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Abstract. In this paper, we study the weak Lefschetz property of an artinian monomial
algebra AG defined by the sum of the edge ideal of a simple graph G and the square of
the variables. We classify some important classes of graphs G where AG has or fails the
weak Lefschetz property, such as paths, cycles and several tadpole graphs.

1. Introduction

A graded algebra A satisfies the weak Lefschetz property (WLP) if there exists a linear
form ` such that the multiplication map ·` : Ai −→ Ai+1 has maximal rank for all
degree i, while A satisfies the strong Lefschetz property (SLP) if the multiplication map
·`j : Ai −→ Ai+j has maximal rank for all i and all j.

The Lefschetz properties of graded algebras have connections to several areas of math-
ematics. Due to this ubiquity, many classes of algebras have been studied with respect to
the WLP and the SLP. At first glance, checking the WLP or the SLP might seem to be a
simple problem of linear algebra. However, determining which graded algebras have the
WLP or the SLP is notoriously difficult, and a number of natural families of algebras still
simply remain uncharacterized. We refer the reader to [7] and [15] for an introduction to
the Lefschetz properties.

In this paper, we study the SLP and/or WLP of artinian monimial algebras associated
the edge ideals of graphs. More precisely, let G be a simple graph, i.e. G = (V,E) is a
pair where V is a set of elements called vertices, and E is a set of elements called edges
which are unordered pairs of vertices from V . Suppose that V = {1, 2, . . . , n} and let k
be a field and R = k[x1, . . . , xn]. The edge ideal of G is the ideal

IG = (xixj | {i, j} ∈ E) ⊂ R.

Then, we say that

AG =
R

(x21, . . . , x
2
n) + IG

is the artinian monomial algebra associated to G. We are interested the following problem.

Problem 1.1. Classify the simple graph G that AG has or fails the WLP or SLP.
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Note that AG is an artinian algebra generated by quadratic monomials. The WLP of
this algebra is also studied by Micha lek and Miró-Roig [12]; Migliore, Nagel and Schenck
[14]. In this paper, we will study the WLP for a larger class of these algebras.

2. Preliminaries

In this section we recall some standard terminology and notations from commutative
algebra and combinatorial commutative algebra, as well as some results needed later on.

2.1. The weak and strong Lefschetz properties. We consider standard graded alge-
bra A = ⊕i≥0[A]i = R/I, where R = k[x1, . . . , xn] is a polynomial ring over a field k with
all xi’s have degree 1 and I ⊂ R is an artinian homogeneous ideal. Let us define the weak
and strong Lefschetz properties for artinian algebras.

Definition 2.1. We say that A has the weak Lefschetz property (WLP) if there is a linear
form ` ∈ [A]1 such that, for all integers j, the multiplication map

·` : [A]j −→ [A]j+1

has maximal rank, i.e. it is injective or surjective. In this case the linear form ` is called
a Lefschetz element of A. If for the general form ` ∈ [A]1 and for an integer number j
the map ·` : [A]j −→ [A]j+1 does not have the maximal rank we will say that A fails the
WLP in degree j.
We say that A has the strong Lefschetz property (SLP) if there is a linear form ` ∈ [A]1
such that, for all integers j and s, the multiplication map

·`s : [A]j −→ [A]j+s

has maximal rank.

In the case of one variable, the WLP and SLP trivially hold since all ideals are principal.
The case of two variables there is a nice result in characteristic zero by Harima, Migliore,
Nagel and Watanabe [8, Proposition 4.4].

Proposition 2.2. Every artinian algebra A = k[x, y]/I, where k has characteristic zero,
has the SLP (and consequently also the WLP).

In a polynomial ring with more than two variables it is not true in general that every
artinian monomial algebra has the SLP or WLP. The most general result in this case
proved by Stanley in [16].

Theorem 2.3. Let R = k[x1, . . . , xn], where k is of characteristic zero. Let I be an
artinian monomial complete intersection, i.e. I = (xd11 , . . . , x

dn
n ). Then A = R/I has the

SLP.

By using the action of a torus on monomial algebras, Migliore, Miró-Roig and Nagel
proved the existence of the canonical Lefschetz element.

Proposition 2.4. [13, Proposition 2.2] Let I ⊂ R = k[x1, . . . , xn] be an artinian mono-
mial ideal. Then A = R/I has the WLP if and only if ` = x1 +x2 + · · ·+xn is a Lefschetz
element for A.
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A necessary condition for the WLP and SLP of an artinian algebra A is the unimodality
of the Hilbert series of A. To do it, we need some notations.

Definition 2.5. Let k be a filed and A = ⊕j≥0[A]j be a standard graded k-algebra. The
Hilbert series of A is the power series

∑
dimk[A]it

i and is denoted by HS(A, t). The
Hilbert function of A is the function hA : N −→ N defined by hA(j) = dimk[A]j.
If A is an artinian graded algebra, then [A]i = 0 for i� 0. We denote

D = max{i | [A]i 6= 0}.

The integer D is called the socle degree of A. In this case, the Hilbert series of A is a
polynomial

HS(A, t) = 1 + h1t+ · · ·+ hDt
D,

where hi = HA(i) = dimk[A]i > 0. By definition, the degree of the Hilbert series for an
artinian graded algebra A is equal to its socle degree D := max{i | [A]i 6= 0}. Since A is
artinian and non-zero, this number also agrees with the Castelnuovo-Mumford regularity
of A, so

reg(A) = D = deg(HS(A, t)).

Definition 2.6. A polynomial
∑n

k=0 akx
k with non-negative coefficients is called unimodal

if there is some m, such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an.

