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GROUP ACTION AND L2.NORM ESTIMATES OF GEOMETRIC PROBLEMS

THANG PHAM

ABSTRACT. In 2017, by using the group theoretic approach, Bennett, Hart, Iosevich,
Pakianathan, and Rudnev obtained a number of results on the distribution of simplices
and sum-product type problems. The main purpose of this paper is to give a series of new
applications of their powerful framework, namely, we focus on the product and quotient
of distance sets, the L2-norm of the direction set, and the L2-norm of scales in difference
sets.

1. INTRODUCTION

Let [, be a finite field of order g, where q is a prime power. Let O(d) be the orthogonal
group of d by d matrices with entries in .

Given an integer k£ = 1, we say that two k-simplices in [Fg with vertices (x1,...,xz+1) and
(¥1,...,y+1) are in the same congruence class if ||x; —x;|| = ||y, —y || forall 1 =i # j <k +1.
Here |[|x; —x;|| = (x;1 —le)2 + o+ (x4 —xjd)z. This is equivalent to say that there exist
0eO(d)andze [Fg such that y; =0x;+zforall1<i<k+1. Givenaset E c [Fg, we denote
the set of congruence classes of k-simplcies determined by E by T,‘j(E).

The question of finding the smallest threshold a such that ITZZ(E)I > q(kgl) whenever
|E| > q“ has a rich history, for instance, see [9, 24, 10, 3, 21]. The best current result is
due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev in [2]. More precisely, by using
the group theoretic approach, they proved that for all 1 <k <d, if |[E| > qd_%, then
ITg(E)I > q(kgl). In two dimensions, they are able to obtain better exponents, namely,
8/5 for k = 2 and 4/3 for £ = 1. We also note that when % = 1, this problem is known as
the Erdos-Falconer distance problem in the literature, we refer the interested reader to
[20, 15] for the recent progress.

It is worth noting that the group action techniques are not only useful in discrete setting,
but it is also very powerful in the continuous setting. One example, we have to mention
here, is an L? identity due to Liu [17], which plays an important role in the recent break-
through on the pinned Falconer distance problem [5, 6]. Similar results of this approach
can also be found in [7, 8, 18].

2010 Mathematics Subject Classification. 52C10, 42B05, 11T23 .
1


http://arxiv.org/abs/2208.04827v1

2 THANG PHAM

The main purpose of this paper is to provide a series of new applications of this group
theoretic approach, namely, on the product and quotient of distance sets, the L2-norm of
the direction set, and the L2-norm of scales in difference sets.

Throughout this paper, we denote the set of square elements in [, by ([Fq)z, andby X >Y
we mean there exists an absolutely positive constant C such that X = CY.

1.1. Product and Quotient of distance sets. For E c [F?I, the distance set A(F) is the
set of all distances determined by pairs of points in E, namely,

AE) :={llx—yll: x,y € E}.

We define the product, quotient, and sum of A(E) as follows:
A(E)

Nl {ﬁ: a,b eA(E)}, AE)-ME):={a-b: a,be AE)},

b
and
ANE)+AE):={a+b:a,beAE)}.

Our first result is on the size of A(EF)-A(E).

Theorem 1.1. For E c [Fg with |E| > q8/7, we have

IAE)-AE)] > q.

For comparison, one can use graph theoretic techniques or discrete Fourier analysis to
prove the same exponent for the sum set A(E)+A(E), for instance, see [22]. It is necessary
to say that the study of the product set would be much harder than the case of the sum
set, the main reason comes from the observation that A(F)+ A(E) = A(E x E), so the sum
set can be reduced to the original distance problem for Cartesian product sets, which
possesses some nicely additive structures. As a consequence, when ¢ is a prime, it has
been shown in [4] that the exponent 8/7 can be improved to 11/10. For the sum of two
different distance sets, we refer the reader to [14] for more details. We also want to
emphasize here that it is difficult to extend the methods from [4, 14, 22] to study the case
of product set A(E)-A(E). As in the Erdés-Falconer distance problem, the conjectured
exponent for product of distance sets should be 1.

