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Abstract. The main goal of this paper is to present some explicit formulas for computing

the  Lojasiewicz exponent in the  Lojasiewicz inequality comparing the rate of growth of two

real bivariate analytic function germs.

1. Introduction

The  Lojasiewicz inequalities and their variants play an important role in many branches of

mathematics. For example,  Lojasiewicz inequalities are very useful in the study of continuous

regular functions, see [13, 18] for pioneering works and [19] for a survey. Also,  Lojasiewicz

inequalities, together with Nullstellensätz, are crucial tools for the study of the ring of

(bounded) continuous semi-algebraic functions on a semi-algebraic set, see [10, 11, 12].

Let f, g : (Rn, 0)→ (R, 0) be nonzero real analytic function germs. Assume that 0 ∈ {f =

0} ⊂ {g = 0}. By the classical  Lojasiewicz inequality on comparing the rate of growth, there

exist positive constants C, r and α such that

|f(x)| > C|g(x)|α for |x| 6 r. (1) ?Lojasiewicz?

The infimum of such α is called the  Lojasiewicz exponent of g w.r.t. f and denoted by Lg(f).

Note that several versions of the  Lojasiewicz inequality have been studied for a special case

where g is the distance function to the zero set of f, see [4, 5, 6, 7, 8, 9, 16, 17]. Furthermore,

the computation or estimation of  Lojasiewicz exponents in this case has been considered in

these works.

In [3], the authors provided a global version of the  Lojasiewicz inequality on comparing

the rate of growth of two polynomial functions in the case the mapping defined by these

functions is (Newton) non-degenerate at infinity. However, no computation or estimation of
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 Lojasiewicz exponents has been given. In this work, we will address partially to this problem

by giving some explicit formulas for computing the  Lojasiewicz exponent Lg(f) when f and

g are real bivariate analytic function germs.

The rest of the paper is organized as follows. In Section 2, we recall the notions of Newton

polygon relative to an arc and sliding due to Kuo and Parusiński which are crucial in the

proof of our formulas for the  Lojasiewicz exponent, which are our main results (Theorem 3.1

and Theorem 3.2), whose statements, together with the proofs, will be given in Section 3.

2. The Newton polygon relative to an arc
〈Section2〉

The technique of Newton polygons plays an important role in this paper. It is well-

known that Newton transformations which arise in a natural way when applying the Newton

algorithm provide a useful tool for calculating invariants of singularities. For a complete

treatment we refer to [1, 2, 23, 24]. In this section we recall the notion of Newton polygon

relative to an arc due to Kuo and Parusiński [20] (see also, [14] and [15]).

Let K := R or K := C and let f : (K2, 0) → (K, 0) denote a nonzero analytic function

germ with Taylor expansion:

f(x, y) = fm(x, y) + fm+1(x, y) + · · · ,

where fk is a homogeneous polynomial of degree k, and fm 6≡ 0. For the remainder of the

paper, we will assume that f is regular in x of order m in the sense that fm(1, 0) 6= 0.

(This can be achieved by a linear transformation x′ = x, y′ = y + cx, where c is a generic

number). Let φ be an analytic arc in K2, which is not tangent to the x-axis. Then it can be

parametrized by

x = c1t
n1 + c2t

n2 + · · · ∈ K{t} and y = tN

and therefore can be identified with a Puiseux series (denoted also by φ for simplicity of

notation)

x = φ(y) = c1y
n1/N + c2y

n2/N + · · · ∈ K{y1/N}

with N ≤ n1 < n2 < · · · being positive integers. The changes of variables X := x − φ(y)

and Y := y yield

F (X, Y ) := f(X + φ(Y ), Y ) :=
∑

cijX
iY j/N .

For each cij 6= 0, let us plot a dot at (i, j/N), called a Newton dot. The set of Newton dots

is called the Newton diagram. They generate a convex hull, whose boundary is called the

Newton polygon of f relative to φ, to be denoted by P(f, φ). Note that this is the Newton

polygon of F in the usual sense. If φ is a Newton–Puiseux root of f (i.e., f(φ(y), y) = 0), then

there are no Newton dots on X = 0, and vice versa. Assume that φ is not a Newton–Puiseux

root of f , then the exponents of the series f(φ(y), y) = F (0, Y ) correspond to the Newton
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〈Figure1〉

dots on the line X = 0. In particular, ordf(φ(y), y) = h0, where (0, h0) is the lowest Newton

dot on X = 0. The Newton edges E1, . . . , Es and their associated Newton angles θ1, . . . , θs

are defined in an obvious way as illustrated in the following example.