The mode of the unimodal polynomial
∑n

k=0 akx
k defined by

min{k | ak−1 < ak ≥ ak+1 ≥ · · · ≥ an}.

Proposition 2.7. [7, Proposition 3.2] If A has the WLP or SLP then the Hilbert series
of A is unimodal.

Finally, to study the failure of the WLP, the next lemma play a key role.

Lemma 2.8. [3, Lemma 7.8] Let A = A′⊗kA′′ be a tensor product of two graded artinian
k-algebras A′ and A′′. Let `′ ∈ A′ and `′′ ∈ A′′ be linear elements, and set ` = `′ + `′′ =
`′ ⊗ 1 + 1⊗ `′′ ∈ A. Then

(a) If the multiplication maps `′ : [A′]i −→ [A′]i+1 and `′′ : [A′′]j −→ [A′′]j+1 are both
not surjective, then the multiplication map

` : [A]i+j+1 −→ [A]i+j+2

is not surjective.
(b) If the multiplication maps `′ : [A′]i −→ [A′]i+1 and `′′ : [A′′]j −→ [A′′]j+1 are both

not injective, then the multiplication map

` : [A]i+j −→ [A]i+j+1

is not injective.
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2.2. Some definitions and results in graph theory. From now on, a graph is a simple
graph G = (V,E), with V is the set of vertices and E is the set of edges. We start by
recalling some basic definitions.

Definition 2.9. Let G = (V,E) be a graph. The disjoint union of the graphs G1, G2 is a
graph G = G1 ∪G2 having as vertex set the disjoint union of V (G1), V (G2), and as edge
set the disjoint union of E(G1), E(G2). In particular, ∪nG denotes the disjoint union of
n > 1 copies of the graph G.

Definition 2.10. Let G = (V,E) be a graph.

(i) A subset X of V is called an independent set of G if for any i, j ∈ X, {i, j} /∈ E,
i.e., the vertices in X are pairwise non-adjacent. An independent set X is called
maximal if for every vertices v ∈ V \X, X ∪ {v} is not an independent set of G.

(ii) The independence number of a graph G is the maximum cardinality of an inde-
pendent set in G. We denote this value as α(G).

(iii) A graph G is said to be well-covered if every maximal independent set of G has
the same size and equal to α(G).

Definition 2.11. The independence polynomial of a graph G is the polynomial whose
coefficient on xk is given by the number of independent sets of order k in G. We denote
this polynomial I(G; t). So,

I(G; t) =

α(G)∑
k=0

sk(G)tk,

where sk(G) is the number of independent sets of order k in G.

The independence polynomial of a graph was defined by I. Gutman and F. Harary in
[5] as a generalization of the matching polynomial of a graph. The following equalities are
very useful in calculating of the independence polynomial for various families of graphs
(see, for instance, [5, 9]).

Proposition 2.12. Let G1, G2, G be the graphs. Assume that G = (V,E), w ∈ V, e =
uv ∈ E. Then the following equalities hold:

(i) I(G; t) = I(G− w; t) + t.I(G−Nw(G); t);
(ii) I(G; t) = I(G− e; t)− t2.I(G−Nu(G) ∪Nv(G); t);

(iii) I(G1 ∪G2; t) = I(G1; t).I(G2; t);

3. Artinian monomial algebras associated to edge ideals of graphs

Let G = (V,E) be a graph, with V = {1, 2, . . . , n}. Let R = k[x1, . . . , xn] be the
standard polynomial ring over a field k. The edge ideal of G is the ideal

IG = (xixj | {i, j} ∈ E) ⊂ R.

Then, we say that

AG =
R

(x21, . . . , x
2
n) + IG

is the artinian monomial algebra associated to G. The algebra AG contains significant
combinatorial information about G. It is easy to check the following.
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Proposition 3.1. The Hilbert series of AG is equal to the independence polynomial of G,
i.e.

HS(AG; t) = I(G; t) =

α(G)∑
k=0

sk(G)tk.

As a consequence, reg(AG) = α(G) and AG is level if and only G is well-covered.

Therefore, the WLP/SLP of AG has strong consequences on the unimodality of the
independence polynomial of G. Indeed, if I(G; t) is not unimodal, then AG fails the
WLP by Proposition 2.7. Thus, to study the WLP/ SLP of AG, it is enough to consider
the graphs G such that their independence polynomial are unimodal. Concerning to the
unimodality of the independence polynomial of graphs, we have the following famous
conjecture.

Conjecture 3.2. [1] If G is a tree or forest, then the independence polynomial of G is
unimodal.

The largest class of graphs for which the independence polynomials are known to be
unimodal is the class of claw-free graphs [6]. However, Conjecture 3.2 is still very open.

Later, since a tree is a bipartite graph, Levit and Mandrescu [11] have gone further,
conjecturing that for any bipartite graph G, I(G; t) is unimodal. Unfortunately, a coun-
terexample gave by A. Bhattacharyya and J. Kahn [2].

Example 3.3. Given positive integers m and n > m, let G = (V,E) with V = V1∪V2∪V3,
where V1, V2, V3 are disjoint; |V1| = n−m and |V2| = |V3| = m; E consists of a complete
bipartite graph between V1 and V2 and a perfect matching between V2 and V3. Then G is
a bipartite graph and for every i ≥ 0, si(G) = (2i − 1)

(
m
i

)
+
(
n
i

)
. Therefore, for m ≥ 95

and n = bm log2(3)c. Then I(G; t) is not unimodal. As a consequence, these graphs do
not have the WLP.

