PINCHUK SCALING METHOD ON DOMAINS WITH
NON-COMPACT AUTOMORPHISM GROUPS

NINH VAN THU, NGUYEN THI KIM SON AND NGUYEN QUANG DIEU2

ABSTRACT. In this paper, we characterize weakly pseudoconvex domains of finite type
in C" in terms of the boundary behavior of automorphism orbits by using the scaling
method.

1. INTRODUCTION

Let 2 be a domain in C". The set of all automorphisms of €2, denoted by Aut(f2),
makes a group under composition and this group is also a topological group with the
topology of uniform convergence on compact sets of 2. By a classical theorem of H.
Cartan (see [33]), for a bounded domain €2 in C", it follows that Aut(2) is non-compact
if and only if there exist a point a € €, a point p € 09, and automorphisms ¢; € Aut()
such that ¢;(a) — p as j — . Such a point p is called a boundary orbit accumulation
point. The local geometry of the boundary orbit accumulation point in turn gives
global information about the characterization of domains. In particular, Greene and
Krantz [22] posed a conjecture that for a smoothly bounded pseudoconvex domain
admitting a non-compact automorphism group, the boundary orbit accumulation point
is of finite type in the sense of D’Angelo [14]. (In this paper, the finiteness of type is
understood in the sense of D’Angelo.) The interested reader is referred to the recent
papers [IK99| B1], 30] for this conjecture.

In this paper, we study the problem of characterizing domains in C" with non-compact
automorphism groups. The main results around this problem are due to B. Wong and
J. P. Rosay [41], 40], E. Bedford and S. Pinchuk [3, 4 [5] [6], K.-T. Kim [28], F. Berteloot,
[7, 8], A. Isaev and S. Krantz [27], Do Duc Thai and the first author [17], the first and
third authors [35]. Almost all previous work requires the finiteness of type and either
the strong pseudoconvexity (or even convexity), or pseudoconvexity only in dimension 2.
In contrast to these results, we provide a new characterization of weakly pseudoconvex
domains of finite type in terms of the boundary behavior of automorphism orbits by
using the scaling method, introduced by S. Pinchuk [37].

The scaling method may be briefly described as follows. Let Q be a domain in C"*!
and {p;(a)} be a sequence of automorphism orbits converging to a boundary point &.
Let us fix a small neighborhood U, of {y. By using the reasonable composition, say 7}, of
polynomial automorphisms of C**!, including translations and dilations, the sequence
of domains D; := T;(Uy n §2) converges normally to a model Mp, given by

Mp = {(z,w) € C" x C: Re(w) + P(z,z) < 0},
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where P is a real-valued polynomial on C". When P is a homogeneous plurisubharmonic
polynomial, Mp is called a local homogeneous model at &.

The sequence F}; := Tj o p; is in turn called a Pinchuk scaling sequence. The most
difficulty is to prove that the Pinchuk scaling sequence {F}} is normal, i.e., there exists
a subsequence of {F}} that converges uniformly on compacta from €2 to Mp. We first
assume, temporarily, that €2 is a bounded domain in C". Then the approach of Bedford
and Pinchuk conveniently splits into two steps. In the first step, E. Bedford and S.
Pinchuk [3] 4, Bl [6] considered, alternatively, the convergence of the backward scaling
sequence {Fj_l}. Thanks to the boundedness of €2, the Montel theorem ensures that
this sequence {F ]'—1} contains a convergent subsequence. Next, that limit, say G, was
showed to be one-one from Mp into €2 by using the uniform estimates of the Kobayashi
metric (cf. [II] for n = 1), or the Sibony metric (cf. [39] for corank one domains) on
a family of the scaling domains {D;}. In addition, the existence of a plurisubharmonic
exhaustion function for Q (cf. [I5]) yields the holomorphic map G is surjective. In
the second step, they treated a one-dimensional subgroup {h;},cr = Aut(2) defined by
hi(z) = G (G(z) + (0',it)), z € Q. This subgroup is parabolic in the sense that h:(z)
tends to some boundary point p € 02 as j — +oo for any z € Q. A careful analysis
of the holomorphic vector field H(z) := £ |,_g h(z), defined on Q) and tangent to
0Q (by [19] each hy,t € R, extends smoothly to the boundary), at the parabolic fixed
point &, shows that the polynomial P is a weighted homogeneous polynomial such as
P(21,71) = c|z1)*™ for n = 1 and P(z,2) = c|z1|*™ + |z2|> + - -+ + |2,|* for corank one
domains, where c¢ is a positive constant.

Let us emphasize that the above-mentioned method does not work for unbounded
domains. Therefore, an alternative approach is to prove directly the normality of {F}}
and then the tautness of €2 indicates that {F{l} is also normal. Then, [2I, Lemma
4.1](see also [I7, Prop. 2.1]) guarantees that the limit of {F}} is a biholomorphism from
Q onto Mp. The tautness of (2 easily follows from the existence of a plurisubharmonic
peak function at &, (cf. [7, Prop. 2.1]). Therefore, our work boils down to verify the
normality of {F}}.

In 1991, S. Pinchuk [38] himself considered the case that &, is strongly pseudoconvex.
Thanks to the locally convexifiability of © near &, S. Pinchuk proved that {F}} is
normal. Therefore, 2 is biholomorphically equivalent to the unit ball B", which gives a
local version of the Wong-Rosay theorem. Similar result was achieved by A. M. Efimov
[18] for unbounded strongly pseudoconvex domains in C". In addition, for convex
domains in C" the normality of our Pinchuk scaling sequence can instead be easily
established (cf. [5, 23] 34]). However, the Frankel scaling method given in [20] can be
applied for convenience (cf. [28, 29, 43 [Jo1§]).

For unbounded weakly pseuconvex domains of finite type in C?, F. Berteloot [7, 8, [9]
obtained a significant progress by using the properties of polydics constructed by D.
Catlin (see [II]) and the corresponding estimate of Kobayashi metric near &, to show
the normality of the Pinchuk scaling sequence. Hence, €2 is biholomorphically equivalent
to some local homogeneous model Mp. This result was generalized by Do Duc Thai
and the first author [I7] for corank one domains in C".

Recently, the first and third authors [35] investiaged a pseudoconvex domain 2 < C”
which is of finite Catlin’s multitype near &, € 2. When Mp is a homogeneous model
of finite type, there exists a plurisubharmonic peak function for Mp at the origin.
Therefore, the attraction property of analytic discs yields the normality of the Pinchuk
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scaling sequence. Consequently, €2 is biholomorphically equivalent to Mp provided that
the automorphism orbit {¢;(a)} converges A-nontangentially to &, (cf. Remark [3.1| and
[35, Theorem 1.1]).

One observes that the local homogeneous model Mp depends heavily on the boundary
behavior of {p;(a)}. More precisely, the boundary behavior of {¢;(a)} suggests some
choice of dilations. The purpose of this paper is to give a characterization of local
homogeneous models when the automorphism orbit {¢;(a)} accumulates at & “very”
tangentially to 02 - the remaining possibility (cf. Definitions [3.1] and [4.1)).