For quotient of distance sets, by using discrete Fourier analysis, Iosevich, Koh, and Par-
shall [11] proved that if |[E| = 9¢q, then

AE)

— " =F,.

A(E)

They also constructed examples to show that the condition |E| > g is optimal. There

(1.1)

are two perspectives we want to mention here: their proof is very sophisticated, and it
only tells us that the quotient contains the whole field, so given an element r € F,, it is
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not clear how many tuples (a,b,c,d) € E* such that |la = b|l/||lc—d|| =r. Using the group
theoretic method, we prove the following.

Theorem 1.2. For E c [F?i7 with g =3 mod 4. Assume that |E| > q, then for each non-zero
square r in Fy, the number of quadruples (a,b,c,d) € E* such that |la—-bl|/|lc—d|| =r is at

least > |E|4q_1. In particular,
c AE)

2
Fog)" € ———.
We remark that the condition ¢ =3 mod 4 is needed in the proof of this theorem, which

helps to avoid pairs of zero distances.

1.2. Distribution of directions. Given E c [Fg, the L2-norm of the direction set bounds
the number of quadruples (u,v,x,y) € E* such that

(1.2) (u-v)=A-(x-y), x#y, u#v,

for some A # 0. We denote the number of such quadruples by L%(Dg). In the next theorem,
we give an upper bound for this quantity.

Theorem 1.3. For E c [Fz, we have

|E|*
L%Dg)- - < A E”.

If we are interested in the number of directions spanned by a set E c [F?I, then Theorem

32 However, it is known in

1.3 says that we have at least > ¢ directions as long as |[E| > q
the literature that the condition |E| > g would be sufficient, see [12] for example. When

the size of E is very small, say |E| < g, we refer the reader to [23] for related results.

1.3. Scales in difference sets. For E c [F?I, an element A € [, is called a scale in the

difference set E — E if there exist uq,v1,us,v9 € E such that
(u1 - Ul) = /1(u2 - vz).

We denote the set of all scales in E — E by g%g In this paper, we are interested in
bounding the L?-norm, i.e. the number of tuples (u1,v1,us2,v2,us,vs,us,v4) € E® such
that

(u1—v1) = Mug —v2), (ug—v3) = Mug —vy),

for some A # 0. We denote the number of such tuples by L2(Sg).

With the same approach, we have an upper bound for the L2-norm of scales.

Theorem 1.4. For E c [Fg, we have

8

E
L%(Sg)- 'q—; < |E®+ g2 EP.
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For the set of scales, it is not hard to show that if |[E| > q3/ 2 then E — E/E —E covers the
whole field. Roughly speaking, under the condition |E| > ¢%2, one can find a line with at
least g2 points from E, then without loss of generality, we assume that line is defined
by y = 0. So the problem is reduced to one dimensional version, namely, A — A/A — A for
some A c F,. It is well-known that A —A/A - A =F, when |A| > ql/ 2 see [1, Lemma 1]
for example. We leave this to the reader for checking in detail. The exponent 3/2 is also
optimal, for example, take ¢ = p2 and E = Fp x Fq, then |%| =p=o0(q).

It follows from Theorems 1.3 and 1.4 that L2(Dg) = (1 + o(1)|E|*/q and L?(Sg) = (1 +
0(1))|E|®/q® whenever |E| > q3/ 2 and |E| > q5/ 3 respectively. We do not believe these two
theorems are sharp, and offer the following conjectures.

Conjecture 1.5. Let E be a subset of F2. If |E| > g€ for any € >0, then

4
L2(DE):(1+0(1))”E7'.

Conjecture 1.6. Let E be a subset of [F?I. If |[E| > q%” for any € >0, then

E8

L*SE) = (1+0(1)—5-.
q

The final remark is that all results in this paper can be extended to higher dimensions in
the same way, but the proofs will become much complicated, for instance, in the proofs of
Theorems 1.1 and 1.2, one has to count the number of pairs of zero distances, which can
be done by using a number of results from Restriction theory [13]. Therefore, to keep this
paper simple, we only present results in two dimensions.

2. NOTATIONS FROM DISCRETE FOURIER ANALYSIS

In this section, we recall some notations and results from discrete Fourier analysis which
will be needed for our coming proofs in next sections.

