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Discretized sum-product type problems: Energy variants and

Applications

Ali Mohammadi ∗ Quy Pham † Thang Pham ‡ Chun-Yen Shen§

Abstract

In this paper we establish non-trivial estimates for the additive discretized energy of

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ,

that depend on the non-concentration conditions of the sets. Our proofs introduce a number
of novel approaches which make use of a combination of methods from both continuous and
discrete settings including a pivoting argument, which has been used in the finite field setting
due to Murphy and Petridis, the recent Guth-Katz-Zahl’s method for the discretized sum-
product problem and a Dabrowski-Orponen-Villa point-tube incidence bound. As applications,
we obtain a number of improvements on the size of the δ-covering of sets A+cB and C(A+A).
Furthermore, for compact sets A,B ⊂ R, we also prove new explicit upper bounds on the
quantity dimH{c ∈ R : dimH(A + cB) ≤ α + ǫ}. Our approach leads to considerably shorter
proofs over the previous works due to Bourgain and Orponen.
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1 Introduction

Let δ, σ ∈ (0, 1). A set A ⊂ R is called δ-discretized if it is a union of closed intervals of length
δ. A δ-discretized set A is called a (δ, σ)-set if |A| ≈ δ1−σ and it satisfies the non-concentration
condition |A ∩ I| . |I|σ|A| for all intervals I. Roughly speaking, we can consider a (δ, σ)-set a
discrete analogue of a set of Hausdorff dimension σ.

Bourgain [4] proved that any (δ, σ)-set cannot be approximately closed under both addition and
multiplication. More precisely, if A ⊂ [1, 2] is a (δ, σ)-set, then there exists ǫ = ǫ(σ) > 0 such that

max {|A+A|, |A · A|} & δ−ǫ|A|. (1)

Here by |X|, we mean the Lebesgue measure of X. This result settles a conjecture of Katz and
Tao in [21] for σ = 1/2. The recent work of Guth, Katz, and Zahl [15] provides a new proof of (1)

with explicit exponent ǫ, namely, the estimate (1) holds for any 0 < ǫ < σ(1−σ)
4(7+3σ) .

Such results have found many applications in the literature on various topics in geometric measure
theory and related areas including Borel rings in real line, distance sets, orthogonal and radial
projections, Besicovitch and Furstenberg sets, and spectral gaps. We refer the reader to [2, 3, 4,
5, 6, 7, 10, 11, 12, 16, 21, 22, 24, 34, 35, 36] and references therein for more details. A number of
generalizations with applications in different settings can also be found in [1, 8, 17, 18, 19, 23, 37].

Following this trend, in this paper, we explore more deeper properties of discretized sum-product
type problems with an emphasis on energy variants and applications. Our work is motivated by
earlier results on the A + cB problem due to Bourgain in [4] and Orponen in [30, 29, 31]. Let
us first start with the following theorem of Bourgain in [4]. Recall that a set A ⊂ R is called
δ-separated if every two elements in A have distance greater than δ.

Theorem 1.1 (Bourgain, 2010). Given α ∈ (0, 1) and γ, η > 0, there exist ǫ0, ǫ > 0 such that
the following holds for all sufficiently small δ > 0.

Let ν be a probability measure on [0, 1] satisfying ν(B(x, r)) ≤ rγ for all x ∈ R and δ < r ≤ δǫ0 .
Let additionally A ⊂ [0, 1] be a δ-separated set with |A| = δ−α, which also satisfies the non-
concentration condition |A ∩B(x, r)| ≤ rη|A| for x ∈ R and δ ≤ r ≤ δǫ0 .

Then, there exists a point c ∈ spt(ν) such that

|A+ cA|δ ≥ δ−ǫ|A|.

Here | · |δ refers to the δ-covering number of A, namely the size of the smallest covering of A by
intervals of length δ.

In the above theorem, c ∈ spt(ν). To see the ABC version, i.e. assuming C is a δ-separated
set satisfying |C ∩ B(x, r)| ≤ rγ |C| for all x ∈ R and δ ≤ r ≤ δǫ0 , we choose the uniformly
distributed probability measure ν on the δ-neighbourhood of C such that ν(B(x, r)) . rγ , namely,

ν(X) = |X∩C(δ)|
|C|δ

. The theorem above tells us that there exists c ∈ spt(ν) such that

|A+ cA|δ ≥ δ−ǫ|A|.

This implies that there exists c ∈ C with |A + cA|δ ≥ δ−ǫ|A|. This can be explained as follows.
Assume cν is such an element in spt(ν) and c ∈ C is an element such that |c− cν | ≤ δ. We observe
that if C is a covering of A+ cA by δ-balls, then for each ball in C, adding two translations to the
left and to the right by δ, we would have a covering of A+ cνA. This gives the desired conclusion.

Orponen [30] recently obtained a stronger result that extends Bourgain’s result for different sets.

Theorem 1.2 (Orponen, 2021). Let 0 < β ≤ α < 1 and η > 0. Then, for every γ ∈ ((α−β)/(1−
β), 1], there exist ǫ, ǫ0, δ0 ∈ (0, 12 ], depending only on α, β, γ, η, such that the following holds. Let
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δ ∈ 2−N with δ ∈ (0, δ0], and let A,B ⊂ δZ ∩ [0, 1] satisfy the following hypotheses:

(A) |A| ≤ δ−α.

(B) |B| ≥ δ−β , and B satisfies the following Frostman (non-concentration) condition:

|B ∩B(x, r)| ≤ rη|B|, ∀x ∈ R, δ ≤ r ≤ δǫ0 .

Further, let ν be a Borel probability measure with spt(ν) ⊂ [12 , 1], satisfying the Frostman condition
ν(B(x, r)) ≤ rγ for x ∈ R and δ ≤ r ≤ δǫ0 . Then, there exists a point c ∈ spt(ν) such that

|A+ cB|δ ≥ δ−ǫ|A|.

Orponen also made the conjecture that the sharp lower bound for γ should be γ > α− β.

Conjecture 1.3. Let α, β, γ ∈ (0, 1) with α ≥ β and γ > α − β. Assume that A,B ⊂ [0, 1] and
C ⊂ [1/2, 1] are δ-separated sets with cardinalities |A| ≤ δ−α, |B| = δ−β , and |C| = δ−γ . Assume
moreover that |B ∩ B(x, r)| . rβ|B| and |C ∩ B(x, r)| . rγ |C| for all x ∈ R and r > 0. Then,
there exist ǫ = ǫ(α, β, γ) > 0 and a point c ∈ C such that |A+ cB|δ &α,β,γ δ−ǫ|A|.

This conjecture is made based on a number of examples in the discrete setting. Let A,B,C be
finite sets in R. It is well-known that one can use the Szemerédi-Trotter theorem [33] to show that
if |B||C| & |A| then there exists c ∈ C such that |A + cB| & |A|. For reader’s convenience, we
reproduce the argument here. For any c ∈ C, let Lc be the set of lines of the form x = r− cy with
r ∈ A + cB. Let L = ∪c∈CLc. Then it is clear that |L| ≤ |C|maxc∈C |A + cB|. We observe that
I(A×B,L) ≥ |A||B||C|. Thus, the Szemerédi-Trotter incidence theorem gives

|A||B||C| . |A|2/3|B|2/3|C|2/3 max
c∈C

|A+ cB|2/3,

which gives
max
c∈C

|A+ cB| & |A|1/2|B|1/2|C|1/2.

In other words, if one wishes to have |A + cB| & |A|1+ǫ for some ǫ > 0, then the condition
|B||C| & |A|1+2ǫ is needed. The following example, taken from [30], also tells us that this condition
is sharp. For n ∈ N, define

An =

{
1

n1/2
,

2

n1/2
, . . . , 1

}
, Bn =

{
1

n1/4
,

2

n1/4
, . . . , 1

}
= Cn.

We can check that for every ǫ > 0, there exists n ∈ N such that |An + CnBn| ≤ nǫ|A|. The same
happens in the finite field setting. We refer the reader to [32] for more discussions.

If we assume A and B are Ahlfors-David regular sets in [0, 1], then Conjecture 1.3 is known to be
true in [29]. In fact, in [29], Orponen proved a much stronger statement as follows. Let A,B ⊂ R

be closed sets, where A is α-regular and B is β-regular. Then

dimH

{
c ∈ R : dimH(A+ cB) < α+

β(1− α)

2− α

}
= 0. (2)

For general sets, in another paper [31], Orponen proved the following result.

Theorem 1.4 (Orponen, 2022). Let 0 < β ≤ α < 1 and σ > 0. Then there exists ǫ = ǫ(α, β, σ) >
0 such that if A,B ⊂ R are Borel sets with dimH(A) = α, dimH(B) = β, then

dimH{c ∈ R : dimH(A+ cB) ≤ α+ ǫ} ≤
α− β

1− β
+ σ.
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In particular,

dimH {c ∈ R : dimH(A+ cB) = α} ≤
α− β

1− β
.

To prove this theorem, the following upgraded version of Theorem 1.2 is crucial.

Theorem 1.5 (Orponen, 2022). Let 0 < β ≤ α < 1 and η > 0. Then, for every γ ∈ ((α −
β)/(1 − β), 1], there exist ǫ0, ǫ, δ0 ∈ (0, 1/2], depending only on α, β, γ, η, such that the following
holds. Let δ ∈ 2−N with δ ∈ (0, δ0], and let A,B ⊂ δZ ∩ [0, 1] satisfy the following hypothesis:

• |A| ≤ δ−α

• |B| ≥ δ−β , and B satisfies the following Frostman condition

|B ∩B(x, r)| ≤ rη |B|, ∀x ∈ R, δ ≤ r ≤ δǫ0.

Further, let ν be a Borel probability measure with spt(ν) ⊂ [0, 1], and satisfying the Frostman
condition ν(B(x, r)) ≤ rγ for all x ∈ R and 0 < r < δǫ0 . Then, there exists c ∈ spt(ν) such that
the following holds: if G ⊂ A×B is any subset with |G| ≥ δǫ|A||B|, then

|πc(G)|δ ≥ δ−ǫ|A|,

where πc(a, b) = a+ cb.

The main purpose of this paper is to study energy variants of these results. More precisely, let
δ ∈ 2−N, and A,B ⊂ δZ ∩ [0, 1] and C ⊂ [1/2, 1] be δ-separated. Suppose that

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|.

We aim to give a number of lower bounds onK depending on different non-concentration conditions
of the sets A, B, and C. As applications, we obtain a number of improvements on the δ-covering
problems and their Hausdorff dimensional versions.

Our first energy theorem is stated as follows.

Theorem 1.6 (First energy theorem). Let δ ∈ 2−N, and A,B ⊂ δZ ∩ [0, 1] and C ⊂ [1/2, 1] be
δ-separated. Suppose that

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|.

Let α, β, γ, η ∈ (0, 1) with α ≥ β. Assume that |A| = δ−α, |B| = δ−β , and |C| = δ−γ . There exist
ǫ, ǫ0, δ0 ∈ (0, 1/2] such that the following holds for δ ∈ (0, δ0]. If

|B ∩B(x, r)| . rη|B|, ∀x ∈ R, δ < r < δǫ0 ,

and
|C ∩B(x, r)| . rγ |C|, ∀x ∈ R, δ < r < δǫ0 ,

then K can be bounded from below by

K & min{δ−ǫ/34, δ−ǫ0β/2, δ−ǫ0γ/8}.

We now list several applications of this energy theorem. The first one is a robust version of
Theorem 1.1.
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Theorem 1.7. Let α, γ, η ∈ (0, 1). There exist ǫ, ǫ0, δ0 ∈ (0, 1/2] such that the following holds.
Let δ ∈ 2−N with δ ∈ (0, δ0], A ⊂ δZ ∩ [0, 1] with |A| = δ−α, and C ⊂ δZ ∩ [1/2, 1]. Assume that

|A ∩B(x, r)| . rη|A|, ∀x ∈ R, δ < r < δǫ0 ,

and
|C ∩B(x, r)| . rγ |C|, ∀x ∈ R, δ < r < δǫ0 .

Then, there exists c ∈ C such that the following holds: If G ⊂ A×A is any subset with |G| ≥ δǫ|A|2,
then

|πc(G)|δ ≥ δ−ǫ|A|,

where πc(G) = {a+ cb : (a, b) ∈ G}.

We note that Theorem 1.7 was first proved in Bourgain’s paper [4]. The higher dimensional
version was also studied by He in [18]. Compared to their approach, our proof of Theorem 1.7 is
much simpler, which is one of the novelties of this paper. As a consequence, overall, a short and
self-contained proof of the following theorem, originally from [4], is derived.

Theorem 1.8. Let A ⊂ R be a compact set with dimH(A) = α with 0 < α < 1, and σ > 0. Then
there exists ζ = ζ(α, σ) such that

dimH {c ∈ R : dimH(A+ cA) ≤ α+ ζ} ≤ σ.

In particular,
dimH {c ∈ R : dimH(A+ cA) = α} = 0.

Another application of Theorem 1.6 we have to mention here is the following discretized sum-
product type estimate on the set C(A+A).