The first aim of this paper is to prove the following theorem, which says that only the
unit ball admits an automorphism orbit accumulating at &, uniformly A-tangentially to

o (cf. Definition [3.1)).

Theorem 1.1. Let ) be a pseudoconvex domain in C* ! with C*-smooth boundary 0S).
Let & € 092 be strongly h-extendible with Catlin’s finite multitype (2my, ..., 2m,, 1) and
let A = (1/2m4,...,1/2m,) (see Definition [3.4). Suppose that there exists a sequence
{;} © Aut(Q) such that {p;(a)} converges uniformly A-tangentially to & for some
a € Q) (see Definition . Then € is biholomorphically equivalent to the unit ball B™ .

Remark 1.1. The uniform A-tangential convergence of {¢;(a)} allows us to choose a
suitable sequence of dilations (cf. see Equation in Section [3)) so that our model is an
analytic ellipsoid that is biholomorphically equivalent to B"*!. However, Example
in Section [3| points out that without this uniform A-tangential convergence, there still
exists an alternative sequence of dilations to get such a model. In addition, the explicit
description for the automorphism group of the Thullen domains or the finite multitype
models (cf. [36]) demonstrates that any sequence of automorphism orbit converges
A-nontangentially to some boundary orbit accumulation point. Therefore, it seems
reasonable to expect that may drop the requirement of the uniformity of A-tangentially
convergences (see Remark [3.3)).

Now we turn to pseudoconvex Levi corank one domains in C"*! which includes pseu-
doconvex domains of finite type in C2. Then, the point &, is h-extendible (cf. [42]). In
addition, if n = 1 and &, is strongly h-extendible, then €2 is biholomorphically equiva-
lent to B? by Theorem . However, without the strongly h-extendibility, the notion of
spherically ﬁ—tangential convergence is necessary to determine if €2 is biholomorphically
equivalent to B"*! (cf. Definition [4.1]).

The second aim of this paper is to prove the following theorem.

Theorem 1.2. Let ) be a pseudoconvex domain in C* 1 with C*-smooth boundary oS.
Suppose that &y is a boundary point of 2 of D’Angelo finite type such that the Levi form
has corank at most 1 at & and there exists a sequence {¢;} < Aut(Q) such that ¢;(a)
converges spherically ﬁ—tangentially to & for some a € Q (cf. Definition . Then 2
is biholomorphically equivalent to the unit ball B"*+1.

Now let Q = C2? be a pseudoconvex domain of finite type near & € 0 with the
type 2m. Then the notion of uniformly (ﬁ)—tangential convergence (cf. Definition
} reduces to that of (ﬁ)—tangential convergence. Moreover, the notion of spherically
5 --tangential convergence is exactly Definition . Therefore, Theorem yields the
following corollary.

Corollary 1.3. Let Q be a pseudoconvex domain in C* with C*-smooth boundary 5.
Suppose that & € Y is of finite type 2m. Suppose that there exists a sequence {p;}
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Aut(Q) such that ¢;(a) converges spherically 5--tangentially to & for some a € Q (see
Definition . Then Q is biholomorphically equivalent to the unit ball B2.

In the case that {¢;(a)} does not converge spherically ﬁ—tangentially to & for some
a € ), we prove the following proposition, in which our model may be defined by a
homogeneous polynomial of degree larger than 2.

Proposition 1.4. Let Q) be a pseudoconvex domain in C? with C*-smooth boundary 5.
Suppose that & € 052 is of finite type 2m. Suppose that there exist a number 2 < v < m,
a € and a sequence f; < Aut(S) such that f;(a) converges spherically ﬁ—tangentially
of order 2v to & (see Definition . Then € is biholomorphically equivalent to a model
of the form

Mg := {(z,w) € C*: Re(w) + Q(z) < 0},

where Q) is a homogeneous polynomial of degree 2v which is not harmonic.

Remark 1.2. We note that Example in Section || illustrates that if the sequence
of automorphism orbits does not converge spherically ﬁ-tangentially to a boundary
point, then our domain €2 is not biholomorphically equivalent to the unit ball B? but to

Mg with deg(Q) = 4.

The organization of this paper is as follows: In Sections [2] we recall some basic
definitions and results needed later. In Section [3| we present the notion of A-tangential
convergence and give a proof of Theore. Next, the notion of spherical %—tangential
convergence and the proof of Theorem [I.2]are introduced in Sectiondl Finally, the proof
of Proposition [I.4] is given in Section 5]

2. PRELIMINARIES
First of all, we recall the following definition (see [21), 30], or [17]).

Definition 2.1. Let {€;}, be a sequence of domains in C". The sequence {€;}, is
said to converge normally to a domain 2y < C" if the following two conditions hold:
(i) If a compact set K is contained in the interior (i.e., the largest open subset) of
ﬂ (2, for some positive integer m, then K < 2.
-
(ii) ]If a compact subset K’ < € , then there exists a constant m > 0 such that
K' < ﬂ Q.
j=m
In addition, when a sequence of map ¢,: 2; — C™ converges uniformly on compact
sets to a map ¢;: {2 — C™ then we shall say that ¢; converges normally to .

Next, let us recall the following definition (cf. [42]).

Definition 2.2. Let A = (A\q,..., \,) be a fixed n-tuple of positive numbers and p > 0.
We denote by O(u, A) the set of smooth functions f defined near the origin of C" such
that

Daﬁﬁf(()) = 0 whenever Z(Oéj + Bj)A; < p.
j=1
If n =1and A = (1) then we use O(u) to denote the functions vanishing to order at
least u at the origin. Here and in what follows, D and D’ denote the partial differential
operators
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olel olBl
—— and ——,
respectively. Furthermore, < and Z denote inequality up to a positive constant. More-
over, we will use ~ for the combination of < and =

Finally, in order to give proofs of Theorem and Theorem [[.3], let us recall the
following proposition that is the main ingredient in our argument (see [35, Prop. 4.3]).

Proposition 2.1 ([35]). Let w be a domain in C*, a € w and 0;: w — Q; be a sequence
of holomorphic mappings such that {o;(a)} € Mp. If Mp is of finite type, then {o;}
contains a subsequence that converges locally uniformly to a holomorphic map o: w —
Mp.

3. THE BEHAVIOUR OF AUTOMORPHISM ORBITS ACCUMULATING AT A BOUNDARY
POINT OF AN h-EXTENDIBLE DOMAIN IN C"

3.1. A-tangential convergence. Throughout this subsection, let €2 be a domain in C"
and assume that & € 0€2 is an h-extendible boundary point (cf. [42,[16]). Let p be a local
defining function for {2 near &y and let the multitype M(&y) = (2my, ..., 2m,, 1) be finite
(see [10]). (Note that because of the pseudoconvexity of €, the integers 2my, ..., 2m,
are all even.) Let us denote by A = (1/2my, ..., 1/2m,). By the definition of multitype,
there are distinguished coordinates (z,w) = (21, ..., 2,, w) such that { = 0 and p(z, w)
can be expanded near 0 as follows:

p(z,w) = Re(w) + P(2) + Q(z, w),

where P is a A-homogeneous plurisubharmonic polynomial that contains no plurihar-
monic monomials, () is smooth and satisfies

n gl
Q(z,w)| < C <|w! +2 !Zj\Qmj) :
j=1

for some constant v > 1 and C' > 0. In what follows, dist(z, 0€2) denotes the Euclidean
distance from z to 0S2.

