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Abstract This paper investigates robust finite-time stability for a class of singular large-scale sin-
gular neural networks. The singular large-scale system under consideration is subjected to intercon-
nected delays and bounded disturbances. Using the singular value theory and Lyapunov-Krasovskii
function method, we propose new LMI-based criteria for the robust finite-time stability of such
systems. The conditions are presented in terms of tractable linear matrix inequalities (LMIs), which
can be solved efficiently by the LMI toolbox algorithm. A numerical example is given to indicate
significant improvements of the proposed method.
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1 Introduction

Stability analysis for large-scale neural networks (LSNNs), which is one of the most important
topics in the qualitative theory of dynamical systems, has received considerable attention over the
past decades (see, e.g., [1-3] and the references therein). A significant stability study of LSNNs
focuses on the systems with delays. However, most of the existing results on LSNNs have concen-
trated on Lyapunov asymptotic stability (LAS), which is defined over an infinite time interval. the
author of [4] introduced the concept of finite-time stability (FTS), which focuses on the transient
behavour of a system response over finite time interval. There have been a lots of interesting re-
suts on the FTS [5-7]. In the past years, in the context of large-scale systems problem of stability
and control has been widely studied and found many significant applications [8, 9]. Especially, for
large-scale neural networks, which incorporate numerous subsystems with enormous of numbers
variables and contain interconnected delays, turn out to be increasingly more complicated due to
its high dimension and structure distribution characteristics [10-13]. On the other hand, singular
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systems (also known as descriptor, implicit, differential-algebraic or general state-space systems)
have attracted particular interest and many significant results in this area have been obtained
[14-17]. For large-scale equations with delays, by using the Lyapunov function method combined
with the LMI technique, some results on FTS were proposed by [18-21], however, the singularity
was not considered there. For the singular large-scale equations, using singular value decomposi-
tion and the Lyapunov function method, some delay-dependent sufficient conditions were proposed
by [22-24], but the neural structure was not considered there. When neural structure appears in
large-scale systems, some stability results were reported in [25, 26], however, no singular parameter
was considered there. It should be noted that there exist few results on the FTS of singular LSNNs
with delays. The reason is that the singular LSNNs describe nonlinear time-delay systems of high
dimension with complicated delay parameters consisting of large-scale differential-algebraic equa-
tions. Stability analysis of singular LSNNs with interconnected delays is much more complicated
and requires an extensive calculation to investigate the stability conditions. To the best of our
ability, there are no results on the FTS of the singular LSNNs with delays in the literature. This
is an essential and challenging subject not only in theory but also in practice.

The aim of this work is to provide sufficient conditions for robust FTS of linear singular LSNNs
with interconnected delays. Different from the existing methods, we have presented an equivalent
form for the system by decomposing singular matrix method and by constructing a kind of novel
Lyapunov function. The method based on the singular value theory and Lyapunov function ap-
proach has been used to decompose the system to fast and slow subsystems, which results in an
explicit representation of the fast variables in terms of the initial conditions and the slow variables.

Comparing with the existing results, our paper has the following novel features. (i) The in-
novation of research approach. In this paper, we attempt to develop Lyapunov function method
combined with SVD approach to solving robust stability problem. The proposed approach is the
first trial in investigating robust stability of singular LSNNs with interconnected delays. (ii) The
difficulty and generalization of the research result. The main difficulties and drawbacks in stability
analysis of singular LSNNs are the presence of interconnected delays and disturbances. Our system
model describes a wider class of LSNNs, which subject to the interconnected delays and distur-
bances, which gives rise to the difficulty in the stability study due to limited research techniques.
The contributions of our paper can be summarized as follows.

(i) Robust FTS analysis of large-scale systems in the existing papers reveals some restrictions:
either the delays, the singular structure or the neural structure is not considered. In our study, the
above restrictions are removed and the delays are interacted between subsystems.

(ii) Combined with the LMI technique [27], by creating a new enhanced Lyapunov functionals, a
new set of sufficient conditions for robust FTS is provided.

(iii) Delay-dependent FTS conditions are established in the form of strict LMIs, which can be easily
solved by using interior point algorithm [28]. In addition, a design procedure has also proposed for
the robust FTS of the system.

(iv) Through a given numerical example, we verify the validity of the stability conditions.

The following is the paper’s structure: Section 2 contains definitions and mathematical prelimi-
naries needed for the next sections. Section 3 presents the main result on FTS of descriptor LSNNs
with a numerical example and simulations.

Notations. R+ represents the space of real positive numbers ; C is the space of all complex num-
bers, ]Rk stands for the k− dimensional space; Ra×b is the space of (a× b)- matrices; C([0,M ],Rk)
represents the space of continuous functions on [0,M ]; L2([0,M ],Rk) represents the space of
2−integrable functions on [0,M ]. A is a positive definite matrix (A > 0) if (Az, z) > 0 for all
z ̸= 0.
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2 Preliminaries

Consider singular neural networks described in the following large-scale complex formEiẏi(t) = −Aiyi(t) +Bifi

(
yi(t)

)
+

M∑
i ̸=j,j=1

Cijgj

(
yj(t− δij)

