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Abstract. Data on population movements can be helpful in designing targeted policy
responses to curb epidemic spread. However, it is not clear how to exactly leverage such
data and how valuable they might be for the control of epidemics. To explore these ques-
tions, we study a spatial epidemic model that explicitly accounts for population move-
ments and propose an optimization framework for obtaining targeted policies that restrict
economic activity in different neighborhoods of a city at different levels. We focus on
COVID-19 and calibrate our model using the mobile phone data that capture individuals’
movements within New York City (NYC). We use these data to illustrate that targeting can
allow for substantially higher employment levels than uniform (city-wide) policies when
applied to reduce infections across a region of focus. In our NYC example (which focuses
on the control of the disease in April 2020), our main model illustrates that appropriate tar-
geting achieves a reduction in infections in all neighborhoods while resuming 23.1%–42.4%
of the baseline nonteleworkable employment level. By contrast, uniform restriction policies
that achieve the same policy goal permit 3.92–6.25 times less nonteleworkable employment.
Our optimization framework demonstrates the potential of targeting to limit the economic
costs of unemployment while curbing the spread of an epidemic.

History:Accepted by Carri Chan, healthcaremanagement.
Supplemental Material: Data and the electronic companion are available at https://doi.org/10.1287/mnsc.

2022.4318.
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1. Introduction
By November 2020, COVID-19 had infected more
than 10 million individuals in the United States. To
curb the spread of the epidemic, many cities instituted
uniform (city-wide) suspension of economic activity
to varying degrees. This contributed to unemploy-
ment, which reached a peak rate of 14.7% in the
United States (CDC 2020, Congressional Research Ser-
vice 2020). Similar effects were also observed else-
where in the world.

The spread of the disease relies on human-to-
human contact and has an inherent spatial nature:
infected individuals potentially infect others in neigh-
borhoods they visit. Thus, it may be possible to target
some locations in a city with closures of public spaces
and businesses so as to reduce the spread of the dis-
ease, while resuming economic activity elsewhere in
the city. This could simultaneously reduce the eco-
nomic losses and curb the spread of the disease.
Determining how closures in targeted locations might
achieve these goals depends on not only the health
status and activity of residents in these locations but

also on their interactions with individuals throughout
the region. Data on population movements can be
useful in making these determinations. We provide a
model that illustrates how such data can be leveraged
and shed light on their value for controlling epidemic
spread.

Targeted closure strategies have recently been
employed by various cities/countries. Most existing
strategies have not explicitly considered the economic
consequences of closures. In addition, they have relied
on local metrics but have not accounted for spillovers
across locations and individual mobility as main driv-
ers of disease spread. For instance, New York City
(NYC) considered implementing targeted restrictions
of economic activity in some zip codes and eventually
settled on a more fine-grained microcluster-based
strategy (New York State Governor’s Office 2020b, c,
d). Both strategies relied on metrics such as local posi-
tivity rate and targeted neighborhoods with high dis-
ease prevalence.1 On the other hand, ignoring the
economic consequences and the spillover effects due
to population movements, as these strategies did,
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can result in both higher rates of infection and
levels of unemployment than can be achieved with a
policy that recognizes these economic and health
interactions.

To shed light on how data on population move-
ments can help improve targeted interventions, we
propose a spatial epidemic spread model that explic-
itly accounts for the spillovers of infections across dif-
ferent neighborhoods of a city. The model recognizes
that individuals who reside in a neighborhood may
spend some of their time in another neighborhood, for
example, because of work or leisure. The aggregate
amount of time that the members of each subpopula-
tion spend in different neighborhoods determines (i)
the amount of “mixing” between infected and suscep-
tible agents in different neighborhoods and (ii) the
rate with which the susceptible agents from a given
neighborhood get infected. The model allows infected
individuals from one neighborhood to infect residents
of a different neighborhood whenever they spend
time in a common neighborhood (possibly different
from the neighborhood in which either group resides).
We study the problem of a social planner who can
restrict economic activity in different neighborhoods.
In our model, reducing the permitted level of eco-
nomic activity in a neighborhood triggers unemploy-
ment and decreases the number of individuals who
visit that neighborhood. The latter effect reduces the
infections among individuals who reside in that
neighborhood as well as those who only visit it.