The next examples are the simple graphs having the SLP.

Example 3.4.

(i) An empty graph is simply a graph with no edges. We denote the empty graph on
n vertices by En. Then

AEn = R/(x21, . . . , x
2
n).

A seminar result of Stanley say that AEn has the SLP, see Theorem 2.3.
(ii) A complete graph on n vertices, denoted Kn, is the graph where every vertex is

adjacent to every other vertex. It follows that

AKn = R/(x1, . . . , xn)2 and I(Kn; t) = 1 + nt.

It is easy to see that AKn has the SLP.

If G has a small number of vertices, the we have a simple result.

Proposition 3.5. Let G = (V,E) be a graph. If |V | ≤ 3, then AG has the SLP.
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Proof. Since all artinian algebras in the polynomial ring with one or two variables have
the SLP, it is enough to consider the case where |V | = 3. In this case, G is a empty
graph; or a complete graph; or a path and one isolated vertex. A simple computation
with Macaulay2 [4] shows that AG has the SLP. �

Since the above proposition, we only need to consider the graphs having at least 4
vertices. Now, a simple family of graphs is considered, namely stars. Recall that a star of
order n is a graph on n+ 1 vertices. This graph is formed by starting with a single vertex
and adjoining n leaves. We denote this graph Sn. Let ASn be the artinian monomial
algebra associated to a star Sn. Then ASn = R/I, where R = k[x0, x1, . . . , xn] and

I = (x20, x
2
1, . . . , x

2
n) + (x0x1, . . . , x0xn).

It is easy to see that the independence polynomial of Sn is I(Sn; t) = (1 + t)n + t.

Proposition 3.6. The algebra ASn has the WLP if and only if n = 1, 2. Moreover, if
n ≥ 3, then ASn fails the WLP in only one degree, namely it fails the injectivity from
degree 1 to degree 2.

Proof. Write ASn = R/I as above and ` = x0 + x1 + · · · + xn. Then the following exact
sequence

0 // R/(I : x0)(−1)
·x0 // R/I // R/(I, x0) // 0

deduces the the following commutative diagram

0 // [R/(I : x0)]j−1
·x0 //

·`
��

[R/I]j //

·`
��

[R/(I, x0)]j //

·`
��

0

0 // [R/(I : x0)]j
·x0 // [R/I]j+1

// [R/(I, x0)]j+1
// 0

,(3.1)

with rows are exact, for all integer j ≥ 1. Note that

(I, x0) = (x21, . . . , x
2
n, x0)

I : x0 = (x0, x1, . . . , xn).

It follows that R/(I, x0) ∼= S/J := k[x1, . . . , xn]/(x21, . . . , x
2
n) an artinian monomial com-

plete intersection, and hence it has the WLP by Theorem 2.3. Clearly, R/(I : x0) ∼= k. It
follows from (3.1) that the multiplication map

·` : [R/I]j −→ [R : I]j+1

has maximal rank for all j, except j = 1. In the later case, ·` : [R/I]1 −→ [R : I]2 is not
injective. Thus R/I fails the WLP in degree 1, as desired. �

We close this section by recall a recent result of J. Migliore, U. Nagel and H. Schenck.

Proposition 3.7. Let A be the artinian monomial algebra associated to G = ∪ri=1Kni
.

Assume n1 ≥ n2 ≥ · · · ≥ nr ≥ 1. Then A has the WLP if and only if one of the following
holds:

(1) n2 = · · · = nr = 1, i.e. G is the disjoint union of a complete graph Kn1 and an
empty graph of order r − 1.

(2) n3 = · · · = nr = 1 and r is odd.
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In particular for n ≥ 2, the disjoint of n complete graphs at least two vertices does not
have the WLP.

Proof. Note that

A =
r⊗
i=1

k[xi,1, . . . , xi,ni
]/(x2i,1, . . . , x

2
i,ni

).

The above proposition is a result in [14, Theorem 4.8]. �

4. WLP for artinian monomial algebras associated to paths and cycles

In this section, we study the WLP for artinian monomial algebras associated to two
common graphs, namely paths and cycles. From now on, we always denote by ` the sum
of variables in a polynomial ring where we are considering.

4.1. Path on n-vertices. Let Pn be a path on n vertices. Therefore, the artinian mono-
mial algebra associated to Pn is

APn = R/K,

where K = (x21, . . . , x
2
n) + (x1x2, x2x3, . . . , xn−1xn) ⊂ R = k[x1, . . . , xn]. We have the

following.

Proposition 4.1. The independence polynomial of Pn is

I(Pn; t) =

bn+1
2
c∑

i=0

(
n+ 1− i

i

)
ti.

Moreover, I(Pn; t) is unimodal, with the mode λn = d5n+2−
√
5n2+20n+24
10

e.

Proof. In [10], G. Hopkins and W. Staton showed that

I(Pn; t) = Fn+1(t),

where Fn(t), n ≥ 0, are the so-called Fibonacci polynomials, i.e., the polynomials defined
recursively by

F0(t) = 1;F1(t) = 1;Fn(t) = Fn−1(t) + tFn−2(t).

Based on this recurrence, one can deduce that

I(Pn; t) =

bn+1
2
c∑

i=0

(
n+ 1− i

i

)
ti.

The unimodality of the independence polynomial of Pn is implied from the fact that the
independence polynomial of a claw-free graph (i.e., it has no induced subgraph isomorphic
to K1,3) is unimodal [6]. A simple computation shows that the mode of I(Pn; t) is equal

to λn = d5n+2−
√
5n2+20n+24
10

e. �

Lemma 4.2. Let λn be the mode of Pn. For any n ≥ 2, one has

(i) λn+1 ≥ λn.
(ii) λn+3 − 1 ≤ λn ≤ λn+4 − 1.