〈Example1〉
Example 2.1. Take f(x, y) := x3 − y5 + y6 and φ(y) := y5/3. We have

F (X, Y ) := f(X + φ(Y ), Y ) = X3 + 3X2Y 5/3 + 3XY 10/3 + Y 6.

By definition, the Newton polygon of f relative to φ has two compact edges E1, E2 with

tan θ1 = 5/3, tan θ2 = 8/3 (see Figure 1).

Take any edge Es. The associated polynomial Es(z) is defined to be Es(z) := Es(z, 1), where

Es(X, Y ) :=
∑

(i,j/N)∈Es

cijX
iY j/N .

The highest Newton edge, denoted by EH , is defined as follows: If φ is a Newton–Puiseux

root of f , then EH is the non-compact edge of the polygon P(f, φ) parallel to the y-axis. If

φ is not a Newton–Puiseux root of f , then EH is the compact edge of the polygon P(f, φ)

with a vertex being the lowest Newton dot on X = 0. For instance, in Example 2.1, E2 is

the highest Newton edge.

Next, let us recall the notion of sliding (see [20]). Suppose that φ is not a Newton–Puiseux

root of f. Consider the Newton polygon P(f, φ). Take any nonzero root c of EH(z) = 0, the

polynomial equation associated to the highest Newton edge EH . We call

φ1 : x = φ(y) + cytan θH

a sliding of φ along f, where θH is the angle associated to EH . A recursive sliding

φ→ φ1 → φ2 → · · ·
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produces a limit, denoted by φ∞, which is a Newton–Puiseux root of f . The series φ∞ will

be called a final result of sliding φ along f . Note that φ∞ has the form

φ∞ : x = φ(y) + cytan θH + higher order terms,

due to the following technical lemma.

〈Lemma22〉
Lemma 2.1. Let φ be a Puiseux series, which is not a Newton–Puiseux root of f . Let θH

and EH be respectively the Newton angle and polynomial associated to the highest Newton

edge EH . Consider a series of the following form

ψ : x = φ(y) + cyρ + higher order terms,

where c ∈ K and ρ ∈ Q, ρ > 0. Then the following statements hold:

(i) If either c or ρ is generic (i.e., arctan ρ is not a Newton angle of P(f, φ); or arctan ρ is

a Newton angle of P(f, φ) but c is not a root of the polynomial associated to the Newton

edge with Newton angle arctan ρ), then

ordf(ψ(y), y) = min{aρ+ b | (a, b) ∈ P(f, φ)}.

Furthermore,

ordf(ψ(y), y) 6 ordf(φ(y), y).

In particular, if either tan θH < ρ or tan θH = ρ and EH(c) 6= 0 then P(f, ψ) = P(f, φ),

and therefore

ordf(ψ(y), y) = ordf(φ(y), y).

(ii) If tan θH = ρ and EH(c) = 0 then

ordf(ψ(y), y) > ordf(φ(y), y).

Proof. cf. [1, 2, 23]. For a detailed proof, we refer to [14]. In fact, the special case where

ψ(y) = φ(y) + cytan θH was proved in [14, Lemma 2.1]. Then the lemma is deduced by

applying the special case (possibly infinitely) many times. �

〈def21〉
Definition 2.1. For each Puiseux series φ(y) =

∑
i aiy

αi and for each positive real number

ρ, the ρ-approximation of φ(y) is defined to be the series
∑

αi<ρ
aiy

αi + cyρ, where c is a

generic real number. We associate to any Puiseux series φ its real approximation φR(y)

defined to be the ρ-approximation of φ, where ρ is the smallest exponent occurring in φ with

non-real coefficient. It is clear that if ϕ is real, i.e., all coefficients of ϕ are real, then the real

approximation of ϕ is itself. Now, for f ∈ K{x, y} which is regular in x, let VR(f) be the set

of all real approximations of non-real Newton–Puiseux roots of f .

For any two distinct series φ1, φ2, their approximation, denoted by φ1,2, is defined to be

the ρ-approximation of φ1 where ρ := ord(φ1−φ2). Let V(f) be the set of all approximations

4



of φ1 and φ2 with φ1 6= φ2 being Newton–Puiseux roots of f . Note that VR(f) ⊂ V(f) if

f ∈ R{x, y}.