Given a complex function f: [Fg — C, the Fourier transform of f is defined by
~ 1
f)=— Y f@x(-x-9),
xEFg

where y is a fixed non-trivial additive character of [,.

Using the orthogonality property of y, i.e.

Y xlx-&)=

d
x€ely

0 if&#0,
d ifE=0,
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one can prove that

fl)=Y FExE x.

d
fqu

In this setting, the Plancherel formula reads as

Y IFOP=¢Y If )2

éerd xeFd
When f is the indicator of a given set E c FZ, one has

Y IE©1P=q Y El

d
{qu

The following lemma is known as the finite field analog of the spherical average in the
classical Falconer distance problem [19, Chapter 3].

Lemma 2.1.

N 9 |E|3/2
max Z PAG) ESS 3
LEFG MO 1 7=t q

A proof of this lemma can be found in [3, Lemma 4.4].

3. PROOF OF THEOREM 1.1

It is well-known that for u,v,x,y € [Fd, if |lu —v]| = ||x — yl||, then there exist 8 € O(d) and
ZE€E [Fg such that
Qu+z=x, Ov+z=y.

We now show that a similar statement holds for the case of product of distance sets.

Lemma 3.1. Set
G1={diag(r101,7902) € Magasa: r1-75=1,01,02 € O(@)},

and G = Gy x F2%. For x1,x9,%3,%4,¥1,¥2,¥3, Y4 €FL, if

[lxq — yall

: e (F,)?,
llxg — yall 7

llx1 — y1ll-llxg — yall = llxg — y3ll - 1lxg — y4ll # 0
then there exists g € G such that

g(x1,x9)T = (x3,%0)7, 2(y1,72)" = (y3,v4)".

Proof. If
lle1 = y1ll-1lxg — yall = llxg — y3ll - [lx4 — y4ll # O,

then
llxr —y1ll — llxa — yall

[lxz —y3ll  llxe — yall
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Set r = x4zl Brom our assumptions, we know that r is a square, say, say, r = ¢2 for
[lx2—yall ’ ’ ’ )

some ¢ # 0. This infers that

[1(1/t)x1 — (1/)y1ll = llx3 — y3ll.
Hence, we can find 61 € O(d) and z; € [Ffli such that

(1/t)81x1 + 21 = x3, (1/t)B1y1 +21 = ¥3.
Similarly, from the fact that
llxq — yall = lltxe — ty2ll,

we can find 05 € O(d) and z9 € [Fg such that

t02x9 + 29 = x4, tOoy9 + 29 = V4.

In other words, g =(1/t01,t02) x (z21,22) € G is the element we want to find. O

Proof of Theorem 1.1. Let
A={@,b)eExE: |la—bll € (Fy)*\ {0},

and
B=ExE\(Au{(a,b)eE xE: |la—>b||=0}).

Let Ny(E) be the number of pairs (a,b) € E x E such that ||a — b|| = 0. We know from [16,

Proposition 2.4] that
2

E
No(E) < IE1” +qlE| < |E?,
q

when |E| > q. Thus, either |A| or |B] is bounded from below by |E |2/2. Without loss of
generality, we assume that |B| > |E|2/2. For any A € ([Fq)2 \ {0}, define

V(A) := #{(x1, y1,%2,y2) € BZ: [lx1 — 111+ |22 — yall = A}.

We have
Y v(A) > E|*.
AE(AE)-MEN)N(Fg)?\{0}

By the Cauchy-Schwarz inequality, one has

1/2
Y V(L) < |AE)Y2 - ( Y V(A)z) :
AEAE)N(F,)2\{0} AeFq
In the next step, we are going to bound }_ AeF, v(1)? from above. For 0 = diag(r101,r90s) €
G1and z =(z1,29) € [F3 X [Fa, we define pp(z) to be the number of tuples (x1,x2,x3,x4) € E*4
such that
O(x1,x2)" +(21,22)" = (x3,20)".

Then we observe that

Yvirs Y pe(2)?
A

0cG1,z€F
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It suffices to prove that

E 8
S e <
q

0€G1,z€F}

whenever |E| > ¢%7.