(iii) λn+11 ≥ λn + 3.
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Proof. Set αn = 5n+2−
√
5n2+20n+24
10

. A straightforward computation shows that

αn+1 ≥ αn; αn+3 − 1 ≤ αn ≤ αn+4 − 1 and αn+11 ≥ αn + 3.

The lemma implies from the basic property of the ceiling functions. �

Lemma 4.3. Let A,A′ and A′′ be the artinian monomial algebras associated to Pn, Pn−1
and Pn−2, respectively. Then, for every integer i, one has the following commutative
diagrams

0 // [A′′]i−1 //

·`
��

[A]i //

·`
��

[A′]i //

·`
��

0

0 // [A′′]i // [A]i+1
// [A′]i+1

// 0

.

Proof. Assume A = R/K and let I = K + (xn) and J = (K : xn). Then A′ ∼= R/I and
A′′ ∼= R/J and we have the following exact sequence

0 // R/J(−1)
·xn // R/K // R/I // 0

that completes the proof of the above lemma. �

We now prove our main result.

Theorem 4.4. Let An be the artinian monomial algebra associated to a path Pn. Then
An has the WLP if and only if n ∈ {1, 2, . . . , 7, 9, 10, 13}.

Proof. By using Macaulay2 to compute the Hilbert series of An and An/`An with 1 ≤ n ≤
17, it easy to see that An has the WLP for each n ∈ {1, 2, . . . , 7, 9, 10, 13}. Furthermore,
for each n ∈ {8, 11, 14, 15, 17}, An only fails the surjectivity in one degree, this is the
multiplication map by ` from degree λn to degree λn + 1. However, for integer n ∈
{12, 16}, An only fails the injectivity in one degree, this is the multiplication map by `
from degree λn − 1 to degree λn.

It remains to show the following assertion.
Claim: The multiplication map ·` : [An]λn −→ [An]λn+1 is not surjective for all n ≥ 17.

We will prove the above claim by induction on n, having just shown the case n = 17.
For n ≥ 18, we consider the multiplication map ·` : [An]λn −→ [An]λn+1. To prove that
this map is not surjective, we consider the following two cases.
Case 1: λn = λn−1. It is clear that the above claim holds by Lemma 4.3.
Case 2: λn = λn−1 + 1. By Lemma 4.2, one has λn−1 = λn−2 = λn−3. In this case, we

must have n ≥ 20. Assume An = R/K and set I = K+ (xn−2) and J = (K : xn−2). Then
we have the following exact sequence

0 // R/J(−1)
·xn−2 // R/K // R/I // 0 ,
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whereR/J ∼= An−4⊗kk[xn]/(x2n) andR/I ∼= An−3⊗kA2, withA2 = k[xn−1, xn]/(xn−1, xn)2.
This exact sequence deduces the following diagram, with rows are exact

0 // [R/J ]λn−1 //

·`
��

[An]λn //

·`
��

[R/I]λn //

·`
��

0

0 // [R/J ]λn // [An]λn+1
// [R/I]λn+1

// 0

.

The claim will be proven if we show the multiplication map ·` : [R/I]λn −→ [R/I]λn+1 is
not surjective. By the inductive hypothesis, An−3 fails the surjectivity from degree λn− 1
to degree λn, as λn−3 = λn− 1. Clearly, the Hilbert function of A2 is (1, 2), and hence A2

fails the surjectivity from degree 0 to degree 1. Then by Lemma 2.8, R/I ∼= An−3 ⊗k A2

fails the surjectivity from degree λn to degree λn + 1, as desired. �

The above theorem shows that An fails the WLP due to the failure the surjectivity for
any n ≥ 17. The next result also prove that An fails the injectivity for some cases.

Proposition 4.5. Let An be the artinian monomial algebra associated to a path Pn and λn
is the mode of the independence polynomial of I(Pn; t). If n ≥ 12 such that λn = λn−1 +1,
then An fails the injectivity from degree λn − 1 to degree λn.

Proof. We prove the above proposition by induction on n ≥ 12. A computation with
Macaulay2 shows that the proposition holds for n ∈ {12, 16, 20}. Now consider n ≥ 21
such that λn = λn−1 + 1. Set

n1 = max{j | j < n and λj = λj−1 + 1}
n2 = max{j | j < n1 and λj = λj−1 + 1}
m = max{j | j < n2 and λj = λj−1 + 1}.

Then, by Lemma 4.2(iii), m ≥ n− 11. We have the following exact sequence

0 // Am ⊗k An−m−3(−1)
·xm+2 // An // Am+1 ⊗k An−m−2 // 0 .

By using this exact sequence, it suffices to show that

·` : [Am ⊗k An−m−3]λn−2 −→ [Am ⊗k An−m−3]λn−1
is not injective. By the inductive hypothesis, Am fails the injectivity from degree λm−1 to
λm. Observe that λm = λn− 3 and n−m− 3 ≤ 8. Hence, λn−m−3 ≤ 2 and consequently,
An−m−3 fails the injectivity from degree 2 to degree 3. By Lemma 2.8, Am ⊗k An−m−3
fails the injectivity from degree λn − 2 to λn − 1, as desired. �

4.2. Cycles on n-vertices. Let Cn be a path on n vertices (n ≥ 3). Therefore, the
artinian monomial algebra associated to Cn is

A = R/K,

where K = (x21, . . . , x
2
n) + (x1x2, x2x3, . . . , xn−1xn, xnx1) ⊂ R = k[x1, . . . , xn]. We have

the following.
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Proposition 4.6. The independence polynomial of Cn is

I(Cn; t) = I(Pn−1; t) + tI(Pn−3; t)

= 1 +

bn
2
c∑

i=1

n

i

(
n− i− 1

i− 1

)
ti.

