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Abstracts. 1 Let (R,m) be a Noetherian local ring which is a quotient of a
Gorenstein local ring. Let M be a finitely generated R-module. In this paper,
we study the structure of the canonical module K(RnM) of the idealization
RnM via the polynomial type introduced by N. T. Cuong [5]. In particular, we
give a characterization for K(RnM) being Cohen-Macaulay and generalized
Cohen-Macaulay.

1 Introduction

Throughout this paper, (R,m) denotes an r-dimensional Noetherian local
ring with maximal ideal m and M a finitely generated R-module with dimen-
sion d. The concept of principle of idealization was introduced by M. Nagata
[12]. In the cartesian product R×M, we introduce the componentwise addition
and the multiplication defined by (a, x)(b, y) = (ab, ay+ bx). These operations
give a structure of a commutative ring to R×M . This ring is called the ideal-
ization of M and denoted by RnM. The purpose of idealization is to put M
inside the commutative ring RnM so that the structure of M as an R-module
is essentially the same as that of M as an ideal of RnM . The notion of prin-
ciple of idealization plays an important role in the study of Noetherian rings
and modules. Idealization is useful for reducing results concerning submodules
to the ideal case; generalizing results from rings to modules and constructing
examples of commutative rings with zero divisors, cf. [1], [12], [17].

The notion of a canonical module of a Noetherian local ring is due to A.
Grothendieck, who called it a module of dualizing differentials (cf. [6]). The
term “a canonical module” was first adopted by J. Herzog, E. Kunz et al.
[7], in which they defined the notion of a canonical module for general local
rings. We note that a local ring R has a canonical module if and only if R is a
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homomorphic image of a Gorenstein local ring. P. Schenzel [15] has introduced
the canonical module K(M) of an R-module M .

The polynomial type introduced by N. T. Cuong [5] makes an important
role in the study of finitely generated modules, cf. [5]. Let a = (a1, . . . , ad)
be a system of parameters of M and n = (n1, . . . , nd) a d-tuple of positive
integers. Set a(n) = (an1

1 , . . . , a
nd
d ). Then the difference between length and

multiplicity I(a(n);M) = `(M/(an1
1 , . . . , a

nd
d )M)−n1 . . . nde(a;M) can be con-

sidered as a function in n. It is well-known that M is Cohen-Macaulay (resp.
generalized Cohen-Macaulay) if and only if I(a(n);M) = 0 (resp. there ex-
ists a constant C such that I(a(n);M) 6 C) for all a and n. In general,
I(a(n);M) is not a polynomial for n1, . . . , nd � 0, but it takes non negative
values and bounded above by polynomials. The least degree of all polynomi-
als bounding above this function does not depend on the choice of a, cf. [5,
Theorem 2.3]. This least degree is called the polynomial type of M and de-
noted by p(M). It should be mentioned that p(M) gives a lot of information
on the structure of M . For example, if we stipulate the degree of the zero
polynomial to be −∞ then M is Cohen-Macaulay if and only if p(M) = −∞,
and M is generalized Cohen-Macaulay if and only if p(M) 6 0. We denote

by R̂ and M̂ the m-adic completion of R and M respectively. In general,
p(M) = p(M̂) = max

i<d
dim R̂/AnnR̂H

i
m̂(M̂). And if R is a quotient of a Goren-

stein local ring and M is equidimensional then p(M) = dim nCM(M), cf. [5,
Theorem 3.1, 3.3], where nCM(M) is the non Cohen-Macaulay locus of M .

The purpose of this paper is to study the polynomial type of the canon-
ical module of the idealization RnM. Especially, we give a criterion for the
canonical module K(RnM) being Cohen-Macaulay (resp. generalized Cohen-
Macaulay). Techniques used in this paper are the associativity formula of
multiplicity of local cohomology modules given by M. Brodmann and R.Y.
Sharp [3] (see also [14]) and the extension of idealization introduced by K.
Yamagishi [17]. The main result of this paper is the following theorem.

Theorem 1.1. The following statements are true:
(i) If dimM = dimR then p(K(RnM)) = max{p(K(R)), p(K(M))};
(ii) If dimM < dimR then p(K(RnM)) = p(K(R)).

In Section 2, we shall outline some properties of polynomial type and ide-
alization which will be needed later. The proof of Theorem 1.1 will be shown
in Section 3 (see Theorem 3.3).