Definition 3.1. We say that a sequence {n; = (a;, 8;)} < Q with o = (aj1,..., ),
converges uniformly A-tangentially to &, if the following conditions hold:

(a) [Im(5;)] < |dist(n;, 09Q)[;

(b) |dist(n;, 0)| = o(|ejk)*™) for 1 < k < n;

() foja ™ ~ Jaa[*™2 &~ - ~ oy ™.
Remark 3.1. It is well-known that {n;} < Q converges nontangentially to & if |Im(5;)| <
|dist(n;, Q)| and |ajx| < |dist(n;, Q)| for every 1 < k < n. Nevertheless, such se-
quence converges A-nontangentially to & if [Im(3;)| < |dist(n;, dQ)| and |ayx[*™ <
|dist(n;, 09)| for every 1 < k <n (cf. [35]).

Denote by
o(z) = Z | 2 2™
k=1

Definition 3.2. We say that a boundary point &, € 0€) is strongly h-extendible if there
exists 0 > 0 such that P(z) — do(z) is plurisubharmonic, i.e. dd°P > ddd‘c.
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Remark 3.2. The notion of strongly h-extendibility is exactly that Mp is homogeneous
finite diagonal type given in |25, 26]. Let & € 02 be strongly h-extendible. Then by
dd°P = dd°o, it follows that & € 0f is in fact h-extendible and

’a1|2m1_2|w1|2 +o mi’an|2mn_2’wn’2
for all o, w € C".

In the sequel, we will assume that £ € 0f) is a strongly h-extendible point and
let {¢;} < R" be a given sequence. Then we define the sequence 7; = (7j1,...,7jn),
associated to {e;}, as follows:

1/2
€; ]
TjkI:‘ak|.(W) ,j21,1<k<n

N

) mip—1
A simple calculation shows that 7'%”’“ = €. (%) €;. Hence, we get the

|
following estimates

1/2 1/2my,
(1) €/ < Tik S € )

In what follows, we assign weights %1, e

2
spectively and denote by wt(K) := 37 2%] the weight of an n-tuple K = (ky, ..., k,) €
Z%,. We note that wt(K + L) = wt(K) + wt(L) for any K, L € Z%,,.

In order to prove Theorem , we need the following lemmas. First of all, from

one easily obtains the following lemma.

,1 to the variables zi,...,z,,w, re-

Lemma 3.1. Let f(z,w) be a C*-smooth function defined in a neighborhood of the
origin in C"*! vanishing to weight order greater than 1 at the origin. Then

f(lezh <oy TinZn, ij) = O(Gj)-
For monomials with weight order < 1, we have the following lemmas.
Lemma 3.2. Let p,q € N" be two multi-indices. Then, for all polynomials P one has
e;'|DPD'P(aj)7t*| — 0
for |p| + |q| > 2. In addition, if |p| = |q| = 1, then
- 4
;' |[DPD P(ay) ™| < 1.

Moreover, if P(z) — d0(2) is plurisubharmonic for some § > 0, then

" O%’P
6;1 Z (aj)Trrpwe®y 2 mijwi? + - 4 mi|w, |,
k=1

02107
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Proof. Tt suffices to prove the lemma for P(z) = z5z% and K > p, L > ¢q. Then we have

+ +
1 DPDIP(a )| = e~ Yg., [Frth [ T " {h_,_ kntln [ _Tin e
€; ’ (%)Tj ’ =€ | |t

|aji |atjnl
om Fi+lh _pit+a1 om kn+ln _ pntdn
B (|Gf]1| 1) 2mq 2 <|a]n| n) 2mmn, 2
€j €j
kstls _ Pjte) 1 lpl+ld|
2

n
o (lapPmN s o P
€ 2

e; ' |DPD* P(;) 77" — 0

Therefore, we get

as j — oo for |p| + |¢| > 2 and
¢! ‘DquP(aj)T]”q‘ <1

for |p| + |g| = 2. Finally, by Remark [3.2 one obtains that

2 02, 0% k=1 2107
> 6],—1 (mf|a1|2m1_27321|w1|2 + -+ mi|an|2mn—27-]2n|wn|2)
2?4 - 2,
for every w e C". -

In the same fashion we have the following lemma.
Lemma 3.3. Let Q(z) be a polynomial in z € C" such that Q € O(1,A). Then we have
e }DPEQQ(aj)T;)+q| -0
as j — o for |p| + |q| = 2.

Proof. As in the proof of Lemma [3.2] it suffices to consider Q(2) = zXz* and K >
p,L > g with d := wt(K + L) > 1. Then following the proof of Lemma [3.2] one has

__lpl+ldl
d 2

et ’DquQ(Oé')TPJrq’ ~ —|aj1|2m1
J 1703 €

Therefore, we conclude that €;" ’DPEqQ(aj)Terq’ — 0 as j — oo for |p| + |q| = 2, as
desired.

3.2. Proof of Theorem [1.1] Let Q and & € 09 be as in the statement of Theorem
.1 Let M(&) = (2ma,...,2m,, 1) be the finite multitype of Q at & and denote by
A = (1/2m4,...,1/2m,). As in Subsection [3.1] one can find local coordinates (Z,w) =
(21, ..., Zn, W) near & such that & = 0 and the local defining function p(Z,w) for €2 can
be expanded near 0 as follows:

p(Z,w) = Re(w) + P(2) + Q(z, ),
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where P is a A-homogeneous plurisubharmonic polynomial that contains no plurihar-
monic monomials, () is smooth and satisfies
.

Q(z,w)| <C <|uvy +) |gj‘2mj>
j=1

for some constant v > 1 and C' > 0.

By hypothesis of Theorem [I.1] there exist a sequence {p;} < Aut(Q2) and a point
a € Q such that n; := ¢;(a) converges uniformly A-tangentially to &. Let us write
n; = (o, B;) = (&1, ..., @jn, Bj). Then one has

(a) [Tm(5;)[ < |dist(r;, 0Q)[;
(b) |dist(n;, 0)| = o(|ejk)*™) for 1 < k < n.

() foja ™ ~ Japa[*™2 &~ - ~ oy ™.

By following the proofs of Lemmas 4.10, 4.11 in [42], after a change of variables

zZ =z
{w i= 0 + by (2)W + be(2)W? + by(2),

where by, by, b3 are holomorphic functions of Z satisfying b, = O(|z|*), k = 1,2, 3, there
are local holomorphic coordinates (z,w) in which £, = 0 and €2 can be described near 0
as follows:

Q= {(z,w) e C"*": p(z,w) = Re(w) + P(2) + Ri(z) + Ro(Imw) + (Imw)R(z) < 0},

where Ry € O(1,A), Re O(1/2,A), and Ry € O(2). We would like to emphasize that in
the new coordinates the sequence {n;} still has the properties (a), (b), and (c).