)
+Diwi(t), t ≥ 0,

yi(t) = ϕi(t), t ∈ [−δ, 0],

(1)

where 0 < δij ≤ δ; i ̸= j; i, j = 1, 2, ...,M; yi(t) = [yi1(t), y
i
2(t) ..., y

i
ni
(t)]⊤ ∈ Rni is the state

of the i−th neural in the networks; Ei is singular: rank Ei = ri ≤ ni, i = 1, 2, ...,M; wi(t) ∈
Rpi is the disturbance; Ai = diag{ai1, ai2, ... , aini

} ∈ Rni×ni satisfying ail > 0, ∀l = 1, ..., ni;
Bi ∈ Rni×ni , Cij ∈ Rni×nj denote the connection and the discretely delayed weights, respectively,
Di ∈ Rni×pi is constant matrix of appropriate dimensions; fi(yi(t)) = [f i

1(y
i
1(t)), ... f

i
ni
(yini

(t))]⊤;

gj(yj(t − δ)) = [gj1(y
j
1(t − δ)), ... gjnj

(yjnj
(t − δ))]⊤; ϕi(.) ∈ C([−δ, 0];Rni); the disturbance wi(t)

satisfies

∃h > 0 : max
i=1,...,M

{
sup
t>0

{w⊤
i (t)wi(t)}

}
≤ h. (2)

Let us set

D =diag{D1, · · · , DM}, B = diag{B1, · · · , BM}, A = diag{A1, · · · , AM}
y⊤(t) =[y1(t)

⊤, . . . , yM(t)⊤], f⊤(y(t)) = [f1(y1(t))
⊤, . . . , f⨿niM(yM(t))⊤],

R =diag{R1, · · · , RM}, w(t) = [w1(t)
⊤, . . . , wM(t)⊤], φ⊤(t) = [φ1(t)

⊤, . . . , φM(t)⊤],

E =diag{E1, · · · , EM}, g⊤(y(t− δij)) = [g1(y1(t− δij))
⊤, . . . , gM(yM(t− δij))

⊤],

Cij =

{
Cij in the line i and the column j,

0 on the other positions,

then, the system (1) is given in the formEẏ(t) = −Ay(t) +Bf
(
y(t)

)
+

M∑
i=1

M∑
j ̸=i,j=1

Cijg
(
y(t− δij)

)
+Dw(t), t ≥ 0,

y(t) = ϕ(t), t ∈ [−δ, 0].

(3)

The activation functions satisfy Lipschitz conditions:

|f i
1(y)| ≤ ηi1|y|, ..., |f i

ni
(y)| ≤ ηini

|y|, (4)

and

|gj1(y)| ≤ γj
1|y|, ..., |gjnj

(y)| ≤ γj
nj
|y|, (5)

for all y ∈ R.

Definition 1 System (3) is (i) regular if det(sE + A) is not equal to zero; (ii) impulse-free if
deg(det(sE +A)) = rankE, s ∈ C.

Definition 2 For c1 > 0, c2 > 0, L > 0 and a symmetric matrix R > 0, system (1) is robustly
finite-time stable w.r.t. (c1, c2, L,R) if it is impulse-free, regular and the following relation holds
for all disturbances wi(t) satisfying (2):

sup
τ∈[−δ,0]

{ϕ⊤(τ)Rϕ(τ)} ≤ c1 → y⊤(t)Ry(t) < c2, ∀t ∈ [0, L].
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Lemma 1 ([27]) Given matrices P,Q; R,Q = Q⊤, P = P⊤, we have

P +R⊤Q−1R < 0 ⇔
[
P R⊤

R −Q

]
< 0.

Lemma 2 For matrices P,L,U,G,S,T, where P = P⊤,S = S⊤ > 0 and G = G⊤ > 0, we have(
P+ U⊤G−1U T⊤

L −S

)
< 0 ⇔

P L⊤ U⊤

L −S 0
U 0 −G

 < 0.

Proof. The proof of Lemma 2 is an easy consequence of the Lemma 1.

Lemma 3 ([29]) For a matrix 0 < G ∈ Rn, and two scalars k1, k2 satisfy 0 ≤ k1 < k2 and a
vector function x : [k1, k2] −→ Rn such that the intergrations concerned are well defined, we have(∫ k2

k1

x(s)ds
)⊤

G
(∫ k2

k1

x(s)ds
)
≤ (k2 − k1)

∫ k2

k1

x⊤(s)Gx(s)ds.

3 Robust stability

In this section, we provide new LMI criteria for FTS of system (1). Because of rank Ei = ri < ni,
without lost of generality as proposed in [17], we assume that the matrix Ei has the form Ei =(
Iri 0
0 0

)
and denote

Ai = diag{ai1, ai2, ... , aini
} =

(
Āi

11 (0
0 Āi

22

)
; Āi

11 = diag{ai1, ... , airi} ∈ Rri×ri ;

Āi
22 = diag{airi+1, ... , aini

} ∈ R(ni−ri)×(ni−ri); Pi =

(
P i
11 P i

12

P i
21 P i

22

)
; Di =

(
Di

I

Di
II

)
;

fi(yi(t)) =

(
f i
I(.)

f i
II(.)

)
for all i, j = 1,M; Bi =

(
B̄i

11 B̄i
12

B̄i
21 B̄i

22

)
; Cij =

(
Cij

11 Cij
12

Cij
21 Cij

22

)
;

gj(yj(t− δij)) =

(
gjI(.)

gjII(.)

