
IEEE CONTROL SYSTEMS LETTERS, VOL. XX, NO. XX, XXXX 2022 1

Delay-Dependent Positivity and Stability
Analysis of Discrete-Time Systems with Delay

Le Van Hien

Dedicated to Professor Vu Ngoc Phat, the Institute of

Mathematics, Vietnam Academy of Science and Technology,

on the occasion of his 70th birthday.

Abstract—In this paper, delay-dependent positivity and
stability conditions, which are crucially different from exist-
ing delay-independent ones, are derived for discrete-time
systems with time-varying delay. By utilizing a special prop-
erty called non-oscillatory behavior of solutions of scalar
difference equations with delays, the proposed conditions
are formulated in terms of linear programming settings.
The efficiency of the obtained results is illustrated by a
numerical example with simulations.

Index Terms— Positive systems, delay-dependent posi-
tivity, stability analysis.

I. INTRODUCTION

V
ARIOUS aspects in the systems and control theory have

been developed for discrete-time systems of the form

x(k + 1) = Ax(k) +Adx(k − τ(k)) +Bd(k), k ∈ N0

x(k) = φ(k), k ∈ Z[−τmax, 0]
(1)

with positivity constraints on the system state, input and output

vectors. Such systems with positivity constraints are typically

referred to positive systems [1] or nonnegative dynamical

systems [2]. A popular positivity concept, which has been

extensively studied for linear systems, can be intuitively ex-

plained through invariant properties of input-output operator

[3]–[5]. Specifically, system (1) is said to be (internally)

positive if state trajectory x(k) � 0 for any initial condition

φ(k) � 0 and input d(k) � 0 [6]. In this meaning, it is well-

known that, system (1) is positive if and only if A, Ad and

B are nonnegative matrices [7]–[9] and, subject to positivity,

system (1) is globally asymptotically stable if and only if the

matrix A + Ad is Schur stable (see, [1], [3] or recent works

[9], [10] for more details). The aforementioned conditions are

referred to delay-independent positivity approach (i.e. posi-

tivity and stability conditions are not involved the magnitude

of delays). The theory of positive linear systems based on

delay-independent positivity has been extensively studied with

a very rich literature (see, e.g., [5], [8]–[13] and the references

therein). However, in practice, the positivity of the input vector

d(k) may not be predefined independently with that of initial
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sequence φ(k), for example, when d(k) can be finite-time

reference [14]. In other words, d(k) may be dependent of

φ(k) and the positivity of d(k), for all k ≥ 0, is not always

available. To that case, the delay-independent criterion fails

to apply. This urges to alternative results referred to delay-

dependent positivity. Motivating examples of employing delay-

dependent positivity conditions can be found in framer (a

type of interval open-loop estimators) [15] or interval observer

designs for delayed measurement systems [16]. For example,

the design of interval observers requires that, besides stability

conditions, some restrictions on the positivity of estimation

error dynamics have to be imposed in order to envelop the

system state trajectories. Thus, it is relevant to develop the

theory of delay-dependent positivity. For another supportive

reason, let us introduce a simple counterexample. Consider

the following scalar equation

x(k + 1) = ax(k)− bx(k − 1) + ω(k), k ≥ 0

x(0) = x0, x(−1) = x−1

(2)

where a, b ∈ R, a > 0, b > 0 and

ω(k) =

{

a2

4 x−1 if k = 0

0 elsewhere.

Clearly, equation (2) is neither positive nor stable by the delay-

independent criterion. Assume that 0 < b < a2

4 . Then, δ0 =
a2 − 4b > 0 and

√
δ0 < a. By a recurrent process, we obtain

x(k) =
1√
δ0

[

(

a+
√
δ0

2

)k+1

−
(

a−
√
δ0

2

)k+1
]

x0

+

√
δ0

4

[

(

a+
√
δ0

2

)k

−
(

a−
√
δ0

2

)k
]

x−1. (3)

Thus, x(k) ≥ 0 for all k ≥ 0 if x0 ≥ 0 and x−1 ≥ 0. In

addition, if a+ δ0
4 < 1, then it follows from (3) that x(k) → 0

as k → ∞ for any x0, x−1. This suggests a complementary

delay-dependent positivity and stability criterion. For linear

continuous-time systems, a few results concerning delay-

dependent positivity and applications to stability analysis and

controller/observer design have been reported, e.g., in [14],

[16], [17]. However, the earlier mentioned works could not

deal with delay-dependent positivity of systems as given in

(1). Note also that the existing methods for continuous-time

systems are not applicable to system (1).