Theorem 1.9. Given α ∈ (0, 1) and γ, η > 0, there exist ǫ0, ǫ > 0 such that the following holds
for all sufficiently small δ > 0. Let C ⊂ [1/2, 1] be a δ-separated set satisfying

|C ∩B(x, r)| . rγ|C|

for all δ ≤ r ≤ δǫ0 and x ∈ R. Let additionally A ⊂ [0, 1] be a δ-separated set with |A| = δ−α, which
also satisfies the non-concentration condition |A ∩B(x, r)| ≤ rη|A| for x ∈ R and δ ≤ r ≤ δǫ0 .

Then, we have
|C(A+A)|δ ≥ δ−ǫ|A|.

In the next two energy theorems, we focus on finding explicit lower bounds of K. This task is
important and crucial to prove versions of the dimensional estimate (2) for general sets A and B.

Our second energy theorem reads as follows.

Theorem 1.10 (Second energy theorem). Let δ ∈ 2−N, and A,B ⊂ δZ∩ [0, 1] and C ⊂ [1/2, 1] be
δ-separated. Suppose that

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|.

Let α, β, γ ∈ (0, 1) with α+ β > 1. Assume |A| = δ−α, |B| = δ−β , and |C| = δ−γ , and

|A ∩B(x, r)| ≤ Mrα|A|, |B ∩B(x, r)| ≤ Mrβ|B|, ∀ δ ≤ r ≤ 1, x ∈ R,

5



for some M > 1, then K can be bounded from below by

K & δ
α−3β−4γ+2γ(α+β)−α2+β2+2

2(3−α−β) .

Note that, in the statement of Theorem 1.10, taking α = β > 1/2 and γ > 1/2, then we have the
bound

K & δ
−γ(4−4α)+2−2α

2(3−2α) .

Compared to the first energy theorem, while we require δ ≤ r ≤ 1 instead of δ ≤ r ≤ δǫ0 for some
0 < ǫ0 < 1, no non-concentration condition on C is needed.

We now discuss some consequences of this new energy theorem. As above, we directly obtain
δ-covering results for the A+ cB and C(A+A) problems.

Theorem 1.11. Let A,B ⊂ δZ ∩ [0, 1] and C ⊂ [0, 1] with |A| ≤ δ−α, |B| ≥ δ−β , and |C| = δ−γ .
Suppose that α+ β > 1,

|A ∩B(x, r)| . rα|A|,

and
|B ∩B(x, r)| . rβ|B|,

for all δ ≤ r ≤ 1 and x ∈ R. Then there exists c ∈ C such that

|A+ cB|δ & δ
−6β−4γ−2α2+4α+2β2+2+2γ(α+β)

2(3−α−β) |A|.

Theorem 1.12. Let A ⊂ δZ ∩ [0, 1] and C ⊂ [1/2, 1] be δ-separated. Suppose |A| = δ−α and
|C| = δ−γ , with α, γ ∈ (1/2, 1). Assuming

|A ∩B(x, r)| ≤ Mrα|A|, ∀ δ ≤ r ≤ 1, x ∈ R,

for some M > 1, and sufficiently small δ > 0. Then there exists ε > 0 such that

|C(A+A)|δ ≥ δ−ε|A|,

where

ε =
2α+ 4γ − 4αγ − 2

6− 4α
.

We now move to the next theorem, which presents an explicit energy variant of Theorem 1.2.

Theorem 1.13 (Third energy theorem). Let A,B ⊂ δZ ∩ [0, 1] and C ⊂ [1/2, 1] be δ-separated.
Suppose that

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|.

Let α, β, γ ∈ (0, 1) with α ≥ β. Assume in addition that |A| ≤ δ−α, |B| = δ−β , |C| = δ−γ with
δ ∈ (0, δ0], and

|B ∩B(x, r)| . rη|B|, ∀x ∈ R, δ < r < δǫ0 ,

and
|C ∩B(x, r)| . rγ |C|, ∀x ∈ R, δ < r < δǫ0 ,
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for ǫ0, δ0 ∈ (0, 1/2) depending on α, β, γ, η. Then, for all ǫ > 0, K can be bounded from below by

K & | log δ|O(1)δO(ǫ)min{M0,M1,M2,M3,M4},

where
M0 = δ−

γ−β
4 , (18)

M1 = δ−
γ+2β+ǫ0η

4 , (22)

M2 = max

{
δ
−

3γ−8β+1−ǫ0(3−γ)
16m2+36m1 , δ

−
4γ−9β+1−ǫ0(3−η)

16m2+36m1

}
, (28, 29)

M3 = max

{
δ
−

4γ−10β−ǫ0(3−γ)
16m2+44m1 , δ

−
5γ−11β−ǫ0(2−η)

16m2+44m1 , δ
−

5γ−12β+η−ǫ0(2−γ)
16m2+44m1 , δ

−
6γ−13β+η−ǫ0(1−η)

16m2+44m1

}
, (30, 31, 32, 33)

M4 = max

{
δ
−

6γ−14β−ǫ0(3−γ)
20m2+54m1 , δ

−
7γ−16β+η−ǫ0(2−γ)

20m2+54m1 , δ
−

7γ−15β−ǫ0(2−η)
20m2+54m1 , δ

−
8γ−17β+η−ǫ0(1−η)

20m2+54m1

}
, (38, 39, 40, 41)

for positive constants m1,m2 ≥ 1 (given by the Balog-Szmerédi-Gower theorem 2.2 below).

Compared to the first two energy results, this theorem has more applications. In particular, the
next two applications are explicit versions of Theorem 1.5.

Theorem 1.14. Let α, β, η ∈ (0, 1), β ≤ α ≤ (21β+1)/22. Then, for every γ ∈ ((78α−66β)/6, 1],
there exist ǫ0, δ0 ∈ (0, 1/2], depending only on α, β, γ, η, such that the following holds. Let δ ∈ 2−N

with δ ∈ (0, δ0], and let A,B ⊂ [0, 1] be δ-separated sets satisfying

• |A| ≤ δ−α

• |B| ≥ δ−β , and B satisfies the following Frostman condition

|B ∩B(x, r)| ≤ rη |B|, ∀x ∈ R, δ ≤ r ≤ δǫ0 .

Further, let C be a δ-separated set in [1/2, 1] with |C ∩ B(x, r)| . rγ |C| for all x ∈ R and
0 < r < δǫ0 . Then, there exists c ∈ C such that the following holds for any ǫ satisfying

0 < ǫ < min

{
4γ − 74α + 65β + 1

444
,
6γ − 78α + 66β

468

}
.

If G ⊂ A×B is any subset with |G| ≥ δǫ|A||B|, then

|πc(G)|δ ≥ δ−ǫ|A|.

Theorem 1.15. Let α, β, η ∈ (0, 1), β ≤ α and α > (21β + 1)/22. Then, for every γ ∈ ((74α −
65β − 1)/4, 1], there exist ǫ0, δ0 ∈ (0, 1/2], depending only on α, β, γ, η, such that the following
holds. Let δ ∈ 2−N with δ ∈ (0, δ0], and let A,B ⊂ [0, 1] be δ-separated sets satisfying the following
hypotheses:

• |A| ≤ δ−α

• |B| ≥ δ−β , and B satisfies the following Frostman condition

|B ∩B(x, r)| ≤ rη |B|, ∀x ∈ R, δ ≤ r ≤ δǫ0 .

Further, let C be a δ-separated set in [1/2, 1] with |C ∩ B(x, r)| . rγ |C| for all x ∈ R and
0 < r < δǫ0 . Then, there exists c ∈ C such that the following holds for any ǫ satisfying

0 < ǫ < min

{
4γ − 74α + 65β + 1

444
,
6γ − 78α + 66β

468

}
.

7



If G ⊂ A×B is any subset with |G| ≥ δǫ|A||B|, then

|πc(G)|δ ≥ δ−ǫ|A|.

On the one hand, while Theorem 1.14 and Theorem 1.15 offer explicit exponents for ǫ, the ranges
for γ is worse than that of Theorem 1.5 when (α−β) → 0. There is one point we should emphasise
here, that if we want γ → 0 as (α−β) → 0 then we would need K ≥ δ−ǫ, for some ǫ > 0, whenever
γ > 0. Unfortunately, the statement of the third energy theorem says that γ is bounded from below
by a function in β. A quick explanation for this matter will be provided in the section “sketch of
main ideas”. On the other hand, since Theorem 1.5 was proved by using a number of reductions to
Theorem 1.2, which is long and sophisticated, one might think that the same framework holds for
the two theorems above. This is true, but the expilicit value of ǫ would be much smaller compared
to those presented above.

With these two theorems in hand, we now can adapt an argument from [31] to prove the Hausdorff
dimensional theorems for the A+ cB problem.

Theorem 1.16. Let 0 < β ≤ α < 1 with 22α ≤ 21β + 1. If A,B ⊂ R are compact sets with
dimH(A) = α, dimH(B) = β, then, for any

σ >
39(21β + 1− 22α)

699
,

we have

dimH {c ∈ R : dimH(A+ cB) < α+ x} ≤
78α− 66β

6
+ σ,

for any x smaller than
1

2
·min

{
2σ − 22α + 21β + 1

518
,

σ

182

}
.

Theorem 1.17. Let 0 < β ≤ α < 1 with 22α > 21β + 1. If A,B ⊂ R are compact sets with
dimH(A) = α, dimH(B) = β, then, for any

σ >
74(33α − 63

2 β − 3
2)

870
,

we have

dimH {c ∈ R : dimH(A+ cB) < α+ x} ≤
74α− 65β − 1

4
+ σ,

for any x smaller than

1

2
·min

{
3σ + 33α − 63β

2 − 3
2

546
,

σ

259

}
.

The last application is an explicit version of Theorem 1.9 on the problem C(A+A).

Theorem 1.18. Let A ⊂ δZ∩ [0, 1] and C ⊂ [1/2, 1] be δ-separated. Suppose |A| = δ−α, |C| = δ−γ

with γ ∈ (2α, 1), δ ∈ (0, δ0], and

|A ∩B(x, r)| . rη|A|, ∀x ∈ R, δ < r < δǫ0 ,

and
|C ∩B(x, r)| . rγ |C|, ∀x ∈ R, δ < r < δǫ0 ,

for ǫ0, δ0 ∈ (0, 1/2) depending on α, γ, η. Then for any

0 < ε < min

{
4γ − 9α + 1

148
,
6γ − 12α

156

}
,
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we have
|C(A+A)|δ ≥ δ−ε|A|.

Sketch of main ideas

In this section, we briefly discuss methods/techniques we use in this paper. We recall that the
main purpose is to find lower bounds of K in the following identity:

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|.

The first step, which is needed for all the three energy theorems, is to prove the existence of subsets
B′ ⊂ B, C ′ ⊂ C, points c∗ ∈ C, and 1

K ≤ ρ < 1 such that

|c∗B′ + cB′|δ . (ρK)4m2+6m1 |B′|, ∀c ∈ C ′,

|B′ ±B′|δ . (ρK)2m2+2m1 |B′|,

|B′| &
|B|

(ρK)m1
, |C ′| &

|C|ρ| log δ|−1

(ρK)4m1
.

To prove the first energy theorem, we need to check that B′ and C ′ satisfy the non-concentration
condition of Theorem 1.1. As a consequence, Theorem 1.1 gives us a lower bound for |B′ + cB′|δ
for all c ∈ (c∗)−1C. Combining with the upper bound, we get the desired lower bound for K.

To prove the second energy theorem, we introduce an approach of using the recent point-tube
incidence bound due to Dabrowski, Orponen, and Villa in [9]. More precisely, we observe that the
number of tuples (a1, a2, b1, b2, c) ∈ A2 ×B2 × C such that

|(a1 + cb1)− (a2 + cb2)| ≤ δ

is |A|3/2|B|3/2|C|K−1. For a fixed a2, the expression |(a1 − a2) − c(b2 − b1)| ≤ δ infers that the
point (b2, a1−a2) belongs to the δ-neighborhood of the line defined by y = c(x−b1). So the energy
estimate is reduced to a point-tube incidence bound.

To prove the third energy theorem, we use Lemma 2.5 in the next section to give a lower bound
for the set D = (B′ − b1) ∩ (b2 − b3)C

′, for some b1, b2, b3 ∈ B′. More precisely, we have

|D| &
|C|| log δ|−1

K4m1 |B|
.