The following useful assertion is a direct consequence of Lemma 2.1:

〈Lemma23〉
Lemma 2.2. Assume that K = R. Let φ be a Puiseux series and let E1, . . . , Es be the

Newton edges of P(f, φ). Let θi and Ei be the corresponding Newton angle and polynomial

associated to Ei. Then by a permutation of indexes, we have

π/2 > θ1 > θ2 > . . . > θs

and the following statements hold:

(i) If Ei has two distinct roots, there exists ψ ∈ V(f) being of the form

ψ(y) = φ(y) + cytan θi + higher order terms,

where c is a generic number.

(ii) If θ 6= θ1 is a Newton angle, then there exists ψ ∈ V(f) being of the form

ψ(y) = φ(y) + cytan θ + higher order terms,

where c is a generic number.

(iii) If Ei has a non-real root, then there exists ψ ∈ VR(f) being of the form

ψ(y) = φ(y) + cytan θi + higher order terms,

where c is a generic number.

3. Formulas for  Lojasiewicz exponents
〈Section3〉

For the remainder of this section, let f, g : (R2, 0)→ (R, 0) be nonzero real analytic func-

tion germs, which are regular in x. Assume that 0 ∈ {f = 0} ⊂ {g = 0}. By the classical

 Lojasiewicz inequality, there exists positive constants C, r and α such that

|f(x, y)| > C|g(x, y)|α for |x| 6 r.

Recall that the  Lojasiewicz exponent of g w.r.t. f is denoted by Lg(f). Take any analytic

arc φ ∈ R2 at the origin parametrized by (x(t), y(t)). If g ◦ φ 6≡ 0, then we can define the

following positive rational number

`(φ) :=
ordf(φ(t))

ordg(φ(t))
.

By the Curve Selection Lemma (see [22, Lemma 3.1]), it is not hard to show that

Lg(f) = sup
φ
`(φ), (2) Eqn1

where the supremum is taken over all analytic arcs passing through the origin, which are not

contained in the zero locus of g. Furthermore, we have the following.
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〈Notlie〉
Lemma 3.1. The supremum in (2) can be taken over all real analytic arcs passing through

the origin not contained in the zero locus of yg.

Proof. By the assumption 0 ∈ {f = 0} ⊂ {g = 0}, we have

m := ord f > 0 and n := ord g > 0.

Let fm and gn be the homogeneous parts of degree m of f and of degree n of g respectively.

Pick a constant c 6= 0 such that fm(1, c) 6= 0 and gn(1, c) 6= 0. Then

ord f(x, 0) = m = ord (xmf(1, c)) = ord f(x, cx).

Similarly ord g(x, 0) = ord g(x, cx). Hence `((x, 0)) = `((x, cx)). The lemma follows. �

3.1. First formula for the  Lojasiewicz exponents. Let βj, j = 1, . . . , k be the common

real Newton–Puiseux roots of f and g of multiplicities mj and nj respectively. Let V(fg) be

the set given by Definition 2.1. For any φ ∈ V(fg), we will write `(φ) instead of `((φ(y), y))

for simplicity.

〈thm31〉
Theorem 3.1. Define

L+
g (f) := max

{
`(φ),

mj

nj

∣∣∣ φ ∈ V(fg), j = 1, . . . , k

}
and L−g (f) = L+

ḡ (f̄),

where f̄(x, y) := f(x,−y) and ḡ(x, y) := g(x,−y). Then the  Lojasiewicz exponent of g w.r.t

f is given by

Lg(f) = max
{
L+
g (f),L−g (f)

}
.

Proof. We first show that

Lg(f) > max
{
L+
g (f),L−g (f)

}
. (3) one-side

By (2), it is obvious that

Lg(f) > max {`(φ) | φ ∈ V(fg)} .

Therefore we only need to show that

Lg(f) >
mj

nj
for all j = 1, . . . , k. (4) >=mul

To do this, fix j ∈ {1, . . . , k} and consider the Newton polygons P(f, βj) of f and P(g, βj)

of g relative to the arc βj. Let A1 = (x1, y1) and A2 = (x2, y2) be respectively the vertices of

P(f, βj) and P(g, βj) being closest to the y-axis. We will show that

x1 = mj and x2 = nj. (5) multiplicity
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Indeed, in view of Weierstrass’s preparation theorem and Puiseux’s theorem (see, for exam-

ple, [21, The Puiseux theorem, page 170] or [23, page 98]), we can write

f(x, y) = u(x, y)(x− βj(y))mj

∏
φ

(x− φ(y))multf (φ), (6) Puiseux-f

where u ∈ C{x, y} with u(0, 0) 6= 0; multf (·) is the multiplicity of the corresponding Newton–

Puiseux root of f ; and the product is taken over all Newton–Puiseux roots of f different

from β1, . . . βk. So

f(X + βj(Y ), Y ) = u(X + βj(Y ), Y )Xmj

∏
φ

(X + βj(Y )− φ(Y ))multf (φ).