)
for all i, j = 1,M;Di

I ∈ Rri×pi ; B̄i
11, P

i
11 ∈ Rri×ri ,

Cij
11 ∈ Rri×rj ; Cij

12 ∈ Rri×(nj−rj); Cij
21 ∈ R(ni−ri)×rj ;

f i
I(.) = [f i

1(y
i
1(t)), ..., f

i
ri(y

i
ri(t))]

⊤, gjI(.) = [gj1(y
j
1(t− δij)), ..., g

jrj(y
j
rj (t− δij))]

⊤;

yi(t) =

(
yiI(t)
yiII(t)

)
; yiI(t) = [yi1(t), ..., y

i
ri(t)]

⊤ ∈ Rri ; yiII(t) ∈ Rni−ri .

The system (1) is reduced to the following slow-fast subsystem

ẏiI(t) = −Āi
11y

i
I(t) + B̄i

11f
i
I(.) + B̄i

12f
i
II(.) +

M∑
j=1,j ̸=i

[
Cij

11g
j
I(.) + Cij

12g
j
II(.)

]
+Di

Iωi(t),

0 = −Āi
22y

i
II(t) + B̄i

21f
i
I(.) + B̄i

22f
i
II(.) +

M∑
j=1,j ̸=i

[
Cij

21g
j
I(.) + Cij

22g
j
II(.)

]
+Di

IIωi(t),

yi(t) = φi(t), t ∈ [−δ, 0].

(6)

The following notations are introduced for simplicity.

Ui =diag{ηi1, ηi2, ..., ηini
}; Vi = diag{γi

1, γ
i
2, ..., γ

i
ni
},
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νi1,1 =− PiAi −A⊤
i P

⊤
i + (M− 1)Qi + 3U⊤

i ZiUi −XiAi −A⊤
i X

⊤
i +

M∑
j=1,i̸=j

δjiYi,

νij,j =−Qj + 3V ⊤
j ZjVj , j > i; νij,j = −Qj−1 + 3V ⊤

j−1Zj−1Vj−1, i ≥ j; j = 2, ..,M,

νi1,M+1 =−A⊤
i S

⊤
i −Xi; ν

i
M+1,M+1 = −Si − S⊤

i ,

νiM+j,M+j =− δ−1
ij Yj , ∀j > i; νiM+j,M+j = −δ−1

i,j−1Yj−1, j ≤ i; j = 2,M,

νi1,2M+1 =PiBi; ν
i
2M+1,2M+1 = −Zi; ν

i
1,2M+j = PiCij , j > i,

νi1,2M+j =PiCi,j−1, i ≥ j, j = 2, ...,M,

νi2M+j,2M+j =− Zj , i < j; νi2M+j,2M+j = −Zj−1, j = 2,M, i ̸= j; νi1,3M+1 = PiDi,

νi3M+1,3M+1 =− I; νi1,3M+j = XiCij , j > i; νi1,3M+j = XiCi,j−1, j = 2,M, i ≥ j,

νi3M+j,3M+j =− Zj , j > i; νi3M+j,3M+j = −Zj−1, j = 2,M, i ≥ j,

νi1,4M+1 =XiBi; ν
i
4M+1,M+1 = −Zi,

νiM+1,4M+j =SiCij , j > i; νiM+1,4M+j = SiCi,j−1, j ≤ i, j = 2,M,

νi4M+j,4M+j =− Zj , i < j; νi4M+j,4M+j = −Zj−1, j ≤ i, j = 2,M,

νi1,5M+1 =XiDi; ν
i
5M+1,5M+1 = −I, νiM+1,5M+2 = SiBi; ν

i
5M+2,5M+2 = −Zi,

νiM+1,5M+3 =SiDi; ν
i
5M+3,5M+3 = −I; νilk = 0 for all other cases,

ϑ3 = min
i=1,...,M

{λmin(P
i
11)}; ϑ = max

i=1,...,M

{
1

λmin(Ri)

}
,

ϑ1 = max
i=1,...,M

{λmax(PiEi)

λmin(Ri)

}
+ δ(M− 1) max

i=1,...,M

{ λmax(Qi

λmin(Ri)

}
+ (M− 1)

δ2

2
max

i=1,...,M

{λmax(Yi)

λmin(Ri)

}
,

ϑ2 = max
i=1,...,M

{
λmax(Ri)

}
;ϑ4 =

ϑ1c1 + 3MhL

ϑ3
; δ1 = min

i,j=1,...,M;i̸=j
{δij},

λ1 =(2M+ 1) max
i=1,...,M

{∥ [Āi
22]

−1B̄i
21 ∥2; ∥ [Āi

22]
−1B̄i

22 ∥2},

λ2 =(2M+ 1) max
i ̸=j;i,j=1,...,M

{∥ [Āi
22]

−1Cij
21 ∥2; ∥ [Āi

22]
−1Cij

22 ∥2},

λ3 =(2M+ 1) max
i=1,...,M

{∥ [Āi
22]

−1Di
2 ∥2}; β0 = 1− λ1 max

i=1,...,M
{∥ Ui ∥2},

β0β1 =λ1 max
i=1,...,M

{∥ Ui ∥2}; β0β2 = λ2 max
i=1,...,M

{∥ Vi ∥2}; β0β3 = λ3,

ϑ5 =

[
L

δ1
]∑

l=0

[
β2(M− 1)

]l
; ϑ6 = 1 + β1ϑ5 + (M− 1)β2ϑ5,

d(c1) =[2(M− 1)ϑc1β2 +Mhβ3]ϑ5.