Let Up be a fixed small neighborhood of §y = 0. Then for any sequence {n; = (o, 5;)}
of points converging uniformly A-tangentially to the origin in Uy n {p < 0} =: Uy, we
associate with a sequence of points 7, = (aj,a;+€;+1b;), where ¢, > 0 and 8; = a;+1b;,
such that 7} = (o, 8}) with 8} = a; + ¢; +ib; is in the hypersurface {p = 0} for every
j € N*. We note that €; ~ dist(n;, 0£2)

Before we begin the scaling procedure, we make several changes of coordinates.
Firstly, let us consider the sequences of translations Ln; : C" — C" , defined by

Ly (z,w) := (2, w) -y = (2 — oy, w — ).

Then, under the change of variables (2, w) := Ln;(z, w), i.e.,

/ Ty
w_ﬁj:wv
2 — oy =2, k=1,...,n,

one observes that Ly (a;, §;) = (0, —¢;) for every j € N*.
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Now let us write w = u+iv, v = bj+(v—b;) = b;+Im(w), and z = a;+(2—q;) = a;+2.
Since Ry € O(2) and R € O(1/2, A), by using Taylor’s theorem, we have

Ry(v) = Ra(by) + Ry(bj) (v — bj) + o(|v — bj|) = Ra(bs) + Ry (b)Im(w) + o(|Im(w0)]);
vR(z) = (bj + (v —b;))R(a; + )

DPR 1 & O%R
= (b; + Im(w)) ( R(c;) + 2Re () (2P + = —— (o) 212 + o()Z)
I ( J 1<|Zp:<2 | 2 sz_l 05,07 7 )
DPR

= bjR(aj) + bj <2Re 2
1<|p|<2

+ o|2*) + o[ Im(w)]).

Hence, using again Taylor’s theorem we see that the hypersurface Ly, ({p = 0}) is defined
by an equation of the form

P (L;jl(z, w)) — Re(@) + Ry(b;)Im(d) + R(a)lm(a)

+
Drp I B & =
+ 2Re Z —.(cvj)(z)p +3 Z — (o) 22
1<|pl<2
DPRy - 1 & ?°Ry =
+ 2Re Z —_(aj)(z)p +5 2 — (o) Zk2
1<(pl<2

+b; <2Re Z

1<|p|<2 p: kil=1

Next, to remove the pluriharmonic terms in let us define a sequence {Q;} of
automorphisms of C"™! by

wi= 1+ (Ryby) + Rlay)id +2 Y ZP(a)(Ep+2 Y 2,y

1<|pl<2 1<|p|<2
DPR .
+b.7 Z p! (aj)a
1<p|<2

zkzzik,kzl,...,n.

Then the composite Q; o L,y € Aut(C") and satisfies that

Qjo Ly (a;,8;) = (0,...,0,—¢; —i(R(b;) + R(a;))e;)

for every j € N*. Moreover, the hypersurface Q); o Ln;- ({p = 0}) is given by an equation
of the form
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Finally, let us recall the following notation
. 1/2

Tir = laig]. | —— ,1<k<n

Jk | ]k| (’ajkpmk)
and we define an anisotropic dilation A;: C* — C" by settings:

. Z1 Zn W

3 A; =AY e Zpw) = —,...,—,— ).
) o) i A 1) = (2, 22 2
Then it follows that AjoQjo Ly (aj, 8;) = (0,...,0, =1 —i(Ry(b;) + R(ey))) — (0, =1)
as j — oo. Furthermore, the hypersurface A; o @), o Ln;_({p = 0}) is now defined by an
equation of the form

ol 00" o0 50)

o 1y er
= Re(w) + €, 'o(e;[Im(w)|) + 5 Z ——(o)e; " TiRTiER A

(4) =1 (7zk(32[
1 & R &' & PR
+ 3 Z e 6 Tjijlszl —+ ]2 (Oé])TjkT]leZl +---=0,
kim1 0%k Zz Py 0%

where the dots denote remainder terms. Note that by Lemma[3.1] the terms with weight
order greater than one must converge uniformly on compacta of C*™! to 0. Hence, we
consider only the convergence of monomials from with weight order < 1.

Since the sequence {n; := ¢;(a)} converges uniformly A-tangentially to & = (0',0),
it follows that

[P el e
€ € €j
Thus Lemma [3.2] yields
DrD'p
S = PO P
plq!

as j — oo for |p| + |g| > 2 and, after taking a subsequence if necessary, we may assume
that

1 . 0’P
a = — l1m
M2 5w 05,05,

Moreover, by Lemma we also have

-1
(cj)e; TiwTin, 1 < k, 1 < n.

| DPD'R,
— &

€.
/ plq!

as j — o for |p| + |¢| = 2. In addition, since |€j_1bj| < 1, we obtain that

DPD'R
W (04]) P

J —0

as j — o for |p| + |g| = 1. Therefore, after taking a subsequence if necessary, we
may assume that sequence of defining funtions given in converges uniformly on
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compacta of C"™ to p(Z,w) := Re(w) + H(Z). Consequently, the sequence of domains
Qj:=Aj0Qj0Ly (U, ) converges normally to the following model

My :={(Z,w) e C" x C: p(zZ,w) := Re(w) + H(Z) < 0},

where
n

H(g) = Z aklgkg_l'
k=1

Note that My is a limit of a sequence of the pseudoconvex domains A;0Q); oLn; (Uy)-
Hence, My is also pseudoconvex, and thus H is plurisubharmonic. In addition, it follows
directly from Lemma(3.2]that H is positive definite. Therefore, My is biholomorphically
equivalent to unit ball B"*! (cf. [24, Prop. 2]).

For simplicity, let us denote by Tj := A0 Q;0 Ly and 0 := Tj 0 p;: gpj_l(UO_) — (.
Then Tj(n;) = (0/, =1 — i(R5(b;) + R(a;))) and {o;} is a sequence of biholomorphic
mappings satisfying

oj(a) = bj := (0", =1 —i(Ry(b;) + R(a;))) = b:= (0, —1).
as 7 — oo. Thus, by Proposition [2.1} after passing to a subsequence, we may assume
that o; converges locally uniformly to a holomorphic map o : {2 — My which satisfies
o(a) =b.

On the other hand, since Q is taut (cf. [I7, Prop. 2.2]), the sequence aj’l: Q —
©;'(Uy) © Qs also normal. Since o' (b;) = a € Q with b; — be Q as j — o, we
may also assume, after switching a subsequence, that o; I converges locally uniformly
to a holomorphic map o* : My — Q. It then follows from [I7, Prop. 2.1] that Q is
biholomorphically equivalent to Mp. Hence, €2 is biholomorphically equivalent to B"*?,
and thus the proof of Theorem [I.1]is finally complete. O

3.3. Example. Denote by E} 24 the domain in C?, given by
E1’2’4 = {(Zl,ZQ,U)) € (Csl Re(w) + |21|4 + |Zl|2|22|4 + ‘22‘8 < 0}

Denote by P(z) = |21|* + |21]?|22|* + |22]® and o(2) = |21|* + |22/®. Then a computation
shows that

dd°P(2) = (4]21* + |22|)dz1dZ) + 221 29|20 [Pd21dZy + 221 %] 2| PdZ1d 2y
+ (16]2]° + 4|21 |*|22]*)dz0d 2,
= 4|21 Pdz1dZ) + 16|25|%dzodZs + |20)%|20d 2 + 221d20 |
> ddo(z).