This implies

(x1, y1) =

(
mj, ord

∏
φ

(βj(Y )− φ(Y ))multf (φ)

)
. (7) A1

Similarly

(x2, y2) =

(
nj, ord

∏
ψ

(βj(Y )− ψ(Y ))multg(ψ)

)
,

where the product is taken over all Newton–Puiseux roots of g different from β1, . . . , βk.

These yield (5) immediately. For each positive integer n, define the arc

x = φn(y) = βj(y) + yn.

By (6), we have

f(φn(y), y) = u(φn, y)(φn(y)− βj(y))mj

∏
φ

(φn(y)− φ(y))multf (φ)

= u(φn, y)ynx1
∏
φ

(βj(y)− φ(y) + yn)multf (φ).

For n large enough, we have

ord (βj(y)− φ(y) + yn)) = ord (βj(y)− φ(y))) .

So combining this with (7) yields ord f(φn(y), y) = nx1 + y1. By the same way, we also have

ord g(φn(y), y) = nx2 + y2. Consequently

`(φn) =
nx1 + y1

nx2 + y2

.

Note that

lim
n→∞

`(φn) =
x1

x2

=
mj

nj
,

so (4) follows from (2). Therefore, Lg(f) > L+
g (f). Similarly, one has Lg(f) > L−g (f) and

hence the inequality (3) holds. Now we need to show that the inequality in (3) is actually

an equality.
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Suppose for contradiction that

Lg(f) > max
{
L+
g (f),L−g (f)

}
.

Then, by Lemma 3.1, there is a real analytic arc φ passing through the origin and not lying

in the x-axis such that g ◦ φ 6≡ 0 and

`(φ) > max
{
L+
g (f),L−g (f)

}
.

Note that φ can be parametrized by either

(x = φ(t), y = t) or (x = φ(t), y = −t),

where φ(t) is an element in R{t1/N} for some positive integer N with φ(0) = 0. Without

loss of generality we may assume that φ can be parametrized by (x = φ(t), y = t). Denote

by E1 and E2 the highest Newton edges of P(f, φ) and P(g, φ) respectively. Let Ei and θi be

respectively its associated polynomial and Newton angle.

〈Claim21〉
Claim 3.1. We have tan θ1 = tan θ2.

Proof. Assume for contradiction that, tan θ1 > tan θ2. Let φ∞ be a final result of sliding φ

along f . Write

φ∞(y) = φ(y) +
∑
i>1

aiy
αi ,

where ai ∈ C \ {0}, tan θ1 = α1 < α2 < · · · . We will show that ai ∈ R for all i > 1. In fact,

if this is not the case, for each n > 0, define the series

φ0(y) := φ(y), φn(y) := φ(y) +
n∑
i=1

aiy
αi for n > 1,

and let n0 be the smallest index such that an0 6∈ R. Then n0 > 1 and

φR
n0

(y) = φn0−1(y) + cyαn0 + higher order terms,

where c ∈ R is a generic number. By applying Lemma 2.1, we obtain

ord f(φR
n0

(y), y) = ord f(φn0−1(y), y) > · · · > ord f(φ(y), y)

and

ord g(φR
n0

(y), y) = ord g(φn0−1(y), y) = · · · = ord g(φ(y), y).

So

`(φR
n0

) = `(φn0−1) > . . . > `(φ) > L+
g (f),

a contradiction, since φR
n0
∈ VR(f) ⊂ VR(fg) ⊂ V(fg). This shows that an ∈ R for all n > 1.

But then this contradicts to the assumption that {f = 0} ⊂ {g = 0} in R2, hence

tan θ1 6 tan θ2.
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Now assume for contradiction that tan θ1 < tan θ2. Note that, θ1 and θ2 are Newton angles

of P(fg, φ). Then by Lemma 2.2(ii), there exists ψ ∈ V(fg) being of the form

ψ(y) = φ(y) + cytan θ1 + higher order terms,

where c ∈ R is a generic number. It follows from Lemma 2.1(i) that

ord f (ψ(y), y) = ord f (φ(y), y) and ord g (ψ(y), y) 6 ord g (φ(y), y) ,

and hence `(ψ) > `(φ) > L+
g (f). This contradiction finishes the claim. �

〈Claim23〉
Claim 3.2. The polynomial E1E2 has only one root.