In this paper, we consider the problem of positivity and sta-

bility analysis for discrete-time systems with delay. Based on

the theory of non-oscillation solutions of functional difference

admin
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equations, delay-dependent positivity and stability conditions

are derived in the form of linear programming (LP) problems.

The obtained results nicely complement the existing delay-

independent criteria, which can be regarded as the critical case

when the upper bound of delay tends to infinity.

The remaining of this paper is organized as follows. Section

II introduces preliminary results on delay-independent condi-

tions. Main results on delay-dependent positivity and stability

of discrete-time systems with delay are presented in Section

III and Section IV, respectively. An illustrative example with

simulations is given in Section V. The paper ends with a

conclusion drawn in Section VI and cited references.

Notation. 1, n denotes the set {1, 2, . . . , n} for an n ∈ N and

Z[a, b] = {a, a + 1, . . . , b} for integers a ≤ b. Comparisons

between vectors are understood componentwise, that is, for

x = (xi) ∈ Rn and y = (yi) ∈ Rn, x � y iff xi ≤ yi and

x ≺ y iff xi < yi for all i ∈ 1, n. Rn
+ = {x ∈ R

n : x � 0}
and |x| = (|xi|) ∈ Rn

+. For a matrix A ∈ Rm×n, we write as

[A]ij the entry at row ith and column jth of A. A matrix A

is a nonnegative matrix, A � 0, if [A]ij ≥ 0 for all i, j; A is

positive, A ≻ 0, if [A]ij > 0 for all i, j and A is Metzler if

its off-diagonal entries are nonnegative (i.e., [A]ij ≥ 0 for all

i 6= j). A � B (A ≻ B) means A−B � 0 (A−B ≻ 0). We

also denote by DA the diagonal matrix obtained by stacking

the diagonal entries of A.

II. DELAY-INDEPENDENT CONDITIONS

Consider the following discrete-time system with delay

x(k + 1) = Ax(k) +Adx(k − τ(k)), k ∈ N0

x(k) = φ(k), k ∈ Z[−τmax, 0]
(4)

where x(k) ∈ Rn is the state vector, A, Ad ∈ Rn×n are

given matrices, τ(k) is a time-varying delay satisfying 0 ≤
τ(k) ≤ τmax and φ(k) is the initial condition. We recall there

that system (4) is (internally) positive if for any φ(k) � 0,

k ∈ Z[−τmax, 0], it holds that x(k) � 0 for all k ≥ 0. The

following result is widely used for design problems of positive

systems [7].

Lemma 1: System (4) is positive if and only if A � 0
and Ad � 0. Moreover, the positive system (4) is globally

asymptotically stable (GAS) if and only if ρ(A0 + A1) < 1,

where ρ(M) = max{|λ| : λ ∈ C, det(M−λIn) = 0} denotes

the spectral radius of a matrix M ∈ Rn×n.

Remark 1: The stability condition given in Lemma 1 is

satisfied if and only if [7] there exists a vector µ ∈ Rn, µ ≻ 0,

such that

µ⊤(A0 +A1)− µ⊤ ≺ 0. (5)

It can be seen that the delay τ(k) does not have any impact

on the feasibility of condition (5). By this, condition (5) is

typically mentioned as a delay-independent stability condition,

which has been widely used in the literature concerning

analysis and synthesis of discrete-time positive linear systems.

In addition, condition (5) can also guarantee the exponential

stability of system (4), that is, there exist scalars 0 < α < 1,

β > 0 such that any solution x(k) of (4) satisfies

‖x(k)‖1 ≤ β‖φ‖Z[−τmax,0]α
k, k ≥ 0

where ‖φ‖Z[−τmax,0] = supk∈Z[−τmax,0] ‖φ(k)‖1. The expo-

nential factor α can be determined as α = max1≤i≤n αi and,

for each i ∈ 1, n, αi ∈ (0, 1) is the unique solution of the

equation [18]

1

µi

n
∑

j=1

[A0]ijµj +
1

µi

n
∑

j=1

[A1]ijµjα
−τmax

i = αi.

This shows that the magnitude of delay affects the convergent

rate of the system states.

III. DELAY-DEPENDENT POSITIVITY

A. Preliminary results: The case of scalar equations

Consider the following scalar difference equation

x(k + 1)− x(k) +

m
∑

j=0

ajx(k − τj(k)) = f(k) (6)

where aj ∈ R, τj(.) : N0 → N0, τj(k) ≤ qj , and f : N0 → R.