Our baseline model focuses on a static version of
the problem, where the restrictions seek to ensure that
in the short run the infections in all neighborhoods
decrease. The social planner’s optimal policy is the
one that achieves this policy goal while ensuring mini-
mum unemployment. This model accounts for vari-
ous practically relevant details, including differences
in individuals’ trips (work versus leisure) and
employment characteristics (teleworkable versus non-
teleworkable employment). Yet it is simplified in at
least three other practically relevant dimensions to
clearly illustrate the key trade-offs resulting from clo-
sures. First, it is assumed that in response to the
restrictions in one neighborhood, the individuals who
would otherwise spend time there instead spend
more time at home and effectively isolate. This is a
simplification because these individuals could instead
“substitute” their trips and visit other neighborhoods.
Second, it may not always be feasible to target differ-
ent neighborhoods in a city in a fine-grained way
(e.g., at the zip-code level), and coarser targeting strat-
egies may be needed. Third, dynamic policies are
needed to control the spread of the disease over time.
We first solve the baseline model and derive qualita-
tive insights into the value and structure of targeted
policies. These results demonstrate the significant

potential that suitably designed targeted policies have
for reducing the economic costs of unemployment
while controlling an epidemic.2 Subsequently, we
enrich the model to allow for different reactions to clo-
sures, coarser levels of targeting, and dynamics, using
the solution of the baseline model as a building block
to shed light on optimal targeted policies in these
alternative settings.

We calibrate our baseline model and exemplify our
approach using April 2020 infection levels of COVID-
19 in NYC as well as cell phone data that are leveraged
to represent population movements. We combine these
data with disease-specific parameters for COVID-19
and obtain a representation of epidemic spread at the
zip-code level. We also leverage data on workers’ abili-
ties to work remotely and account for the impact of
remote work on the spread of the epidemic. We then
use our model to obtain an optimization framework
that yields optimal targeting decisions. Within our
framework assuming the aforementioned disease
parameters and mobility choices, we show that appro-
priate targeting could achieve approximately a four- to
six-fold increase in nonteleworkable employment rela-
tive to uniform policies that achieve the same infection-
reduction goals. We also demonstrate that certain areas
with high nonteleworkable employment and relatively
low infection levels (e.g., Midtown Manhattan) may
continue their economic activities while nearby regions
with relatively less employment may face significant
restrictions. Moreover, the optimal economic activity
level in a target region heavily depends on the level of
economic activity in the neighboring regions beyond
the social planner’s control, highlighting the need for
coordination among governing bodies (of different
regions). In particular, in our example, the complete
resumption of economic activity in neighboring coun-
ties can reduce the optimal activity level in NYC by
45.4%. We also explore variants of our baseline model
that (i) require permitted economic activity levels in dif-
ferent neighborhoods to be similar, (ii) enable trading
off between economic losses and faster reduction in
infection rates, and (iii) allow for prioritizing low-risk
businesses in each neighborhood. In all cases, we obtain
similar insights and the gap between optimal targeted
and uniform policies remains sizable.

We then examine alternatives to our baseline model
along the three practically relevant dimensions
highlighted earlier. Specifically, we (i) estimate a choice
model that captures how trips may be substituted in
response to closures, (ii) obtain coarse targeted strate-
gies by clustering the solutions of our baseline model,
and (iii) develop greedy dynamic heuristics for control-
ling the spread of the epidemic. For these alternatives,
we once again illustrate that targeted restrictions in dif-
ferent locations can achieve the policy goal of reducing infec-
tions over time with substantially lower unemployment
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than a policy with the same disease control goal that
uses uniform restrictions throughout the region. The
targeting structure in these extensions is also quite
similar to that of the baseline solution.