Proof. Assume for contradiction that E1E2 has two distinct roots. By Claim 3.1, θ1 = θ2,

so E1E2 is the Newton polynomial associated to the highest Newton edge of P(fg, φ) (with

Newton angle θ1). Then by Lemma 2.2(i), there exists ψ ∈ V(fg) being of the form

ψ(y) = φ(y) + cytan θ1 + higher order terms,

where c ∈ R is a generic number. Then Lemma 2.1(ii) yields

ord f (ψ(y), y) = ord f (φ(y), y) and ord g (ψ(y), y) = ord g (φ(y), y) .

Hence `(φ) = `(ψ) and so `(φ) 6 L+
g (f) which contradicts the assumption `(φ) > L+

g (f). �

Let a ∈ R be the unique root of the polynomial E1E2 and let φ̃(y) := φ(y) + aytan θ1 .

We denote by Ẽ1 and Ẽ2 the highest Newton edge of P(f, φ̃) and P(g, φ̃) respectively. For

i = 1, 2, let θ̃i and Ẽi be the Newton angle and the polynomial associated to Ẽi. Recall that

E1 and E2 are respectively the highest Newton edges of P(f, φ) and P(g, φ). Let Bi = (xi, yi)

be the vertex of Ei which is not contained in the y-axis.

〈Claim24〉
Claim 3.3. If φ̃(y) is not a Newton–Puiseux root of f , then the following properties hold:

(i) Bi is a vertex of Ẽi, therefore deg Ẽi = xi = deg Ei.
(ii) tan θ̃1 = tan θ̃2.

(iii) The polynomial Ẽ1Ẽ2 has only one root.

(iv) `(φ̃) > `(φ).

Proof. (i) Let us define the function

µ(t) =
tx1 + y1

tx2 + y2

.

We first claim that x1y2 > x2y1. In fact, if this is not the case, i.e., x1y2 < x2y1, then

the function µ is strictly decreasing and y1 > 0. Since f is regular in x, there exists a

Newton edge E of P(f, φ) which is different from E1 and has B1 as a vertex. Let θ be the

9



Newton angle associated to E. Clearly θ < θ1 = θ2, therefore, by Lemma 2.2(ii), there exists

ψ ∈ V(f) ⊂ V(fg) such that

ψ(y) = φ(y) + cytan θ + higher order terms,

where c ∈ R is a generic number. We have

ord f(φ(y), y) = x1 tan θ1 + y1 and ord g (φ(y), y) = x2 tan θ2 + y2 = x2 tan θ1 + y2,

Moreover, by Lemma 2.1(i) and the choice of the edge E,

ord f(ψ(y), y) = x1 tan θ + y1 and ord g (ψ(y), y) 6 x2 tan θ + y2.

Hence

`(φ) = µ(tan θ1) < µ(tan θ) 6 `(ψ) 6 L+
g (f),

which is a contradiction. Hence we must have x1y2 > x2y1, i.e., the function µ is increasing.

Let Ẽ be the edge of P(f, φ̃) such that B1 is the vertex having larger x-coordinate. Let θ̃

be the Newton angle associated to Ẽ. Since φ̃(y) is not a Newton–Puiseux root of f , Ẽ is a

compact edge and therefore θ1 < θ̃ < π/2. If Ẽ is not the highest Newton edge of P(f, φ̃),

then by Lemma 2.2(ii), there exists ϕ ∈ V(f) ⊂ V(fg) such that

ϕ(y) = φ̃(y) + cytan θ̃ + higher order terms,

where c ∈ R is a generic number. It follows from Lemma 2.1(i) that

ord f(ϕ(y), y) = x1 tan θ̃ + y1 and ord g (ϕ(y), y) 6 x2 tan θ̃ + y2.

Hence

`(φ) = µ(tan θ1) 6 µ(tan θ̃) 6 `(ϕ) 6 L+
g (f).

This contradiction yields Ẽ ≡ Ẽ1, i.e., B1 is a vertex of Ẽ1. Similarly we can show that B2

is a vertex of Ẽ2 and hence Item (i) follows.

(ii)–(iii) These can be proved by using completely the same argument as in Claims 3.1

and 3.2.

(iv) It follows from Items (ii) and (iii) that

ord f(φ̃(y), y) = x1 tan θ̃1 + y1 and ord g(φ̃(y), y) = x2 tan θ̃2 + y2 = x2 tan θ̃1 + y1,

i.e.,

`(φ̃) = µ(tan θ̃1) > µ(tan θ1) = `(φ).