Theorem 1 The singular LSNNs (1) is robustly finite-time stable w.r.t. (c1, c2, L,R) if there exist
non-singular matrices Pi, symmetric matrices Yi > 0, Si > 0, Qi > 0, diagonal matrices Zi > 0,
matrices Xi, i = 1, ...,M and a scalar β > 0 such that

PiEi = E⊤
i P⊤

i ≥ 0; (7)

νi =
(
νilk
)
(5M+3)×(5M+3)

< 0, i = 1, ...,M; (8)

λ1 max
i=1,...,M

{∥ Ui ∥2} − 1 < 0; (9)

ϑ4ϑ6e
βL + d(c1) <

c2
ϑ2

. (10)
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Proof. 1. The regularity and impulse-free. We first note that (sE+A)‘ = diag{sE1+A1, sE2+

A2, ..., sEM +AM} where Ei =

(
Iri 0
0 0

)
, Ai = diag{ai1, ai2, ... , aini

}, then

det(sE +A) = det(sE1 +A1) det(sE2 +A2) det(sE3 +A3)...det(sEM +AM).

Moreover, we have

det(sEi +Ai) = (s+ ai1)(s+ ai2)...(s+ airi)(a
i
ri+1)...(a

i
ni
)

= (airi+1)...(a
i
ni
)
[
sri + āiri−1s

ri−1 + ...+ āi1s+ det(Āi
11)
]
,

where ail > 0, ∀i = 1,M; l = 1, ni. Thus, det(sEi +Ai) is not identical zero for all i = 1,M. This
implies that det(sE + A) is also not identical zero or neural network (1) is regular. Furthermore,
we see that

deg(det(sE +A)) = deg(det(sE1 +A1)) + ...+ deg(det(sEM +AM)) = r1 + ...+ rM = rankE.

Hence, the system (1) is impulse-free.

2. The robust FTS. We consider the Lyapunov-Krasovskii functionals:

V(t, yt) =
M∑
i=1

[
Vi1(t, yt) + Vi2(t, yt) + Vi3(t, yt)

]
,

where

Vi1(t, yt) =eβtyi(t)
⊤PiEiyi(t),

Vi2(t, yt) =eβt
M∑

j=1, j ̸=i

t∫
t−δij

yj(s)
⊤Qjyj(s)ds,

Vi3(t, yt) =eβt
M∑

j=1, j ̸=i

t∫
t−δij

∫ t

s

yj(v)
⊤Yjyj(v)dvds.

The derivative of V (t, yt) gives

V̇i1(t, yt) =βVi1(t, yt) + eβty⊤i (t)[−A⊤
i P

⊤
i − PiAi]yi(t) + 2eβty⊤i (t)PiBifi(yi(t))

+ 2eβty⊤i (t)Pi

M∑
i ̸=j,j=1

Cijgj(yj(t− δij)) + 2eβty⊤i (t)PiDiwi(t);

V̇i2(t, yt) =βVi2(t, yt) + eβt
M∑

i ̸=j,j=1

y⊤j (t)Qjyj(t)− eβt
M∑

j=1,j ̸=i

y⊤j (t− δij)Qjyj(t− δij).

V̇i3(t, yt) =βVi3(t, yt) + eβt
M∑

i ̸=j,j=1

δijy
⊤
j (t)Yjyj(t)− eβt

M∑
j=1,j ̸=i

∫ t

t−δij

y⊤j (t)Yjyj(t).

Based on (4), (5) and the following derived inequality estimations

2y⊤i (t)PiBifi(yi(t)) ≤ y⊤i (t)PiBiZ
−1
i B⊤

i P⊤
i yi(t) + y⊤i (t)U

⊤
i ZiUiyi(t);

2y⊤i (t)Pi

M∑
i̸=j,j=1

Cijgj(yj(t− δij)) ≤
M∑

j=1,j ̸=i

y⊤j (t− δij)V
⊤
j ZjVjyj(t− δij)

+

M∑
j ̸=i,j=1

y⊤i (t)PiCijZ
−1
j C⊤

ijPiyi(t);
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2y⊤i (t)PiDiwi(t) ≤ y⊤i (t)PiDiD
⊤
i P

⊤
i yi(t) + w⊤

i (t)wi(t);

− δij

∫ t

t−δij

y⊤j (t)Yjyj(t) ≤ −
(∫ t

t−δij

yj(t)dt
)
Yj

(∫ t

t−δij

yj(t)dt
)
;

− 2eβtẏ⊤i (t)E
⊤
i Si

[
Eiẏi(t) +Aiyi(t)−Bifi

(
yi(t)

)
−

M∑
j=1,j ̸=i

Cijgj

(
yj(t− δij)

)
−Diwi(t)

]
= 0;

2eβtẏ⊤i (t)E
⊤
i SiBifi

(
yi(t)

)
≤ [Eiẏi(t)]

⊤SiBiZ
−1
i B⊤

i S⊤
i [Eiẏi(t)] + yi(t)

⊤U⊤
i ZiUiyi(t);

2eβtẏ⊤i (t)E
⊤
i Si

M∑
j=1,j ̸=i

Cijgj

(
yj(t− δij)

)
≤

M∑
j=1,j ̸=i

[Eiẏi(t)]
⊤SiCijZ

−1
j C⊤

ijS
⊤
i [Eiẏi(t)]

+

M∑
j ̸=i,j=1

y⊤j (t− δij)V
⊤
j ZjVjyj(t− δij);

