of W ; see Proposition 1 below. Such an important property is the key step in
the proof of Claim 2.1 in [DGH13]. In general, strictly positive lower bounds for solutions
(φ,W ) of the constraint equations are barely understood.

Simply by observing the change in the dimension n in [DGH13, Theorem 1.1] and
our Theorem 1 above, it is likelihood that a similar result could hold for metrics with
positive Yamabe constant on 3-manifolds which is not conformally diffeomorphic to 3-
sphere; see [ES86, Theorem 2.3].

2. PROOF OF THEOREM 1

Since our proof basically follows the lines in [DGH13, Theorem 1.1], we only indicate
the difference. First, we assume that (φ,W ) solves (1.3). Then by using

γg =

∫
M

|σ + LW |2g dvolg

and transforming φ, W , σ via γg through

φ̃ = γ
−n−2

4n
g φ, W̃ = γ

− 1
2

g W, σ̃ = γ
− 1

2
g σ, (2.1)
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the system (1.3) becomesγ
− 1

n
g

(
− 4(n− 1)

n− 2
∆gφ̃+ Scalg φ̃

)
= −n− 1

n
τ2φ̃

n+2
n−2 + |σ̃ + LW̃ |2gφ̃−

3n−2
n−2 ,

divg(LW̃ ) = aφ̃
2n

n−2 ξ.

(2.2a)

(2.2b)

Before going further, we prove the following simple observation.

Proposition 1. Assume that the background metric g satisfies the assumptions in Theorem
1, then there exists a solution ϕ− of Eq. (1.4). Furthermore, if (φ,W ) is a solution of the
system (1.3), then ϕ− 6 ϕ holds.

Proof of Proposition 1. For the existence part, depending on the sign of the Yamabe con-
stant for g, we have two cases: For the case of zero Yamabe constant, we make use of a gen-
eral existence result due to Escobar–Schoen [ES86, Theorem 3.1] in which the dimension
restriction 3 6 n 6 4 and the fact

∫
M
τ2 dvolg > 0 are crucial; see also [NX15, HNX16].

For the case of negative Yamabe constant, the argument is standard and it is well-known
that Eq. (1.4) always admits at least one positive solution for any n > 3. For the estimation
part, we refer to a useful result due to Dahl–Gicquaud–Humbert [DGH12, Lemma 2.2] and
omit the details. �

The proof in [DGH13] consists of seven claims. In their proof for Claim 2.1, it made
use of no information on Scalg . The only issue we need to take care is the existence of
φ− in (1.4). However, thanks to Proposition 1, we automatically obtain the same claim as
theirs.

Claim 2.1. There exists a constant c1 > 0 such that

γg > c1a
2.

For their Claim 2.2, since their proof made use of the sign of Scalg , we need to modify
that proof. However, the statement remains the same except up to constants.

Claim 2.2. There exists a constant c2 > 0 such that∫
M

φ̃ dvolg 6 c2a
− 3n−2

n−2 .

Proof of Claim 2.2. The only place in [DGH13] used the sign of Scalg is to obtain the first
inequality in (6), that is∫

M

|σ̃ + LW̃ |2gφ̃−
3n−2
n−2 dvolg 6

n− 1

n

∫
M

τ2φ̃
n+2
n−2 dvolg (2.3)

where σ̃, φ̃, and W̃ are in (2.1). To obtain an inequality in the fashion of (2.3) without
assuming a sign for Scalg , we use the conformal change ĝ = ψ4/(n−2)g to transform
(1.2a) into

−4(n− 1)

n− 2
∆ĝ(ψ−1φ) + Scalĝ(ψ−1φ)