Note that we will need |C| ≥ K4m1 |B| to guarantee that D is non-empty. The proof then proceeds
by establishing upper and lower bounds on sum sets of the form |d1D̃ + d2D̃ + · · · + d2D̃|δ, for
elements di ∈ C

′

−C
′

and the set D̃ is an appropriately large subset of D satisfying small sum set
condition. To prove an upper bound, we rely on the δ-covering variant of Plünnecke’s inequality,
Lemma 7.1, and the estimates of Theorem 3.1, making use of the fact that D ⊂ B− b1. To obtain
a lower bound, we follow the Guth-Katz-Zahl approach in [15] with suitable changes along the way
clarifying and quantifying many of the steps. One of the biggest challenges in this approach is to
optimize all parameters, roughly speaking, based on the definition of D, in the proof, if we have
to bound the d-covering of D, for some d ≥ δ, then there are two ways one can proceed: either
using the non-concentration condition on C or the non-concentration condition on B. Using the
condition from only one set might imply an empty range. Overall, at the end, we have at least
64 ranges for K. This requires much work to figure out the best range for our purposes. It is
very natural to ask if the argument presented in this paper can be improved to solve Conjecture
1.3 completely. At least to us, it is not possible when working with the set D. This can be seen
clearly from the fact that we need |C| ≥ K4m1 |B| to guarantee D 6= ∅. So the range γ > α − β

9



is not sufficient for this purpose. The reader should keep in mind that the lower bounds of K
only depend on the sets B and C, and are independent of the size or structural properties of A.
Therefore, this approach might be useful for other geometric and sum-product type questions.

2 Basic lemmas from Additive Combinatorics

The first lemma is obtained by using the Cauchy-Schwarz inequality and a dyadic pigeon-hole
argument.

Lemma 2.1 (Lemma 19, [26]). For a finite set T and a collection {Ts : s ∈ S} of subsets of T ,
i.e. Ts ⊂ T . Then (

∑

s∈S

|Ts|

)2

≤ |T |
∑

s,s′∈S

|Ts ∩ Ts′ |.

Further, if there exists δ > 0 such that

∑

s∈S

|Ts| ≥ δ|S||T |,

then there exists a subset P ⊆ S × S such that

1. |Ts ∩ Ts′ | ≥ δ2|T |/2 for all pairs (s, s′) in P .

2. |P | ≥ δ2|S|2/2.

The next result is known as the Balog-Szemerédi-Gowers theorem.

Theorem 2.2 (Theorem 6.10, [38]). Let k ≥ 1 be a parameter. Let A and B be bounded subsets
of Rn. If

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + b1)− (a2 + b2)| ≤ δ}| &
1

K
· |A|

3/2
δ |B|

3/2
δ ,

then there exist A′ ⊂ A, B′ ⊂ B, and constants m1,m2 ≥ 1 such that

|A′|δ & K−m1 |A|δ, |B
′|δ & K−m1 |B|δ,

and
|A′ +B′|δ . Km2 |A|

1/2
δ |B|

1/2
δ .

We remark that one can take m1 = 1 and m2 = 7 as in [39]. For a set X, we call a set X
′

a
δ-refinement of X if X

′

⊂ X, and |X
′

|δ ≥ |X|δ/2. We recall the following δ-covering version of
Plünnecke’s inequality.

Lemma 2.3 (Corollary 3.4, [15]). Let X,Y1, . . . , Yk be subsets of R. Suppose that |X + Yi|δ ≤
Ki|X|δ for each i = 1, . . . , k. Then there is a δ-refinement X

′

of X so that

|X
′

+ Y1 + Y2 + . . .+ Yk|δ .
(
Πk

i=1Ki

)
|X

′

|δ.

In particular,
|Y1 + Y2 + . . .+ Yk|δ .

(
Πk

i=1Ki

)
|X|δ .

As mentioned and proved in [15], we often need to replace the δ-covering of a set with a larger
scale. The lemma below also plays an important role for this purpose.

Lemma 2.4 (Lemma 2.1, [15]). Let X ⊂ [1, 2] be a δ-separated subset and suppose that |X| = δ−σ

for some 0 < σ < 1. Suppose that
|X +X|δ ≤ K|X|.

10



Then for every ǫ > 0, there is a subset X ′ ⊂ X with |X ′| & δǫ|X|, such that

|X ′ +X ′|t . δ−10ǫK|X ′|t,

for all δ < t < 1, with the implicit constants depending on σ and ǫ.

We recall a simple, but useful result proved in Theorem C of Bourgain’s paper [3].

Lemma 2.5. Let X,Y be finite subsets of an arbitrary ring and let M = maxy∈Y |X + yX|. Then
there exist elements x1, x2, x3 ∈ X such that

|(X − x1) ∩ (x2 − x3)Y | &
|Y ||X|

M
.

We also need Ruzsa’s triangle inequality for finite sets and its δ-covering variant from [15].

Lemma 2.6 (Ruzsa triangle inequality). Let G be an Abelian group and let X,Y,Z ⊂ G be finite
subsets. Then

|X − Z| ≤
|X − Y | · |Y − Z|

|Y |
,

and

|X + Z| ≤
|X + Y | · |Y + Z|

|Y |
.

Lemma 2.7 (Proposition 3.5, [15]). Let X,Y,Z be subsets of R. Then

|X − Z|δ .
|X − Y |δ · |Y − Z|δ

|Y |δ
, (3)

and

|X + Z|δ .
|X + Y |δ · |Y + Z|δ

|Y |δ
. (4)

3 A structural theorem: good subsets of B and C

The main theorem in this section is the following. Roughly speaking, it says that if we have the
energy equality

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|,

then one can find subsets B′ ⊂ B and C ′ ⊂ C such that the sets B′ +B′ and B′ + cB′ have small
δ-covering for all c ∈ C ′. This theorem can be viewed as the discretized version of [26, Proposition
4] due to Murphy and Petridis in the finite field setting.

Theorem 3.1. Let δ ∈ 2−N, and A,B ⊂ δZ ∩ [0, 1] and C ⊂ [1/2, 1] be δ-separated. Suppose that

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|.

There exist subsets B′ ⊂ B, C ′ ⊂ C, points c∗ ∈ C, and 1
K ≤ ρ < 1 such that

|c∗B′ + cB′|δ . (ρK)4m2+6m1 |B′|, ∀c ∈ C ′,

|B′ ±B′|δ . (ρK)2m2+2m1 |B′|,
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|B′| &
|B|

(ρK)m1
, |C ′| &

|C|ρ| log δ|−1

(ρK)4m1
.

Proof. For each c ∈ C, set

fδ(A,cB) := |{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ .

We are given
∑

c∈C

fδ(A, cB) &
(|A|δ |B|δ)

3/2|C|

K
. (5)

Observe that
fδ(A, cB) ≤ |A|2|B|, |A||B|2,

so that we have fδ(A, cB) ≤ |A|3/2|B|3/2. We now look at the equation (5). Without loss of
generality, we can assume that fδ(A, cB) & |A|3/2|B|3/2/K for all c ∈ C. By dyadic pigeonholing,
we can find an integer N ∈ N and a set C1 ⊂ C such that for all c ∈ C1, one has

fδ(A, cB) ∼ 2N
|A|3/2|B|3/2

K
=

|A|3/2|B|3/2

ρK
, where ρ = 2−N .

Notice that 1/K ≤ ρ ≤ 1 and the fact that 2N . K gives N . log(K). Thus,

|C1| & |C|ρ(logK)−1.

If K > δ−1, there is nothing to prove. So we may assume that K ≤ δ−1 which gives |C1| &
|C|ρ| log δ|−1.

For each c ∈ C1, by Theorem 2.2, we can find subsets Ac ⊂ A and Bc ⊂ B such that

|Ac| &
|A|

(ρK)m1
, |Bc| &

|B|

(ρK)m1
, |Ac + cBc|δ . (ρK)m2(|A|δ |B|δ)

1/2 (6)

for some positive constants m2 > m1. It is clear that we have |Ac ×Bc| & |A||B|
(ρK)2m1

, for all c ∈ C1.

Then Lemma 2.1 ensures that there exists a subset P ⊂ C1 × C1 such that

|(Ac ×Bc) ∩ (Ac′ ×Bc′)| &
|A||B|

(ρK)4m1
,

for all pairs (c, c′) ∈ P and |P | & |C1|2

(ρK)4m1
. This also yields that there exists c∗ ∈ C1 and C ′ ⊂ C1

such that |C ′| & |C|ρ| log δ|−1

(ρK)4m1
and

|(A′ ×B′) ∩ (Ac ×Bc)| &
|A||B|

(ρK)4m1
, (7)

for all c ∈ C ′, where we write A′ for Ac∗ and B′ for Bc∗.

For c ∈ C1, applying the triangle inequality for δ-covering (4) with X = Z = cB(c), Y = A(c), we
have

|B(c) +B(c)|δ ∼ |cB(c) + cB(c)|δ ≤
|A(c) + cB(c)|2δ

|A(c)|
. (ρK)2m2

|A||B|

|A(c)|
. (ρK)2m2+m1 |B|. (8)
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Similarly, for c ∈ C1, using the triangle inequality (3) with X = Z = cB(c), Y = −A(c), one obtains

|B(c) −B(c)|δ ∼ |cB(c) − cB(c)|δ ≤
|A(c) + cB(c)|2δ

|A(c)|
. (ρK)2m2

|A||B|

|A(c)|
. (ρK)2m2+m1 |B|.

Similarly, for all c ∈ C1, one can check that

|A(c) ±A(c)|δ .
|A(c) + cB(c)|2δ

|B(c)|
. (ρK)2m2+m1 |A|. (9)

In particular, these estimates imply

|A′ ±A′|δ . (ρK)2m2+m1 |A|, |B′ ±B′|δ . (ρK)2m2+m1 |B|. (10)

Now we turn to estimating |c∗B′ ± cB′|δ. Again, applying triangle inequalities for δ-covering from
Lemma 2.7 with suitable sets, one has

|c∗B′ ± cB′|δ ≤
|c∗B′ + c(Bc ∩B′)|δ|cB

′ + c(Bc ∩B′)|δ
|(Bc ∩B′)|δ

.
|c∗B′ + cBc|δ|B

′ +B′|δ
|(Bc ∩B′)|δ

.
|A′ + c∗B′|δ|A

c + cBc|δ |B
′ +B′|δ

|(Ac ∩A′)|δ |(Bc ∩B′)|δ

. (ρK)4m2+5m1 |B|,

where the last inequality follows from (7). This gives that

|B′ ± (c∗)−1cB′|δ . (ρK)4m2+5m1 |B|, ∀ c ∈ C ′, (11)

and |B′ ±B′|δ . (ρK)2m2+m1 |B|.

4 Proof of Theorem 1.6

Using Theorem 3.1, we know that there exist subsets B′ ⊂ B, C ′ ⊂ C, an element c∗ ∈ C, and
1
K ≤ ρ < 1 such that

|c∗B′ + cB′|δ . (ρK)4m2+6m1 |B′|, ∀c ∈ C ′,

|B′ ±B′|δ . (ρK)2m2+2m1 |B′|,

|B′| &
|B|

(ρK)m1
, |C ′| &

|C|ρ| log δ|−1

(ρK)4m1
.

To find a lower bound for K, we apply Theorem 1.1 with A := B′ and C := C ′.

We apply Theorem 1.1 with parameters β/2 and γ/2, namely, there exist ǫ, ǫ0 > 0 such that the
following holds. If

|B′ ∩B(x, r)| . rβ/2|B′|,

and
|C ′ ∩B(x, r)| . rγ/2|C ′|,

then there exists c ∈ C ′ such that |B′ + cB′| & δ−ǫ|B′|. Next, we check the non-concentration
conditions of B′ and C ′. We first have

|B′ ∩B(x, r)| ≤ rβ|B| ≤ rβK|B′|.
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IfK > δ−ǫ0β/2 orK > δ−ǫ0γ/8| log δ|−1/4, then we are done. Thus, we can assume that K ≪ δ−ǫ0β/2

and K ≪ δ−ǫ0γ/8| log δ|−1/5. This gives that

|B′ ∩B(x, r)| ≪ rβK|B′| ≤ rβ/2|B′|,

for δ ≤ r ≤ δǫ0 .

Similarly,
|C ′ ∩B(x, r)| ≪ rγ |C| ≤ rγ |C ′|K4| log δ| ≪ rγ/2|C ′|,

for δ ≤ r ≤ δǫ0 . Note that we used the fact that 1/K ≤ ρ ≤ 1.

Thus, as above, there exists c ∈ C ′ such that

|B′ + cB′|δ & δ−ǫ|B′|.

Notice that we may replace the set C ′ above by (c∗)−1C ′. On the other hand, we know from
Theorem 3.1 (recall we may take m2 = 7 and m1 = 1) that

|c∗B′ + cB′|δ . K34|B′|.

This means that K34 & δ−ǫ, which gives K & δ−ǫ/34. This completes the proof.

Remark 4.1. In the above proof, if we apply Theorem 1.2 to the set Ac+cBc from (6), then a better
lower bound for K might be obtained, but we would need the condition that γ > (α− β)/(1 − β).

5 Proof of Theorem 1.7 and Theorem 1.8

Let us recall the statement of Theorem 1.7.

Theorem 5.1. Let α, γ, η ∈ (0, 1). There exist ǫ, ǫ0, δ0 ∈ (0, 1/2] such that the following holds.
Let δ ∈ 2−N with δ ∈ (0, δ0], A ⊂ δZ ∩ [0, 1] with |A| = δ−α, and C ⊂ δZ ∩ [1/2, 1]. Assume that

|A ∩B(x, r)| . rη|A|, ∀x ∈ R, δ < r < δǫ0 ,

and
|C ∩B(x, r)| . rγ |C|, ∀x ∈ R, δ < r < δǫ0 .