2eβtẏ⊤i (t)E
⊤
i SiDiwi(t) ≤ [Eiẏi(t)]

⊤SiDiD
⊤
i S

⊤
i [Eiẏi(t)] + wi(t)

⊤wi(t);

− 2eβtyi(t)
⊤Xi

[
Eiẏi(t) +Aiyi(t)−Bifi

(
yi(t)

)
−

M∑
j ̸=i,j=1

Cijgj

(
yj(t− δij)

)
−Diwi(t)

]
= 0;

2yi(t)
⊤XiBifi

(
yi(t)

)
≤ y⊤i (t)XiBiZ

−1
i B⊤

i X⊤
i yi(t) + y⊤i (t)U

⊤
i ZiUiyi(t);

2y⊤i (t)Xi

M∑
j ̸=i,j=1

Cijgj

(
yj(t− δij)

)
≤

M∑
i ̸=j,j=1

y⊤i (t)XiCijZ
−1
j C⊤

ijX
⊤
i yj(t)

+

M∑
j ̸=i,j=1

y⊤j (t− δij)V
⊤
j ZjVjyj(t− δij);

2y⊤i (t)XiDiwi(t) ≤ y⊤i (t)(t)XiDiD
⊤
i X

⊤
i yi(t) + wi(t)

⊤wi(t),

we get

V̇(t, yt)− βV(t, yt) ≤ eβt
M∑
i=1

y⊤i (t)
[
− PiAi −A⊤

i P
⊤
i + PiBiZ

−1
i B⊤

i P⊤
i + (M− 1)Qi

+ 3U⊤
i ZiUi +

M∑
i ̸=j,j=1

PiCijZ
−1
j C⊤

ijPi + PiDiD
⊤
i P

⊤
i +

M∑
j ̸=i,j=1

δjiYi −XiAi

−A⊤
i X

⊤
i +XiBiZ

−1
i B⊤

i X⊤
i +

M∑
j ̸=i,j=1

XiCijZ
−1
j C⊤

ijXi +XiDiD
⊤
i X

⊤
i

]
yi(t)

+ eβt
M∑
i=1

M∑
j ̸=i,j=1

y⊤j (t− δij)
[
−Qj + 3V ⊤

j ZjVj

]
yj(t− δij)

− eβt
M∑
i=1

M∑
j ̸=i,j=1

(∫ t

t−δij

yj(t)dt
)
[δ−1

ij Yj ]
(∫ t

t−δij

yj(t)dt
)

− 2eβt
M∑
i=1

[Eiẏi(t)]
⊤
(
− Si − S⊤

i + SiBiZ
−1
i B⊤

i S⊤
i +

M∑
j ̸=i,j=1

SiCijZ
−1
j C⊤

ijS
⊤
i

+ SiDiD
⊤
i S

⊤
i

)
[Eiẏi(t)] + 3eβt

M∑
i=1

w⊤
i (t)wi(t) + 2eβty⊤i (t)[−A⊤

i S
⊤
i −Xi][Eiẏi(t)]
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≤eβt
M∑
i=1

(
[yi(t)]

⊤ [z2i ]
⊤ ... [zMi ]⊤ [Eiẏi(t)]

⊤ [zM+2
i ]⊤ ... [z2Mi ]⊤

)(
Φi 0
0 Γ i

)


yi(t)
z2i
...
zMi

Eiẏi(t)

zM+2
i

...
z2Mi


+ 3eβt

M∑
i=1

w⊤
i (t)wi(t),

where zji = yj(t − δij) if j > i; zji = yj−1(t − δi,j−1) if i ≥ j; zM+j
i =

∫ t

t−δij

yj(t)dt if j > i;

zM+j
i =

∫ t

t−δi,j−1

yj−1(t)dt if j ≤ i, ∀i = 1,M, ∀j = 2,M, and Γ i = diag{Γ i
M+2, ..., Γ

i
2M};

Φi =
(
Φi
kl

)
(M+1)×(M+1)

, i = 1,M, in which

Φi
1,1 =− PiAi −A⊤

i P
⊤
i + PiBiZ

−1
i B⊤

i P⊤
i + (M− 1)Qi + 3U⊤

i ZiUi −XiAi −A⊤
i X

⊤
i

+ PiDiD
⊤
i P

⊤
i +

M∑
j ̸=i,j=1

δjiYi +

M∑
j ̸=i,j=1

PiCijZ
−1
j C⊤

ijPi +XiBiZ
−1
i B⊤

i X⊤
i

+

M∑
j ̸=i,j=1

XiCijZ
−1
j C⊤

ijXi +XiDiD
⊤
i X

⊤
i ;

Φi
1,M+1 = −A⊤

i S
⊤
i −Xi;

Φi
j,j = −Qj + 3V ⊤

j ZjVj if j > i; Φi
j,j = −Qj−1 + 3V ⊤

j−1Zj−1Vj−1 if j ≤ i; j = 2,M;

Φi
M+1,M+1 = −Si − S⊤

i + SiBiZ
−1
i B⊤

i S⊤
i +

M∑
j ̸=i,j=1

SiCijZ
−1
j C⊤

ijS
⊤
i + SiDiD

⊤
i S

⊤
i ; j = 2, ...,M;

Φi
j,k = 0 for all other cases;

