ON THE BOUNDARY BEHAVIOUR OF THE SQUEEZING
FUNCTION NEAR WEAKLY PSEUDOCONVEX BOUNDARY
POINTS

NINH VAN THU, NGUYEN THI LAN HUONG AND NGUYEN QUANG DIEU*2

ABSTRACT. The purpose of this article is twofold. The first aim is to prove that if
there exist a sequence {p;} < Aut(Q2) and a € Q such that lim; . ¢;(a) = & and
lim;, oa(pj(a)) = 1, where & is a linearly convex boundary point of finite type,
then & must be strongly pseudoconvex. Then, the second aim is to investigate the
boundary behaviour of the squeezing function of a general ellipsoid.

1. INTRODUCTION

Let © be a domain in C" and p € 2. Let us denote by Aut(D) the automorphism
group of a domain D. For a holomorphic embedding f: Q — B" := B(0;1) with
f(p) =0, we set

oa,(p) :=sup {r >0: B(0;r) = f()},
where B"(z;7) < C" denotes the ball of radius r with center at z. Then the squeezing
function oq : € — R is defined as

oa(p) = sup{oas(p)}-
f

(See Definition in [DGZ12].) Note that the squeezing function is invariant under bi-
holomorphisms and 0 < 0q(z) < 1 for any z € 2. Moreover, by definition one sees that
(2 is biholomorphically equivalent to the unit ball B" if o0g(z) = 1 for some z € ).

It is well-known that if p is a strongly pseudoconvex boundary point, then o lim 079 (2) =
3z—opE

1 (cf. [DGZ16, DEW14, [KZ16]). Conversely, motivated by Problem 4.1 in [FWI§], let
us consider the following problem.

Problem 1. If  is a bounded pseudoconvex domain with smooth boundary, and if
lim og(g;) = 1 for some sequence {g;} < Q converging to p € 05, then is the boundary
J—00

of Q2 strongly pseudoconvex at p?

In the case that 0f2 is pseudoconvex of D’Angelo finite type near &, the answer to
this problem is affirmative for the following cases:

e {q;} < Q converges to ¢ along the inner normal line to 0 at &, (for details, see
[JK18] for n = 2 and [MV19] for general case).
o {q;} < Q converges nontangentially to &, (see [Nik18]).

e {g;} < Q converges m%, e ;)—nontangentially to an h-extendible boundary

? Mp—1

point &y (see [NN20, Definition 3.4]), where (1,my,...,m,_1) is the multitype
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of 02 at & and the h-extendiblility at & means that the Catlin multitype and
D’Angelo multitype of 0Q at &, coincide (see [Yu95, Definition 3.3]).

Now we consider the case that {¢;} < 2 is a sequence converging ( L., )—

m_l’ ? Mp—1
nontangentially to &. Then, the condition that lim o0q(g;) = 1 ensures that the unit
J—a0
ball B" is biholomorphically equivalent to some model Mp given by
Mp ={z€ C": Re(z,) + P(') < 1},

1 1

ml"..’mnfl

where P is a ( )—homogeneous polynomial on C"! (see [Yu95 Definition

3.1]). Therefore, m; = mg =+ =m,_; = 1, or & is strongly pseudoconvex ([NN20]).
Unfortunately, the point &, may not be strongly psudoconvex when {g;} < §2 does not

1 1
converge (ml, e

)—nontangentially to &. For instance, the following example

points out that lim og(g;) = 1 for some {g;} < €2 converging to a weakly pseudoconvex
J—0

boundary point (see also Example for general case).

Example 1.1. Let Fy5 := {(21,22) € C*: |2]® + |z1]* < 1}. Consider the sequence

2 2 1
a, = («4/— - —,1 - —) — (0,1) as n — . Denote by p(z) = |z =1 + | |*
non n

a defining function for E, and denote by o(z1) = |z1]|* a (3)-weighted homogeneous
polynomial. Then, a computation shows that

NE 2‘4_ 2, 01,2 2 1 _
n n2l n n2 n n2  n2

1 1 1
Therefore, dist(an, 0E12) =~ |p(a,)| = —, [Re(ane) — 1] = ‘ — —‘ = —, and o(a,) =
n nl n

112
) = 1——‘ 1+
plan) ‘ -

2 2 2 2 2 2 2
oA —— =) = (4 o ﬁ) =N This implies that {a,} does not converge

(})-nontangentially to the boundary point p = (0, 1).
Let us consider the automorphism v, € Aut(F ), given by

(1 — Gyp20) "2 b1- Qn222

4

SAIN

2
an, T n?
and hence ¢, (a,) = (b,,0), where b, = = |an12|2)1/4 = = - 1 asn — oo.
T on2?