With initial condition x(l) = 0 for l < 0, x(0) ∈ R, by the

constant variation formula, the corresponding solution of (6)

can be represented as

x(k) = X(k, 0)x(0) +

k−1
∑

l=0

X(k, l+ 1)f(l) (7)

where, for a fixed l ∈ N0, X(k, l) denotes the fundamental

solution of the corresponding homogeneous equation of (6)

(i.e. when f is set to be zero) defined by

X(k + 1, l)−X(k, l) +

m
∑

j=0

ajX(k − τj(k), l) = 0, k ≥ l

X(i, l) = 0, i < l, X(l, l) = 1.
(8)

Note that the representation according to constant variation

formula (7) is also applicable for state-dependent inhomoge-

neous terms of the form f(k) = f(k, x(k)). On the other

hand, in regard to (7), if the fundamental solution X(k, l)
is positive then any solution of (6) with nonnegative initial

condition and input f(k) is positive. Thus, the positivity of

X(k, l) is essential for the positivity of (6). Let L : x 7→ Lx

be the linear difference operator defined by (6), that is,

(Lx)(k) = x(k + 1)− x(k) +

m
∑

j=0

ajx(k − τj(k)).

The following lemma will be used in our next derivation. See

[19, Lemma 2] for more details.

Lemma 2: Assume that aj ≥ 0, j = 0, 1, . . . ,m, and there

exists a function Φ : N0 → (0,∞) such that (LΦ)(k) ≤ 0,

k ∈ N0. Then, it holds that X(k, l) ≥ Φ(k)
Φ(l) for all k ≥ l ≥ 0.

Typically, we could not derive explicit expression of the

fundamental solution X(k, l) due to time-varying delay. Thus,

one needs to compare X(k, l) with certain type of exponential

functions Φ(k). On the basis of deduction, and as revealed in

Lemma 2, let us consider the following characteristic equation

λ− 1 +

m
∑

j=0

ajλ
−qj = 0. (9)
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Lemma 3: Assume that aj ≥ 0, j = 0, 1, . . . ,m, and Eq.

(9) has a positive real root λ∗. Then, the fundamental solution

X(k, l) of (6) is positive.

Proof: Let λ∗ be a positive real root of (9). Then, we have

1− λ∗ =

m
∑

j=0

ajλ
−qj
∗ ≥ 0.

Thus, 0 < λ∗ ≤ 1. With the function Φ(k) = λk
∗ , we have

(LΦ)(k) = λk+1
∗ − λk

∗ +
m
∑

j=0

ajλ
k−τj(k)
∗

≤ λk
∗

(

λ∗ − 1 +

m
∑

j=0

ajλ
−qj
∗

)

= 0.

By Lemma 2, the fundamental solution X(k, l) of (6) satisfies

X(k, l) ≥ λk−l
∗ > 0 for all k ≥ l ≥ 0. �

Next, the result of Lemma 3 will be applied to underline

the positivity of solutions of the following equation

x(k + 1) = ax(k)− bx(k − τ(k)) + f(k), k ∈ N0 (10)

where a, b ∈ R are given scalars, 0 ≤ τ(k) ≤ q ∈ N, and

f : N0 → R. With the initial condition

x(l) = 0, l < 0, x(0) ≥ 0, (11)

if a ≥ 0, b ≤ 0 and f(k) ≥ 0, then x(k) ≥ 0 for all k ≥ 0
according to delay-independent positivity. We assume that b ≥
0. Eq. (10) can be written as (6) with a0 = 1− a and a1 = b.

By Lemma 3, the fundamental solution of (10) is positive if

the following conditions are fulfilled

1− a ≥ 0, b ≥ 0 (12a)

∃λ > 0 : λ− a+ bλ−q = 0. (12b)

To ensure the positivity of the fundamental solution of Eq.

(10), it is essential to determine whether a positive real root

of (12b) exists. This condition is satisfied if and only if there

exists a positive real root of the polynomial P (λ) = λq+1 −
aλq+b, λ ∈ R. Since P (λ) attains its minimum at λ0 = qa

q+1 ,

min
λ∈(0,∞)

P (λ) = P (λ0) = b− 1

q + 1
· aq+1

(

1 + 1
q

)q

condition (12b) is satisfied if and only if it holds that

(q + 1)b ≤ aq+1

(

1 + 1
q

)q . (13)

Clearly, condition (13) is still valid for b ≤ 0 and a ∈ (0, 1].
Thus, for a ∈ [0, 1] and b ∈ R subject to condition (13), any

solution of equation (10) with initial condition (11) is positive.