= −n− 1

n
τ2(ψ−1φ)

n+2
n−2 + |ψ−2

(
σ + LW

)
|2ĝ(ψ−1φ)−

3n−2
n−2 ,

(2.4)

where the conformal factor ψ is chosen in such a way that the conformal metric ĝ has non-
positive scalar curvature, i.e. Scalĝ 6 0. From this, an integration over M with respect to
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ĝ yields∫
M

|ψ−2
(
σ + LW

)
|2ĝ(ψ−1φ)−

3n−2
n−2 dvolĝ 6

n− 1

n

∫
M

τ2(ψ−1φ)
n+2
n−2 dvolĝ. (2.5)

Note that under the conformal change ĝ = ψ4/(n−2)g, there holds

dvolĝ = ψ
2n

n−2 dvolg

and
|ψ−2

(
σ + LW

)
|2ĝ = ψ−

4n
n−2 |σ + LW |2g.

Using the two relations above, we can re-evaluate (2.5) in terms of g as follows∫
M

ψ|σ + LW |2gφ−
3n−2
n−2 dvolg 6

n− 1

n

∫
M

τ2ψφ
n+2
n−2 dvolg. (2.6)

Hence, dividing both sides of (2.6) by γ(n+2)/(4n)
g gives∫

M

|σ̃ + LW̃ |2gφ̃−
3n−2
n−2 dvolg 6

n− 1

n

(maxψ

minψ

)∫
M

τ2φ̃
n+2
n−2 dvolg. (2.7)

Once we have (2.7) in hand we can go through the rest of their proof for Claim 2.2 to get
a new constant

c2 =
(1

2

) 3n−2
n−2

(
n− 1

n

maxψ

minψ

) n
n−2
(
‖Lξ‖∞
inf |ξ|2

) 3n−2
n−2

(∫
M

τ
4n

n−2 dvolg

)1/2

.

This completes our proof of Claim 2.2. �

After completing the proof of Claim 2.2, we obtain Claim 2.3 as in their paper.

Claim 2.3. There exists a constant c3 > 0 such that∫
M

|σ̃ + LW̃ |2gφ̃−
3n−2
n−2 dvolg 6 c3a

− (3n−2)(n+2)
2n(n−2) .

For Claim 2.4, although some integrals involving Scalg were estimated in the proof, we
find that the sign of Scalg in those estimates plays no role. This can be easily seen from
their formula for c4 where |Scalg | was used. Therefore, we can conclude the following
result.

Claim 2.4. There exists a constant c4 > 0 such that∫
M

φ̃
4n

n−2 dvolg 6 c4

provided a is large enough.

Since Claims 2.5–2.7 in their paper involved no information on the sign of Scalg di-
rectly, we conclude that their claims still hold in our context. For the sake of completeness,
we mention Claims 2.5–2.7 in [DGH13] below.

Claim 2.5. There exists a constant c5 > 0 such that∫
M

|σ̃ + LW̃ |
2n

n−2
g dvolg 6 c5a

2n
n−2 ,

provided a is large enough.

Claim 2.6. There exists a constant c6 > 0 such that∫
M

|σ̃ + LW̃ |2gφ̃
4

n−2 dvolg 6 c6a
2− 2(3n−2)

n(n−2) .
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Claim 2.7. There exists a constant c7 > 0 such that∫
M

|σ̃ + LW̃ |2gφ̃−
4

n−2 dvolg 6 c7a
− 2(n+2)

n(n−2) .

Thus, one can obtain a non-existence result for large a similar to their equation.

Proof of Theorem 1. To prove the theorem, we use (2.1) and Claims 2.6 and 2.7 above to
obtain

1 6
(∫

M

|σ̃ + LW̃ |2gφ̃
4

n−2 dvolg

)(∫
M

|σ̃ + LW̃ |2gφ̃−
4

n−2 dvolg

)
6c6c7a

2− 2(3n−2)
n(n−2) a−

2(n+2)
n(n−2)

=c6c7a
6−2 2n

n−2 .

Thus in case 3 6 n 6 5, we obtain a contradiction if a is large enough. This provides us a
non-existence result as claimed. �
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