Γ i
M+j,M+j = −δ−1

ij Yj , if j > i; Γ i
M+j,M+j = −δ−1

i,j−1Yj−1, if j ≤ i; j = 2, ...,M;

Applying Lemma 1, the condition (8) is equivalent to

(
Φi 0
0 Γ i

)
< 0, i = 1, 2, ...,M, and using

condition (2), we obtain

V̇(t, yt)− βV(t, yt) ≤ 3Mheβt. (11)

We get by integrating both sides of (11) from 0 to t

V(t, yt) ≤
(
V(0, y0) + 3MLh

)
eβL, t ∈ [0, L]. (12)



Finite-time stability of singular large-scale neural networks 9

Furthermore, we have

V(0, y0) ≤
M∑
i=1

λmax(PiEi)y
⊤
i (0)yi(0) +

M∑
i=1

M∑
i̸=j,j=1

δijλmax(Qj) sup
s∈[−δ,0]

φ⊤
i (s)φi(s)

+

M∑
i=1

M∑
j ̸=i,j=1

δ2ij
2
λmax(Yj) sup

s∈[−δ,0]

φ⊤
j (s)φj(s)

≤
M∑
i=1

λmax(PiEi)

λmin(Ri)
y⊤i (0)Riyi(0) +

M∑
i=1

(M− 1)
δλmax(Qi)

λmin(Ri)
sup

s∈[−δ,0]

φ⊤
i (s)Riφi(s)

+ (M− 1)
δ2

2

M∑
i=1

λmax(Yi)

λmin(Ri)
sup

s∈[−δ,0]

φ⊤
i (s)Riφi(s) ≤ ϑ1c1,

(13)

which gives

V(t, yt) ≤ (ϑ1c1 + 3MLh)eβL. (14)

Moreover, we see that

y(t)⊤Ry(t) ≤ max
i=1,M

{λmax(Ri)}
M∑
i=1

yi(t)
⊤yi(t) := ϑ2

M∑
i=1

[
∥ yiI(t) ∥2 + ∥ yiII(t) ∥2

]
,

and from (7), we get P i
21 = 0, P i

11 = [P i
11] > 0. Now, we will estimate the state solutions ∥ yiI(t) ∥2

, ∥ yiII(t) ∥2 . From the view of V(t, yt) we have

V(t, yt) ≥
M∑
i=1

yi(t)
⊤PiEiyi(t) =

M∑
i=1

yi(t)
⊤
(
P i
11 0
0 0

)
yi(t) ≥

M∑
i=1

λmin(P
i
11) ∥ yiI(t) ∥2 .

This inequality with (14) gives

M∑
i=1

∥ yiI(t) ∥2 ≤ 1

ϑ3
eβL
[
ϑ1c1 + 3MhL

]
≤ ϑ1c1 + 3MhL

ϑ3
eβL, ∀t ∈ [0, L]. (15)

Combine with (6), as a result of

yiII(t) = [Āi
22]

−1B̄i
21f

i
I(.) + [Āi

22]
−1B̄i

22f
i
II(.) +

M∑
j ̸=i,j=1

[Āi
22]

−1
[
Cij

21g
j
I(.) + Cij

22g
j
II(.)

]
+ [Āi

22]
−1Di

IIωi(t),

we have

∥ yiII(t) ∥2 ≤ (2M+ 1) ∥ [Āi
22]

−1B̄i
21 ∥2∥ f i

I(.) ∥2 +(2M+ 1) ∥ [Āi
22]

−1B̄i
22 ∥2∥ f i

II(.) ∥2

+ (2M+ 1)

M∑
i̸=j,j=1

∥ [Āi
22]

−1Cij
21 ∥2∥ gjI(.) ∥

2 +(2M+ 1)

M∑
i ̸=j,j=1

∥ [Āi
22]

−1Cij
22 ∥2∥ gjII(.) ∥

2

+ (2M+ 1) ∥ [Āi
22]

−1Di
II ∥2∥ ωi(t) ∥2 .

Setting

λ1 = (2M+ 1) max
i=1,...,M

{∥ [Āi
22]

−1B̄i
21 ∥2; ∥ [Āi

22]
−1B̄i

22 ∥2};

λ2 = (2M+ 1) max
j ̸=i,i,j=1,...,M

{∥ [Āi
22]

−1Cij
21 ∥2; ∥ [Āi

22]
−1Cij

22 ∥2};

λ3 = (2M+ 1) max
i=1,...,M

{∥ [Āi
22]

−1Di
II ∥2};
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we have

∥ yiII(t) ∥2≤λ1 ∥ fi(.) ∥2 +λ2

M∑
i ̸=j,j=1

∥ gj(.) ∥2 +λ3ωi(t)ω
⊤
i (t)

≤λ1 ∥ Ui ∥2∥ yi(t) ∥2 +λ2

M∑
j ̸=i,j=1

∥ Vj ∥2∥ yj(t− δij) ∥2 +λ3ωi(t)ω
⊤
i (t)