Set F = E x E. One has
@)= Y Fler,x)F (00e,x)7 +2)

x1,x2€[F(21
= ¥ Flixe) Y Fony(m- 0,27 +2)
x1,x2€[F(21 mE[Fé

=¢* Y F)F(-0"m)y(m-2).

me[Fé
Hence,
fi5(&) = ¢*F(-OF 07 ¢).
Therefore, for a fixed 0 € G,
_ IF|* _
Y IEOP = —+ Y @),
ceFs 77 &40
By writing & = (£1,¢&9) € [Fg X [Fg and recall that F = E x E, we have

Yo @R =¢® Y IFOPIFOT)?

0eGy, E€F\{0} 0,$#£0
=®Y Y +¢®Y, Y +®Y Y =I+II+IIL
0 §1=0,{2#0 0 §#0,69=0 0 &17#0,82#0
For I, by Plancherel, one has
I=¢* Y > Y IE(EDPIE(=E)PIE(r0T e PIE(ro0 &)1

01,62€0(2) ri,ro: r1-re=1 £1=0,62#0

=qlE*Y. Y Y IE(-&)PIE(r20] &9)1?

02 r2#0&9#£0

=qlEI* Y E-&)PY. Y IErpP
&270 r#0|Inli=l1é2||

< q_3|E|6.

Similarly, IT <« ¢ 3|E|8. For 111, we proceed as follows:

I1=¢%y Y Y E(=EDPIE(=E)PIE(r10T e )P E(ra0T &) 2
0 ri,roir1-re=1£1#0,E0#0

=¢®Y Y Y IEEPIEr0le? Y I EC)? Y 1EmP.

02 &2#07270 §17#0 Uzllnllzlli%”
2
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This implies
3
IIT < ¢®|Y IE@E)?| | max IEm)?].
(E teFq MO} ||n|zl=t
Using Lemma 2.1, we obtain
I1I < g YE2.

In other words,
R E8 |E® |E%?
Y IpOF <« =+ —5 + ——.
0,¢ q q q

This infers g
|E|
Z ,ug(z)2 < T + qIEI6 + q3|E|9/2 <

0€G1,z€F;

E®
q b
whenever |[E| > q8/ 7, O

4. PROOF OF THEOREM 1.2

We note that r = 0 is trivially in A(E)/A(E). For 8 € O(2) and z € F2, assume r is a nonzero
square, we define

ne(2) :=#{(u,v)€E xE: u—rOv = z}.
We first observe that

Y ne)=IEI*|0).
0€0(2),2¢€F2

So by the Holder inequality, one has

> noz)?

0,z

IE*10(2)|
z—.

On the other hand, the sum } 4 , 179(2)2 counts the number of tuples (a,b,c,d) € E* such
that a — /rOc =z and b - /r0d = z, so |la = b|| = r|lc —d||. For such a tuple, we have
r € A(E)/AE), unless |la —b|| =|lc—d]| =0.

For each tuple (a,b,c,d) € E* such that ||la — b|| = r||c — d||, we have two possibilities.

If a — b #0, then this tuple is counted ~ |O(1)| ~ 1 times in the sum } y, 173(2)2, since the
size of the stabilizer of each non-zero element is ~ |O(1)|.

If a = b, then ¢ = d. Moreover, the number of tuples (a,b,c,d)€ E* witha =b and ¢ =d
in the sum } 4, 779(2)2 is equal to Y. ,176(2) = IE210(2)|.

From these observations, the number of tuples (a,b,c,d) € E* such that |la - b|| = r|lc —
d|| #0 is at least

1
e Y ne(2)*— 1E|0(2)] - 10(1)INy |,
0,z

where Ny is the number of tuples with |la —b||=r|lc—d||=0,a #b,and c #d.
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Since ¢ =3 mod 4, it is clear that Ny = 0. Thus,
1 |E)*

— (2)? - |E|?|0(2)| - |0(1)|Ng | > —,

|0(1)|é”9 IEFI0@)I~I0(INo | > =

whenever |E| > q.