Spatial spread of COVID-19 (and similar diseases) is a
complex process, and there is still considerable uncer-
tainty about it. Our objective is not to provide a defini-
tive decision support tool for targeted interventions but
rather to shed light on the value of targeting and to pro-
vide insights into its structure. We show that our find-
ings are robust to various modeling assumptions that
can impact the evolution of the epidemic, including (i)
values of parameters governing epidemic spread, (ii)
possibility of individuals’ staying at home because of
fear, and (iii) different individual mobility patterns and
infection numbers. Moreover, we establish that even if
the model is misspecified (which could be relevant, e.g.,
because of imperfect data), our targeted policies achieve
substantially higher employment relative to their uni-
form counterparts without causing a significant increase
in infections. We relegate our robustness checks to our
electronic companion (EC) (see Section EC.3). In the EC,
we also discuss further related literature (Section EC.1)
beyond Section 1.1, present supplementary material on
data sources and model calibration (Section EC.2), and
present an alternative model that is appropriate for con-
trolling a new emerging disease (Section EC.4).

1.1. Related Literature
Our paper contributes to the large literature on the con-
trol of epidemics. Since the first version of this paper,
many other contemporaneous and subsequent works
have studied interventions for curbing the spread of
COVID-19. Here we review some of the works that are
closest to ours. In Section EC.1, we include additional
discussion on some other related directions.

1.1.1. Spatial Spread of Diseases. Spatial aspects of
epidemic spread play an important role in prediction,
estimation, and understanding of disease transmis-
sion (Anderson et al. 1992, McNeill and McNeill 1998,
Allen et al. 2008, Martcheva 2015, Brauer et al. 2019).
Different models have been proposed in epidemiol-
ogy to analyze the spatial spread of diseases (Hethcote
1976, Hethcote and Van Ark 1987, Van den Driessche
and Watmough 2002, Dingel and Neiman 2020). Spa-
tial effects have received attention in the recent litera-
ture that studies COVID-19 as well. Using data on
population flows (from Wuhan, China), Jia et al.
(2020) propose a spatiotemporal “risk source” model
to forecast confirmed cases and identify locales of
high transmission risk. This model sheds light on the
spread of COVID-19 and its growth pattern in China.
Similarly, Chinazzi et al. (2020) use a metapopulation
model and project the impact of travel limitations on the
national and the international spread of the epidemic.We

use a spatial model of disease transmission similar to that
of Post et al. (1983). Our main contribution to this litera-
ture is a novel framework that (i) allows for controlling
the spread of an epidemic by spatially targeted restric-
tions and (ii) takes into account population movements
and induced economic losses (throughunemployment).

1.1.2. COVID-19 and Geographical Spillovers. Holtz
et al. (2020) focus on the impact of shelter-in-place
orders (impacting different states/counties) and con-
clude that these orders have a nontrivial impact on
individual mobility. In addition, they show the impor-
tance of geographical spillovers and argue that inter-
ventions in one region cause a reduction in mobility
in other regions. Carranza et al. (2020) provide evi-
dence that reduction in mobility implies nontrivial
reduction in infections. They also highlight that (tar-
geted/localized) lockdowns lead to reduction in mobil-
ity.3 These findings are consistent with our model and
results: we provide a framework for optimizing clo-
sures by taking into account individual mobility, a
remote-work option, and spillovers across regions. Our
model explicitly accounts for the impact of closures in
one region on individuals in other regions (through
mobility patterns) and, hence, provides a way of coor-
dinating interventions in different locations. We also
illustrate the need for coordination among neighboring
counties and the impact of lack of coordination on the
achievable employment levels. Ma et al. (2020) build on
our framework and explore the question of targeted
interventions in other geographical regions. In a subse-
quent work, Chang et al. (2020) also take into account
population movements and confirm findings similar to
ours in terms of the benefits of targeting. Pei and Sha-
man (2020) consider a metapopulation model at county
resolution in the continental United States. In their
model, they consider two types of movement: daily
work commuting and random movement. They esti-
mate the epidemiological parameters, use the calibrated
model to project outbreaks in the continental United
States, and evaluate the effects of social distancing and
travel restrictions on the outbreaks. Gonzalez-Reiche
et al. (2020) study the initial stages of the spread of
COVID-19 in New York City. Unlike ours, these papers
do not provide the optimal targeted decisions that take
into account economic losses induced by closures.