Therefore, the origin is strongly h-extendible with multitype (4, 8, 1) and thus the weight
A is now given by A := (5, 5)-
1

Now we consider the sequence {(]ﬁ, 7 —% - J% - ]ig)} that converges A-tangentially

but not uniformly to (0/,0). We are going to show that {n;} is not a sequence of
automorphism orbits, that is, there do not exist a sequence {f;} < Aut(E;24) and

a € Fya4 such that f;j(a) = (]ﬁ, =m—3 — = — 55) for all n € N*. Assume for the

sake of seeing a contradiction that {f;} and a exist. Then, although we cannot apply
a scaling given in the proof of Theorem an alternative scaling can be introduced

as follows. Indeed, let p(z1, 29, w) = Re(w) + |21]* + |21*22]* + |22|® and let 7, =
(jﬁ, JB%, —% — j% — j%) for every j € N*. We see that p(n;) = —j% ~ —dist(n;, 0E 2.4).
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Set €; = |[p(n;)| = j% In addition, we consider a change of variables (Z,w) := L;(z, w),
ie.,

w = W;
1 -
AT TR
Jl ]
2 ﬁ = Z9.
Then, a direct calculation shows that
- 1 -
po Lyt (w, %, %) = Re(w) + | =7 1/4 + 4+ = 1/4 + 7%= 3/8 + Zt + 1575 + %
1 4 N 2 . 2, 1 4 9 - -4
= e(w) + ; + WRG(Zl) + W|Z1| ]1/2 (2R,e< )) + W|Zl| Re(zl) + |Zl|
1
+ <ﬁ + j1/4Re(21) + |21|2> X
1 4 N 2 _ 1 4 9 - - 14 1 ~ |8
<j3/2 + jgwRe(Zg) + W|Z2| + W@Re( )) + m|22| RG(ZQ) + |22| + |‘]3W + 22| .

To define an anisotropic dilation, let us denote by 7y; := 7 (n;) = 2].#3/4, Toj i= Ta(n;) =
j% for all j € N*. Now let us introduce a sequence of polynomial automorphisms ¢,
of C" (j € N*), given by

@;jl (21, Z2,0)
1 1 1 1 4 2
= <j1/4 + 71]21, j3/8 + T9j22, —; - ]—2 - F + 6w — ]3/47'1]2’1 ]1/2 (le) zl>
Therefore, for each j € N* the hypersurface ¢,,({p = 0}) is then defined by

1P © gbr;l (217 22, 'LD)

1
—1 ~
=€ P( + T2, gt Teile, — = — 5 — 5 T GW — T2 — (11;)°%
J j1/4 J ]3/8 J J 2 3 J ]3/4 J j1/2 J,

J
L5 PRe(s 1
2j1/4|21|2Re(21) (|Z+1*—1) + O(juz) 4 0(3) _

11 1 4 222>

= Re(®) + |71 + —|&* +

167
Hence, the sequence of domains Q; := ¢, (1 24) converges normally to the following
model
Mo = {(z, 7, w) € C*: Re(w) + |&]* + (|22 + 1|* — 1) < 0} .

Finally, by the same argument as in the proof of Theorem we conclude that £ o9

is biholomorphically equivalent to M o that is biholomorphically equivalent to
{(21,20,w) € C*: Re(w) + |21]* + |22|* < 0} .

It is absurd by [13, Main Theorem].

Remark 3.3. We consider a sequence {(jl%,nﬁ, —P(ﬁ,njz) - J%} that converges A-

tangentially but not uniformly to (0’,0). Then, following the argument as in Example
3.3, we may assume that ) := ¢, (FE124) converges normally to the following model

{(51,22, 7)€ C*: Re(@ )+|Zl|2+P(ZQ)<0}
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where
i) P(%) = |% + al* — |a|* for some a € C if |n;,| ~ jg%;
i) P(22) = 2] if [nz] = o (7);
iii) P(%) = |2/ if J:«x% = o(|nj2])-
This indicates that our model depends deeply on the behavior of the orbit {n;} < €.

4. THE BEHAVIOUR OF AUTOMORPHISM ORBITS ACCUMULATING AT A BOUNDARY
POINT OF A PSEUDOCONVEX LEVI CORANK ONE DOMAINS IN C"+!

In this section, we are going to give a proof of Theorem [1.2] To do that, let 2 be a
domain in C"*! such that 0 is pseudoconvex of finite type and has corank one near &.

4.1. Spherical ﬁ-tangential convergence. In what follows, let us write z = (21, ..., 2,)
and z* = (0,29,...,2,). Let 2m be the D’Angelo type of Q2 at . Without loss of
generality, we may assume that &, and the rank of Levi form at & is exactly n — 1. Let

p be a smooth defining function for 2. After an appropriate change of coordinates (cf.

[4, 12]), we can find coordinate functions z1, ..., z,, w defined on a neighborhood Uy of

&o such that & = 0 and

p(z) = Re(w) + P(z1,21) + Z |za|? + Z Re(Q%(21, Z1)%a)

a=2
b O(ullGz )]+ [=* Bl + |2 Pl 4 ),

where P(z1,21), Q*(z1, z1) (2 < a < n) are homogeneous subharmonic real-valued poly-
nomials of degree 2m and m, respectively, containing no harmonic terms.

Definition 4.1. We say that a sequence {n; = (a;, 8;)} < Q with o = (a1, ..., ),
converges spherically ﬁ—tangentz’ally to & if

(a) [Im(5;)] < |dist(n;, 09Q)];

(b) [dist(n;, 2Q2)| = of|a;1[*™);
(c) AP(aj1) = |oa P2

Remark 4.1. Let © be a pseudoconvex domain in C2. Suppose that & € 0Q is of
D’Angelo finite type, say, 7(02, &) = 2m. It is known that Q is h-extendible at &. Let
{e;} = R* be a sequence such that 7} := (aj, 3; + ¢;) is in the hypersurface {p = 0}
for every j € N*. Then the condition (c) simply says that  is strongly pseudoconvex
at 1 for every j € N*. Consequently, the condition (c) is clearly satisfied if the model
Mp = {(z,w) € C?: Re(w) + P(z1) < 0} is a WB-domain.

4.2. Homogeneous subharmonic polynomials. Let us write P(z Z a; 2 ZAmd

Writing 2 = |z]e, one defines g(6) by
P(z) = |-P"g(0)
Then we have
AP(z) = |22 ((2m)?g(0) + gaa(0)) = 0.
(See cf. [2].)
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Given a sequence {¢;} < R*, we associate the sequence {7;} given by

. 1/2
ji=T(ay,€5) = |ayl. <—J> :

g ENER

To give a proof of Theorem [I.2] it suffices to check the following lemma that is similar
to Lemma 8.2

Lemma 4.1. We have

kP |12m 1‘%
%(OZ‘?) 6;1'7';C S (m> y k = 3.
20z €
In addition, if k =2 and j = 1, then
P _
%(%’) e; 117 = (2m)?g(6;) + goo(0;).