This implies (iv) and hence the claim follows. �
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We are now in position to complete the theorem. Applying Claim 3.3 (possibly infinitely)

many times, we obtain φ∞ as a final result of sliding of φ along f . This implies that, x =

φ∞(y) is a common Newton–Puiseux root of f and g of multiplicities x1 and x2 respectively.

Moreover, from the proof Claim 3.3, x1y2 > x2y1, it follows that

`(φ) =
x1 tan θ1 + y1

x2 tan θ1 + y2

6
x1

x2

6 L+
g (f).

This contradicts the assumption `(φ) > L+
g (f). The theorem is proved. �

3.2. Second formula for the  Lojasiewicz exponents. Recall that VR(f) is the set of

real approximations of non-real Newton–Puiseux roots of f as defined in Definition 2.1. Let

βj, j = 1, . . . , k, be the common real Newton–Puiseux roots of f and g of multiplicity mj

and nj respectively.

〈thm32〉
Theorem 3.2. Define

L +
g (f) := max

{
`(γ),

mj

nj

∣∣∣ γ ∈ VR(f), j = 1, . . . , k

}
and L −

g (f) = L +
ḡ (f̄),

where f̄(x, y) := f(x,−y) and ḡ(x, y) := g(x,−y). Then the  Lojasiewicz exponent of g w.r.t

f is given by

Lg(f) = max
{
L +
g (f),L −

g (f)
}
.

Proof. Since VR(f) ⊂ V(fg) and VR(f̄) ⊂ V(f̄ ḡ), by Theorem 3.1,

Lg(f) = max
{
L+
g (f),L−g (f)

}
> max

{
L +
g (f),L −

g (f)
}
.

Arguing by contradiction, we assume that

Lg(f) > max
{
L +
g (f),L −

g (f)
}
.

It follows from Theorem 3.1 and Lemma 3.1 that there is an analytic arc φ passing through

the origin and not lying in the x-axis such that g ◦ φ 6≡ 0 and

Lg(f) = `(φ) > max
{
L +
g (f),L −

g (f)
}
.

Note that φ can be parametrized by either

(x = φ(t), y = t) or (x = φ(t), y = −t),

where φ(t) is an element in R{t1/N} for some positive integer number N with φ(0) = 0.

Let Eφ be the polynomial associated to the highest Newton edge of P(f, φ). With no loss of

generality, we can assume that φ has the following property:

For any analytic arc φ̃ passing through the origin not lying in the x-axis and having the

parametrization (x = φ̃(t), y = t) such that g ◦ φ̃ 6≡ 0 and

Lg(f) = `(φ̃) > max
{
L +
g (f),L −

g (f)
}
,
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if Eφ̃ is the polynomial associated to the highest Newton edge of P(f, φ̃), then deg Eφ̃ > deg Eφ.

Indeed, if there is an analytic arc φ̃ such that this property does not hold, i.e., deg Eφ̃ <
deg Eφ, then it is enough to replace φ by φ̃ and repeat the process until the property is

satisfied.

Let E1 and E2 be the highest Newton edges of P(f, φ) and P(g, φ) respectively. For each

i = 1, 2, let Ei and θi be the associated polynomial and the Newton angle of Ei respectively.

Let Bi = (xi, yi) be the vertex of Ei which is not contained in the y-axis. Then the following

statement holds.

〈Claim26〉
Claim 3.4. We have tan θ1 = tan θ2.

Proof. Applying the same argument as in the proof of Claim 3.1, we get tan θ1 6 tan θ2.

Assume for contradiction that tan θ1 < tan θ2. Let

ψ(y) = φ(y) + cytan θ1

with a generic number c. It follows from Lemma 2.1 that

ord f(ψ(y), y) = x1 tan θ1 + y1 = ord f(φ(y), y)

and

ord g(ψ(y), y) 6 x2 tan θ1 + y2 < x2 tan θ2 + y2 = ord g(φ(y), y).

These imply

`(ψ) > `(φ) = Lg(f),

which is a contradiction. �
?〈Claim27〉?

Claim 3.5. The polynomial E1 has only real roots.

Proof. Assume for contradiction that a 6∈ R is a root of E1. It follows from Lemma 2.2(iii)

that there exists ψ ∈ VR(f) of the form

ψ = φ+ cytan θ1 + higher order terms

with a generic real number c. Applying Lemma 2.1(i) we obtain

ord f(ψ(y), y) = ord f(φ(y), y) and ord g(ψ(y), y) = ord g(φ(y), y).