5. PROOF OF THEOREM 1.3
Define the group G =, x [FZ with the operator
(A,21) % (B,2z2) =(A- B,21 +22).
For a fixed A, we define the counting function
Ya(z) :=#{(a,b) € E?: la+2z=b).

By a direct computation, the tuple (u,v,x, y) satisfies (1.2) if and only if there exist 1 # 0
and z € [F3 such that Au +z =x and Av+2z = y. Thus,

L*Sg) =) 1)
A,z

For a fixed A, we have

2
Y@’ =¢" Y Ina®F = 'Z’(’]# +q° Y Im@P

zeF2 Eef? $#0
EI* —
=—+q> Y @
q &#0

On the other hand,
122)=Y E@EQu+2)=Y Ew) Y E@yE- (Au+2))
u u &

=Y E@yE-2)Y E@)y(Aé - u)
¢ u

=q2Y EQE(-A)y(E -2).
¢

Hence,
1@ = PE(-OEN).
So,
Y 1ya@FP = g* Y IEOPIEQOP.
{#0 E#0
Hence,

Y Y m@P=¢*YIE@P2 Y IEm)?,

A£0¢#£0 E£0 me<é>\{0}
where < ¢ > is the line generated by ¢.
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To proceed further, we set L :=< & > and T7(E) := ¥ ,er, |IE(m)|2. It follows that
TLE)=q* )Y Y xm-x-yN=q¢"* Y Y x@tE (x-y))=q *d+II),

meL x,yeE x,yeE telF,
where
I= Y Y At -(x—y)=gq > 1,
x,y€E, ¢ (x—y)=0t€l, x,y€E, é(x—y)=0
and
= Y Y ¢ x-y)=0.

x,¥€E, & (x—y)£0teF,
We note that the equation ¢-(x — y) = 0 with x, y € E means that x — y lies on the line with
the normal vector ¢ and passing through the origin. Using the fact that each line in [F(zi7
contains exactly ¢ points, we have I < ¢?|E|. Thus, using Plancherel formula, we obtain
> Y Im@P<EP
A#0&E#£0
In other words,

Ly - ' < IEPR.

This completes the proof of the theorem.

6. PROOF OF THEOREM 1.4

Using the notations as in the previous section, we observe that

2
L*Sg)= ). (Zm(z)z) :

A#0

As in the previous section, we know that

E 4
Y n@?=t s 2 Y RO,

ze[Fg q ¢#0

and
YN M@ <IEPR
A &0
Thus,
|8 ?
< |E®+q* Z(meﬁ) .

¢#0

> (2 <z>2)

A#£0
As we computed in the previous sectlon, one has

2 2
(Zm(mz) =q8(ZIE(€)I2IE(—A§)IZ) .

¢#0 ¢#0
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Therefore,

2
Z(ZIE(S)I2IE(—A£)I2) = Y IECDPIECEP Y IEAE)PIEAEDP
A

A \{#£0 $1#0,89#0
= Y |EGDPIEE)P L, &),
£1#0,82#0

where

L(é1,é9) = Y _IEQAEDIPIE(AER)I?.
A

To proceed further, we need the following lemma.

Lemma 6.1. For é1,E9 #0, one has

~ . E 3
L($1,82) = Z |E(ﬂfl)|2|E(/1£2)|2 < |q_E|5
A

Proof. By the Cauchy-Schwarz inequality, we have

1/2 1/2
L(¢1,89) < (Z |E(A£1)|4) -(Z IE(A€2)|4) :

A A
Moreover, for m # 0,
1

YIEAm)It=— Y Y xmAMx+y—z—w))
A x,5,2,wel A

q
1
= Z 1m-(x+y—z—w)=0
q x,y,2,wek
EP
q®”

where the last inequality follows from the number of tuples (x,v,z,w) € E* such that
x+y—z—w lies on the line with the normal vector m and passing through the origin.
This completes the proof. U

To continue, we apply the Plancherel formula,

2
Z(ZIE(€)|2IE(—/1€)I2) = Y |EGDPIEE)P L,E)
A \{#0 £1#0,E97#0

|E°
< W

In other words, we obtain

< |EI®+¢%EP.

2 E 8
¥ (Zne?) -
A q

z
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