Proof. Tt suffices to prove the lemma for P(z) = 252%™ for 1 < s < 2m — 1. Indeed, a
simple computation shows that

okpP (2) olzzmes=(=l) il < s k—1<2m—s
—_— Z —_—
0zlozk—! 0 if otherwise
and
0P -1 om—k —1 k 2m —1 Tj g
PRpE ()| 7' 7F < |yl 7 = oyl ol

k/2 k/2—1
el g NP e VY ‘
T oyl |aj[>m

|2m 1-
J

for k£ > 2. Furthermore, in the case that £ = 2,1 = 1 one has

?P _ . €
G172 = a7 (2mP9(0) + am(8) oo (1% )

é‘z&z( %) la;
= (2m)?g(0;) + goa(0;)-

Therefore, we get
okpP
PEPE=IC

0

4.3. Proof of Theorem Throughout this section, the domain {2 and the boundary
point & € dQ are assumed to satisfy the hypothesis of Theorem [I.2] Let 2m be the
D’Angelo type of 092 at &. Without loss of generality, we may assume that §, = 0e€ C"
and the rank of Levi form at & is exactly n — 1. Let p be a smooth defining function for
Q2. After an appropriate change of coordinates (cf. [4, 12]), we can find the coordinate
functions zy, ..., z,,w defined on a neighborhood Uj of &, such that &, = 0 and

p(z,w) = Re(w) + P(z1, %) Z zal® + 2 Re(Q%(#1, 1) %a)

Ol + 1] + 2 a0
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where P(z1,21), Q%(21,71) (2 < o < m) are homogeneous subharmonic real-valued poly-
nomials of degree 2m and m, respectively, containing no harmonic terms.
By hypothesis of Theorem [1.2] there exist a sequence {¢;} < Aut(Q2) and a point

a € (2 such that n; := ¢;(a) converges spherically ——tangentlally to &. Let us write
nj = (o, ;) = (a, B;). Then one has

(a) [Im(B;)] < |dist(n;, 09Q)];

(b) [dist(n;, 0Q)| = o(|azu[*™);

(c) AP(aj1) = |aja ™2

Let us fix a small neighborhood Uy of the origin. For any sequence {n; = («;,3;)}
of points converging z—-tangentially to the origin in Uy n {p < 0} =: Uy, we associate
with a sequence of points 7} = (a;,a; + €; + ib;), where ¢; > 0 and f; = a; + iby,
such that 7} = (aj, 3}) is in the hypersurface {p = 0} for every j € N*. We note that
€; ~ dist(n;, 0£2).

By [12, Proposition 2.2] (see also [17, Proposition 3.1]), for each point 7}, there exists
a biholomorphism @, of C", (z,w) = @72_1(2,117), such that

1~ o~ ~ —1
P(‘I)ngl(zaw)) = Re(w) + 2 OSUAEAER
k+l<2m
k,[>0

(5) + Z |Zal? + Z >, Rel(f,(m)z=")z]

a=2k+Ii<m
k,[>0

+ 0|z, 8)] + |2*Pli| + [ Pla™ + [,

where z2* = (0, 23, ..., Z,).
Now let us define

1/2

' € 12 .

le.: ’O@‘(W) ,Tj2:"':7—jn:€j ,j>1
J

This implies that

1/2 1/(2m
ej/ < 7(n),€) < ej/( ),

To finish the scaling procedure, we define an anisotropic dilation A; by

Aj@,w):(i,ﬁ,.../_n 2) jent

le Tjg Tjn Ej

This yields A; o @, (n;) = (0", =1 + ;) for some sequence {7;} < C, depending on
{®y }, that converges to 0 as j — co. Furthermore, for each j € N*, if we set p;(z, w) =

ej_lp o <I>;;1 o (A;)7'(z,w), then (B)) implies that

n

pj(z,w) = Re(w) + Py (21, 1) Z za|® + 2 Re(Q zl,zl)za) + O(7(nj,€5)),
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where
Py (z1,21) = D ara(m)e; v (n), )b

k,l<2m
k>0

. —1/2 ’ k+l k=l

Q (21, 21) : Z bkzm T(m, )" 2 2
kE+Ii<m
k>0

Note that the sequence {n; := ¢;(a)} converges spherically %—tangen‘ciaﬂy to & =

2m
(0/,0). Then M — 400 as j — o0. In addition, we have, for 1 < k, [ with k+[ < 2m,
J
that ok ok
P v P
k(1) = ——(0",0) ~ === ().
T oskoE 0zf0z

Therefore, by Lemma [4.1| we get akjl(né»)ej_lT(n;, €)" — 0 as j — oo for k,l > 0 with

2 < k+1 < 2m. In addition, by the condition (c), without loss of generality, we may

assume that the limit a := lim 53—7(04]-1) y 17']21 > ( exists, and thus we conclude
j—0 2 0210%

that {P (21, 2)} converges uniformly on compacta to alz1)?.
For the sequences {Qy, (21,21)} (2 < a <n), by [I2, Lemma 2.4] it follows that
J

o _ 1,
’Qn;_<217 Zl)‘ < T(773'7€j>107 J = 17
for all @« = 2,...,n and |z;| < 1. Consequently, {QZ,_} converge uniformly on every
J

compact subset of C to 0. Therefore, after taking a subsequence if necessary, we may
assume that the sequence {p;} converges to the following function
plz,w) = Re(w) + a|z1 > + |z* + - + |z.]%,
1 aQP 2 . .
where a = 26—(%1> 7 T > 0. Hence, after taking a subsequence if necessary, we
Zl(/Z
may assume that the sequence of domains §2; := A; o CDn;(UJ ) converges normally to

the Siegel half-space
M2 := {(z,w) € C"™": p(z,w) = Re(w) + a|z1 > + |2]* + -+ + |2,]> < 0},

which is clearly biholomorphically equivalent to the unit ball B"*! (by using the Cayley
transform). Moreover, by the same argument as in the proof of Theorem We conclude
that €2 is biholomorphically equivalent to M.z, or {2 is biholomorphically equivalent to
B"!. Hence, the proof of Theorem is finally complete. ]

5. THE BEHAVIOUR OF AUTOMORPHISM ORBITS ACCUMULATING AT A BOUNDARY
POINT OF A DOMAIN IN C?

In this section, we shall restrict the discussion to domains in C2. More precisely, let
) be a pseudoconvex domain of finite type near &, € Q2 with the type 7(09, &) = 2m.
Then the notion of uniformly ( —)-tangential convergence given in Section [3|is just the
that of ( —)-tangential convergence. In addition, the notion of spherically 2——tangent1al
convergence is exactly given in Section [ Therefore Corollary [1.3] follows directly from
Theorem|[I.2)and Lemma[4.1] In this situation our model is biholomorphically equivalent
to the unit ball B2
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In the sequel, we consider the case that the condition ¢) in Definition is violated,
. AP (Oéj) . . .
ie. W — 0 as j — o for some sequence {a;} converging to the origin in C (see
j
Definition below). Then our model may be defined by a homogeneous polynomial
of degree larger than 2.