Therefore

`(ψ) = `(φ) > L +
g (f),

which contradicts the definition of L +
g (f). �

〈Claim29〉
Claim 3.6. We have

(i) x1y2 = x2y1, and therefore `(φ) =
x1

x2

=
tx1 + y1

tx2 + y2

for all t.

(ii) The polynomial E1E2 has only one root.

12



Proof. (i) First of all, let us prove

x1y2 > x2y1. (8) 1221

Indeed, if this is not the case, i.e., x1y2 < x2y1, then the function

µ(t) :=
tx1 + y1

tx2 + y2

is strictly decreasing. Let ψ(y) = φ(y) + yρ with 0 < ρ < tan θ1 closed enough to θ1(= θ2

by Claim 3.4) so that arctan ρ is larger than the other Newton angles of P(f, φ) and P(g, φ).

Then

ord f(ψ(y), y) = x1ρ+ y1 and ord g(ψ(y), y) = x2ρ+ y2.

So we get

`(ψ) = µ(ρ) > µ(tan θ1) = `(φ) = Lg(f),

which contradicts the definition of Lg(f). Hence (8) must hold. Now let us prove that the

sign “=” always occurs.

Let cj ∈ R, j = 1, . . . , q, be the roots of E1(z) of multiplicity xj1 with xj1 > 0 and q > 1.

We write

E2(z) = a(z)

q∏
j=1

(z − cj)x
j
2

with xj2 > 0 and a(cj) 6= 0. Observe that

q∑
j=1

xj1 = deg E1 = x1 and

q∑
j=1

xj2 + deg a(z) = deg E2 = x2. (9) deg

Let us denote by Aji = (xji , y
j
i ) the intersection of the line {x = xji} with the edge Ei for each

i = 1, 2. Set

µj(t) :=
txj1 + yj1
txj2 + yj2

.

Since Aji ∈ Ei, it follows that

µj(tan θ1) = `(φ) and yji = yi + tan θ1(xi − xji ), for all i = 1, 2, j = 1 . . . , q. (10) equa22

We also notice that Aj1 is a vertex of the Newton polygon P(f, φ̃j) with φ̃j(y) := φ(y)+cjy
θ1 .

We shall show that

xj1y
j
2 6 xj2y

j
1 for all j = 1, . . . , q. (11) IE

In fact, by contradiction, assume that xj1y
j
2 > xj2y

j
1, i.e., the function µj(t) is strictly increas-

ing. From this and (10), for ρ > tan θ1 sufficiently closed to tan θ1, we have

Lg(f) = `(φ) = µj(tan θ1) < µj(ρ) = `
(
φ̃j(y) + cyρ

)
6 Lg(f)

13



for every non-zero c ∈ R, which is clearly a contradiction. Thus (11) must holds. Combin-

ing (10) and (11) yields

xj1[y2 + tan θ1(x2 − xj2)] 6 xj2[y1 + tan θ1(x1 − xj1)] for all j = 1, . . . , q.

Summing up we obtain

(y2 + x2 tan θ1)

q∑
j=1

xj1 6 (y1 + x1 tan θ1)

q∑
j=1

xj2.

Combining this with (9), we get

(y2 + x2 tan θ1)x1 6 (y1 + x1 tan θ1)(x2 − deg a(z)) 6 (y1 + x1 tan θ1)x2.

Equivalently

x1y2 6 x2y1.

By this and (8), we have x1y2 = x2y1 and Item (i) follows.

(ii) By Item (i), it follows that xj1y
j
2 = xj2y

j
1 for all j = 1, . . . , q and deg a(z) = 0. Hence

the function µj(t) is constant. Consider, for each j, the curve ψj(y) = φ̃j + yρ for some

ρ > tan θ1 sufficiently closed to tan θ1. Then

`(ψj) = µj(ρ) = µj(tan θ1) = `(φ).

Moreover, it is not hard to check that Aj1 is a vertex of the Newton polygon P(f, ψj). So

deg Eψj
= xj1 where Eψj

is the polynomial associated to the highest Newton edge of P(f, ψj).

Then it follows from the choice of φ that xj1 > x1. This implies q = 1 and therefore, by

the fact that deg a(z) = 0, the polynomial E1E2 must have only one root. The claim is

proved. �

Let a ∈ R be the unique root of the polynomial E1E2 and let φ̃(y) := φ(y) + aytan θ1 . Let

P̃1 := P(f, φ̃) and P̃2 := P(g, φ̃). We denote by Ẽi the Newton edge of P̃i containing Bi as the

vertex with the larger x-coordinate. Let θ̃i and Ẽi be the Newton angle and the polynomial

associated to Ẽi respectively.