3

Since ¢, (ay) converges to the strongly pseudoconvex boundary point (1,0) of 0E 5, by
[KZ16, Theorrem 3.1] it follows that o, ,(a,) = 0g, ,(¥n(an)) — 1 as n — co. However,
the point (0,1) is weakly pseudoconvex. O

To give a statement of our result, let us recall that 0€2 is linearly convezr near & € 052
if there exists a neighbourhood U of &, such that, for all z € 92 n U, the intersection

(z+ TP N (Q2NU) =
We note that in [Ni09] the first author proved a characterization of linearly convex

domains in C" by their noncompact automorphism groups.
The first aim of this paper is the following theorem.
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Theorem 1.1. Let Q be a bounded domain in C" with smooth pseudoconvex boundary.
Assume that &y is a boundary point of Q) of D’Angelo finite type such that 052 is linearly
convez at & and there exists a sequence {p;} < Aut(SQ) such that q; := @;(a) — & as
j — oo for some a € ). If 1112) oa(q;) = 1, then Q2 is strongly pseudoconver at &.

J—)

Remark 1.1. Thanks to the linear convexity of df) near a boundary orbit accumulation
point & and the condition that lim og(g;) = 1, the scaling method can be applied
J—00

to implies that B™ is biholomorphically equivalent to a model Mp, where is a real
nondegenerate plurisubharmonic polynomial of degree less than or equal to the type of
o8 at &. Moreover, since g; = @;(a) for some {p;} < Aut(Q2) and a € 2, the scaling
method yields € is biholomorphically equivalent to a model Mp (see [Ni09, Theorem
1.1]), that is, © is biholomorphically equivalent to the unit ball B". Consequently, the
point &, is strongly pseudoconvex, as desired.

Now we move to the second part of this paper. First of all, let us fix positive integers
mi,...,my_1 and let P(z') be a (1/my,...,1/m,_1)-homogeneous polynomial given by

P(z2) = Z agr?" 7",

wt(K)=wt(L)=1/2

where ay, € C with axy = apg, satisfying that P(z’) > 0 whenever 2’ # 0. Here and

in what follows, 2’ := (z1,...,2, 1) and wt(K) := Z;:ll % denotes the weight of any
J

multi-index K = (ky, ..., k,_1) € N*! with respect to A := (1/my,...,1/m,_1). Then
the general ellipsoid Dp in C* (n = 1), defined in [NNTK19] by

Dp :={(¢,2,) € C": |z,]> + P(¢) < 1}.
We note that
(1) P(aY™ 2 aM™2 2y, a1, ) = P(2), Y2 e €L Va e C\{0}.

Therefore, Aut(Dp) contains the automorphisms ¢, € Aut(Dp), a € A, defined by

(1= [a?)!2m (L= Ja?) 2 At
(14 az,)Vm "0 (1 +azy) ¥t V1w az, )

@ e

These automorphisms play a crucial role in the proofs of Theorem [I.2] and Theorem
below.
Throughout this paper, we assume that the domain Dp is a WB-domain, i.e., Dp

is strongly pseudoconvex at every boundary point outside the set {(0/,¢): 6§ € R} (cf.
[AGKT6]).



4 NINH VAN THU, NGUYEN THI LAN HUONG AND NGUYEN QUANG DIEU*?

For any s,7 € (0,1] and « € [0, 2), as in [NNN23] we define D%, D}, Dp,, and Dj(a)
respectively by

D% = {2eC": |z, — b]* + sP(¢) < s*};

D3, i={zeC": |z, —b]* + fP(z') < 5%}
’ r

1
Dp, := Dpj, = {z e C": |z, + -P(¢) < 1};
r

5 . (1-s)a [? s(2 — ) ,

Dp(a)z{ze(C. Zn+23(1—04)+a 23(1—04)+04P(Z)
2s — « (1—s)a [

= 2s(l—a)+a |2s(1—a)+a }’

where s = 1 —b. We note that D3, = Dy < Dp (cf. [NNN23|), D3(0) = Dp, and
D3, = Dj.