Moreover, I(Cn; t) is unimodal, with the mode ρn = d5n−4−
√
5n2−4

10
e.

Proof. In [10], G. Hopkins and W. Staton showed that

I(Cn; t) = 1 +

bn
2
c∑

i=1

n

i

(
n− i− 1

i− 1

)
ti.

The unimodality of the independence polynomial of Cn is implied from the fact that
the independence polynomial of a claw-free graph is unimodal [6]. A simple computation

shows that the mode of I(Cn; t) is equal to ρn = d5n−4−
√
5n2−4

10
e. �

Lemma 4.7. For all n ≥ 5, there are inequalities λn−1 ≤ ρn ≤ λn−4 + 1 ≤ λn.

Proof. By Lemma 4.2, λn−4 + 1 ≤ λn, hence it suffices to show that

λn−1 ≤ ρn ≤ λn−4 + 1.

For the inequality on the left, we have to show that

5(n− 1) + 2−
√

5(n− 1)2 + 20(n− 1) + 24

10
≤ 5n− 4−

√
5n2 − 4

10

⇔ 5n− 3−
√

5n2 + 10n+ 9 ≤ 5n− 4−
√

5n2 − 4

⇔
√

5n2 − 4 + 1 ≤
√

5n2 + 10n+ 9

⇔ 5n2 − 3 + 2
√

5n2 − 4 ≤ 5n2 + 10n+ 9

⇔
√

5n2 − 4 ≤ 5n+ 6⇔ (5n+ 6)2 − (5n2 − 4) ≥ 0

⇔ 20n2 + 60n+ 40 ≥ 0,

which is clear.
For the inequality on the right, we have to show that

5n− 4−
√

5n2 − 4

10
≤

5(n− 4) + 2−
√

5(n− 4)2 + 20(n− 4) + 24

10
+ 1

⇔ 5n− 4−
√

5n2 − 4 ≤ 5n− 8−
√

5n2 − 20n+ 24

⇔
√

5n2 − 20n+ 24 + 4 ≤
√

5n2 − 4

⇔ 5n2 − 20n+ 24 + 16 + 8
√

5n2 − 20n+ 24 ≤ 5n2 − 4 (by squaring)

⇔ 8
√

5n2 − 20n+ 24 ≤ 20n− 44

⇔ 2
√

5n2 − 20n+ 24 ≤ 5n− 11

⇔ 4(5n2 − 20n+ 24) ≤ (5n− 11)2

⇔ 5n2 − 30n+ 25 ≥ 0⇔ 5(n− 1)(n− 5) ≥ 0
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which is true for all n ≥ 5. The proof is completed. �

One of the main results is the following.

Theorem 4.8. Let Bn be the artinian monomial algebra associated to a cycle Cn. Then
Bn has the WLP if and only if n ∈ {3, . . . , 11, 13, 14, 17}.

Proof. Recall that ρn is the mode of the independence polynomial of Cn. By using
Macaulay2 to compute the Hilbert series of Bn and Bn/`Bn with 3 ≤ n ≤ 20, we can
check that:

• Bn has the WLP for each 3 ≤ n ≤ 17 and n /∈ {12, 15, 16};
• for n ∈ {12, 15, 18, 19}, then Bn fails the surjectivity from degree ρn to degree
ρn + 1;
• for n ∈ {16, 20}, then Bn fails the injectivity from degree ρn − 1 to degree ρn.

Now assume that n ≥ 21. By Lemmas 4.7 and 4.2, λn−1 ≤ ρn ≤ λn−4 + 1 ≤ λn−1 + 1.
Recall that we will denote by An the artinian monomial algebra associated to Pn and by
λn the mode of the independence polynomial of Pn. Consider the following two cases.
Case 1: ρn = λn−1. In this case, we will show that Bn fails the WLP by the failure of the

surjectivity from degree ρn to degree ρn+1. Indeed, we write Bn = R/I. Let J = I+(xn)
and K = (I : xn). Then An−1 ∼= R/J and An−3 ∼= R/K and we have the following exact
sequence

0 // R/K(−1)
·xn // R/I // R/J // 0

that deduces a commutative diagram

0 // [An−3]ρn−1 //

·`
��

[Bn]ρn //

·`
��

[An−1]ρn //

·`
��

0

0 // [An−3]ρn // [Bn]ρn+1
// [An−1]ρn+1

// 0

.

The proof of Theorem 4.4 shows that the multiplication map

·` : [An−1]ρn −→ [An−1]ρn+1

is not surjective for any n ≥ 18.
Case 2: ρn = λn−1 + 1. In this case, Lemma 4.7 yields λn−1 = λn−4.