1.1.3. Targeting Along Other Dimensions. Acemoglu
et al. (2020) study a heterogeneous Susceptible-Infected-
Recovered (SIR) model where different subpopulations
(e.g., age groups) are susceptible to different risks
(i.e., infection, hospitalization, and fatality rates vary
between subpopulations). They consider the problem of
a social planner who tries to control the spread of the
disease by taking into account the induced economic
losses as well as the disease-related deaths. They obtain
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optimal age-based targeted policies and show that
these policies significantly outperform uniform policies.
Glover et al. (2020) consider a similar problem where
the population is partitioned into age and sector
groups, and a social planner chooses lockdown policies
and how to redistribute income across the groups
to optimize long-term social welfare. Evgeniou et al.
(2020) propose an extension of the Susceptible-Exposed-
Infected-Recovered (SEIR) model and study different
exit policies using COVID-19 data and estimates for
France as of early May 2020. Their study indicates that
implementing an exit policy based on risk predictions
could relax restrictions for millions of individuals in the
lowest-risk population, whereas implementing the same
exit policy without such predictions could exceed the
hospital capacity or require long-term isolation for a sub-
stantial portion of the population for over a year in
aggregate. Lipton and Lopez de Prado (2020) and
Gershon et al. (2020) also focus on heterogeneous SEIR
models with populations at different risk levels, and ana-
lyze how tomanage the progression of the disease with-
out exceeding the healthcare capacity or creating undue
economic burden. Duque et al. (2020) propose an exten-
sion of the SEIR model and study how to design social-
distancing policies for different age groups subject to
a hospital capacity constraint. Chen et al. (2020) focus
on an age-structured SAPHIRE (susceptible, exposed,
presymptomatic infectious, ascertained infectious,
unascertained infectious, isolated, removed) model and
study how to allocate COVID-19 vaccines to different
age groups subject to a limited supply constraint. Batlle
et al. (2020) present a general framework for adaptive
allocation of viral tests by taking into account the net-
work of social contacts.

1.1.4. Economic Impacts on COVID-19. COVID-19 has
already impacted economic activity around the globe
immensely. Various economic impacts of the disease
(e.g., on financial markets, fiscal policies, employment
and wage, etc.) have been explored in the recent litera-
ture (Baker et al. 2020a, b, c; Coibion et al. 2020; Gormsen
and Koijen 2020; Guerrieri et al. 2020; Hanson et al. 2020;
He and Liu 2020; Mulligan 2021). Budish et al. (2020)
discuss an economic policy response to the COVID-19
crisis and offer frameworks and guiding principles for
dealing with the crisis. Budish (2020) proposes focusing
on minimizing the social welfare loss while taking the
appropriate steps to ensure that the disease is contained.
The present paper adopts a similar approach and pro-
poses targeted closures as a lever for achieving this goal.

2. Model
We first present our model of epidemic spread over n dis-
tinct subregions or neighborhoods N � [n] :� {1, : : : ,n}
within a larger region, for example, a city. Each

neighborhood i has population Ni. We partition the
population Ni into three subpopulations, given as
NA

i ,N
B
i ,N

C
i such that NA

i +NB
i +NC

i �Ni, to capture
different mobility effects from employment restrictions.
HereNA

i andNB
i respectively denote the subpopulations

of individuals with teleworkable and nonteleworkable
employment and NC

i denotes the subpopulation of indi-
viduals who are unemployed.