In what follows, let us denote by A the unit disc in C and for a sequence {a;} = A
converging to 1 € 0A we always denote by z; := 1 — Re(a;) and y; := Im(a;) for j > 1.
Suppose that {q; = (¢}, a;)} = Dp for some 0 < s < 1. Then one sees that

a5 = 1[* + 2sRe(a; = 1) + sP(q}) <0,

which implies that

la; — 1> < —2sRe(a; — 1), for j > 1,

or equivalently ZBJQ + y]2 < 2sz;, for j = 1. Therefore, passing to a subsequence if
necessary, we can assume that there exists

y?
0<a:=lim 2L <25 <2,
J—x0 ,CCJ
In addition, to each sequence {a;} = A we associate a sequence ¥; := ¢4, € Aut(Dp),
ie,

® - (

To state our second result, we need the following definition.

(1—|aj|2)1/2’"121 (1= Ja?)!2mer T I B
(1+ @jzn)Vm 77777 (L + @jz,)Ymnr ™ 1 v a2, ) 0T

Definition 1.1. We say that {¢;} < DpnU converges A*-nontangentially to p = (0', 1)
if there exists 0 < r < 1 such that ¢; € Dp, for all j > 1, lim¢; = (0',1), and
y2 J—00
lim = = a €[0,2), where ¢j, =1 —z; +iy;, j = 1.
)0 Ty
Indeed, we prove the following theorem.

Theorem 1.2. Let Q be a subdomain of Dp such that D}, < Q < Dp for some s € (0, 1].
Let {q;} = Dp,. be a sequence that converges A*-nontangentially to (0',1) in Dp for some
0 <r < 1. Then, there exists v; > 0 depending on s, «, P,r such that

liminf og(g;) = n.
J]—x
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Remark 1.2. Let {q; = (¢}, qnj)} = D3, be as in the statement of Theorem |[1.2, Then

Lemma [2.1] in Section [2| ensures that lim ¢;'(D},) = Dj, () and lim ¢; ' (D}) =
j—00 ’ ’ Jj—0

Di(a). Therefore, the proof of Theorem [1.2|follows from the invariance of the squeezing

function under biholomorphisms.

Now let us denote the cone with vertex at p = (0’,1) by
o= {(Z,2,) € C": [Im(z,)| < |1 — Re(z,)|},

for some ¢ > 0. Then for any sequence {g;} = Dp, nT'. converging to (0', 1), we always
2

have o = lim % 0. Therefore, again by Lemma 2.1 lim w;l(ngr) = Dp, for any
J—00 Qj’j J—0 )

0 < r < 1. Moreover, we obtain the following corollary, which is a generalization of
INNC21) Theorem 1.3].

Corollary 1.3. Let Q be a subdomain of Dp such that D} < Q < Dp for some s € (0,1].
Then, for any r € (0,1),c > 0 there ezist €y,y2 > 0 depending on r and ¢ such that

oa(q) =7, Yqe Dp, nT'en B(p, ).

In contrast to the A%-nontangential convergence (0 < a < 2), we have the following
definition.

Definition 1.2. We say that {¢;} < Dp n U converges A-tangentially to p = (0/,1) if
lim ¢; = (0',1) and for any 0 < r < 1 there exists j, € N such that ¢; ¢ Dp, for all
J—0

Jj=1
With the notion of A-tangential convergence, we have the following theorem.

Theorem 1.4. Let {Q;} be a sequence of subdomains of Dp such that Q;nU = DpnU,
j = 1, for a fized neighborhood U of the origin in C". Let {q;} = Dp nU be a sequence
that converges A-tangentially to (0',1) in Dp. Then, lim;_,o 0q,(q;) = 1.

We note that Dp is holomorphically homogeneous regular (cf. [NNC21, Theorem
1.1]). In addition, Proposition in Section |4| gives the uniform lower bound for the
squeezing function near (0',1) € dDp.

The organization of this paper is as follows: In Sections [2) we introduce several
technical lemmas needed later. Next, in Section [3] we give a proof of Theorem [1.1]
Finally, the proofs of Theorem [I.2] and Theorem [I.4] are given in Section [4]

2. SEVERAL TECHNICAL LEMMAS
In this section, we prove the following lemma.

Lemma 2.1. Let {a; = 1—x; +iy;} < A be a given sequence satisfying that lim a; = 1
J]—00
2

and Tim 2 = o e [0,2). Then, for any s € (0,1) we have that ;" (D}) converges to

Jj—© X

Di(a), where the sequence {1;} is given in ().

Remark 2.1. In the case that a = 0, one sees that D}(0) = Dp and therefore ¢, '(D})
converges to Dp.