≤λ1 max
i=1,...,M

{∥ Ui ∥2}
M∑
i=1

∥ yiI(t) ∥2 +λ1 max
i=1,...,M

{∥ Ui ∥2}
M∑
j=1

∥ yjII(t) ∥
2

+ λ2 max
j=1,...,M

{∥ Vj ∥2}
M∑
i=1

M∑
i ̸=j,j=1

∥ yjI(t− δij) ∥2

+ λ2 max
j=1,...,M

{∥ Vj ∥2}
M∑
i=1

M∑
i ̸=j,j=1

∥ yjII(t− δij) ∥2 +λ3

M∑
j=1

ωj(t)ω
⊤
j (t),

then(
1− λ1 max

i=1,...,M
{∥ Ui ∥2}

) M∑
j=1

∥ yjII(t) ∥
2 ≤ λ1 max

j=1,...,M
{∥ Uj ∥2}

M∑
j=1

∥ yjI(t) ∥
2

+ λ2 max
j=1,...,M

{∥ Vj ∥2}
M∑
i=1

M∑
j ̸=i,j=1

∥ yjI(t− δij) ∥2

+ λ2 max
j=1,...,M

{∥ Vj ∥2}
M∑
i=1

M∑
j ̸=i,j=1

∥ yjII(t− δij) ∥2

+ λ3

M∑
j=1

ωj(t)ω
⊤
j (t).

(16)

Since β0 =
(
1− λ1 max

i=1,...,M
{∥ Ui ∥2}

)
> 0 and

β1 =

λ1 max
i=1,...,M

{∥ Ui ∥2}

β0
; β2 =

λ2 max
j=1,...,M

{∥ Vj ∥2}

β0
; β3 =

λ3

β0
,

the condition (16) implies

M∑
i=1

∥ yiII(t) ∥2 ≤ β1

M∑
i=1

∥ yiI(t) ∥2 +β2

M∑
i=1

M∑
i̸=j,j=1

∥ yjI(t− δij) ∥2

+ β2

M∑
i=1

M∑
i ̸=j,j=1

∥ yjII(t− δij) ∥2 +β3

M∑
j=1

∥ ωj(t) ∥2 .

(17)

• If (t− δij) ∈ [−δ, 0], we have

∥ yjI(t− δij) ∥2 ≤∥ yj(t− δij) ∥2= φj(t− δij)
⊤φj(t− δij)

≤ 1

λmin(Rj)
φj(t− δij)

⊤Rjφj(t− δij),

hence

M∑
i=1

M∑
j=1,j ̸=i

∥ yjI(t− δij) ∥2 ≤ max
j=1,...,M

{ 1

λmin(Rj)
}

M∑
i=1

M∑
i̸=j,j=1

φj(t− δij)
⊤Rjφj(t− δij)

:= (M− 1)ϑc1,
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in which ϑ = max
j=1,...,M

{ 1

λmin(Rj)
}.

• If (t− δij) ∈ [0, L], using (15) we have

M∑
i=1

M∑
j ̸=i,j=1

∥ yjI(t− δij) ∥2≤ (M− 1)
ϑ1c1 + 3MhL

ϑ3
eβL := (M− 1)ϑ4e

βL,

and hence for t ∈ [0, L] we obtain that

M∑
i=1

M∑
i ̸=j,j=1

∥ yjI(t− δij) ∥2 ≤ (M− 1)
[
ϑc1 + ϑ4e

βL
]
.

Therefore, from (17) it follows the following estimation

M∑
i=1

∥ yiII(t) ∥2≤β1ϑ4e
βL + β2(M− 1)

[
ϑc1 + ϑ4e

βL
]
+ β3Mh+ β2

M∑
i=1

M∑
i̸=j,j=1

∥ yjII(t− δij) ∥2

≤a+ β2

M∑
i=1

M∑
j ̸=i,j=1

∥ yjII(t− δij) ∥2, t ∈ [0, L].

We still to estimate the sum

M∑
i=1

M∑
j ̸=i,j=1

∥ yjII(t − δij) ∥2 on [0, L] as follows. Setting δ1 =

min
i ̸=j;i,j=1,M

{δij}.

a) Case t ∈ [0, δ1] ⇒ t− δij ∈ [−δ, 0], we get

M∑
i=1

M∑
i ̸=j,j=1

∥ yjII(t− δij) ∥2≤ (M− 1)ϑc1, and

M∑
i=1

∥ yiII(t) ∥2 ≤ a+ β2(M− 1)ϑc1 := a+ b.

b) Case t ∈ [δ1, 2δ1], then t− δij belongs to either [−δ, 0] or [0, δ1], we get

M∑
i=1

∥ yiII(t) ∥2≤ a+ β2

[
(M− 1)ϑc1 + (M− 1)(a+ b)

]
:=
[
1 + β2(M− 1)

]
(a+ b).

c) Case t ∈ [0; (k + 1)δ1] ∩ [0, L]; kδ1 ≤ L, k = 0, 1, ..., we get

M∑
i=1

∥ yiII(t) ∥2≤
M∑
l=0

[
β2(M− 1)

]l
(a+ b).

Thus, for t ∈ [0, L], we have

M∑
i=1

∥ yiII(t) ∥2≤
[ L
δ1

]∑
l=0

[
β2(M− 1)

]l
(a+ b) := ϑ5(a+ b). (18)

Thus, we have

y(t)⊤Ry(t) ≤ ϑ2[

M∑
i=1

∥ yiI(t) ∥2 +

M∑
i=1

∥ yiII(t) ∥2] ≤ ϑ2[ϑ4e
βL + ϑ5(a+ b)] < c2,

which completes the proof.
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Remark 1 In theorem 1, we used singular value theory to analyze the singular system to slow and
fast subsystems and constructed appropriated Lyapunov-Krasovskii functionals to get an estimate
of the slow subsystem and perturbation approach to investigate the boundedness of solutions of the
fast subsystem. Although the parameter β > 0 is not a linear variable in conditions [26], however,
the parameter is not involved in LMI condition (8), then we first find the solutions of LMI (8)
satisfying (7), (9) and then check the condition (10). To solve the LMI (8), we can utilize Matlab
LMI Control Toolbox.