For a ∈A � {A,B,C}, we let {τaij}i,j∈N denote (unit-
less) parameters that capture the fraction of time (e.g.,
in a day) the individuals from subpopulation Na

i spent
in neighborhood j prior to the epidemic. Individuals
can spend time in different neighborhoods either for
work or for leisure. We distinguish between the two
and let τaij,W and τaij,L respectively denote the work and
leisure components of τaij, where τaij � τaij,W + τaij,L. Note

that τCij,W � 0 for i, j ∈N , because individuals in subpo-

pulations {NC
i } are unemployed.

To control the spread of the epidemic, we assume
that economic activity (measured in our empirical
simulations in terms of employment) in different
neighborhoods can be restricted. Let xj ∈ [0, 1] denote
the fraction of the baseline economic activity permit-
ted4 at j. Individuals’ trips to j depend on the permit-
ted level of economic activity xj there, and τaij(xj)
denotes the fraction of time individuals from subpop-
ulation Na

i spend in neighborhood j in aggregate (for
leisure plus work) as a result of the restrictions. We
assume that all individuals in subpopulations {NA

i }
(who have teleworkable employment) will work from
home during the epidemic.5 The leisure/work trips of
the remaining subpopulations are scaled proportion-
ally to the permitted level of economic activity in the
target neighborhood. More precisely, we have

τaij(xj) �
xjτaij,L for a � A,
xjτaij,W + xjτaij,L for a � B,
xjτaij,L for a � C:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

We note that τaij(xj) � τ̃a
ijxj, where τ̃A

ij � τAij,L, τ̃
B
ij � τBij,L+

τBij,W, and τ̃C
ij � τCij,L for all i, j ∈N and a ∈A. Using this

notation the “effective population” of individuals
who mix in neighborhood j and infect others/get
infected there can be given as

∑
k∈N

∑
a∈AN

a
kτ

a
kj(xj)

� ∑
k∈N

∑
a∈AN

a
kτ̃

a
kjxj.

We model the spread of the disease using a com-
partmental model. Specifically, we assume that each
member of population Na

i belongs to one of five
“disease compartments” that correspond to popula-
tions Sai ,E

a
i , I

c,a
i , Isc,ai ,Ra

i . Here Sai denotes the population
of susceptible individuals (who can get infected if
they come in contact with an infected individual) and
Ea
i denotes the population of individuals who are

exposed to the disease but who are not infectious yet
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(e.g., because the infection is in the incubation period).
These individuals subsequently move to one of the
two infected compartments. The first (second) of these
compartments, population Ic,ai (Isc,ai ), is referred to as
the infected clinical (subclinical) population and cap-
tures the infected individuals who (do not) show
symptoms. The individuals in both compartments are
infectious but possibly with different infection rates.
The final compartment, population Ra

i , captures the
infected individuals who recover from the disease and
become immune to it. They have no impact on the
future progression of the disease. In this formulation,
we do not model the disease-related deaths as they are
a small enough fraction of the total population not to
affect the rate of new infections. That said, our optimi-
zation framework below has the goal of reducing
infections, which are proportional to deaths (where we
assume a constant fatality to infection ratio).

In our model, susceptible individuals from a neigh-
borhood i can become infected in neighborhood j
because of contact with infectious individuals from
another neighborhood k. The rate at which such infec-
tions take place is proportional to the fraction of time
the susceptible individuals from i spend in j as well as
the fraction of the effective population of j that is
infected (see (2) and (3)). This model of disease evolu-
tion (without the restrictions that influence the time
spent in different neighborhoods) is similar to the one
in Post et al. (1983). The evolution of the epidemic is
described by the following system of equations:6