Then, there exists c ∈ C such that the following holds: If G ⊂ A×A is any subset with |G| ≥ δǫ|A|2,
then

|πc(G)|δ ≥ δ−ǫ|A|,

where πc(G) = {a+ cb : (a, b) ∈ G}.

Proof. Let X be the set of c ∈ C such that the conclusion of the theorem fails, i.e. for each
c ∈ X, there exists Gc ⊂ A ×A with |Gc| ≥ δǫ|A|2 and |πc(G)|δ < δ−ǫ|A|. We want to show that
|X| < |C|.

For each c ∈ X, by the Cauchy-Schwarz inequality, the number of tuples (x, y, z, w) ∈ G2
c such

that |(x+ cy)− (z + cw)| ≤ δ is at least |Gc|2

δ−ǫ|A|
, which equals δ3ǫ|A|3. Summing over all c ∈ X and

using Theorem 1.6, one has

|X|δ3ǫ|A|3 ≤
|C||A|3

K
.

This infers

|X| ≤ δ−3ǫ |C|

K
.
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Thus, as long as Kδ3ǫ > 1, we are done.

We now apply Theorem 1.6 with parameters α, η, γ to obtain ǫ, ǫ0, and the conclusion that

K & min
{
δ−ǫ/34, δ−ǫ0α/2, δ−ǫ0γ/8

}
.

Choose ǫ0 = ǫ0 and

3ǫ < min

{
ǫ

34
,
ǫ0α

2
,
ǫ0γ

8

}
,

then the theorem follows.

We are now ready to prove Theorem 1.8. We learn this argument from Orponen in [31].

Proof of Theorem 1.8. Using Frostman’s lemma ([25, Theorem 8.8]), we can find probability mea-
sure µA supported on A such that

µA(B(x, r)) . rα,∀x ∈ R, r > 0.

Our goal now is to show that
dimH (E) ≤ σ, (12)

where E := {c ∈ R : dimH(A+ cA) ≤ α+ ζ} for some small ζ.

Without loss of generality, we may just assume c ∈ [12 , 1]. Since if the result holds for any A ⊂ R,
and c ∈ [1/2, 1], then we write R =

⋃
n∈ZCn ∪ {0}

⋃
n∈Z(−Cn) where Cn = [2n, 2n+1]. Our proof

below works equally well for each Cn and −Cn with all the constants uniformly in n since we
only need that the interval does not contain 0 to avoid degeneracy. When c = 0, the result holds
trivially. In other words we have dimH E ≤ σ when we restrict c ∈ Cn for every n and this gives
the result.

We will prove the result by contradiction. In other words, suppose the inequality (12) does not
hold, i.e.

dimH(E) > σ,

then we will derive a contradiction when ζ is small enough. We first find a probability measure ν
supported on E such that ν(B(x, r)) . rγ for all x ∈ R and r > 0, where γ > σ. We note that in
our argument we identify the measure ν with the maximal δ-separated subset C ⊂ spt(ν). Notice
that |C| ∼ δ−γ since ν(E) = 1, and |C ∩B(x, r)| . rγ |C| for all x ∈ R and r > 0.

Fix an element c ∈ E so that dimH(A + cA) < α + ζ. It follows that for a given number
δ0 := 2−j0 ∈ 2−N, there exists a family Ic, a countable number of disjoint dyadic intervals of length
ℓ(I) ≤ δ0, which covers A+ cA such that

∑

I∈Ic

ℓ(I)α+ζ ≤ 1. (13)

Consider the sets Tc := {π−1
c (I)}I∈Ic which cover A×A, so that

∫

E

∑

T∈Tc

(µA × µA)(T ) dν(c) = 1.

Let Ij
c := {I ∈ Ic : ℓ(I) = 2−j} for j ≥ j0 and write T j

c := {π−1
c (I)}

I∈Ij
c
. By the pigeonhole

principle, there exists j∗ ≥ j0 such that

∫

E

∑

T∈T j∗
c

(µA × µA)(T ) dν(c) & j∗−2.
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Let us also denote δ := 2−j∗ for this fixed index j∗. By the estimates above, we can find a subset
E′

δ ⊂ E of measure ν(E′
δ) & j∗−2 = log(1/δ)−2 such that for each c ∈ E′

δ, the sets T ∈ T j∗
c cover a

subset Gc ⊂ spt(µA × µA) of measure (µA × µA)(Gc) & log(1/δ)−2. Moreover, note that we have

|πc(Gc)|δ ≤ δ−α−ζ , c ∈ E′
δ, (14)

by (13). For the rest of the proof, we use f / g to denote f . log(1/δ)Cg for some absolute
constant C > 0, which may only depend on the Frostman constant of A. In particular, j∗−2 ' 1.

Now we need to construct Aδ from A so that we can apply Theorem 1.7 to get a lower bound. The
process of constructing these sets is to perform some averaging arguments so that we can pigeonhole
to extract the sets. Now for z ∈ R, let Iδ(z) ∈ Dδ be the unique dyadic interval of length δ with
z ∈ Iδ(z). Fix c ∈ C and given a dyadic number ρ ∈ 2−N, let A(ρ) := {z ∈ A : ρ ≤ µA(Iδ(z)) < 2ρ}
and write A as

A =
⋃

ρ∈2−N

A(ρ).

Since µA(Iδ(z)) . δα, we see that A(ρ) 6= ∅ implying ρ . δα. We also note that A(ρ) can be
expressed as the intersection of A with certain dyadic intervals A(ρ) ⊂ Dδ.

Let µA(ρ) be the restriction of µA to the intervals A(ρ). Then

∑

ρ1

∑

ρ2

∫

E′

δ

(µA(ρ1)× µA(ρ2))(Gc) ≈ 1,

so it follows from the pigeonhole principle that

∫

E′

δ

(µA(ρu)× µA(ρv))(Gc) ≈ 1

for some fixed choices ρu . δα and ρv . δα. By the pigeonhole principle again, we can find a
subset Eδ ⊂ E′

δ so that (µA(ρu)× µA(ρv))(Gc) ≈ 1 for all c ∈ Eδ. We now define

µ̄u := µA(ρu), µ̄v := µA(ρv),

so ‖µ̄u‖ ≈ 1. The measure µ̄u is supported on the closure of the intervals in A(ρu). Let

Au
δ := (δ · Z) ∩ (∪A(ρu)) .

Note that
ρu · |A

u
δ | ∼ ‖µ̄u‖ ≈ 1 =⇒ ρu ≈ |Au

δ |
−1.

Since ρu . δα, we have
|Au

δ | ≈ ρ−1
u ' δ−α. (15)

In fact one also has |Au
δ | ≤ δ−α−ζ if δ > 0 is sufficiently small. To see this, fix an arbitrary c ∈ Eδ.

Since (µ̄u × µ̄v)(Gc) ≈ 1, there exists b ∈ spt(µ̄v) such that

µ̄u(Gc(b)) ≈ 1, where Gc(b) = {z ∈ spt(µ̄v) : (z, b) ∈ Gc}.

Let Hc(b) := {I ∈ A(ρu) : Gc(b) ∩ I 6= ∅}, we have that µ̄u(I) ∼ ρu for all I ∈ Hc(b), and
µ̄u(∪Hc(b)) ≥ µ̄u(Gc(b)) ≈ 1. Moreover, we observe that |Gc(b)|δ . |πc(Gc)|δ, since πc(Gc) ⊃
Gc(b) + bc. Therefore, we obtain

|Au
δ | ≈ ρ−1

u / ρ−1
u · µ̄u(∪Hc(b)) . |Gc(b)|δ . |πc(Gc)|δ≤δ−α−ζ .
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Next, we also need to claim the non-concentration condition for Au
δ . For r ≥ δ, we note that every

point z′ ∈ Au
δ ∩ B(z, r) is contained in an interval Iz′(δ) ∈ A(ρu) with µA(Iz′(δ)) ≥ ρu. Since

Iz′(δ) ⊂ B(z, 2r), we thus have

|Au
δ ∩B(z, r)| ≤ ρ−1

u · µA(B(z, 2r)) . ρ−1
u · (2r)α / rα|Au

δ |.

We now choose a subset A′
δ ⊂ Aδ with |A′

δ| ∼ δ−α. This is possible since |Au
δ | ' δ−α means that

|Au
δ | & δ−α(log(1/δ))C for some positive constant C.

We now apply Theorem 1.7 for parameters α and η = α/2 to obtain ǫ, ǫ0, δ0 ∈ (0, 1/2].

We now claim that
|A′

δ ∩B(z, r)| . rα/2|A′
δ|.

To see this, first we have

|A′
δ ∩B(z, r)| ≤ ρ−1

u · µA(B(z, 2r)) . ρ−1
u · (2r)α / rα|Au

δ | . rαδ−ζ |A′
δ|.

For δ ≤ r ≤ δǫ0 , and sufficiently small δ and ζ, we have

|A′
δ ∩B(z, r)| . rα/2|A′

δ|.

Theorem 1.7 also tells us that |πc(Gc)|δ ≥ δ−ǫ|A′
δ| for some ǫ > 0. Therefore, if ζ > 0 in the

definition of E has been chosen small enough, then it contradicts the upper bound (14).

6 Proof of Theorem 1.10 and Theorem 1.11

To prove Theorem 1.10, we make use of the following point-tube incidence bound due to Dabrowski,
Orponen, and Villa in [9].

Theorem 6.1. Let 0 < n < d and M ≥ 1. Let V ⊂ A(d, n) be a δ-separated set of n-planes, and
let P ⊂ B(1) ⊂ R

d be a δ-separated (δ, t,M)-set with t > d− n, i.e.

|P ∩B(x, r)|δ ≤ Mrt|P |δ , ∀ r > 0, x ∈ R
d.

For r > 0, define Ir(P,V) = {(p, V ) ∈ P × V : p ∈ V (r)}. Then we have

|IMδ(P,V)| .M,d,ε,t |P | · |V|n/(d+n−t) · δn(t+1−d)(d−n)/(d+n−t) .

Here, the Grassmannian A(d, n) is equipped with the metric dA defined as follows. For V,W ∈
A(d, n), let V0, W0, and a ∈ V ⊥

0 , b ∈ W⊥
0 be unique subspaces and vectors such that

V = V0 + a, W = W0 + b.

The distance between V and W is defined by

dA(V,W ) = ||πV0 − πW0 ||op + |a− b|,

where || · ||op is the operator norm.

In the plane, a direct computation shows that the distance between two lines y = ax + b and
y = cx+ d is ∣∣∣∣

(a,−1)

|(a,−1)|
−

(c,−1)

|(c,−1)|

∣∣∣∣+
∣∣∣∣

b

|(a,−1)|
−

d

|(c,−1)|

∣∣∣∣ .

Proof of Theorem 1.10. The first part is identical with Theorem 1.6. For the second part, since
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A,B,C are δ-separated, the number of tuples (a1, a2, b1, b2, c) ∈ A2 ×B2 × C such that

|(a1 + cb1)− (a2 + cb2)| ≤ δ

is |A|3/2|B|3/2|C|K−1.

For a fixed a2, the expression |(a1 − a2)− c(b2 − b1)| ≤ δ infers that the point (b2, a1 − a2) belongs
to the δ-neighborhood of the line defined by y = c(x− b1). Let L be the set of such lines.

Since C and B are δ-separated, one can directly check using the above metric to get the set L is
c0δ separated for some absolute constant c0 > 0.

Set P = B × (A− a2). Since B and A are δ-separated and

|B ∩B(x, r)| ≤ Mrβ|B|,

and
|A ∩B(x, r)| ≤ Mrα|A|,

for all δ ≤ r ≤ 1. Therefore we have

|P ∩B(x, r)| ≤ M2rα+β|P |.

If α+ β > 1, then we can apply Theorem 6.1 to obtain

|IMδ(P,L) . |P ||L|
1

3−α−β δ
α+β−1
3−α−β = |A||B|(|B||C|)

1
3−α−β δ

α+β−1
3−α−β .

Summing over all a2 ∈ A, we obtain

|A|3/2|B|3/2|C|K−1 . |A|2|B|(|B||C|)
1

3−α−β δ
α+β−1
3−α−β .

This gives

K & δ
α−3β−4γ+2γ(α+β)−α2+β2+2

2(3−α−β) ,

concluding the proof.

Before proving Theorem 1.11, we first recall its statement. Its proof follows directly from Theorem
1.10 with the Cauchy-Schwarz inequality.

Theorem 6.2. Let A,B ⊂ δZ ∩ [0, 1] and C ⊂ [0, 1] with |A| ≤ δ−α, |B| ≥ δ−β , and |C| = δ−γ .
Suppose that α+ β > 1,

|A ∩B(x, r)| . rα|A|, and |B ∩B(x, r)| . rβ|B|,

for all δ ≤ r ≤ 1 and x ∈ R. Then there exists c ∈ C such that

|A+ cB|δ & δ
−6β−4γ−2α2+4α+2β2+2+2γ(α+β)

2(3−α−β) |A|.