Remark 2 This paper considers linear singular LSNNs that contain interacted delay terms among
all subsystems. If the considered system becomes a regular system (E = I), the stability conditions
obtained in this paper can be reduced to the stability conditions for normal large-scale neural
networks [7, 10]. For the descriptor large-scale with delays, the stability conditions of Theorem
1 can be considered as an extension of the results of [22-24], where the neural structure is not
considered.

Remark 3 The robust finite-time stability conditions for singular LSNNs can be performed by the
following the procedure.

1. Give some fixed parameters c1, L, h and Ri, i = 1, 2, ...,M.

2. Provide an initial scalar c2.

3. Initiating from stable scalar β > 0, we kept raising c2 > 0 until we find a solution.

4. If the issue is infeasible, then the initial value c2 must be raised. Otherwise, c2 can be can be
reduced till it reaches its minimum.

Example 1 Consider system (1), where M = 3 and

A1 =

[
2 0
0 2.8

]
; A2 =

[
3.8 0
0 3

]
; A3 =

[
3 0
0 3.7

]
; B1 =

[
1 0
0.9 0.9

]
; B2 =

[
1 0.1
1 0.8

]
;

E1 = E2 = E3 =

[
1 0
0 1

]
; B3 =

[
1.9 1
0 0.5

]
; C12 =

[
0.1 0.5
0.5 0.7

]
;

C13 =

[
1.2 0.5
0.2 0.5

]
; C21 =

[
1.5 0
0.5 0.1

]
; C23 =

[
0.5 0.6
0.9 0.3

]
;

C31 =

[
0 0.1
0.8 0.6

]
;C32 =

[
1 0.5
0.3 0.7

]
; D1 =

[
0.11; 0.6

]
; D2 =

[
−0.5; 0.5

]
; D3 =

[
0.2; 0.6

]
;

U1 =

[
0.3 0
0 0.2

]
; U2 =

[
0.2 0
0 0.2

]
; U3 =

[
0.2 0
0 0.3

]
; V1 =

[
0.3 0
0 0.3

]
;

V2 =

[
0.4 0
0 0.4

]
; V3 =

[
0.4 0
0 0.3

]
; R1 =

[
0.3 0
0 0.3

]
; R2 =

[
0.25 0
0 0.25

]
;

R3 =

[
0.29 0
0 0.28

]
; δ = max{δij} = 0.5, δ1 = min{δij} = 0.1, h = 1.

Taking β = 0.01, c1 = 0.1, c2 = 11.1, L = 10, and with the help of Matlab LMI Control Toolbox,
the LMI (8) is feasible with solutions:

P1 =

[
5.1738 −1.3180

0 3.4260

]
; P2 =

[
5.1206 −0.0607

0 5.2557

]
; P3 =

[
4.5285 −0.6665

0 4.7688

]
;

X1 =

[
0.4784 −0.0375
−0.0715 0.2944

]
; X2 =

[
0.4629 −0.0842
−0.1451 0.5900

]
; X3 =

[
0.3452 0.1748
0.0554 0.2701

]
;

Y1 =

[
1.4426 −0.3841
−0.3841 1.4530

]
; Y2 =

[
3.3653 0 −0.0037
−0.0037 3.0247

]
; Y3 =

[
1.5029 −0.6926
−0.6926 2.5908

]
;
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Fig. 1 The time history of x⊤(t)Rx(t) for the system

0 1 2 3 4 5

0

1

2
x

11
(t)

x
12

(t)

x
21

(t)

x
22

(t)

x
31

(t)

x
32

(t)

Fig. 2 State responses of the subsystems

Q1 =

[
4.2403 −1.2844
−1.2844 3.3784

]
; Q2 =

[
7.7610 −0.0086
−0.0086 6.1456

]
; Q3 =

[
5.9546 −1.2119
−1.2119 5.9138

]
;

Z1 =

[
9.6444 0

0 6.1795

]
; Z2 =

[
11.7862 0

0 9.6367

]
; Z3 =

[
10.3435 0

0 11.0326

]
;

S1 =

[
0.9192 −0.4151
−0.4151 0.4621

]
; S2 =

[
0.3718 0.0135
0.0135 0.4370

]
; S3 =

[
0.3276 −0.2416
−0.2416 0.4874

]
;
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Figure 1 and Figure 2 describe the time history of x⊤Rx(t) and the solution response of the
system with the initial functions ϕ(t) = [ϕ1(k), ϕ2(k), ϕ3(k)], ϕ1(k) = [0.1 sin(t)et, 0.1], ϕ2(k) =
[0.05et, 0.05et], ϕ3(k) = [0.1et, 0.1], respectively.

4 Conclusions

The robust FTS for singular LSNNs with interconnected delays has been investigated in this paper.
Based on the singular value theory and Lyapunov function method combined with LMI technique,
new delay-dependent sufficient conditions for the robust FTS have been established via solving
tractable LMIs. The effectiveness and validity of the obtained results are illustrated y a numerical
example. The suggested technique can be extended to the situation of singular LSNNs, where the
delays of the system are time-varying.
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