Sa
′
i � −β∑

j
Sai τ̃a

ijxj
︷︸︸︷Fraction of time

agents ∈ Sai spend in j

∑
k
∑

b∈A Ic,bk τ̃b
kj∑

k
∑

b∈A Nb
k τ̃

b
kj

︷������︸︸������︷Fraction of clinical infected in j

+α

∑
k
∑

b∈A Isc,bk τ̃b
kj∑

k
∑

b∈A Nb
k τ̃

b
kj

︷������︸︸������︷Fraction of subclinical infected in j⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(2)

Ea′
i �β

∑
j
Sai τ̃

a
ijxj,

∑
k
∑

b∈A Ic,bk τ̃b
kj∑

k
∑

b∈ANb
k τ̃

b
kj

+α

∑
k
∑

b∈A Isc,bk τ̃b
kj∑

k
∑

b∈ANb
k τ̃

b
kj

( )
−κEa

i

(3)

Ic,a
′

i �ρκEa
i −γIc,ai

Isc,a
′

i �(1−ρ)κEa
i −γIsc,ai Ra′

i �γIc,ai +γIsc,ai , (4)

for a ∈A and i ∈N . Here prime (′) denotes the time
derivative and β,α,κ,ρ,γ are disease-specific parame-
ters.7 The infectious rate κ captures how quickly the
exposed individuals become infectious, and the recovery
rate γ captures how quickly the infected individuals
recover. Not all infections cause severe symptoms. The
clinical rate ρ captures the fraction of infected individu-
als who show clinical symptoms. The subclinical cases
have a lower transmission rate, captured by a discount

factor α. The transmission rate β captures how many
effective contacts an individual has on a given day and
how likely such a contact is to result in an infection, con-
ditional on being with an infected individual.

In (2), the term τ̃ijxj captures the fraction of time
individuals from Sai spend in j when the permitted
economic activity level in j is xj. The term within paren-
theses captures the fraction of the effective population of
j that is infected (where we discount the subclinical pop-
ulations by α to capture their lower infectiousness). The
entire right-hand side of (2) is the rate at which the
susceptible individuals in i move to the exposed com-
partment. The rest of the equations detail how these
individuals subsequently move to the remaining com-
partments. Note that, because of the spatial structure of
the epidemic spread, the restriction of economic activity
in one neighborhood impacts the infections among indi-
viduals who reside there as well as among those who
reside elsewhere but spend time in this neighborhood.
As a result, in order to reduce the infections in neighbor-
hood i, it may be critical to restrict activity in another
neighborhood j where infections occur at a nontrivial
rate and individuals from i spend substantial time.

We first focus on a static decision problem a social
planner might face at any point in time, that of reduc-
ing the rate of infections, for example, protecting scarce
healthcare resources from increased loads in all neigh-
borhoods. Specifically, the planner chooses the permit-
ted economic activity levels in neighborhoods Z ⊂N .
We assume that the permitted economic activity in
neighborhoods outside the planner’s control8 (N \Z) is
fixed at an exogenous level xi�y. We further assume
that the policy goal of the planner is to ensure a reduc-
tion in the total number of infected and exposed indi-
viduals in every neighborhood in Z. More precisely,
the rate of change in the total population of these indi-
viduals should be nonpositive at the time the policy takes
effect,9 that is,

∑
a∈AE

a′
i + Ic,a

′
i + Isc,a

′
i ≤ 0 for i ∈ Z. Reduc-

ing the economic activity induces unemployment in Z,
denoted by

∑
i∈Z c̃i(1− xi), where c̃i represents the

number of nonteleworkable jobs in neighborhood i. We
characterize the targeted policies that maximize the
number of individuals

∑
i∈Z c̃ixi who remain employed,

while achieving the aforementioned policy goal. The
optimal targeted restriction policy is obtained by solv-
ing the following linear program:

max
xi∈[0,1] | i∈Z
xi�y | i∈N \Z

∑
i∈Z

c̃ixi

s:t:∑
j

∑
a∈A

Sai xjτ̃
a
ij

∑
k

∑
b∈A

(Ic,bk +αIsc,bk )τ̃b
kj∑

k

∑
b∈A

Nb
k τ̃

b
kj

≤∑
a∈A

γ

β
(Ic,ai +Isc,ai ), ∀i∈Z,

(P1)
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where the constraint restates the policy goal∑
a∈AE

a′
i + Ic,a

′
i + Isc,a

′
i ≤ 0 more explicitly using (2)–(4).