Denote y1 = xn−1, y2 = xn−2. We have the following diagram

[Bn]ρn
/(xn) //

·`

��

[An−1]λn−1+1

/(xn−3) //

·`

��

[
An−4 ⊗ k[y1,y2]

(y1,y2)2

]
λn−4+1

·`
��

[Bn]ρn+1
// [An−1]λn−1+2

//
[
An−4 ⊗ k[y1,y2]

(y1,y2)2

]
λn−4+2

By the proof of Theorem 4.4 and the fact that n − 4 ≥ 17, the map An−4
·`−→ An−4 fails

the surjectivity at degree λn−4. Since the map k[y1, y2]/(y1, y2)
2 ·(y1+y2)−−−−−→ k[y1, y2]/(y1, y2)

2

fails the surjectivity at degree 0, Lemma 2.8 yields that the third vertical map of the
diagram fails the surjectivity at degree λn−4 + 1.
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By the surjectivity of the horizontal maps in the diagram, we conclude that first vertical
map in the diagram fails the surjectivity at degree λn−4 + 1 = ρn. Hence Bn does not
have the WLP. This concludes the proof. �

5. WLP for artinian monomial algebras associated to tadpole graphs

An (m,n)-tadpole graph, also called a dragon graph, is the graph obtained by joining a
cycle graph Cm to a path graph Pn with a bridge. We denote this graph by Tm,n. Note
that Tm,n is a graph on m+n vertices and m+n edges. In the case where n = 1, T (m, 1)
is called an m-pan graph.

Figure 1. Tadpole graph T6,4

By Proposition 2.12, the independence polynomial of Tm,n is

I(Tm,n; t) = I(Pm−1; t)I(Pn; t) + tI(Pm−3; t)I(Pn−1; t)

= I(Cm; t)I(Pn−1; t) + tI(Pm−1; t)I(Pn−2; t)

=

bm
2
c+bn+1

2
c∑

i=0

si(Tm,n)ti.

Recall that ρn and λn be the mode of T (Cn; t) and I(Pn; t), respectively. By Lemmas 4.2
and 4.7, it implies immediately the following.

Lemma 5.1. If i ≥ min{λm−1 + λn + 1, ρm + λn−1 + 1}, then si(Tm,n) ≥ si+1(Tm,n) and
if i ≤ max{λm−1 + λn − 1, ρm + λn−1 − 1}, then si−1(Tm,n) ≤ si(Tm,n).

We now obtain the following.

Theorem 5.2. Let A be the artinian monomial algebra associated to a tadpole graph Tm,n.
Then A fails the WLP, provided when (m,n) is one of the following cases:

(i) m = 9, 12, 15, 16 or m ≥ 18 and n = 8, 11; 14, 15 or n ≥ 17.
(ii) m = 12, 15, 16, 18, 19 or m ≥ 21 and n = 9, 12; 15, 16 or n ≥ 18.

Proof. Assume that

A =
k[x1, . . . , xm, y1, . . . , yn]

(x21, . . . , x
2
m) + ICm + (y21, . . . , y

2
n) + IPn + (x1y1)

.

Recall that we denote by An and Bm the artinian monomial algebra associated to Pn and
Cm, respectively. The first item is deduced by the exact sequence

A(−1)
·x1 // A // Am−1 ⊗k An // 0 ,

12



Lemma 2.8, Theorem 4.4. The second item is deduced by the exact sequence

A(−1)
·y1 // A // Bm ⊗k An−1 // 0 ,

Lemma 2.8, Theorems 4.4 and 4.8. �

Next, we consider the (3, n)-tadpole graph T3,n. Clearly, T3,n is a claw-free graph.
Therefore, the independence polynomial of T3,n is unimodal [6]. By Proposition 2.12, we
have

I(T3,n; t) = I(Pn+2; t) + tI(Pn; t) = I(Cn+3; t).

It follows that the mode of I(T3,n; t) is equal to one of I(Cn+3; t), i.e.

ρn+3 =
⌈5(n+ 3)− 4−

√
5(n+ 3)2 − 4

10

⌉
.

Theorem 5.3. Let Dn be the artinian monomial algebra associated to a tadpole graph
T3,n, (n ≥ 1). Then Dn has the WLP if and only if n ∈ {1, . . . , 8, 10, 11, 14}.

Proof. The proof proceeds along the same lines as in the proof of Theorem 4.8 by replacing
Bn by Dn−3. �

We now consider the (n, 1)-tadpole graph Tn,1, i.e., the n-pan graph. We denote this
graph by Pann. To study the WLP of Pann, we need to consider a family of graphs formed
by adding an edge {1, n − 1} to the cycles Cn (n ≥ 4). We denote this graph by CEn.
Therefore, CEn is a claw-free graph, and hence the independence polynomial of CEn is
unimodal [6]. By Proposition 2.12, we have

I(CEn; t) =

α(CEn)∑
i=0

si(CEn)ti

= I(Pn−1; t) + tI(Pn−4; t)

=

bn
2
c∑

i=0

[(
n− i
i

)
+

(
n− i− 2

i− 1

)]
ti.

Then we have the following.

Lemma 5.4. Let χn is the mode of I(CEn; t) and λn be the mode of I(Pn; t). For any
n ≥ 4, one has λn−1 ≤ χn ≤ λn−4 + 1.

Proof. Let i ≤ λn−1. We need to show that

si−1(CEn) < si(CEn)⇐⇒
(
n− i+ 1

i− 1

)
+

(
n− i− 1

i− 2

)
<

(
n− i
i

)
+

(
n− i− 2

i− 1

)
.

13



Since i ≤ λn−1,
(
n−i+1
i−1

)
<
(
n−i
i

)
. It suffices to show that(

n− i− 1

i− 2

)
≤
(
n− i− 2

i− 1

)
⇔ n− i− 1

(n− 2i)(n− 2i+ 1)
≤ 1

i− 1

⇔ (n− i− 1)(i− 1) ≤ (n− 2i)(n− 2i+ 1)

⇔ 5i2 − (5n+ 2)i+ n2 + 2n− 1 ≥ 0

⇔ i ≤ 5n+ 2−
√

5n2 − 20n+ 24

10
or i ≥ 5n+ 2 +

√
5n2 − 20n+ 24

10
.