〈Claim32〉
Claim 3.7. We have tan θ̃1 = tan θ̃2.

Proof. Assume for contradiction that tan θ̃1 > tan θ̃2. Consider the curve

ψ(y) = φ̃+ cytan θ̃1

with a generic number c. Then it follows from Lemma 2.1(i) that, for any (u, v) ∈ Ẽ2 such

that (u, v) 6= B2, we have

ord f(ψ(y), y) = x1 tan θ̃1 + y1

and

ord g(ψ(y), y) 6 u tan θ̃1 + v < x2 tan θ̃1 + y2.
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Therefore

`(ψ) >
x1 tan θ̃1 + y1

x2 tan θ̃1 + y2

=
x1 tan θ1 + y1

x2 tan θ1 + y2

= `(φ) = Lg(f),

where the first equality follows from Claim 3.6(i). This is a contradiction.

Now, by contradiction, suppose that tan θ̃1 < tan θ̃2. Let us show that the polynomial

Ẽ1 has only real root. In fact, if this is not the case, then by Lemma 2.2(iii), there exists

ψ ∈ VR(f) of the form

ψ(y) = φ̃+ cytan θ̃1

with a generic number c. It then follows from Lemma 2.1(i) that

ord f(ψ(y), y) = x1 tan θ̃1 + y1 and ord g(ψ(y), y) 6 x2 tan θ̃1 + y2.

Therefore, in view of Claim 3.6(i),

`(ψ) >
x1 tan θ̃1 + y1

x2 tan θ̃1 + y2

=
x1 tan θ1 + y1

x2 tan θ1 + y2

= `(φ) = Lg(f),

which is a contradiction, because ψ ∈ VR(f).

We now take 0 6= a ∈ R such that Ẽ1(a) = 0 and define γ(y) = φ̃+aytan θ̃1 . Then it follows

from Lemma 2.1(i) that

ord f(γ(y), y) > x1 tan θ̃1 + y1 and ord g(γ(y), y) 6 x2 tan θ̃1 + y2.

Therefore

`(γ) >
x1 tan θ̃1 + y1

x2 tan θ̃1 + y2

= `(φ) = Lg(f),

a contradiction. Hence tan θ̃1 = tan θ̃2. �
〈Claim33〉

Claim 3.8. If φ̃(y) is not a Newton–Puiseux root of f , then it and the Newton polygons of

f and g relative to it share the following properties with that of φ:

(i) tan θ̃1 = tan θ̃2.

(ii) The polynomial Ẽ1Ẽ2 has only one root. In particular, for each i = 1, 2, Ẽi is the

highest Newton edge of P̃i.
(iii) `(φ̃) =

x1

x2

= `(φ).

Proof. It is clear that Item (i) follows from Claim 3.7. Furthermore, Items (ii) and (iii) can

be proved by using the same argument as in the proof of Claim 3.6. �

We are now in position to complete the theorem. Applying Claim 3.8 (possibly infinitely)

many times, we obtain a final result φ∞ of sliding of φ along f which is also that of g. This

implies that, φ∞ is a common Newton–Puiseux root of f and g of multiplicities x1 and x2

respectively. Therefore,

`(φ) =
x1

x2

6 L +
g (f).
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This contradicts to the assumption that `(φ) > L +
g (f). Hence the theorem follows. �

Remark 3.1. Note that the supremum in (2) may not be attained, i.e., it is possible that

there is no analytic arc φ ∈ R2 at the origin such that Lg(f) = `(φ). The following example

is an illustration.

Let

f(x, y) = x2 and g(x, y) = x(x2 + y2).

Then f(x, y) > g2(x, y) for (x, y) closed enough to the origin. So Lg(f) 6 2. On the other

hand, for each positive integer k, let φk(t) = (t, t1/k), then we have

`(φk) =
2

1 + 2
k

→ 2 as k → +∞.

Therefore Lg(f) = 2.

Now, for any analytic arc φ(t) = (x(t), y(t)) at the origin, we have

`(φ) =
2ord x(t)

ord x(t) + 2 min{ord x(t), ord y(t)}
<

2ord x(t)

ord x(t)
= 2,

i.e., Lg(f) is not attained for any analytic arc φ ∈ R2 at the origin.
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