2 Preliminaries

Firstly, we recall the notion of polynomial type which introduced by N.T.
Cuong [5]. Let a = (a1, . . . , ad) be a system of parameters of M and n =
(n1, . . . , nd) a d-tuple of positive integers. Set a(n) = (an1

1 , . . . , a
nd
d ) and

I(a(n);M) = `(M/(an1
1 , . . . , a

nd
d )M)− n1 . . . nde(a;M).
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Then I(a(n);M) can be considered as a function in n. Note that this func-
tion is non-negative and ascending, i.e., I(a(n);M) ≥ I(a(m);M) for n =
(n1, . . . , nd), m = (m1, . . . ,md) with ni ≥ mi, i = 1, . . . , d. This function is
bounded above by a polynomial in n. Moreover, we have the following impor-
tant property.

Lemma 2.1. ([5, Theorem 2.3]) The least degree of all polynomials in n bound-
ing above the function I(a(n);M) does not depend on the choice of a.

Definition 2.2. ([5, Definition 2.4]) The numerical invariant of M given in
Theorem 2.1 is called the polynomial type of M and denote it by p(M).

Lemma 2.3. ([5, Lemma 2.6]) The polynomial type is preserved by m-adic

completion, i.e., p(M) = p(M̂).

Next, we recall the concept of principle of idealization introduced by M.
Nagata [12]. We make the cartesian product R ×M to become a commuta-
tive ring under the componentwise addition and the multiplication defined by
(a, x)(b, y) = (ab, ay+ bx). This ring is called the idealization of M over R and
denoted by RnM.

Note that the idealization RnM is again a Noetherian local ring with the
unique maximal ideal m×M and dimRnM = dimR. Moreover the m×M -

adic completion R̂nM of RnM is naturally isomorphic to R̂nM̂ , cf. [1]. In
particular, (0, x1)(0, x2) = (0, 0), for all x1, x2 ∈ M and hence 0 ×M is an
ideal whose square is zero. Furthermore RnM/0×M ∼= R.

There are a canonical projection ρ : RnM → R defined by ρ((a, x)) = a
and a canonical inclusion σ : R → RnM defined by σ(a) = (a, 0). Note
that ρ and σ are local homomorphisms and we can regard any R-module
(resp. RnM -module) as an RnM -module (resp. R-module) by ρ (resp. σ).
Moreover, the structure of R-modules induced by the composition ρσ coincides
with the original one. Let ε : M → RnM be the canonical inclusion defined
by ε(x) = (0, x). Then we have an exact sequence of RnM -modules

0→M
ε→ RnM ρ→ R→ 0.

3 The proof of Theorem 1.1

Before proving the main result of this paper, we need to recall notions of
canonical module and idealization. Let R be a quotient of a n-dimensional
Gorenstein local ring (R′,m′). We denote by Ki(M) = Extn−iR′ (M,R′). Then
Ki(M) is a finitely generated R-module. Following P. Schenzel [16], Ki(M) is
called the ith deficiency module of M for i = 0, . . . , d−1, and K(M) = Kd(M)
is called the canonical module of M. By the local duality (cf. [2, 11.2.6]), we
have an isomorphism

H i
m(M) ∼= HomR(Ki(M), E(R/m)),

for all i, where E(R/m) is the injective hull of R/m.
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Definition 3.1. ([16], [10]) An R-module M is called a Cohen-Macaulay
canonical (resp. generalized Cohen-Macaulay canonical) module if the canon-
ical R-module K(M) of M is Cohen-Macaulay (resp. generalized Cohen-
Macaulay). If R itself is a Cohen-Macaulay canonical (resp. generalized
Cohen-Macaulay canonical) module then it is called a Cohen-Macaulay canon-
ical (resp. generalized Cohen-Macaulay canonical) ring.

The Cohen-Macaulay canonical property is related to some important ques-
tions. For example, if M is Cohen-Macaulay canonical then the monomial
conjecture raised by M. Hochster [8] is valid for the ring R/AnnRM . Further-
more, if R is a domain then R is Cohen-Macaulay canonical if and only if R
posseses a birational Macaulayfication R1, i.e. an extension ring R ⊆ R1 ⊆ Q
(where Q is the field of fractions of R) such that R1 is finitely generated as an
R-module and R1 is a Cohen-Macaulay ring, cf. [16, Theorem 1.1].

Remark 3.2. (i) It is easy to see that K̂(M) ∼= K(M̂) as R̂-module. There-
fore M is a Cohen-Macaulay canonical (resp. generalized Cohen-Macaulay

canonical) R-module if and only if M̂ is a Cohen-Macaulay canonical (resp.

generalized Cohen-Macaulay canonical) R̂-module.
(ii) Let E and F be R-modules. K. Yamagishi [17] extended the concept

of the idealization as follows: given an R-linear map φ : M ⊗R E → F, it
can make the Cartesian product E × F into an RnM -module with respect to
componentwise addition and multiplication defined by

(a, x)(e, f) = (ae, af + φ(x⊗ e)).