Proof. We recall from Theorem 1.10 that

∑

c∈C

|{(a1, a2, b1, b2) ∈ A2 ×B2 : |(a1 + cb1)− (a2 + cb2)| ≤ δ}|δ =
1

K
· |A|

3/2
δ |B|

3/2
δ |C|,

where

K & δ
α−3β−4γ+2γ(α+β)−α2+β2+2

2(3−α−β) .
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Thus, there exists c ∈ C such that

|A+ cB|δ &
K|B|1/2

|A|1/2
|A| & δ

−6β−4γ−2α2+4α+2β2+2+2γ(α+β)
2(3−α−β) |A|.

This completes the proof of the theorem.

7 Proof of Theorem 1.13

Using Theorem 3.1, we know that there exist subsets B′ ⊂ B, C ′ ⊂ C, an element c∗ ∈ C, and
1
K ≤ ρ < 1 such that

|c∗B′ + cB′|δ . (ρK)4m2+6m1 |B′|, ∀c ∈ C ′,

|B′ ±B′|δ . (ρK)2m2+2m1 |B′|,

|B′| &
|B|

(ρK)m1
, |C ′| &

|C|ρ| log δ|−1

(ρK)4m1
.

Notice that it is not possible to expect that the set c∗B′ + cB′ is δ-separated for each c ∈ C ′.
This means that for each c, the size of c∗B′ + cB′ is not the same as its δ-covering. So to proceed
further, we start noting the following fact that

|B′ + cB′| ≤ |B′|2 , for all c ∈ C. (16)

We remark here that it is not possible to expect |B′ + cB′| ≤ |B′|2−ǫ for any ǫ > 0 when |C ′| is
much larger than |B′|. Indeed, if N is the number of tuples (c, b1, b2, b3, b4) ∈ C ′×B′×B′×B′×B′

such that b1 + cb2 = b4 + cb3, by the Cauchy-Schwarz inequality, one has N is at least |C ′||B′|2+ǫ.
We observe that the equation b1+ cb2 = b4+ cb3 is equivalent to b1− b4 = c(b2− b3). For a fixed b4,
the above identity gives an incidence between the line defined by y = c(x− b3) + b4 and the point
(b2, b1) ∈ B′ ×B′. So by the Szemerédi-Trotter theorem [33] and taking the sum over all b4 ∈ B′,
N is at most |B′|3|C ′|2/3 + |B′|2|C ′|, which is smaller than |B′|2+ǫ|C ′| whenever |C ′| ≥ |B′|3−3ǫ.
With the fact (16) in hand, we can apply Lemma 2.5 to find b1, b2, b3 ∈ B′ satisfying

∣∣(B′ − b1) ∩ (b2 − b3)C
′
∣∣ ≥ |C ′|

|B′|
&

|C|| log δ|−1

K4m1 |B|
. (17)

Define

D := (B′ − b1) ∩ (b2 − b3)C
′.

If K4m1 ≥ |C|
|B|| log δ| , i.e.

K ≥ δ−
γ−β
4 | log δ|1/4, (18)

then we are done. Otherwise, we can assume that |C| > K4m1 |B|| log δ|. This condition implies
that D is non-empty.

Let κ = ǫ0 ∈ (0, 1/2) be parameters that will be specified later. To proceed further, we need the
following two lemmas.

Lemma 7.1. Let d1 = c1 − c2 and d2 = c3 − c4 with ci ∈ C ′. Assume that |c1 − c2| ≤ |c3 − c4| and
|c3 − c4| > δκ = δǫ0 . Then, for any positive integer k ≥ 1,

(i) With the non-concentration on C, one has

|d1D + d2D + · · ·+ d2D︸ ︷︷ ︸
k terms

|δ .
|B|4k+4K(8m2+18m1)(k+1)| log δ|2k+2

|b2 − b3||C|2k+1
·max{|d1|, |d2|}δ

ǫ0(γ−1).
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(ii) With the non-concentration on B, one has

|d1D + d2D + · · ·+ d2D︸ ︷︷ ︸
k terms

|δ .
|B|4k+5K(8m2+18m1)(k+1)| log δ|2k+2

|C|2k+2
·max{|d1|, |d2|}δ

ǫ0(η−1).

Proof. First, observe that for k bounded, the set d1D+d2D + · · ·+ d2D︸ ︷︷ ︸
k terms

is contained in an interval

of length d, with d ∼ max{|d1|, |d2|}.

Let c∗ ∈ C as in Theorem 1.6, and let D′ be a δ-refinement of D. Then we have

|d1D + d2D + · · · + d2D|δ . |c∗D′|−1
d |c∗D′ + d1D + d2D + · · ·+ d2D|δ (19)

≤
|c∗D′ + c1D − c2D + c3D − c4D + · · ·+ c3D − c4D|δ

|c∗D′|d
.

Thus, the task is now to estimate two terms |c∗D′|d and |c∗D′ + c1D − c2D + c3D − c4D + · · · +
c3D − c4D|δ.

We will handle the second term first. By Theorem 1.6 and the fact that D′ ⊂ B′ − b1, one has

|c∗D′ + cD|δ ≤ |c∗B′ + cB′|δ ≤ (ρK)4m2+5m1 |B|.

Then we use Lemma 2.3 to bound the second term, namely, it is at most

K(4m2+5m1)(2k+2)|B|2k+2

|c∗D′|2k+1
δ

.
|B|4k+3| log δ|2k+1K(4m2+9m1)(2k+1)+4m2+5m1

|C|2k+1
, (20)

where the latter follows by |c∗D|δ ∼ |D|δ & |D| & |C|| log δ|−1

|B|K4m1
.

For the first term, there are two ways to bound it, which will give two different bounds. One way
is to use the non-concentration condition on C, and the other way is to use the non-concentration
condition on B.

(i) First approach: Non-concentration on C.

Recall that D′ ⊂ (b2 − b3)C
′ is a δ-refinement of D and |b2 − b3| ≥ δ by the δ-separated property

of B. In particular, this yields that

|D′|d ∼
∣∣(b2 − b3)

−1D
∣∣
d/(|b2−b3|)

,

where (b2 − b3)
−1D ⊂ C ′.

Let I be an arbitrary interval of length d/|b2 − b3|. From assumption, we know that d
|b2−b3|

≥ d >
δκ = δǫ0 . Thus, the non-concentration condition on the set C implies that

|C ∩ I| .
d

|b2 − b3|
|C|δǫ0(γ−1) ∼ d|b2 − b3|

−1|C|δǫ0(γ−1).

Since c∗ is greater than 1/2, using the above estimate and (17), we will have an estimate for |c∗D′|d,
namely

|c∗D′|d &
|D|

d|b2 − b3|−1|C|δǫ0(γ−1)
&

| log δ|−1|b2 − b3|

dδǫ0(γ−1)|B|K4m1
.
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Substituting this and (20) into (19), one has the upper bound

|d1D + d2D + · · · + d2D|δ .
|B|4(k+1)K(8m2+18m1)(k+1)| log δ|2k+2

|b2 − b3||C|2k+1
·max{|d1|, |d2|}δ

ǫ0(γ−1).

(ii) Second approach: Non-concentration on B

From hypothesis, we know that |c3−c4| ≥ δǫ0 . By a similar argument, using the non-concentration
assumption on B instead, we have

|c∗D′|d &
|D|

dδǫ0(η−1)|B|
&

|C|| log δ|−1

|B|2K4m1dδǫ0(η−1)
.

Putting this into (19), we obtain the bound

|B|4k+5K(8m2+18m1)(k+1)| log δ|2k+2

|C|2k+2
·max{|d1|, |d2|}δ

ǫ0(η−1).

We complete the proof of the lemma.

We remark that the above lemma is most effective when k = 1. For k > 1, we have the following
refinement.

Lemma 7.2. Let d1 = c1 − c2 and d2 = c3 − c4 with ci ∈ C ′. Assume that |c1 − c2| ≤ |c3 − c4| and
|c3 − c4| > δκ = δǫ0 . Then, for a bounded positive integer k ≥ 1 and for any ǫ > 0, there exists
D̃ ⊂ D with |D̃| ≥ δǫ|D|, such that the following holds.

(i) With the non-concentration on C, one has

|d1D̃ + d2D̃ + · · · + d2D̃︸ ︷︷ ︸
k terms

|δ

. δ−O(ǫ) |B|2k+6K(2m2+5m1)k+14m2+31m1 | log δ|k+3

|C|k+2|b2 − b3|
·max{|d1|, |d2|}δ

ǫ0(γ−1).

(ii) With the non-concentration on B, one has

|d1D̃ + d2D̃ + · · ·+ d2D̃︸ ︷︷ ︸
k terms

|δ

. δ−O(ǫ) |B|2k+7K(2m2+5m1)k+14m2+31m1 | log δ|k+3

|C|k+3
·max{|d1|, |d2|}δ

ǫ0(η−1).

Proof. As in the previous proof, we identify a δ-refinement D′ of D, which will be needed when
applying Lemma 2.3 later. Then we apply Lemma 2.4 to find a subset D̃ ⊂ D′ such that |D̃| ≥
δO(ǫ)|D| for any given ǫ > 0, so that

|D̃ + D̃|δ/d2 . δ−O(ǫ) |D +D|δ
|D|

|d2D̃|δ.

On the other hand, using Theorem 1.6 and (17), we have

|D +D|δ
|D|

.
K2m2+m1 |B|

|D|
=

K2m2+5m1 |B|2| log δ|

|C|
.
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Thus, when considering the sum of k terms, applying Lemma 2.3, we have

| d2D̃ + · · ·+ d2D̃︸ ︷︷ ︸
k terms

|δ . δ−O(ǫ)K
(2m2+5m1)(k−1)|B|2(k−1)| log δ|k−1

|C|k−1
· |d2D̃|δ.

Next, applying (20) from the proof of the previous lemma with k = 1, one obtains

|c∗D̃ + d1D + d2D|δ .
|B|7K16m2+32m1 | log δ|3

|C|3
.

Thus,

|c∗D̃ + d1D̃ + d2D̃ + · · · + d2D̃︸ ︷︷ ︸
k terms

|δ

.
|d2D̃ + d2D̃ + · · ·+ d2D̃|δ

|d2D̃|δ
·
|c∗D̃ + d1D̃ + d2D̃|δ

|d2D̃|δ
· |d2D̃|δ

. δ−O(ǫ) |B|7K16m2+32m1 | log δ|3

|C|3
·
K(2m2+5m1)(k−1)|B|2(k−1)| log δ|k−1

|C|k−1
.

This gives the bound

δ−O(ǫ) |B|2k+5K(2m2+5m1)k+14m2+27m1 | log δ|k+2

|C|k+2
. (21)

Now based on the same argument as in the previous proof, we use different non-concentration
conditions to bound the following estimate

|d1D̃ + d2D̃ + · · ·+ d2D̃︸ ︷︷ ︸
k terms

|δ . |c∗D̃|−1
δ |c∗D̃ + d1D̃ + d2D̃ + · · · + d2D̃︸ ︷︷ ︸

k terms

|δ.

(i) Non-concentration on C:

Using the non-concentration condition on C, one has the first term is bounded below by

|c∗D̃|d &
|D|

d|b2 − b3|−1|C|δǫ0(γ−1)
&

| log δ|−1|b2 − b3|

|B|K4m1dδǫ0(γ−1)
.

Combining with the estimate for the second term (21), we get

δ−O(ǫ) |B|2k+6K(2m2+5m1)k+14m2+31m1 | log δ|k+3

|C|k+2|b2 − b3|
·max{|d1|, |d2|}δ

ǫ0(γ−1).

(ii) Non-concentration on B:

In this case, the only difference is that

|c∗D̃|d &
|D|

dδǫ0(η−1)|B|
&

|C|| log δ|−1

|B|2K4m1dδǫ0(η−1)
.

This follows by the assumption on B. Therefore, we obtain the bound

δ−O(ǫ) |B|2k+7K(2m2+5m1)k+14m2+31m1 | log δ|k+3

|C|k+3
·max{|d1|, |d2|}δ

ǫ0(η−1).

This completes the proof of the lemma.
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We now consider the set

R := R(D̃) =

{
d1 − d2
d3 − d4

: di ∈ D̃, |d3 − d4| > δκ
}
.

Since R(D̃) ⊆ R(C
′

) and C
′

⊂ [1/2, 1], we have that R ⊂ [−δ−κ/2, δ−κ/2].

Lemma 7.3. Suppose D̃ is non-empty. We have either R is non-empty or

K & | log δ|O(1)δ−
γ−2β+κη

4 . (22)

Proof. To prove that R is non-empty, it is enough to show that there are at least two elements
d3, d4 ∈ D̃ such that |d3 − d4| > δκ = δǫ0 . Since the set D̃ is assumed to be non-empty, there
exists d3 ∈ D̃. If |D̃| & δǫ0η|B|, then the existence of d4 follows from the non-concentration of B.
Otherwise, from the lower bound on the size of D̃ in (17), we have

K4m1 &
|C|| log δ|−1

|B|2δǫ0η
.

From this, we will get the lower bound for K and complete the proof of the lemma.