As i ≤ λn−1, it is enough to show that

5(n− 1) + 2−
√

5(n− 1)2 + 20(n− 1) + 24

10
≤ 5n+ 2−

√
5n2 − 20n+ 24

10
− 1

⇔ 5n− 3−
√

5n2 + 10n+ 9 ≤ 5n− 8−
√

5n2 − 20n+ 24

⇔ 5 +
√

5n2 − 20n+ 24 ≤
√

5n2 + 10n+ 9

⇔
√

5n2 − 20n+ 24 ≤ 3n− 4

⇔ n2 − n− 2 ≥ 0

⇔ (n+ 1)(n− 2) ≥ 0,

which is clear for any n ≥ 4. It follows that λn−1 ≤ χn. It remains to show that if
i ≥ λn−4 + 1, then

si(CEn) ≥ si+1(CEn)⇐⇒
(
n− i
i

)
+

(
n− i− 2

i− 1

)
≥
(
n− i− 1

i+ 1

)
+

(
n− i− 3

i

)
.

By Lemma 4.2 i ≥ λn−4 + 1 ≥ λn−1,
(
n−i
i

)
≥
(
n−i−1
i+1

)
. We have to show that(

n− i− 2

i− 1

)
≥
(
n− i− 3

i

)
⇔ n− i− 2

(n− 2i− 2)(n− 2i− 1)
≥ 1

i

⇔ i(n− i− 2) ≥ (n− 2i− 2)(n− 2i− 1)

⇔ 5i2 − (5n− 8)i+ n2 − 3n+ 2 ≤ 0

⇔ 5n− 8−
√

5n2 − 20n+ 24

10
≤ i ≤ 5n− 8 +

√
5n2 − 20n+ 24

10
Since i ≥ λn−4 + 1, it is enough to show that

5n− 8−
√

5n2 − 20n+ 24

10
≤

5(n− 4) + 2−
√

5(n− 4)2 + 20(n− 4) + 24

10
+ 1

⇔ 5n− 8−
√

5n2 − 20n+ 24

10
≤ 5n− 18 +

√
5n2 − 20n+ 24

10
+ 1,

which is clear. Thus χn ≤ λn−4 + 1. �

Theorem 5.5. With the above notations. Let A be the artinian monomial algebra asso-
ciated to CEn. Then A has the WLP if and only if n ∈ {4, . . . , 8, 10, 11, 14}.
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Proof. By using Macaulay2 to compute the Hilbert series of A and A/`A with 4 ≤ n ≤ 20,
we can check that:

• A has the WLP for each 4 ≤ n ≤ 14 and n /∈ {9, 12, 13};
• for n ∈ {9, 12, 15, 16, 18, 19}, then A fails the surjectivity from degree χn to degree
χn + 1;
• for n ∈ {9, 13, 17, 20}, then A fails the injectivity from degree χn−1 to degree χn.

Now assume that n ≥ 21. We will prove that A fails the surjectivity from degree χn to
degree χn+1. The proof is completely similar as in the proof of Theorem 4.8. Recall that
we will denote by An the artinian monomial algebra associated to Pn and by λn the mode
of the independence polynomial of Pn. By Lemmas 4.2 and 5.4, λn−1 ≤ χn ≤ λn−4 + 1 ≤
λn−1 + 1. We consider the following two cases.
Case 1: χn = λn−1. In this case, we will show that A fails the WLP by the failure of the
surjectivity from degree χn to degree χn + 1. It implies from the exact sequence

0 // An−4(−1)
·xn−1 // A // An−1 // 0 .

Case 2: χn = λn−1 + 1. In this case, Lemma 5.4 yields λn−1 = λn−4. As in the proof of
Theorem 4.8. Denote y1 = xn, y2 = xn−2, we have the following diagram

[A]χn

/(xn−1) // //

·`

��

[An−1]λn−1+1

/(xn−3) // //

·`

��

[
An−4 ⊗ k[y1,y2]

(y1,y2)2

]
λn−4+1

·`
��

// 0

[A]χn+1
// // [An−1]λn−1+2

// //
[
An−4 ⊗ k[y1,y2]

(y1,y2)2

]
λn−4+2

// 0

Since the third vertical map of the diagram fails the surjectivity at degree λn−4 + 1, we
conclude that first vertical map in the diagram fails the surjectivity at degree λn−4 + 1 =
χn, as desired. �

Now, we show the basic property of the mode of independence polynomial of Pann.

Lemma 5.6. The independence polynomial I(Pann; t) of n-pan graph is unimodal. Let
ζn, χn, ρn and λn be the mode of I(Pann; t), I(CEn; t), T (Cn; t) and I(Pn; t), respectively.
Then χn+1 ≤ ζn ≤ ρn + 1 ≤ λn + 1 ≤ χn+1 + 1.

Proof. By Proposition 2.12, we have

I(Pann; t) =

α(Pann)∑
i=0

si(Pann)ti

= I(Cn; t) + tI(Pn−1; t)

= I(Pn−1; t) + t
(
I(Pn−3; t) + I(Pn−1; t)

)
=

bn
2
c+1∑
i=0

[(
n− i
i

)
+

(
n− i− 1

i− 1

)
+

(
n− i+ 1

i− 1

)]
ti.
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Therefore, we have

si(Pann) =

(
n− i
i

)
+

(
n− i− 1

i− 1

)
+

(
n− i+ 1

i− 1

)
=

(
n− i+ 1

i

)
+

(
n− i− 1

i− 1

)
+

(
n− i
i− 2

)
= si(CEn+1) +

(
n− i
i− 2

)
.