Next, we extend the initial condition (11) to the following

general one

x(l) = ϕ(l), l ∈ Z[−q, 0] (14)

where ϕ : Z[−q, 0] → R is a function that specifies an initial

sequence of state x(k) of (10).

Proposition 1: Let a ∈ [0, 1] and b ∈ R be given such that

the inequality (13) is satisfied. If ϕ(0) ≥ 0, f(k) ≥ 0 for all

k ∈ N0 and

f(k) ≥ bϕ(k − τ(k)), ∀k ∈ {k ∈ Z[0, q] : k − τ(k) < 0}

then the corresponding solution of the problem defined by (10)

and (14) satisfies x(k) ≥ 0 for all k ∈ N0.

Proof: Let x̂ : Z∩ [−q,∞) → R be the function defined as

x̂(k) =

{

x(k)− ϕ(k) for k < 0

x(k) for k ∈ N0.

Then, equation (10) with initial condition (14) can be recast

into the following equation

x̂(k + 1) = ax̂(k)− bx̂(k − τ(k)) + f̂(k), k ∈ N0

x̂(l) = 0, l < 0, x̂(0) = ϕ(0)
(15)

where

f̂(k) =

{

f(k)− bϕ(k − τ(k)) if k − τ(k) < 0

f(k) otherwise.

Since f̂(k) ≥ 0 for all k ∈ N0 and condition (13) is satisfied,

by Lemma 3, x̂(k) ≥ 0, and hence x(k) ≥ 0, for k ≥ 0. �

B. Delay-dependent positivity

Proposition 1 provides a so-called delay-dependent criterion

for the positivity of scalar equation (10). This result can be

extended to n-dimensional systems given by

x(k + 1) = Ax(k) +Adx(k − τ(k)) + w(k)

x(k) = φ(k), k ∈ Z[−τmax, 0]
(16)

where w(k) ∈ Rn is a time-dependent parameter to enforce

the positivity, which will be determined.

Proposition 2: Asume that

A � 0, Ad is Metzler, DA � In (17a)

DAd
+

1

1 + τmax
· D

1+τmax

A
(

1 + 1
τmax

)τmax
� 0. (17b)

If w(k) � 0 for all k ≥ 0, φ(0) � 0 and

w(k) � −Adφ(k − τ(k)) for k − τ(k) < 0 (18)

then the solution of (16) satisfies x(k) � 0 for all k ∈ N0.

Proof: Inspired by the proof of Proposition 1, we consider

the following n-dimensional system

x̃(k + 1) = Ax̃(k) +Adx̃(k − τ(k)) + w̃(k), k ∈ N0

x̃(l) = 0, l < 0, x̃(0) = φ(0)
(19)

where

w̃(k) =

{

w(k) +Adφ(k − τ(k)) if k − τ(k) < 0

w(k) elsewhere.
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Clearly, it follows from (16) and (19) that x(k) = x̃(k) for

all k ∈ N0. On the other hand, for each i ∈ 1, n, by (19), we

have

x̃i(k + 1) = [A]iix̃i(k) + [Ad]iix̃i(k − τ(k)) + w̃i(k)

+

n
∑

j=1,j 6=i

([A]ij x̃j(k) + [Ad]ij x̃j(k − τ(k)))

x̃i(l) = 0, l < 0, x̃i(0) = φi(0).
(20)

By virtue of the induction method, assume that x̃(k) � 0 for

0 ≤ k ≤ p. Then, take into account condition (18), we have

fi(k, x̃i(k)) =

n
∑

j=1,j 6=i

([A]ij x̃j(k) + [Ad]ij x̃j(k − τ(k)))

+ w̃i(k) ≥ 0, 0 ≤ k ≤ p.

In addition to this, since 0 ≤ [A]ii ≤ 1 and, according to (17),

−(1 + τmax)[Ad]ii ≤
[A]1+τmax

ii
(

1 + 1
τmax

)τmax
,

the fundamental solution of the homogeneous equation of (20)

(without the term fi(k, x̃i(k))) is positive. This, together with

(7), yields

x̃i(p+ 1) = Xi(p+ 1, 0)φi(0)

+

p
∑

k=0

Xi(p+ 1, k + 1)fi(k, x̃i(k)) ≥ 0, i ∈ 1, n.