To give a proof of Lemma [2.1] we need the following lemma.
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Lemma 2.2. Let {a;} be a sequence in A such that lim = a € [0,2) and
‘ j—o 1 — Re(a;)
lim a; = 1. Then we have
J—a0
(i) lim 1 — Re(a;) I
j— 1—|(Ij|2 2—047
1—a.)2 —
(iii) lim (1-g)  —a
oo l—la;? 2—a
1—al?
(iii) lim 1= q) a
joo 1l —la;? 2—a

Proof. We have z; — 0%, y; — 0, and y3/x; — a as j — o0, where z; := 1—Re(a;), y; 1=
Im(a;). Moreover, a direct calculation yields that

1 —Re(a;) x; B x; B 1 .
L—fa;? 1= =) =y} 2a5—a] -y} 2—a;—y}/ay
(L—a)® _ (ay+iy)® af -y + 2my x— g3 + 2y
I—la;? 1—(1—a;)?—y? 2r; — x5 — Y3 2 —x; —yi/u;
11— a> a? + y? a3+ Y7 T+ Y3/

|

|
<C
.
\Y%
—

L—]a;? 1—-(1—x)2—y? 2z;—22—y} 2—uz;,—yfz;

Therefore, the assertions follow since z; — 0% and yJQ- Jrj — a as j — . U

Proof of Lemma [2.1. The proof of this lemma is given in [NNN23|. However, for the
convenience of the reader we give a detailed proof. Indeed, recall that b = 1 — s or



THE BOUNDARY BEHAVIOUR OF THE SQUEEZING FUNCTION

s=1—0b¢€(0,1). Then, by the property a straightforward calculation shows that

2
e L p (L) APy Y
1+ a. 14 auz/mi b Y m g L

+ a;z, (1+a;z,) (1+a;z,)

2
Zn + G . s — |CLJ'|2 (Z/) < g2
1+a;z, 11+ a;2,|?
zn—i-aj—b(l—i-&jzn) 2 1-— |Clj|2 ( I) <32

1—|—Ezjzn |1+ajzn|2

S |20 +a; — b(1+a;2,)|° + s(1 = |a;P)P(2') < 8|1 + @;2, ]
< |2, (1 —azb) + a; — b|2 + s(1 — |aj|2)P(z')
= |Zn|2|1 — C_ij|2 + 2R€ [(a] — b)(l — C_ij)zn]
< s (laj|*zal* + 2Re[a;z,] + 1)
= |Zn|2 (|1 — C_ij|2 — (1 — b)2|aj|2) + 2Re [((C_L] — b)(l — C_L]b) — (1 — b)ZC_Lj) Zn]
+(1=b)(1 —a;])P(') < (1 =b)* = |a; — b]?
a; —b)(1 —a;b) — (1 —b)%a,
. 2 L 9R (a] j I,
&l 2R | P R e
_ —|a.12 AV P AP
0 RN (B e
1 —a;b]? = (1 —0)?|a;|? 11— a;b]* = (1 —0)?|a;|?

< &1+ a;2,?
+Ja; — b + (1= b)(1 — |a;]*) P(2')

ols ¢ @=A-aH -0 A-ba-laP) p o,
1= ;b — (1= b)2[a, ] 1= ;b2 — (1= b)[a,?
(b2 ey —bP (@ = b) (1 —ab) — (1 b
11 —a;b]* — (1 —0)?[a|? 11— a;b? — (1 —0)?|a;|?

Moreover, by a computation one obtains the following

(a; —b)(1 —a;b) — (1 —b)%a; =a; —b— dfb + a;b* —a; + 2a,;b — a;b* = —b(1 — a;)%;
(1 —0)? —|a; —b]* =1 —2b+ b* — |a;|* + 2bRe(a;) — b*
=1 — Ja;|* — 2b(1 — Re(a;));
11— Eij|2 —(1- b)2|aj|2 =1 —2Re(a;b) + |aj|21)2 — |aj|2 + 26|aj|2 — b2|0Lj|2

=1—a;]* — 2b (Re(a;) — |a;|*)

= 1—Ja;* — 2b (Re(a;) — 1+ 1 — |a;]?)

1— .
= (1— |a;P) [1 . 2b<1 . M)] .

1 — |ay[?