5.1. Spherically ﬁ—tangentially convergence of higher order. Let p be a local
defining function for 2 near &, and let the D’Angelo type 7(0€2, &y) = 2m be finite. As in
the proof of Theorem [I.T| we may assume that there are local holomorphic coordinates
(z,w) in which & = 0 and €2 can be described near 0 as follows:

Q= {p(z,w) = Re(w) + P(z) + Ri(2) + Ra(Imw) + (Imw)R(z) < 0}.
Here P is homogeneous subharmonic real-valued polynomial of degree 2m containing

no harmonic terms, R; € O(1,A), R € O(1/2,A) with A = (55), and Ry € O(2).

Now let us write
2m—1

P(Z) — Z (llZl22m_l,
=1
where a; = ay if [ +1' = 2m. Furthermore, in the polar coordinates z = |z|e?, for
[+ 1" < 2m, we have
al-i—l’P ) aH—l,Rl /
6 - - — 2m—I—1 (0): _ 2m—1—1 /. 0

where g, is a trigonometric polynomial of degree 2m — 1 — " and hyy(|z|,0) is a C*-
smooth function defined on C with h;(|z],0) = O(|z]).

In analogy to Corollary [I.3] we discuss a situation where our domain is biholomoph-
ically equivalent to some model defined by a homogeneous polynomial of degree larger
than 2. To this purpose, the following variant of Definition [4.1| seems to be necessary.

Definition 5.1. A sequence {n; = (o, 3;)} < Q is said to converge spherically 3--
tangentially of order 2v (2 < v < m) to & € 0N if the following conditions hold:
(i) Im(8;)| < dist(n;, 0€2);
(ii) dist(n;, 0Q) = o(|ay|*™);
(iii) If I + 1" < 2v, then

lim <d1st(77j, 0f2)

| [P

wly
) (o 05) + hua(lagl. 07)) = 0,

Jj—0

where 0; := arg(a;);
(iv) There exists ly, lj, with Iy + I, = 2v, max(l, ) = 1 such that

lljﬂl}oglf |910716 (0])| > 0.

We now assume that {n; = (a;,;)} < € converges spherically ﬁ—tangentially of
order 2v (2 < v < m) to & € 0Q. Then, for a given sequence {¢;} = R* converging to
0, we define

1
€ \
Tj = |oz]<—j> , 7 =1
T oy
With this notation, by Definition [5.1] we have the following lemma.

Lemma 5.1. For any integers [,I" with [,1' > 1, we have
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I+
(a) Tim 0" (P + Ry)

it W(ay)€il l+l =0 fOT [+ I < 2u.

J

I+ p
(b) hr& %(a )EJ_IT]H_Z =0 forl+1 >2v.
j—)
Ot R
(c) ]11_>OO azl—al}(a Je; T =0 for 1+ 1 >
o+l p
(D) 5577 0| <1 for 4 1 = 2w and
210z
o o*' P 1o e
lin inf Sooasah ()| € T = hjﬂiglfgzoau—lo(@j) > 0.

Proof. Indeed, by a direct computation using @ we obtain
o+ p c il
—1 I+l 2m—1—1' 1y 4l J 2v

S (@) T = s g (05 o ()

é’zlézl/( )7 J R
RN
~ (=) " o)

o[>

for [,1' = 1. Similarly, one also has

aH_l Rl _ ’ € %_1
(aj)e; 't = (|a T2m> hup (o), 65)

for [,I’ = 1. Thus the assertion (a) follows directly from the condition (iii).
In the same fashion, for [ + I’ = 2v we have

0zt0zV

’ !
1+1 g

1+ om—l—l' 1| . [+ €5 £ &5 E2
G S o G gl () T s ()
J 7 J J J |aj|2m ‘Oéj|2m )

al-i—l’P

()

0ztozV
0" Ry 1141 2 ’ ! €; sz' €; %H/—
L RN [ N L BT Ot i s | 'l+l< J)”< (_])”
azlazl/ (Oé]) 6] Tg ~ |a3’ 6] |Oé]| |aj|2m ~ |a3’ |Oéj|2m
This easily implies (¢). Moreover, if | + 1’ > 2v. then we get

y p ) ) g

I+

P 114
lim (a)e; T
i 007 il

=0,

and hence (b) follows.

Finally, it follows from and the condition (iii) that we observe that every sequence

{a‘ﬁ;; ()€ 17';” } is bounded if | + I’ = 2v, whereas

j=1
aZVP
liminf | —————(a;)| € '77" = lim inf _1,(65) > 0.
o0 52103521/—10( J) Jd 00 Gio.2v—10 J) 0

0

5.2. Proof of Proposition [1.4. This subsection is devoted to a proof of Proposition
1.4] Throughout this section, the domaln 2 and the boundary point &, € 0f) are assumed
to satisfy the hypothesis of Proposition [1.4, Let p be a local defining function for
near & and let the D’Angelo type 7(0€2, p) = 2m be finite. As in the proof of Theorem
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1.1} we may assume that there are local holomorphic coordinates (z,w) in which § = 0
and () can be described near 0 as follows:

Q = {p(z,w) = Re(w) + P(z) + R1(z) + Ro(Imw) + (Imw)R(z) < 0}.
Here P is homogeneous subharmonic real-valued polynomial of degree 2m containing
no harmonic terms, Ry € O(1,A), R € O(1/2,A) with A = (5=), and Ry € O(2).

By hypothesis of Proposition [1.4] there exist a sequence {gpj} < Aut(Q2) and a point
a € §2 such that n; := ¢;(a) converges spherically T—tangentlally of order 2v (2 < k <
m) to &.

Let us fix a small neighborhood Uy of the origin. For any sequence {n; = (o, 5;)}
of points converging ﬁ—tangentially to the origin in Uy n {p < 0} =: U, , we associate
with a sequence of points 7; = (aj,a; + ¢; + ib;), where ¢; > 0 and 3; = a; + ibj,
such that n; = (aj, #}) is in the hypersurface {p = 0} for every j € N*. We note that
€; ~ dist(n;, 092).

As in the proof of Theorem , let us consider the sequences of translations L,I;_ and
polynomial automorphisms @Q; of C? (j € N*), defined respectively by

Ly (z,w) == (z,w) —1m; = (2 — aj,w — )

and

2m
w =+ (Ry(b;) + R(aj))ih + 2 z LELk (o)

2m
- ok R
+2;§ LRk () + 2b; 2 L az,?ﬂ)wk,
z = Z.