We denote this RnM -module by E
φ
nF.

Theorem 3.3. The following statements are true:
(i) If dimM = dimR then p(K(RnM)) = max{p(K(R)), p(K(M))};
(ii) If dimM < dimR then p(K(RnM)) = p(K(R)).

Proof. Note that R̂nM̂ is isomorphic to the m×M -adic completion of RnM.
Moreover, the polynomial type is preserved by the completion, i.e. p(K(M)) =

p(K(M̂)), p(K(R)) = p(K(R̂)) and p(RnM) = p(R̂nM̂)) (see Lemma 2.3).
Therefore without any loss of generality, we may assume that R is complete
with respect to m-adic completion.

Let Q be an ideal of RnM and put q = ρ(Q), where ρ : RnM → R
is the map defined by ρ(a, x) = a for all (a, x) ∈ RnM . Note that, Q is
m×M−primary if and only if q is m-primary, cf. [17, Remark 2.1].

Firstly, we claim the following fact.

Claim 1. Let q be an m-primary ideal of R. Then we have

e(q;K(M)) = e(q;M).

Proof of Claim 1. To prove this claim, we need recall some notions and
facts on multiplicities for Artinian module. Suppose that A is an Artinian
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R-module. Let a be an ideal of R such that `(0 :A a) < ∞. Then `(0 :A an)
is a polynomial with rational coefficients for n � 0. Since R is complete,
the degree of this polynomial is equal to t := dimR/AnnRA, cf. D. Kirby [9].
Following M. Brodmann and R. Y. Sharp [3], the multiplicity of A with respect
to a, denoted by e′(a;A), is defined by the formula e′(a;A) = att! where at is
the leading coefficient of the polynomial `(0 :A an).

LetD(−) be the Matlis dual functor. Since A is Artinian and R is complete,
D(A) is a finitely generated R-module. Since `R(0 :A a) <∞ with notice that
D(0 :A an) ∼= D(A)/anD(A), we have `R(0 :A an) = `R(D(A)/anD(A)) for all
n ∈ N. It follows that e′(a;A) = e(a;D(A)). Now, we apply this fact for the
Artinian module Hd

m(M) and the m-primary ideal q. As R is complete, we
have K(M) ∼= D(Hd

m(M)). Now we get

e′(q;Hd
m(M)) = e(q;K(M)).

For each integer i ≥ 0, let PsuppiR(M) = {p ∈ SpecR | H i−dimR/p
pRp

(Mp) 6= 0}
be the i-th pseudo-support of M defined by M. Brodmann and R. Y. Sharp
[3]. Then we get by [14, Corollary 3.4] that

e′(q;Hd
m(M)) =

∑
p∈PsuppdR(M)

dimR/p=d

`Rp(H
0
pRp

(Mp))e(q;R/p).

Since R is complete, R is catenary. Therefore, we get by [14, Corollary 3.4]
that

PsuppdR(M) = {p ∈ Supp(M) | ∃p′ ∈ AssR(M), dimR/p′ = d, p′ ⊆ p}.

Hence {p ∈ PsuppdR(M) | dimR/p = d} = {p ∈ SuppRM | dimR/p = d}. So
by the associativity formula for multiplicity of M with respect to q, cf. [11,
14.7], we have

e′(q;Hd
m(M)) =

∑
p∈SuppR(M)

dimR/p=d

`Rp(H
0
pRp

(Mp))e(q;R/p)

=
∑

p∈SuppR(M)
dimR/p=d

`Rp(Mp)e(q;R/p)

= e(q;M).

Therefore e(q;K(M)) = e(q;M), the claim is proved.

From now on, let a = (a1, . . . , ar) be a system of parameters of R. Set u =
(u1, . . . , ur) with ui = (ai, 0) for i = 1, . . . , r. It is easy to see that u is a system

of parameters of RnM. Set q = (a1, . . . , ar)R and Q =
r∑
i=1

ui(RnM) ⊆ RnM.

Then q is an m-primary ideal of R and Q is an m×M -primary ideal of RnM.
Moreover Q = q× qM and q = ρ(Q).
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Claim 2. With the above notations, if d = r (i.e. dimM = dimR) then

`RnM(K(RnM)/QK(RnM)) = `R(K(R)/qK(R)) + `R(K(M)/qK(M)).

Otherwise, we have

`RnM(K(RnM)/QK(RnM)) = `R(K(R)/qK(R)).