Hence, by Lemma [2.2] yields that
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lim (a; —b)(1 —a;b) — (1 —b)%a; _ ba _ (A=s)a
i |1 —a;b]? — (1 —0b)?|a;? 1-0)2—a)+ba 2s(1—a)+a’
=00l (A-0)@2-a) _ s2-a)
i |[L—ab? = (1=0)?a;? (1-0)2—-a)+ba 2s(1—a)+a’
fim (-0 —la; —0* 2—a—2b _ %o
joo |1 —a;b)> — (1 =0)%|a;]? (1-0b)2—a)+ba 2s(l—a)+«
Therefore, this implies that ¢; '(D},) — Dj(a) as j — o, as desired. O

3. SQUEEZING FUNCTION FOR LINEARLY CONVEX DOMAINS

Throughout this section, the domain 2 ¢ C™ and the boundary point & € J€) are
assumed to satisfy the hypothesis of Theorem [I.I} namely 09 is linearly convex, of
finite type 2m near a point &, of 0€). We may also assume that £ = 0. There exists a
neighbourhood U of & = 0 in C" such that {2 n U is linearly convex and is defined by
a smooth function

p(z',z,) = Re(z,) + h(Im(z,), 2'),
where h is a function of class C°. We may also assume that there exists a real positive
number €y such that for every —eg < € < €, the level sets {p(z) = €} are linearly convex.

For each € € (0,¢/2), n€ QU with |p(n)| < €/2 and each unit vector v e S" ! :=
{veC™: |v| =1}, we set

T(n,v,€) :=sup{r > 0: p(n+ Av) — p(n) < e for all X e C with || <r}.

Then, it is easy to see that 7(n, v, €) is the distance from 7 to S, := {p(z) = p(n) + €}
along the complex line {n + Av: X € C}.
To every point n € 2 n U and every sufficiently small positive constant ¢ we associate
(1) A holomorphic coordinate system (zy, 22, ..., 2,) centered at n and preserving
orthogonality,
(2) Points p1,ps, ..., p, on the hypersurface S, . and,
(2) Positive real numbers 71(n, €), 72(n, €), ..., T (N, €).

The construction proceeds as follows. We first set

o .- Ve
" Vo)
Working with sufficiently small €, there exists a unique point p, in S, . where this
distance is achieved. Choose a parameterization of the complex line from 7 to p, such

that 2,(0) = n and p, lies on the positive Re(z,) axis. By the choice of real axis for z,,

we have -2-(n) = 1 and thus, if U is small enough,

0Tn
or

ox,,

and 7,(n, €) := 7(n, ey, €).

(z2) =1 forall zeU.

We also have

(4) (1, €) = €,

where the constant is independent of  and €. Now consider the orthogonal complement
H,, of the span of the coordinate z, in C". For any v € H,, n S"™!, compute 7(n,, €).
Because of the assumption of finite type, the largest such distance is finite and is achieved
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at a vector e, 1 € H, nS""!. Set 7,,_1(n,€) := 7(n, €-1,€). Let p,_1 € S, be a point
such that p, 1 =1+ 7,_1(n, €)e,_1. The coordinate z,_; is defined by parameterizing
the complex line from 7 to p,_; in such a way that z,_1(0) = 1 and p,_; lies on the
positive Re(z,_1) axis. For the next step, define H,,_; as the orthogonal complement of
the span of z,_; and z, and repeat the above construction. Continuing this process, we
obtain n coordinate functions zj, vectors e, the numbers 7;(n, €) and the distinguished
points pr (1 < k < n). Let z, = xp + iyx (1 < k < n) denote the underlying real
coordinates.

We assume that & is an accumulating point for a sequence of automorphisms of €.
Let {g;} < Q be a sequence converging to . Moreover, we may assume that ¢; € QnU
for all j. Let us set €; := —p(g;) for all j. Then, by argument as above, we construct the
new coordinates (21, ..., 27), the positive numbers 71, . . ., 7j,,, and the points pJ, ..., p}
associated with ¢; and ;.

The change of coordinates from the canonical system to the system (27, ..., 27) is the
composition of a translation 7; and of a unitary transform A;. In addition, we may
assume that (A; o Tj)™" is defined in a fixed neighborhood of the origin and thus the
corresponding defining function p; is defined by

pi=po(A;oT) ",

which is given in a fixed neighborhood of 0 by

pil2) = =€ + RG(Z ajz) + Z Ciﬁzlaz'ﬁ + O(Jz"*+1),

k=1 2<|a|+|8|<2m

where a = (v, ..., p_1), || = a1+ -+ ap_q and 2/ = 20" ... zo" ' We note that
O(|z]*™*1) is independent of ;.