Thus, x̃(p+1) � 0. By the reduction method, we can conclude

that x̃(p) � 0 for all p ≥ 0. The proof is completed. �

Remark 2: Proposition 2 gives a delay-dependent criterion

for the positivity of solutions of (16). Since nonnegativity of

the matrix Ad and initial sequence is not imposed, the obtained

result is clearly different from the delay-independent one given

in Lemma 1. Moreover, it is noticing that when Ad � 0,

condition (17b) is ignored and condition (18) is obviously

satisfied for nonnegative initial condition φ(k). Thus, the result

of Proposition 2 encompasses the delay-independent positivity

as a particular case.

We now define a transformation φ 7→ wφ from a sequence

φ : Z[−τmax, 0] → Rn to a sequence wφ : N0 → Rn by

wφ(k) =











1
1+τmax

· D
1+τmax
A

(

1+ 1
τmax

)τmax φ(k − τ(k) if k − τ(k) ≤ 0

0 otherwise.
(21)

According to (17b) and (21), if φ(l) � 0 for l ∈ Z[−τmax, 0]
then wφ(k)+Adφ(k− τ(k)) � 0 for k ∈ Z[0, τmax] such that

k − τ(k) ≤ 0. Thus, condition (18) is fulfilled. By this fact,

the following corollary can be obtained from Proposition 2.

Corollary 1: Under the assumptions of Proposition 2, if

φ(k) � 0, k ∈ Z[−τmax, 0], the solution of the system

x(k + 1) = Ax(k) +Adx(k − τ(k)) + wφ(k), k ∈ N0

x(k) = φ(k), k ∈ Z[−τmax, 0]
(22)

satisfies x(k) � 0 for all k ∈ N0.

IV. STABILITY ANALYSIS UNDER DELAY-DEPENDENT

POSITIVITY

In this section, we derive delay-dependent stability con-

ditions for discrete-time positive linear systems in the form

of (4). Note at first that if x(k) is a solution of (22) then

z(k) = x(k + k0) is a solution of (4) with initial condition

φz(l) = x(l+ k0), where k0 = 1+ τmax. In addition, for any

solutions x(k), z(k) of (22) and (4), e(k) = x(k) − z(k) is

also a solution of (22). This shows that the asymptotic stability

of (22) implies that of (4) and vice versa. For convenience,

we state this fact in the following lemma.

Lemma 4: The discrete-time linear system (4) is GAS if

and only if system (22) is GAS.

Under the assumptions of Proposition 2, any solution

x(k, φ) of system (22) satisfies |x(k, φ)| � x(k, |φ|) for all

k ∈ N0. By this observation, from (22) we have the following

result.

Theorem 1: Assume that

A � 0, Ad +
1

1 + τmax
· D

1+τmax

A
(

1 + 1
τmax

)τmax
� 0 (23)

and there exists a vector η ∈ R
n, η ≻ 0, such that

η⊤ (A+Ad − In) +
1

1 + τmax
· D

1+τmax

A
(

1 + 1
τmax

)τmax
η⊤ ≺ 0.

(24)

Then, there exist scalars β > 0, δ ∈ (0, 1) such that any

solution x(k, φ) of system (22) satisfies

‖x(k, φ)‖1 ≤ β‖φ‖Z[−τmax,0]δ
k, k ∈ N0.

Consequently, x(k, φ) → 0 as k → ∞ and system (4) is GAS.

Proof: It follows from conditions (23) and (24) that A � 0,

Ad is Metzler and DA ≺ In. Thus, the derived conditions in

(16) are fulfilled and by Proposition 1, system (22) is positive.

Let x(k, φ) be a solution of (22) with φ(k) � 0. By

Corollary 1, x(k, φ) � 0 for all k ∈ N0. Consider the

following scaled system

x̂(k + 1) = Ax̂(k) + (Ad + Jτ
A) x̂(k − τ(k)), k ≥ 0

x̂(k) = φ̂(k), k ∈ Z[−τmax, 0]
(25)

where Jτ
A = 1

1+τmax
· D

1+τmax
A

(

1+ 1
τmax

)τmax . By induction, it is found

that if φ(k) � φ̂(k), k ∈ Z[−τmax, 0], then x(k, φ) � x̂(k, φ̂)
for all k ≥ 0. As a consequence, we have

|x(k, φ)| � x(k, |φ|) � x̂(k, |φ|), k ∈ N0

for any solution x(k, φ) of (22).