Note that we also have 0, 1 ∈ R. Choose a positive integer m so that 2−m ∼ δ1−2κ|b2 − b3|. Define
s = 2−m.

The following result was proved in [15], and it turns out to be useful for our proofs.

Lemma 7.4. At least one of the following two things must happen.

(A): There exists a point r ∈ R ∩ [0, 1] with

max
{
dist(r/2, R), dist

(r + 1

2
, R
)}

≥ s.

(B): |R ∩ [0, 1]|s & s−1.

As in [15], we refer to the case (A) as the “gap” case, and (B) as the “dense” case. We proceed to
obtain lower bounds for K corresponding to each case (A) and (B).

7.1 Dense case

Suppose we are in the dense case (B), that is |R ∩ [0, 1]|s & s−1. By pigeonholing, we can select
points c1, c2, c3, c4 ∈ C

′

with |c3 − c4||b2 − b3| > δκ and |c1 − c2| ≤ |c3 − c4| so that

∣∣∣∣
{
(d1, ..., d4) ∈ D̃4 :

∣∣∣
d1 − d2
d3 − d4

−
c1 − c2
c3 − c4

∣∣∣ < δ1−2κ|b2 − b3|, |d3 − d4| > δκ
}∣∣∣∣ . |D̃|4δ1−2κ|b2 − b3|.

(23)
Here and below, we write d′1 − d′2 = (b2 − b3)(c1 − c2) and d′3 − d′4 = (b2 − b3)(c3 − c4).

Observe that |c3 − c4| > δκ = δǫ0 . Applying Lemma 7.2 with k = 1, the following quantity

∣∣(d′1 − d′2)D̃ + (d′3 − d′4)D̃
∣∣
δ|b2−b3|

=
∣∣∣(c1 − c2)D̃ + (c3 − c4)D̃

∣∣∣
δ

is bounded from above by

δ−O(ǫ) |B|8K16m2+36m1 | log δ|4

|C|3|b2 − b3|
· |c3 − c4|δ

ǫ0(γ−1) (24)
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if we use the non-concentration condition on C, and by

δ−O(ǫ) |B|9K16m2+36m1 | log δ|4

|C|4
· |c3 − c4|δ

ǫ0(η−1), (25)

if we use the non-concentration condition on B instead.

We will now establish a lower bound for
∣∣(d′1 − d′2)D̃ + (d′3 − d′4)D̃

∣∣
δ|b2−b3|

. Define Q ⊂ D̃4 to be

the set of quadruples obeying

(d′3 − d′4)d1 + (d′1 − d′2)d4 = (d′3 − d′4)d2 + (d′1 − d′2)d3 +O(δ|b2 − b3|). (26)

By the Cauchy-Schwarz inequality, one has
∣∣(d′1 − d′2)D̃+ (d′3 − d′4)D̃

∣∣
δ
& |D̃|4/|Q|. Thus our goal

is now to find an upper bound for |Q|. Note that equation (26) can be written as

d1 +
c1 − c2
c3 − c4

d4 = d2 +
c1 − c2
c3 − c4

d3 +O(δ|d′3 − d′4|
−1|b2 − b3|),

which implies that

∣∣∣∣
d1 − d2
d3 − d4

−
c1 − c2
c3 − c4

∣∣∣∣ . δ|d′3 − d′4|
−1|d3 − d4|

−1|b2 − b3|. (27)

At this step, we consider two separate cases:

(i): At least |Q|
2 quadruples (d1, ..., d4) ∈ Q satisfy |d3 − d4| > δκ. For each such quadruple, from

inequality (27) above, one has

∣∣∣∣
d1 − d2
d3 − d4

−
c1 − c2
c3 − c4

∣∣∣∣ . δ1−2κ|b2 − b3|.

Comparing with (23), we see that the number of such quadruples is . |D̃|4δ1−2κ|b2 − b3|. Thus if
at least half the quadruples (d1, ..., d4) ∈ Q satisfy |d3 − d4| > δκ, then

∣∣(c1 − c2)D̃ + (c3 − c4)D̃
∣∣
δ
&

|D̃|4

|Q|
& δ2κ−1|b2 − b3|

−1.

Combining with the upper bound in (24), we have

δ−O(ǫ) |B|8K16m2+36m1 | log δ|4

|b2 − b3||C|3
· |c3 − c4|δ

ǫ0(γ−1) &
δ2κ−1

|b2 − b3|
.

This infers that

K16m2+36m1 & | log δ|O(1)δO(ǫ) |C|3

δ1−2κ|c3 − c4|δǫ0(γ−1)|B|8
.

In other words, one obtains a lower bound for K, namely

K & | log δ|O(1)δO(ǫ)δ
−

3γ−8β+1−κ(3−γ)
16m2+36m1 . (28)

Here we use the fact that 1 > |c3 − c4| > δκ. Similarly, if we use the bound (25) in place of (24),
we have

K & | log δ|O(1)δO(ǫ)δ
−

4γ−9β+1−κ(3−η)
16m2+36m1 . (29)

(ii) More than half of the quadruples (d1, ..., d4) ∈ Q satisfy |d3 − d4| ≤ δκ. We will make use of
non-concentration assumptions on C and B again to estimate the upper bound for the number of
these quadruples. As a result, we will obtain the corresponding lower bounds for K.
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(a) Non-concentration on C: We begin by choosing elements d1, d4 ∈ D̃. Since D̃ ⊂ (b2 − b3)C,
according to the Frostman condition on C and the requirement that |d3 − d4| ≤ δκ, the number of
admissible d3 is at most

|D̃ ∩B(d4, δ
κ)| ≤

|C|δκ

|b2 − b3|
δǫ0(γ−1).

Here we used the fact that δκ

|b2−b3|
≥ δκ = δǫ0 .

Next, observe that from (27), d2 must lie in an interval of length at most δ|c3 − c4|
−1. Notice that

since ǫ0 + κ < 1, we must have

δ

|c3 − c4||b2 − b3|
=

δ

|d′3 − d′4|
< δ1−κ < δǫ0 .

The Frostman condition on C yields that the number of admissible d2 is bounded by

δγ |C||c3 − c4|
−γ |b2 − b3|

−γ = |d′3 − d′4|
−γ . δ−κγ .

Thus the set of quadruples of this type has size at most |D̃|2|C|δκδǫ0(γ−1)

|b2−b3|δκγ
. From (17), one has

|(c1 − c2)D̃ + (c3 − c4)D̃|δ &
|D̃|4

|Q|
&

|D̃|2|b2 − b3|

|C|δκ+ǫ0(γ−1)δ−κγ
& δO(ǫ) |C|| log δ|−2|b2 − b3|

K8m1 |B|2
.

Altogether, the lower and the upper bounds from (24) imply that

K16m2+44m1 & | log δ|O(1)δO(ǫ) |C|4

|B|10
|b2 − b3|

2

|c3 − c4|δǫ0(γ−1)
.

Using the fact that |b2 − b3||c3 − c4| > δκ, one gets

K & | log δ|O(1)δO(ǫ)δ
− 4γ−10β−κ(3−γ)

16m2+44m1 . (30)

On the other hand, if we use (25) instead of (24), we have

K & | log δ|O(1)δO(ǫ)δ
−

5γ−11β−κ(2−η)
16m2+44m1 . (31)

(b) Non-concentration on B:
Similarly, for given elements d4 ∈ D̃, the Frostman condition on B implies that the number of
admissible d3 is at most |B|δκη.
Next, observe that from inequality (27), we must have d2 lie in an interval of length at most
δ|c3−c4|

−1, for any fixed d1 ∈ D̃. Because ǫ0+κ < 1, one has δ|c3−c4|
−1 < δ1−κ < δǫ0 . Hence the

number of admissible d2 is at most δη |B||c3− c4|
−η, where we make use of the Frostman condition

on B.
Altogether, the set of quadruples of this type has size at most |D̃|2|B|2δκη+η

|c3−c4|η
, which implies

|(c1 − c2)D̃ + (c3 − c4)D̃|δ &
|D̃|4

|Q|
&

|D̃|2|c3 − c4|
η

|B|2δκη+η
& δO(ǫ) |C|2| log δ|−2

|B|4K8m1δη
.

Then combining this estimate with the upper bound (24), one has

K & | log δ|O(1)δO(ǫ)δ
− 5γ−12β+η−κ(2−γ)

16m2+44m1 . (32)
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Using inequality (25) instead, one has

K & | log δ|O(1)δO(ǫ)δ
−

6γ−13β+η−κ(1−η)
16m2+44m1 . (33)

7.2 Gap case

In this section, we will suppose that we are in the gap case (A). This means that there exists
r ∈ R ∩ [0, 1] so that either

(A.1) r/2 is at least s-separated from R or

(A.2) r+1
2 is at least s-separated from R, where s ∼ δ1−2κ|b2 − b3|.

Notice that it follows from the definition of D̃ that r = c1−c2
c3−c4

for some c1, c2, c3, c4 ∈ C ′ with
|c3 − c4| ≥ |c1 − c2| and |c3 − c4| ≥ δκ = δǫ0 .

In Case (A.1), we write r/2 = e1/e2 with e1 = x1 and e2 = x2 + x2, where x1, x2 ∈ C ′ − C ′.

In Case (A.2), we write r+1
2 as e1/e2 with e1 = x1 + x2, e2 = x2 + x2, where x1, x2 ∈ C ′ −C ′.

The first task in this section is to find a lower bound on |e1D̃+ e2D̃|δ. One needs to keep in mind
that |e2| ∼ |c3 − c4|.

Define Q ⊂ D̃4 to be the set of quadruples obeying

e2d1 + e1d4 = e2d2 + e1d3 +O(δ). (34)

As in the dense case, we only need to find an upper bound for |Q|. Since by the Cauchy-Schwarz

inequality, one has |e1D̃ + e2D̃|δ &
|D̃|
|Q| .

Dividing equation (34) by e2 gives

∣∣∣∣
d1 − d2
d3 − d4

−
e1
e2

∣∣∣∣ . δ|e2|
−1|d3 − d4|

−1. (35)

Assume that there exists a quadruple (d1, ..., d4) ∈ Q such that |d3 − d4| ≥ δκ. In other words, we
have d1−d2

d3−d4
∈ R. Then using the fact that |b2 − b3||e2| & δκ, equation (35) implies

∣∣∣∣
d1 − d2
d3 − d4

−
e1
e2

∣∣∣∣ . δ1−2κ|b2 − b3|.

Since we are in the gap case, r = e1/e2 is at least s ∼ δ1−2κ|b2 − b3| separated from R, which is a
contradiction. It turns out that every quadruple in Q satisfies |d3 − d4| ≤ δκ.

As in the dense case, by using the non-concentration assumptions on C and B, respectively, we
obtain the following bounds.

(i) Non-concentration on C:

|e1D̃ + e2D̃|δ & δO(ǫ) |C|| log δ|−2|b2 − b3|

K8m1 |B|2
. (36)

(ii) Non-concentration on B:

|e1D̃ + e2D̃|δ & δO(ǫ) |C|2| log δ|−2

|B|4K8m1 |B|2δη
. (37)

26



In the next step, we apply Lemma 7.2 to get upper bounds on |e1D̃+ e2D̃|δ. Then all possibilities
for bounds of K will be examined.

(a) First upper bound

Recall that |e1D̃+ e2D̃|δ . |x1D̃+x2D̃+x2D̃+x2D̃|δ. Applying Lemma 7.2 (i) with k = 3,
one has

|x1D̃ + x2D̃ + x2D̃ + x2D̃|δ . δ−O(ǫ) ·
|B|12K20m2+46m1 | log δ|6|e2|δ

ǫ0(γ−1)

|b2 − b3||C|5
.

Then one can combine with the lower bound (36) to get

K & | log δ|O(1)δO(ǫ)δ
− 6γ−14β−κ(3−γ)

20m2+54m1 . (38)

Similarly, replacing (36) with the lower bound (37), one obtains

K & | log δ|O(1)δO(ǫ)δ
−

7γ−16β+η−κ(2−γ)
20m2+54m1 . (39)

(b) Second upper bound

Applying Lemma 7.2(ii) with k = 3, one has

|x1D̃ + x2D̃ + x2D̃ + x2D̃|δ . δ−O(ǫ) ·
|B|13K20m2+46m1 | log δ|6|e2|δ

κ(η−1)

|C|6
.