Proof of Claim 2. By [7, 5.14], we have an isomorphism

K(RnM) ∼= HomR(RnM,K(R))

of RnM -modules. Moreover, there is an isomorphism of R-modules

HomR(RnM,K(R))→ HomR(M,K(R))⊕K(R)

defined by α 7→ (αε, α((1, 0))) for each α ∈ HomR(RnM,K(R)), where ε :
M → RnM is defined by ε(x) = (0, x) for all x ∈ M . Then by Remark 3.2,
(ii) we can make the R-module HomR(M,K(R))⊕K(R) into an RnM -module,
which is denoted by

HomR(M,K(R))
φ
nK(R)

with respect to the R-linear map φ : M ⊗R HomR(M,K(R)) → K(R) such
that φ(x⊗ f) = f(x) for every x ∈M and f ∈ HomR(M,K(R)). Therefore

K(RnM) ∼= HomR(M,K(R))
φ
nK(R)

as RnM -modules. By [4, 3.5.10], there is an isomorphism

HomR(Hr
m(M), ER(R/m)) ∼= HomR(M,K(R))

of R-modules. Now, suppose d = r. Then HomR(Hr
m(M), ER(R/m)) ∼= K(M)

as R is complete, and hence HomR(M,K(R)) ∼= K(M). Therefore, we get an

isomorphism K(RnM) ∼= K(M)
φ
nK(R) as RnM -modules. It follows that

QK(RnM) ∼= (q× qM)
(
K(M)

φ
nK(R)

)
∼= qK(M)×

(
qK(R) + φ(qM ⊗K(M))

)
∼= qK(M)×

(
qK(R) + qφ(M ⊗K(M))

)
∼= qK(M)×

(
qK(R) + qImφ

)
∼= qK(M)× qK(R).

Then we obtain that

`RnM(K(RnM)/QK(RnM)) = `RnM((K(M)
φ
nK(R))/(qK(M)× qK(R)))

= `R(K(M)/qK(M)) + `R(K(R)/qK(R)).
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Suppose that d < r. Then HomR(Hr
m(M), ER(R/m)) = 0. Therefore we have

HomR(M,K(R)) = 0. It follows that K(RnM) ∼= 0
φ
nK(R) as RnM -modules

and therefore QK(RnM) ∼= 0× qK(R). Then we get that

`RnM
(
K(RnM)/QK(RnM)

)
= `RnM

(
0
φ
nK(R)/0× qK(R)

)
= `R

(
K(R)/qK(R)

)
,

and Claim 2 is proved.

Now, we consider the exact sequence

0→M
ε→ RnM ρ→ R→ 0.

If d = r then e(Q;RnM) = e(q;R) + e(q;M), and therefore

e(Q;K(RnM)) = e(q;K(R)) + e(q;K(M))

by Claim 1. On the other hand, if d < r then e(Q;K(RnM)) = e(q;R) =
e(q;K(R)) by Claim 1.

Let n = (n1, . . . , nr) be a set of positive integers, let a(n) := (an1
1 , . . . , a

nr
r )

and u(n) := (un1
1 , . . . , u

nr
r ) = ((an1

1 , 0), . . . , (anr
r , 0)). Set Q(n) =

r∑
i=1

uni
i (RnM) ⊆

RnM and q(n) = a(n)R.
(i) If d = r then a(n) is a system of parameters of R, K(R),M and K(M).

Moreover, u(n) is a system of parameters of RnM and K(RnM). Therefore
we get by Claim 2 and the above facts that

I(Q(n);K(RnM)) = I(q(n);K(R)) + I(q(n);K(M)).

So, we get by Lemma 2.1 that

p(K(RnM)) = max{p(K(R)), p(K(M))}.
(ii) Suppose d < r. Then by Claim 2 with notice that e(Q;K(RnM)) =

e(q;K(R)) we obtain

I(Q;K(RnM)) = I(q;K(R)).

Thus p(K(RnM)) = p(K(R)) by Lemma 2.1.

Note that M is Cohen-Macaulay if and only if p(M) = −∞ and M is
generalized Cohen-Macaulay if and only if p(M) 6 0. Therefore we have the
following characterization for RnM being Cohen-Macaulay canonical (resp.
generalized Cohen-Macaulay).

Corollary 3.4. The following statements are true:
(i) If dimM = dimR then RnM is Cohen-Macaulay canonical (resp. gen-

eralized Cohen-Macaulay canonical) if and only if so are R and M.
(ii) If dimM < dimR then RnM is Cohen-Macaulay canonical (resp.

generalized Cohen-Macaulay canonical) if and only if so is R.
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