Then one sees that Q; o Ly (a;, 8;) = (0, —¢; — i(Ry(b;) + R(ay))e;) for every j e N*.
Moreover, the hypersurface Q; o Ln;( {p = 0}) is defined by an equation of the form

-1 -1 1 oktlp .
p (L5 0 Q5" (2,w)) = Re(w) + of|Tm(w)) X @)
+l<2m
k>0
1 8’“”Rl k-l 1 ak-i—lR .
kW 02k 07 (Oéj)Z Z + bj mw(aj)z Z+--=0,
k+1<2m k+I<2m
k,1>0 k>0

where the dots denote remainder terms.
Now let us recall that

and then we define an anisotropic dilation A; by
Z w
A ==, — e N,
j<Z7w> (Tj’€j>7je
This yields Ajo Qo Ly (a;, 8;) = (0, =1 = i(Ry(bs) + R(a;))) — (0,—1) as j — o0. By
m_

v

the definition of 7;, a simple calculation shows that 7']-2m = €. (W) < ¢;. Hence,
J

we get the following estimates

(8) e’ < <e

1/2m
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Furthermore, the hypersurface A; o Q; o Ly ({p = 0}) is defined by an equation of the
form

(9)
B B - L ~ 1 o*(P + Ry)
; 1p (Lr]jl o Qj g (AJ) ! (Z,U))) = Re(w) + Z W agkazl - i Ty
k+l<2m
k,l>0

-1 1 *R 1 k+lzk5 ~
Fety Y ()G R ol Im(@)]) + O(r(ny, ) = 0,
k+I<2m W ozkoz

k>0

(O@)Eil kHZkzl

where (| . yields the terms with weight greater than one equal O(7(n;,€;). Hence, we
consider only the convergence of monomials from @D with weight order < 1.
Now thanks to Lemma we have

(3’“”(]3 + Ry)
03kt
as j — o for k + [ # 2v. For the case that k + 1 = 2v,

a2VR1 —1_2v

azkaz2u k’(a )6]- Tj —0

as j — . Moreover, since |¢; 'b;| < 1, we obtain that

akHR
- —1_k+l
€ b —(aj)e; 777 =0

0zk0z

. e : o?vp —1 1+l ;
as j — o for any k,[l > 1. In addition, since every sequence {azlazl’ (aj) T }j>1 is

bounded if [ + " = 2v, hence after taking a subsequence if necessary we may assume
that
1 . orpP

—1_2v
k(QV—k) ]h—>ooa ka:QV k(a )6] 7—] 7]~<k,l<n

Ak 2v—k =

Therefore, after taking a subsequence if necessary, we may achieve that sequence of
defining funtions given in @ converges uniformly on compacta of C? to p := Re(w) +
Q(Z). Consequently, the sequence of domains Q; := A;0Q); oLy (Uy") converges normally
to the following model

Mg := {(z,w) € C*: p(z,w) := Re(w) + Q(Z) < 0},
where
2v—1 ok
Q(g) = Ak 20—k< F o
k=1

Note that since Mg is pseudoconvex, we infer that () is subharmonic. Moreover,
by the condition (iii), we have a;,9,—;, # 0 for some 1 < [y < 2v — 1, and hence the
polynomial () is not harmonic. Furthermore, by the same argument as in the proof of
Theorem we conclude that € is biholomorphically equivalent to Mg. Hence, the
proof of Proposition is eventually complete. O
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5.3. The Kohn-Nirenberg type domains. The Kohn-Nirenberg domain Qg py is
given firstly in [32] by

1
Qrn = {(z,w) e C*: Re(w) + |2]° + 75]2|2Re(26) < O}

This domain is a weakly pseudoconvex domain of finite type having no supporting
function at the origin. In addition, 2y cannot be biholomorphically equivalent to a
bounded domain in C? with real analytic boundary. Indeed, if this would be the case,
then [0] tells us that Qg is biholomorphically equivalent to the ellipsoid

{(z,w) e C*: Jw]* + |2® < 1},

which is biholomorphically equivalent to the model {(z,w)e C?: Re(w) + |2[® < 1}.
This leads to a contradition by [13, Main Theorem)].

Furthermore, Qg y is a W B-domain and thus it satisfies the hypothesis of Theo-
rem [[.3] Therefore, Theorem shows that if a sequence of automorphism orbits
{n; = ¢j(a)}, {¢;} < Aut(Qky), converges to the origin, then it must converge -
nontangentially to the origin.

The condition that 7; is strongly pseudoconvex ensures that a limit of the scaling
domains (the model Mpy) is just biholomorphically equivalent to the unit ball B2 If
this condition is not satisfied such as AP(c;) = 0 for all j, then the model now becomes
Mg = {(z,w) € C*: Re(w) + Q(z) < 0} for some homogeneous subharmonic polynomial
Q) with deg(Q)) = 4. The following example will demonstrate these phenomena. It also
describes a situation when Proposition [1.4] may occur.

Example 5.1. Let Q xn be a domain in C? defined by

16

Quy = {(z,w) e C*: Re(w) + |2]® — 7|z|2Re(z6) < O} .

9 1
—2)} converges %—tangentially but not spherically

We see that the sequence {(—, — —
VI

%_tangentially to (0,0).

16 1 9 1
Let p(z,w) = R +128— —|2]?Re(2%) and let n); = (==, — — — ) fi e N*.
et p(z, w) e(w) |Z£|) 17|z|9 e(z )lan et n; (\8/5 7 j2) or every j € 1
This implies that p(n;) = —=—— — —— ~ —dist(n, oQxkn). Set e; = |p(nj)| = =.

g2 T ] 52
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Then, a computation shows that

p(z,w)
1 1 s 16, 1 1 1
18 1 16 1 , 12 1,
= Re(w) + JoCTE waie(z ]1/8) M |z = j1/8| M Re((z - ]17) )
8 1, 48 1, 1
+ WRG((Z — W) )+ ]5/8|z — JIW‘ Re(z — m)
2 1, 32 1, 1 5 36 Ly
+WR6((Z—W) )+j—4|z—jm| e((z—jl/s) )+j4/8|z_j1/8|
6/1 8 1 21 1, 7 1,
-3 (G5 + et = =) + WRG“Z - jw) )+ sl )
16 ( 35 1 4, 21 1
16 [ 21 1, 35 1, 1 1.
-7 (FRellc - 57"+ Sl - 1/8' Re((=~ 57 )+ Olale = 751
9 72 1. 36 1, 72 1,
46 1 4 48 1 2
- WRG((Z - jl/g) ) j4/8|z 1/g| Re((z - ‘m) )
36 1 1 1
2 — =5l" + |z —

5
GBI (33/8 jm‘ )

31/8 for all j € N*.
of C?, given by

To define an anisotropic dilation, let us denote by 7; := 7(7;)

Now let us introduce a sequence of polynomial automorphisms ¢ !

1
22\8/—(7-1—735
9 72 36 ., 72 .. 46 ,,
w—e]w—i-? 7J7/SJ +]6/87'Z +J577—Z +]477Z

Therefore, we have

1
&' po ¢, (Z,@) = Re(@) + 36/2]" 48\2[2Re(22)+0(m).

We now show that there do not exist a sequence {f;} < Aut(Qxy) and a € Qg such
that n; = f;(a) — (0,0) € QN as n — 0. Indeed, suppose otherwise that there exist
such a sequence {f;} and such a point a € O xn- Then by the same argument as in the
proof of Theorem |1 Q xn is biholomorphically equivalent to the following domain

_{zw ) € C*: Re(w) + 36|z|* — 48|2]°Re(2%) < 0} .

However, since the D’Angelo type of 0D is always less than or is equal to 4, it follows
that D is not biholomorphically equivalent to Qgy (cf. [I3, Main Theorem]). It is
impossible.
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