Let p o A be the limit of p; when j goes to infinity, where A is a unitary transform
and this convergence is C* on a fixed compact neighborhood of &,. Then, for every j
less than or equal to n and for every multi-index o and § satisfying 2 < |a| + |3| < 2m,
there exist two complex numbers a; and C,s3 such that

lim ¢’ = a;, and lim C7, = C5.
Jj—0 k k J—0 af o

Now let us consider the dilation
Nj(z) == (Tj121, - s Tjn2n)
and the function

N 1
pj = —pjo ;.
€

Therefore, the defining function p; has the following form

~ 1 O 1 i a+p B 1/2 2m+1
J j=1 7 2g|al+|B|1<2m
where T].O‘Hj =T LT Tﬁ‘g:iw "~'. Furthermore, it follows from [Ni09, Prop.3.1] that

the functions p; are smooth and plurisubharmonic, and after taking a subsequence,
we may assume that {p;} that converges uniformly on compacta of C" to a smooth
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plurisubharmonic function p of the form

p(z) = -1+ Re( Z bkzk) + P(2'),
k=1
where P is a plurisubharmonic polynomial of degree less than or equal to 2m.
In what follows, let us denote by I'; := Aj_1 o Aj oTj for all j. Then, one can deduce
that {I';(2 n U)} converges to the following model

Mp := {z eC": p(z) = —1 —i—Re(Zbkzk) + P(2') < O},
k=1

which is clearly biholomorphically equivalent to
Mp :={2€C": p(z) := Re(z,) + P(z') < 0}.

Let us consider a sequence of the biholomorphisms Fj: f;(2 nU) — T';(Q n U)
defined by F; = I'; o fi'. Since F;(0) = 0 € Mp, it follows that our sequence {Fj} is
not compactly divergence. Moreover, the normality of {F}} is ensured by [Ni09, Lemma
4.1].

Now we are ready to prove Theorem [I.1]

Proof of Theorem[1.1l Let {g;} < € be a sequence given in Theorem , that is,
lim ¢; = & and lim og(g;) = 1. Firstly, let us set §; = 2(1 — 0q(g;)) for all j. Then
j—00 j—>00

by our assumption, for each j, there exists an injective holomorphic map f; : 2 — B"
such that f;(¢;) = (0/,0) and B(0;1 — 6;) < f;(2). Then by [DN09, Proposition 2.2]
and the hypothesis of Theorem [I.1] without loss of generality we may assume that for
each compact subset K € B" and each neighborhood U of &, there exists an integer jo
such that fj_l(K) c QnU forall j = jo, ie. fj(2nU) converges to B".

Next, it follows from [Ni09, Lemma 4.1] that the sequence I'; o f': f;(Q2 " U) —
[;(2nU) is normal and its limit is a holomorphic mapping from B" to M, p. Moreover,
by Montel’s theorem the sequence f; oI‘;1 1,20 U) - f;(2nU) < B" is also normal.
In addition, our the sequence {I';0 f;l} is not compactly divergent since I'; o fj’l((), 0) =
(0,0"). Then by [DN09, Proposition 2.1], after taking some subsequence of {I'; o f; '},
we may assume that such a subsequence converges uniformly on every compact subset
of B” to a biholomorphism F' from B™ onto M, p, which is clearly equivalent to Mp.

On the other hand, by [Ni09, Theorem 1.1] €2 is also biholomorphically equivalent
to Mp, and hence €2 is biholomorphically equivalent to B"”. Therefore, 0 is strongly
pseudoconvex at & (& is of the D’Angelo type 2), which ends our proof. 0

4. PrROOFS OF THEOREM [1.2] AND THEOREM [L.4]
This section is devoted to proofs of Theorem [1.2] and Theorem [1.4]

Proof of Theorem[1.2 Let {q;} < D%, be a sequence converging to (0',1) for some
fixed r € (0,1). For simplicity, let us denote by a; = ¢;,, for j > 1. Let us denote by
z; := 1 —Re(a;),y; := Im(a;) for convenience. Then we have z; — 0%, y; — 0, and
yi/x; — v as j — 0.
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We now consider the sequence of automorphisms {1;} < Aut(Dp) given in (3). Then,
Lemma [2.1] yields

(5) lim ¢7(Dp,) = Dp,(a); lim ¢71(Dp) = Dip(a).
Moreover, we have that 17" (¢;) = ()\lq/];nl s )\lq/j;nnll : O) € D}, (a)n{z, = 0}, where

J J
Aj = 1—|a;]* and D} (o) N {2z, = 0} € Dy(a). Therefore, by (5) and by Lemma 2.1
in [NNC21] there exists jo € N* such that

00(q;) = 01y (15 (4)) > 0/d > 0, ¥j = jo,
where d denotes the diameter of Dp and ¢ := dist(Z, o(P), Z1,.(P))/2 with Z, .(P) =

25 —
{z’ e C P =0p Sl

—} for 0 < p < 1. This finishes the proof with v, =
s(2 — )
d/d.