Incorporating with the lower bounds (36) and (37), we have

K & | log δ|O(1)δO(ǫ)δ
− 7γ−15β−κ(2−η)

20m2+54m1 , (40)

and

K & | log δ|O(1)δO(ǫ)δ
− 8γ−17β+η−κ(1−η)

20m2+54m1 . (41)

7.3 Concluding the proof

Let us summarize the lower bounds for K here:

• (28) K & | log δ|O(1)δO(ǫ)δ
−

3γ−8β+1−κ(3−γ)
16m2+36m1 ,

• (29) K & | log δ|O(1)δO(ǫ)δ
−

4γ−9β+1−κ(3−η)
16m2+36m1 ,

• (30) K & | log δ|O(1)δO(ǫ)δ
− 4γ−10β−κ(3−γ)

16m2+44m1 ,

• (31) K & | log δ|O(1)δO(ǫ)δ
− 5γ−11β−κ(2−η)

16m2+44m1 ,

• (32) K & | log δ|O(1)δO(ǫ)δ
−

5γ−12β+η−κ(2−γ)
16m2+44m1 ,

• (33) K & | log δ|O(1)δO(ǫ)δ
−

6γ−13β+η−κ(1−η)
16m2+44m1 ,

• (38) K & | log δ|O(1)δO(ǫ)δ
−

6γ−14β−κ(3−γ)
20m2+54m1 ,

• (39) K & | log δ|O(1)δO(ǫ)δ
−

7γ−16β+η−κ(2−γ)
20m2+54m1 ,

• (40) K & | log δ|O(1)δO(ǫ)δ
− 7γ−15β−κ(2−η)

20m2+54m1 ,

• (41) K & | log δ|O(1)δO(ǫ)δ
− 8γ−17β+η−κ(1−η)

20m2+54m1 .
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where κ can be chosen arbitrarily in (0, 1/2).

Now we put M0 = δ−
γ−β
4 and M1 = δ−

γ+2β+κη
4 , which are given by (18) and (22), respectively.

Then define

M2 = max
{
(28), (29)

}
,

M3 = max
{
(30), (31), (32), (33)

}
,

M4 = max
{
(38), (39), (40), (41)

}
.

Following the proof, one can see that K can be bounded from below by

K & | log δ|O(1)δO(ǫ)min{M0,M1,M2,M3,M4}.

We complete the proof of Theorem 1.13.

8 Proof of Theorems 1.14, 1.15, 1.16, and 1.17

By the Cauchy-Schwarz inequality and Theorem 1.13, it can be seen easily that there exists c ∈ C
such that

|A+ cB|δ &
K|B|1/2

|A|1/2
|A|.

Therefore, to show |A+ cB|δ ≥ δ−ǫ′ |A| for some ǫ′ > 0, we need

K|B|1/2

|A|1/2
& δ−ǫ′ . (42)

On the other hand, from Theorem 1.13, we have

K & | log δ|O(1)δO(ǫ)min{M0,M1,M2,M3,M4}.

We now compute the ranges of γ corresponding to the above cases such that (42) holds, namely,

• (18) γ > 2α− β.

• (22) γ > 2α− 4β − κη.

• (28) γ > 74α−66β−1+3κ
3+κ .

• (29) γ > 74α−65β−1+κ(3−η)
4 .

• (30) γ > 78α−68β+3κ
4+κ .

• (31) γ > 78α−67β+κ(2−η)
5 .

• (32) γ > 78α−66β−η+2κ
5+κ .

• (33) γ > 78α−65β−η+κ(1−η)
6 .

• (38) γ > 97α−83β+3κ
6+κ .

• (39) γ > 97α−81β−η+2κ
7+κ .

• (40) γ > 97α−82β+κ(2−η)
7 .

• (41) γ > 97α−80β−η+κ(1−η)
8 .

Set η = β and choose κ = κ(α, β) close to zero.
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Among (30, 31, 32, 33), the widest range for γ is

γ >
78α− 66β

6
,

which comes from (33).

Among (38, 39, 40, 41), the widest range for γ is

γ >
97α− 81β

8
,

which comes from (41).

On the other hand, since α ≥ β, one has

78α − 66β

6
>

97α − 81β

8
.

This means that we end up with the following two ranges:

1. The case (18, 22, 28, 33, 41):

γ > max

{
2α− β,

74α − 66β − 1

3
,
78α− 66β

6

}
.

Using the fact α ≥ β, we conclude that

If α < 33
35β + 1

35 , then

γ >
78α − 66β

6
.

If α > 33
35β + 1

35 , then

γ >
74α− 66β − 1

3
.

2. The case (18, 22, 29, 33, 41):

γ > max

{
2α− β,

74α − 65β − 1

4
,
78α− 66β

6

}
.

If α > 63β
66 + 1

22 , then

γ >
74α− 65β − 1

4
.

If α < 63β
66 + 1

22 , then

γ >
78α − 66β

6
.

Comparing between the two cases, we infer that (18, 22, 29, 33, 41) gives the best range for γ.
Namely,

If α ≤ 63
66β + 1

22 , then the condition

γ >
78α − 66β

6

would be enough to have (42). Moreover, we also have

K & min
{
δ−

4γ−9β+1
148 , δ−

6γ−12β
156

}
.
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If α > 63
66β + 1

22 , then the condition

γ >
74α− 65β − 1

4

would be enough to have (42). Similarly, we also have

K & min
{
δ−

4γ−9β+1
148 , δ−

6γ−12β
156

}
.

With these computations, we are ready to prove Theorem 1.14 and Theorem 1.15. Let us first
recall the statements.

Theorem 8.1 (Theorem 1.14). Let α, β, η ∈ (0, 1), β ≤ α ≤ (21β + 1)/22. Then, for every
γ ∈ ((78α − 66β)/6, 1], there exist ǫ0, δ0 ∈ (0, 1/2], depending only on α, β, γ, η, such that the
following holds. Let δ ∈ 2−N with δ ∈ (0, δ0], and let A,B ⊂ [0, 1] be δ-separated sets satisfying the
following hypotheses:

• |A| ≤ δ−α

• |B| ≥ δ−β , and B satisfies the following Frostman condition

|B ∩B(x, r)| ≤ rη |B|, ∀x ∈ R, δ ≤ r ≤ δǫ0 .

Further, let C ⊂ [1/2, 1] be a δ-separated set with |C ∩ B(x, r)| . rγ |C| for all x ∈ R and
0 < r < δǫ0 . Then, there exists c ∈ C such that the following holds for any ǫ satisfying

0 < ǫ < min

{
4γ − 74α + 65β + 1

444
,
6γ − 78α + 66β

468

}
.

If G ⊂ A×B is any subset with |G| ≥ δǫ|A||B|, then

|πc(G)|δ ≥ δ−ǫ|A|.

Theorem 8.2 (Theorem 1.15). Let α, β, η ∈ (0, 1), β ≤ α and α > (21β +1)/22. Then, for every
γ ∈ ((74α − 65β − 1)/4, 1], there exist ǫ0, δ0 ∈ (0, 1/2], depending only on α, β, γ, η, such that the
following holds. Let δ ∈ 2−N with δ ∈ (0, δ0], and let A,B ⊂ [0, 1] be δ-separated sets satisfying the
following hypotheses:

• |A| ≤ δ−α

• |B| ≥ δ−β , and B satisfies the following Frostman condition

|B ∩B(x, r)| ≤ rη |B|, ∀x ∈ R, δ ≤ r ≤ δǫ0 .

Further, let C be a δ-separated set in [1/2, 1] with |C ∩ B(x, r)| . rγ |C| for all x ∈ R and
0 < r < δǫ0 . Then, there exists c ∈ C such that the following holds for any ǫ satisfying

0 < ǫ < min

{
4γ − 74α + 65β + 1

444
,
6γ − 78α + 66β

468

}
.

If G ⊂ A×B is any subset with |G| ≥ δǫ|A||B|, then

|πc(G)|δ ≥ δ−ǫ|A|.

The proofs of these two theorems are the same, so we only present a proof for the first one. Again,
the proof is short and follows directly from the energy estimates.
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Proof of Theorem 1.14. Let X be the set of c ∈ C such that the conclusion of the theorem fails,
i.e. for each c ∈ X, there exists Gc ⊂ A×B with |Gc| ≥ δǫ|A||B| and |πc(G)|δ < δ−ǫ|A|. We want
to show that |X| < |C|.

For each c ∈ X, by the Cauchy-Schwarz inequality, the number of tuples (x, y, z, w) ∈ G2
c such

that |(x+ cy) − (z + cw)| ≤ δ is at least |Gc|2

δ−ǫ|A|
, which equals δ3ǫ|A||B|2. Summing over all c ∈ X

and using Theorem 1.13, one has

|X|δ3ǫ|A||B|2 ≤
|C||A|3/2|B|3/2

K
.

This infers

|X| ≤ δ−3ǫ |A|1/2

|B|1/2K
|C|.

Using the computations above, we know that

K|B|1/2

|A|1/2
& min

{
δ−

4γ−74α+65β+1
148 , δ−

6γ−78α+66β
156

}
.

Thus,

δ−3ǫ |A|1/2

|B|1/2K
. δ < 1

as long as

ǫ < min

{
4γ − 74α + 65β + 1

444
,
6γ − 78α+ 66β

468

}
.

This completes the proof of the theorem.

With these two theorems, we can run the same argument as we did in the proof of Theorem 1.8 to
prove the Hausdorff dimensional versions, beginning with Theorem 1.16, which we restate below.

Theorem 8.3. Let 0 < β ≤ α < 1 with 22α ≤ 21β + 1. If A,B ⊂ R are compact sets with
dimH(A) = α, dimH(B) = β, then, for any

σ >
39(21β + 1− 22α)

699
,

we have

dimH {c ∈ R : dimH(A+ cB) < α+ x} ≤
78α− 66β

6
+ σ,

for any x smaller than
1

2
·min

{
2σ − 22α + 21β + 1

518
,

σ

182

}
.

Proof of Theorem 1.16. Without loss of generality, we may assume that A and B are compact sets
in [0, 1]. Using Frostman’s lemma ([25, Theorem 8.8]), we can find probability measures µA and
µB supported on A and B, respectively, such that

µA(B(x, r)) . rα, µB(B(x, r)) . rβ.

We want to show that

dimH (E) ≤
78α− 66β

6
+ σ, (43)

where E := {c ∈ [1/2, 1] : dimH(A+ cB) < α+ x}, and x is a parameter to be chosen later.

This would imply the full conclusion for c ∈ R. Since if the result holds for any A,B ⊂ R, and
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c ∈ [1/2, 1], then we write R =
⋃

n∈ZCn∪{0}
⋃

n∈Z(−Cn) where Cn = [2n, 2n+1]. Hence for each n,

i.e. when c ∈ Cn, we know that dimH(A+cB) = dimH(2−(n+1)(A+cB)) = dimH(2−(n+1)A+c′B) =
dimH(A′+ c′B), where A′ = 2−(n+1)A. But dimH A′ = dimH A = α and c′ ∈ [1/2, 1]. Hence it can
be reduced to the assumption above.

Suppose the inequality (43) does not hold, i.e.

dimH(E) >
78α− 66β

6
+ σ,

then we can find a probability measure ν supported on E such that ν(B(z, r)) . rγ for all z ∈ R

and r > 0, where γ ≥ 78α−66β
6 + σ. We note that in our argument we identify the measure ν

with the maximal δ-separated subset C ⊂ spt(ν). Notice that |C| ∼ δ−γ since ν(E) = 1, and
|C ∩B(z, r)| . rγ |C| for all z ∈ R and r > 0.

Set

γ :=
78α − 66β

6
+

σ

2
.

We now choose parameters α, β such that

α > α, β < β, γ >
78α − 66β

6
.

Indeed, we can set α = α+ 2x, β = β − y for some x, y > 0 satisfying 156x+66y
6 < σ/2.

Now, we apply Theorem 1.14 with parameters α, β, γ, η = β, we obtain ǫ, ǫ0, δ0. In particular, if
G ⊂ A×B is any subset with |G| ≥ δǫ|A||B|, then

|πc(G)|δ ≥ δ−ǫ|A|,

where

ǫ ≥ min

{
4γ − 74α+ 65β + 1− ζ

444
,
6γ − 78α+ 66β − ζ

468

}
,

for any ζ > 0.

To proceed further, we need to do some computations:

4γ − 74α + 65β + 1− ζ

444
=

2σ − 22α+ 21β − 148x− 65y + 1− ζ

444
,

and
6γ − 78α + 66β − ζ

468
=

3σ − 156x − 66y − ζ

468
.

Choose

2x = min

{
2σ − 22α + 21β − 65y + 1− 2ζ

518
,
3σ − 66y − 2ζ

546

}
∈ (0, 1).

It is clear that 2x < ǫ. We now need to check two conditions.

The first condition is that 156x + 66y < 3σ. To guarantee this, one has to have

y <
699σ − 39(21β + 1− 22α) + 78ζ

14559
, σ >

39(21β + 1− 22α) − 78ζ

699
,

and

y <
18σ + 2ζ

396
.

The second condition is that x ∈ (0, 1). This is clear when y and ζ are sufficiently close to zero.
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With these facts in hand, the goal is to find a set G so that, on the one hand, we apply Theorem
1.14 to G as above to get a lower bound for |πc(G)|δ ≥ δ−α−ǫ. On the other hand, we will also
derive an upper bound such as |πc(Gc)|δ ≤ δ−α−x. This immediately gives a contradiction since
x < ǫ.

We now proceed to prove the result. Fix some parameters as above such that ᾱ > α, β̄ < β,
with η = β̄ and γ̄ < γ such that γ̄ is still in the range associated with ᾱ and β̄. Before we apply
Theorem 1.14, we would need to construct sets Aδ and Bδ from A,B so that these two sets satisfy
the assumptions in Theorem 1.14. That is, the δ-separatedness and non-concentration conditions
with these modified parameters.