On the other hand, system (25) is delay-independent positive

by condition (17b). Thus, according to Lemma 1, system (25)

is GAS if and only if the LP-based condition (24) is feasible

for a positive vector η ∈ R
n. Moreover, in that case, there

exists scalars β > 0, δ ∈ (0, 1) such that

‖x̂(k, |φ|)‖1 ≤ β‖φ‖Z[−τmax,0]δ
k, k ∈ N0

which completes the proof as ‖x(k, φ)‖1 ≤ ‖x̂(k, |φ|)‖1. �
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Remark 3: It should be pointed out that, regardless to the

positivity, condition (24), in general, cannot guarantee the sta-

bility of system (22). Thus, Theorem 1 in this paper provides

a delay-dependent stability criterion for discrete-time positive

linear systems with delay. This result is crucially different from

delay-independent results in the existing literature.

Remark 4: For any matrix A with 0 � DA � In, we have

lim sup
q→∞

1

1 + q
· D

1+q
A

(

1 + 1
q

)q = 0.

Thus, when q = τmax → ∞, conditions (23) and (24) are

reduced to delay-independent conditions given in Lemma 1.

By this, Theorem 1 is an extension of delay-independent

results.

Remark 5: It should be mentioned additionally that the

delay-dependent positivity and stability conditions derived in

this paper are sufficient, which may produce certain conser-

vatism. How to prove the necessity of the derived stability

conditions in Theorem 1 or how to formulate alternative nec-

essary and sufficient stability conditions based on the delay-

dependent positivity are interesting questions. This motivates

further investigation.

Remark 6: In this paper, the problem of delay-dependent

positivity and stability is studied for discrete time-delay linear

systems. It can be noticed that the results presented in this

paper are also utilizable to address various problems in the

systems and control theory of discrete positive systems with

delays [4], [10], [20], [21]. Potential results involving such

problems prove to be meaningful contributions to enrich the

literature in the area of positive systems theory.

V. AN ILLUSTRATIVE EXAMPLE

Consider system (4) with the following data

A =









0.6 0.12 0.05 0.16
0.05 0.6 0.07 0.05
0.15 0.08 0.45 0.1
0.11 0.09 0.15 0.45









Ad =









−0.0011 0.05 0 0.1
0.05 −0.0031 0.06 0.05
0.08 0.1 0.0009 0.11
0.05 0 0.07 −0.0006









.

To this system, the delay-independent criterion (Lemma 1) is

no longer applicable as Ad is not nonnegative. Moreover, it

can be verified that condition (23) is satisfied if and only if

τmax ≤ 5. For example, when τmax = 6, by the notation

defined in Theorem 1, we have

Ad + Jτ
A =









0.0005 0.05 0 0.1
0.05 −0.0015 0.06 0.05
0.08 0.1 0.0012 0.11
0.05 0 0.07 −0.0003









6� 0.

This demonstrates the dependence on the magnitude of delay

of the derived conditions. In addition, for τmax ≤ 5, according

to (23),

wφ(k) +Adφ(k − τ(k)) = (Ad + Jτ
A)φ(k − τ(k)) � 0

for k − τ(k) ≤ 0, where wφ(k) is defined in (21). Thus,

condition (18) is satisfied. For τmax = 5, we compute the

LP-based matrix M = A+Ad − I4 + Jτ
A in (24) as

M =









−0.398 0.17 0.05 0.26
0.1 −0.4 0.13 0.1
0.23 0.18 −0.5485 0.21
0.16 0.09 0.22 −0.55









.

It can be verified by using the Matlab linprog Toolbox that

the LP-based condition (24) is feasible with

η = [0.2 0.1568 0.1992 0.1643]⊤ ≻ 0.

Thus, by Theorem 1, system (4) is positive and GAS, which

validates the obtained theoretical results. A simulation result

with initial sequence (1, 1.5, 0.5, 2)⊤ and random delay 0 ≤
τ(k) ≤ τmax = 5 is given in Fig. 1. It can be seen that the

conducted trajectory is positive and converges to the origin

in long time. This illustrates the effectiveness of the derived

conditions.

k0 50 100 150 200

x(
k
)

0.5

1

1.5

2

x
1
(k)

x
2
(k)

x
3
(k)

x
4
(k)

Fig. 1. Positive and convergent trajectories of system (4)

VI. CONCLUSION

In this paper, new delay-dependent positivity and stability

conditions have been derived for discrete-time systems with a

bounded time-varying delay based on non-oscillatory behavior

of solutions of the corresponding diagonal scalar difference

equations. It has been shown that the obtained results are

essentially different from existing delay-independent criteria,

which can be regarded as a complementary extension of delay-

independent ones.
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