Proof of Corollary[1.3 We first consider an arbitrary sequence {¢;} < D%, n T'e con-
verging to p = (0’,1). Let us write a; = ¢;, = 1 — x; + 4y;. Then we have
2
Yi _ lyjl .
- = 24, . < c - i, Z 1
xj |l’]| |yj| |yJ| J
2

This implies that o := lim Y% _ 0, and hence by Remark , we obtain lim;_, 4 %—I(Dj;r) -
j—0 l’] ’

Dp, and lim;_, ¢;'(D}) = Dp, where 1; € Aut(Dp) given in (3).
Next, the above argument shows that

(6) lim 7 (D)= Dp;  lim  ;'(D},) = Dpy,

D3,nTe3q—(07,1) D3%,nTe3g—(0,1)

where 1, € Aut(Dp) given by
1 |al2)V/2m 1 — lq2)V/2mn 1
i) = (Ll (1 aP) wie) o

L+ az) /™ 7 (1t azg) et "0 1+ az,

where a := g,. In addition, for ¢ € D}, n T'. one has

- q Gn—
V'@ = (s yomm+0) € Doy 0 {20 = 0} € D 1 {2 = 0

where A = 1—|a|?>. Therefore, by (6)) and by Lemma 2.1 in [NNC21] we finally conclude
that there exists ¢y > 0 such that

Uﬂ(q) = Uw,;l(ﬂ)(w;l(Q)) > 5r/d > 07 Vq € DP,TQ M Fc N B(p7 60)7
where d denotes the diameter of Dp and 9, := dist(Z,(P), Z1(P))/2 with Z,.(P) = {z’ €
Cv 1 P(2) = 7“}. Hence, the proof is complete with v, = §,./d. O
Proof of Theorem[I.] Suppose that {¢;} converges A-tangentially to (0, 1) in Dp. For

simplicity, let us denote by a; = 7;,. Then we consider the sequence of automorphisms
{¢;} < Aut(Dp) given in (3.
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Let us set b; = (},0) := 10]-_1(%) for all j = 1. Then, a straightforward computation
shows that

_ N1 "j(n—-1)
b = U Yg;) = ()\1/j2m1 e )\1j/2mn,1 ,O) € Dp n{z, =0},
J J

where \; =1 — |a;|* for all j > 1.
Since {¢;} converges A-tangentially to (0',1) in Dp, it follows that there exists a
sequence {r;} < (0,1) with r; — 1 as j — oo such that
1 1 .
la;* + —P(g;) = Injul® + —P(df) > 1, ¥j = 1,
Tj T
which implies that
1 1
1>P) = —P()= ———P(d) >
( j) )\j (QJ) 1 — |aj|2 (q]> 7ﬁ]
for all j > 1. Therefore, we obtain that P(b;) — 1 as j — oo, and hence by passing
to a subsequence if necessary, we may assume that 1/1]-_1(qj) converges to some strongly
pseudoconvex boundary point p € dDp N {z, = 0}.
Since 1;(0/,0) = (0/,a;) — (0',1) as j — o0 and the boundary point (0/,1) is of
D’Angelo finite type, by [Ber94, Proposition 2.1] it follows that

. -1 . -1 . -1
lim 957(Q;) = lim 47 (Qy A U) = lim o5 (Dp n U) = Dp.
In addition, for any € > 0 sufficiently small there exists jo = 1 such that
U NB((0', —1),€) = Dp\B((0/, —1), ¢)
for any j > jo. Hence, since op,(b;) — 1 as j — oo and by Theorem 3.1 in [KZ16], one

concludes that oq,(q;) = U¢f1(Qj)(bj) — 1l as j— o0 O
J

The following proposition provides a uniform lower bound for the squeezing function
near (0/,1) € 0Dp.

Proposition 4.1. Let Q be a subdomain of Dp and Q2 nU = Dp n U for a fixed
neighborhood U of p = (0/,1) in C™. Then, there exist €,y > 0 depending only on Dp
such that

oa(z) > v, Yz € Dp N B(p; €).