Fix a point c ∈ E so that dimH(A+ cB) < α+ x (recall that x can be made explicit as mentioned
above). This gives that for a given number δ0 := 2−j0 ∈ 2−N, there exists a family Ic, a countable
number of disjoint dyadic intervals of length ℓ(I) ≤ δ0, which covers A+ cB such that

∑

I∈Ic

ℓ(I)α+x ≤ 1. (44)

Consider the sets Tc := {π−1
c (I)}I∈Ic which cover A×B, so that

∫

E

∑

T∈Tc

(µA × µB)(T ) dν(c) = 1.

Let Ij
c := {I ∈ Ic : ℓ(I) = 2−j} for j ≥ j0 and write T j

c := {π−1
c (I)}

I∈Ij
c
. By the pigeonhole

principle, there exists j∗ ≥ j0 such that

∫

E

∑

T∈T j∗
c

(µA × µB)(T ) dν(c) & j∗−2.

Let us also denote δ := 2−j∗ for the index j∗. By the estimates above, we can find a subset E′
δ ⊂ E

of measure ν(E′
δ) & j∗−2 = log(1/δ)−2 such that for each c ∈ E′

δ, the sets T ∈ T j∗
c cover a subset

Gc ⊂ spt(µA × µB) of measure (µA × µB)(Gc) & log(1/δ)−2. Moreover, note that we have

|πc(Gc)|δ ≤ δ−α−x, c ∈ E′
δ, (45)

by (44). Recall that, we use f / g to denote f . log(1/δ)Cg for some absolute constant C > 0,
which may only depend on the Frostman constants of A,B . In particular, j−2 = log(1/δ)−2 ' 1.

So now we need to construct two sets Aδ and Bδ from A,B so that we can apply Theorem 1.14
to them to get a lower bound for (45). The process of constructing these sets is to perform some
averaging arguments to extract these sets through pigeonholing. Now for z ∈ R, let Iδ(z) ∈ Dδ

be the unique dyadic interval of length δ with z ∈ Iδ(z). Fix c ∈ C and given a dyadic number
ρ ∈ 2−N, let A(ρ) := {z ∈ A : ρ ≤ µA(Iδ(z)) < 2ρ} and write A as

A =
⋃

ρ∈2−N

A(ρ).

The set B(ρ) ⊂ B is defined in the same way. Since µA(Iδ(z)) . δα and µB(Iδ(z
′)) . δβ , we

see that A(ρ) 6= ∅ implies ρ . δα, and B(ρ) 6= ∅ implies ρ . δβ . We also note that A(ρ) can be
expressed as the intersection of A with certain dyadic intervals A(ρ) ⊂ Dδ. The same is true for
B(ρ), for certain dyadic intervals B(ρ) ⊂ Dδ.

Let µA(ρ) be the restriction of µA to the intervals A(ρ), and similarly let µB(ρ) be the restriction
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of µB to the intervals in B(ρ). Then

∑

ρ1

∑

ρ2

∫

E′

δ

(µA(ρ1)× µB(ρ2))(Gc) ≈ 1,

so it follows from the pigeonhole principle that

∫

E′

δ

(µA(ρA)× µB(ρA))(Gc) ≈ 1

for some fixed choices ρA . δα and ρB . δβ . By the pigeonhole principle again, we can find a
subset Eδ ⊂ E′

δ so that (µA(ρA)× µB(ρB))(Gc) ≈ 1 for all c ∈ Eδ. We now define

µ̄A := µA(ρA) and µ̄B := µB(ρB),

so ‖µ̄A‖ ≈ 1 ≈ ‖µ̄B‖. The measure µ̄A is supported on the closure of the intervals in A(ρA), and
µ̄B is supported on the closure of the intervals in B(ρB). Let

Aδ := (δ · Z) ∩ (∪A(ρA)) and Bδ := (δ · Z) ∩ (∪B(ρB)) .

Note that
ρA · |Aδ| ∼ ‖µA‖ ≈ 1 =⇒ ρA ≈ |Aδ|

−1,

and similarly ρB ≈ |Bδ|
−1. Since ρA . δα, we have

|Aδ | ≈ ρ−1
A ' δ−α.

In fact one also has |Aδ | ≤ δ−ᾱ if δ > 0 is sufficiently small. To see this, fix an arbitrary c ∈ Eδ.
Since (µ̄A × µ̄B)(Gc) ≈ 1, there exists b ∈ spt(µ̄B) such that

µ̄A(Gc(b)) ≈ 1, where Gc(b) = {z ∈ spt(µ̄A) : (z, b) ∈ Gc}.

Let Hc(b) := {I ∈ A(ρA) : Gc(b) ∩ I 6= ∅}, we have that µ̄A(I) ∼ ρA for all I ∈ Hc(b), and
µ̄A(∪Hc(b)) ≥ µ̄A(Gc(b)) ≈ 1. Moreover, we observe that |Gc(b)|δ . |πc(Gc)|δ, since πc(Gc) ⊃
Gc(b) + bc. Therefore we obtain

|Aδ| ≈ ρ−1
A / ρ−1

A · µ̄A(∪Hc(b)) . |Gc(b)|δ . |πc(Gc)|δ≤δ−α−x.

For x chosen at the beginning of the proof,

x < min{ǭ, ᾱ− α}. (46)

Hence it is clear to see that α+x < ᾱ by (46) which in turn gives |Aδ| ≤ δ−ᾱ if δ > 0 is sufficiently
small.

Next, we also need to claim the non-concentration condition for Bδ. First we note that ρB . δβ ,
which gives

|Bδ| ≈ ρ−1
B ' δ−β ≥ δ−β̄ . (47)

Moreover, for r ≥ δ, we note that every point z′ ∈ Bδ ∩ B(z, r) is contained in an interval
Iz′(δ) ∈ B(ρB) with µB(Iz′(δ)) ≥ ρB . Since Iz′(δ) ⊂ B(z, 2r), we have

|Bδ ∩B(z, r)| ≤ ρ−1
B · µB(B(z, 2r)) . ρ−1

B · (2r)β / rβ|Bδ|.

Therefore with the constant ǭ0 > 0 mentioned above, we also have |Bδ ∩ B(z, r)| ≤ rβ̄|Bδ| for
δ ≤ r ≤ δǭ0 as long as δ > 0 is sufficiently small. Combining all the estimates above, Aδ, Bδ are
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now constructed. Now we apply Theorem 1.14 to obtain |πc(Gc)|δ ' δ−ǫ−α. This immediately
contradicts (45), since x is chosen to be smaller than ǫ.

Next, we recall the statement for Theorem 1.17.

Theorem 8.4. Let 0 < β ≤ α < 1 with 22α > 21β + 1. If A,B ⊂ R are compact sets with
dimH(A) = α, dimH(B) = β, then, for any

σ >
74(33α − 63

2 β − 3
2)

870
,

we have

dimH {c ∈ R : dimH(A+ cB) < α+ x} ≤
74α− 65β − 1

4
+ σ,

for any x smaller than

1

2
·min

{
3σ + 33α − 63β

2 − 3
2

546
,

σ

259

}
.

Proof of Theorem 1.17. The proof is the same as the previous proof except that we have to compute
the parameters. We do the computations below.

Set

γ :=
74α− 65β − 1

4
+

σ

2
.

We now choose parameters α, β such that

α > α, β < β, γ >
74α− 65β − 1

4
.

Indeed, we can set α = α+ 2x, β = β − y for some x, y > 0 satisfying 148x+65y
4 < σ/2.

Next, we apply Theorem 1.15 with parameters α, β, γ, η = β, to obtain ǫ, ǫ0, δ0. So taking
G ⊂ A×B to be any subset with |G| ≥ δǫ|A||B|, then

|πc(G)|δ ≥ δ−ǫ|A|,

where

ǫ ≥ min

{
4γ − 74α+ 65β + 1− ζ

444
,
6γ − 78α+ 66β − ζ

468

}
,

for any ζ > 0.

To proceed further, we need to do some computations:

4γ − 74α+ 65β + 1− ζ

444
=

2σ − 148x− 65y − ζ

444
,

and
6γ − 78α + 66β − ζ

468
=

3σ + 33α − 63β
2 − 156x− 66y − 3

2 − ζ

468
.

Choose

2x = min

{
2σ − 65y − 2ζ

518
,
3σ + 33α − 63β

2 − 66y − 3
2 − 2ζ

546

}
∈ (0, 1).

It is clear that 2x < ǫ. We now need to check two conditions.

35



The first condition is that 148x + 65y < 2σ. To guarantee this, one has to have

y <
870σ − 74(33α − 63

2 β − 3
2 ) + 148ζ

30606
, σ >

74(33α − 63
2 β − 3

2)− 148ζ

870
,

and

y <
370σ + 148ζ

28860
.

The second condition is that x ∈ (0, 1). This is clear when y and ζ are small enough, i.e. close to
zero.

9 On the C(A+ A) problem

This section is devoted to prove results on the C(A+A) problem mentioned in the introduction.
Let us recall all statements here. (That is Theorems 1.9, 1.12 and 1.18 respectively).

Theorem 9.1. Given α ∈ (0, 1) and γ, η > 0, there exist ǫ0, ǫ > 0 such that the following holds
for all sufficiently small δ > 0. Let C ⊂ [1/2, 1] be a δ-separated set satisfying

|C ∩B(x, r)| . rγ|C|

for all δ ≤ r ≤ δǫ0 . Let additionally A ⊂ [0, 1] be a δ-separated set with |A| = δ−α, which also
satisfies the non-concentration condition |A ∩B(x, r)| ≤ rη|A| for x ∈ R and δ ≤ r ≤ δǫ0 .

Then, we have
|C(A+A)|δ ≥ δ−ǫ|A|.

Theorem 9.2. Let A ⊂ δZ ∩ [0, 1] and C ⊂ [1/2, 1] be δ-separated. Suppose |A| = δ−α and
|C| = δ−γ , with α, γ ∈ (1/2, 1). Assuming

|A ∩B(x, r)| ≤ Mrα|A|, ∀ δ ≤ r ≤ 1, x ∈ R,

for some M > 1, for sufficiently small δ > 0. Then there exists ε > 0 such that

|C(A+A)|δ ≥ δ−ε|A|,

where

ε =
2α+ 4γ − 4αγ − 2

6− 4α
.

Theorem 9.3. Let A ⊂ δZ ∩ [0, 1] and C ⊂ [1/2, 1] be δ-separated. Suppose |A| = δ−α, |C| = δ−γ

with γ ∈ (2α, 1), δ ∈ (0, δ0], and

|A ∩B(x, r)| . rη|A|, ∀x ∈ R, δ < r < δǫ0 ,

and
|C ∩B(x, r)| . rγ |C|, ∀x ∈ R, δ < r < δǫ0 ,

for ǫ0, δ0 ∈ (0, 1/2) depending on α, γ, η. Then for any

0 < ε < min

{
4γ − 9α + 1

148
,
6γ − 12α

156

}
,

we have
|C(A+A)|δ ≥ δ−ε|A|.
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All these theorems have the same proof as follows.

Let D be a maximal δ/2-separated subset of C(A+A), then

|D| . |C(A+A)|δ/4 ∼ |C(A+A)|δ.

Notice that for each (a1, a2, c) ∈ A×A×C, c(a1+a2) is contained in a ball centered at some point
x ∈ D, of radius at most δ/2. Thus

∑

x∈D

|{(a1, a2, c) ∈ A×A× C : |x− c(a1 + a2)| ≤ δ/2}|δ = |C||A|2.

By the Cauchy-Schwarz inequality, we have

|A|4|C|2 ≤

(∑

x∈D

|{(a1, a2, c) ∈ A×A× C : |x− c(a1 + a2)| ≤ δ/2}|2δ

)
· |D|.

This implies that |C(A+A)|δ & |D| & |C|2|A|4

N , where

N =
∣∣{(a1, a2, a3, a4, c1, c2) ∈ A4 × C2 : |c1(a1 − a2)− c2(a3 − a4)| ≤ δ}

∣∣
δ
.

By the pigeonhole principle, there exists c1 ∈ C such that

|{(a1, a2, a3, a4, c2) ∈ A4 × C : |c1(a1 − a2)− c2(a3 − a4)| ≤ δ}|δ ≥
N

|C|
.

Therefore

N ≤ |C| ·

∣∣∣∣
{
(a1, a2, a3, a4, c2) ∈ A4 × C : |(a1 − a2)−

c2
c1
(a3 − a4)| ≤

δ

c1

}∣∣∣∣
δ

= |C| ·
∣∣{(a1, a2, a3, a4, c) ∈ A4 × (c−1

1 C) : |(a1 − a2)− c(a3 − a4)| ≤ 2δ
}∣∣

δ
.

Now, we may conclude that N ≤ |A|3|C|2

K , which implies |C(A + A)|δ ≥ |A|K, where the lower
bounds on K come from the three energy theorems (Theorems 1.6, 1.10 and 1.13) to get the
desired conclusions.
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