Now for any i ≤ χn+1, hence si−1(CEn+1) < si(CEn+1). We have to show si−1(Pann) <
si(Pann). It suffices to show that(

n− i+ 1

i− 3

)
≤
(
n− i
i− 2

)
⇐⇒ n− i+ 1

(n− 2i+ 3)(n− 2i+ 4)
≤ 1

i− 2

⇐⇒ 5i2 − (5n+ 17)i+ n2 + 9n+ 14 ≥ 0

⇐⇒ i ≤ 5n+ 17−
√

5n2 − 10n+ 9

10
or i ≥ 5n+ 17 +

√
5n2 − 10n+ 9

10
.

By Lemma 5.4, i ≤ χn+1 ≤ λn−3 + 1, we need to show

5(n− 3) + 2−
√

5(n− 3)2 + 20(n− 3) + 24

10
+ 2 ≤ 5n+ 17−

√
5n2 − 10n+ 9

10

⇐⇒ 5n+ 7−
√

5n2 − 10n+ 9

10
≤ 5n+ 17−

√
5n2 − 10n+ 9

10
,

which is clear. Thus χn+1 ≤ ζn.
Now for any i ≥ ρn + 1. Since

I(Pann; t) =

α(Pann)∑
i=0

si(Pann)ti

= I(Cn; t) + tI(Pn−1; t),

we get si(Pann) = si(Cn) + si−1(Pn−1). Since i ≥ ρn + 1, we get i − 1 ≥ ρn ≥ λn−1. It
follows that si(Cn) ≥ si+1(Cn) and si−1(Pn−1) ≥ si(Pn−1). Thus si(Pann) ≥ si+1(Pann),
which implies ζn ≤ ρn + 1. The two last inequalities are clear. �

Now we show the following theorem.

Theorem 5.7. With the above notations. Let A be the artinian monomial algebra asso-
ciated to Pann (n ≥ 4). Then A has the WLP if and only if n ∈ {4, . . . , 10, 12, 13, 16}.

Proof. By using Macaulay2 to compute the Hilbert series of A and A/`A with 4 ≤ n ≤ 20,
we can check that:

• A has the WLP for each 4 ≤ n ≤ 16 and n /∈ {11, 14, 15};
• for n ∈ {11, 14, 17, 18, 20}, then A fails the surjectivity from degree ζn to degree
ζn + 1;
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• for n ∈ {15, 19}, then A fails the injectivity from degree ζn − 1 to degree ζn.

Now assume that n ≥ 21. Recall that we denote by An the artinian monomial algebra
associated to Pn and by λn the mode of the independence polynomial of Pn. By Lem-
mas 4.2 and 5.6, χn+1 ≤ ζn ≤ ρn + 1 ≤ λn + 1 ≤ χn+1 + 1. We consider the following two
cases.
Case 1: ζn = χn+1. In this case, A fails the surjectivity from degree ζn to degree ζn + 1
by using the exact sequence

0 // An−3(−2)
·x1xn+1 // A // ACEn+1

// 0

and Theorem 5.5, where ACEn+1 is the artinian monomial algebra associated to CEn+1.
Case 2: ζn = χn+1 + 1. In this case, Lemma 5.4 yields λn = ρn = ζn−1. Since λn−λn−3 ≤
1, we consider the following two subcases:
Subcase 1: λn = λn−3. As in the proof of Theorem 4.8, denote y1 = xn, y2 = xn−2, we
have the following diagram

[A]ζn
/(xn−1) // //

·`

��

[An]λn+1

/(xn−2) // //

·`

��

[
An−3 ⊗ k[y1,y2]

(y1,y2)2

]
λn−3+1

·`
��

// 0

[A]ζn+1
// // [An]λn+2

// //
[
An−3 ⊗ k[y1,y2]

(y1,y2)2

]
λn−3+2

// 0.

Since the third vertical map of the diagram fails the surjectivity at degree λn−3 + 1 = ζn,
we conclude that first vertical map in the diagram fails the surjectivity at degree ζn.
Subcase 2: λn = λn−3 + 1. Set

m = max{j | j ≤ n and λj = λj−1 + 1}.

Then n− 2 ≤ m ≤ n. Set

y =

{
xn−2 if m = n− 2

xn+1 if m = n− 1.

Then we have the following diagram

0 // [Am]ζn−2
·y //

��
·`
��

[A]ζn−1

·`
��

0 // [Am]ζn−1 ·y
// [A]ζn

Since ζn − 2 = λn − 1 = λm − 1, we have the first vertical map of the diagram fails the
injectivity at degree λm− 1 by Proposition 4.5. It follows that the second vertical map of
the diagram fails the injectivity at degree ζn − 1. To complete the proof of Theorem, we
consider the case where m = n. In this case, one has ρn = λn = λn−1 + 1. By Lemmas 4.2
and 4.7, λn−1 = λn−4 = λn−5 + 1. Hence λn−4 = ζn − 2. Now we consider the following
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diagram

0 // [An−4]ζn−3
·xn−4xn−2 //

��
·`
��

[A]ζn−1

·`
��

0 // [An−4]ζn−2 ·xn−4xn−2

// [A]ζn .

By Proposition 4.5, the first vertical map of the diagram fails the injectivity at degree
λn−4 − 1 = ζn − 3. It follows that the second vertical map of the diagram fails the
injectivity at degree ζn − 1. Thus we complete the proof of Theorem. �
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