Proof. By Theorem 3.1 in [KZ16], for any p € {(2/,0) € Dp: P(2') = 1} we have
lim, ,,0p,(z) = 1. Then, there exists ro € (0, 1) such that
(7) opp(#,0) > 3/4, V' € C"* with P(2) = ro.
For g € Dp, we consider the automorphism v, € Aut(Dp), given by
1—la 2\1/2mq 1—la 2\1/2mp—1 Zn + a
wa(Z) = %217”'7( |_| )1 n—1y 7 . = _ |
(1+ az,)Y/m (1 + az,)l/mn 1+ az,

where a := ¢,. In addition, let us set b :=
shows that
q1 qn—1

b= (V,0) =, (q) = (W’”"W’O) € Dp n {z, = 0},

where A = 1 — |al?,
Now we consider the following three cases:

-1

- '(q). Then, a straightforward computation



THE BOUNDARY BEHAVIOUR OF THE SQUEEZING FUNCTION 13

Case 1. g€ Dp,,. In this case, we have
1 1
lal* + =P(¢') = la.* + —P(¢) <1,
To To

which implies that
1 1

P(b,) = Xp(q,) = 1— |a|2

Since 1,(0/,0) = (0/,a) — (0’,1) as @ — 1 and the boundary point (0’, 1) is of D’Angelo
finite type, again by [Ber94, Proposition 2.1] it follows that

lim ¢, '(Q) = limv, (2 U) = lim v, (Dp A U) = Dp.

P(q") < ro.

Therefore, by Lemma 2.1 in [NNC21] there exists ¢y > 0 such that

70(1) = 0,10y (U7 (@) > 2 > 0, Vg € Dy 0 Blp,co),
where d denotes the diameter of Dp and 0, := dist(Z,,(P), Z1(P))/2 with Z, (P) =
{z’ eCv!: P(?) = ro}.
Case 2. g€ Dp\Dp,,. Then we have

1 1
a|* + —P(¢) = |gu|* + —P(¢') = 1,
To To

which implies that

/ 1 ! 1
P(b)ZXP(Q)Zl_—W

As in Case 1 and by , there exists ¢y > 0 such that

1
UQ(C]) = qu;l(ﬂ)(w;l(q)) > 57 vq € (DP\DP,TO) N B(pa 60)7

1}‘

'2

P(q") = ro.

Hence, altogether, the proof is complete with vy = min{%

We close this section with an example, which is a generalization of Example [L.1]

Example 4.1. Fix positive integers my, ..., m, 1 and denote by A := (1/mq,...,1/m, 1).
Let us consider a general ellipsoid Dp in C* (n = 2), defined by

Dp :={(2,2,) € C": |z,)* + P(¢) < 1},
where P(z2') is a (1/my,...,1/m, 1)-homogeneous polynomial given by

P(Z) = Z a2 2",
wt(K)=wt(L)=1/2
where ar; € C with ax; = apk, satisfying that P(z") > 0 whenever 2’ # 0. Suppose
that the domain Dp is a WB-domain, i.e., dDp is strongly pseudoconvex at every
boundary point outside the set {(0',¢?): 6 € R} (cf. [AGKIA]).

Now let us denote by p(z) := |2,|> — 1 + P(2') a local defining function for Dp and
consider a sequence {a; = (a}, aj,)} = Dp which converges A-tangentially to p := (0', 1).
Since Dp is invariant under the map 2’ — 2’;z, — €z, and op, s invariant under
biholomorphisms, we may assume that Im(a;,) = 0 for all j. Since dist(a;, 0Dp) =~
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—pla;) = 1 = |ajn|* — P(a}) and {a;} converges A-tangentially to p, it follows that

P(a}) = c; dist(a;, dDp) for some sequence {c;} = R with 0 < ¢; — +oo. This implies
that P(a}) = ¢j(1 — |a;n|> — P(a})) for some sequence {¢j} < R with 0 < ¢; — 40 and

hence

c.

P()) > T (1 a5 > 1
J

Let us denote by % the automorphism of Dp, given by
I (S e Y KK S

¢](Z) = (1 — djnZn)l/ml ITREE) (1 _ djnzn)l/mn_l n—1, 1 — djnzn

and hence 9;(a;) = (V},0), where

Y — ( aj1 j(n—1) >
DT\ TP (T Jaga P s
Thanks to the boundedness of {b;.}, without loss of generality we may assume that b; —

1 C;
Therefore, we arrive at the situation b; — " with P(b') = 1 and thus ;(a;) converges
to the strongly pseudoconvex boundary point (V',0) of dDp, which implies by [KZ16,
Theorrem 3.1] that op,(a;) = op,(¥;(a;)) — 1 as j — o even the boundary point p is

weakly pseudoconvex.

b e C" " as j — co. In addition, we have that P(b}) =
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