We explore the optimal policy as well as its effi-
ciency, that is, the level of total economic activity it
permits in neighborhoods in Z relative to the baseline
level (i.e.,

∑
i∈Z c̃ixi=

∑
i∈Z c̃i). This quantity is at most

one, and it is close to one only if the economic restric-
tions are very mild. Efficiency is defined similarly in
other variants of the baseline model where additional
constraints are imposed on the feasible policies.

Remark. We focused on the policy goal of reducing
infections in all neighborhoods. An alternative goal is
to achieve reduction in total infections in all neighbor-
hoods in Z. An accompanying optimization formula-
tion can easily be obtained by summing both sides of
the constraints of (P1) over i ∈ Z. The optimal policy
for such a formulation permits economic activity
aggressively in some neighborhoods (with a large
number of jobs) to an extent that it increases infections
there. The policy balances this by restricting activity
elsewhere to achieve a net reduction in infections. Let-
ting infections increase in some neighborhoods while
suppressing them elsewhere could overwhelm health-
care resources in certain neighborhoods and could be
viewed as unfair. In addition, the increasing infections
in those neighborhoods can trigger future spread of
infections, thereby leading to difficulties in controlling
the infection in the long run. These observations moti-
vated us to focus on the more stringent policy goal
presented in this section. Policies that satisfy this goal
(i) do not reduce cases in some neighborhoods at the
expense of others and (ii) ensure that the loads on the
healthcare resources in each neighborhood do not
exceed their current levels. It is worthwhile to point
out that (i) additional restrictions on {xi}, for example,
lower-bound constraints to ensure that at least some
level of economic activity is permitted in each region
(see Section EC.3.6), and (ii) additional infection-
related costs capturing, for example, disease-related
deaths (see Section EC.3.7), can readily be incorpo-
rated into (P1), while preserving its tractability.

3. Data Sources and Model Calibration
Before we apply our model to the study of COVID-19
in NYC, we go over relevant data sources and discuss
how model primitives are calibrated. There are five
main types of data that we use to determine the primi-
tives of our model: (i) disease-specific parameters
(e.g., transmission rate, clinical rate) for COVID-19, (ii)
infection counts for NYC and neighboring counties
(circa April 2020), (iii) populations of different
neighborhoods, (iv) workplace and residence location
information for individuals who reside in NYC and
neighboring counties as well as information on whether
they can work remotely, and (v) SafeGraph data10 that

record individuals’ movements (SafeGraph 2020). We
next discuss our data sources and detail how we con-
struct the different primitives of our model using the
available data. We also explain how we characterize
interactions of populations in different neighborhoods
while accounting for the effects of work and leisure
trips as well as the potential for remote work.11

The spatial nature of epidemic spread and our model
admit a natural network representation in which nodes
correspond to different locations/neighborhoods and
(weighted) edges encode trips of individuals between
these neighborhoods. In what follows, we also clarify
how these nodes and edge weights are defined in our
application to NYC. We sometimes use the terms
nodes/neighborhoods interchangeably.

3.1. Disease-Specific Parameters
For our study of COVID-19, we calibrate the parame-
ters β,α,κ,ρ,γ, using the estimates provided in the
recent literature. Specifically, the estimates of all
parameters (or their inverses) other than the transmis-
sion rate β are given in Table 1 and are taken from Li
et al. (2020).12 Recall that the transmission rate β
depends on the number of effective contacts an indi-
vidual has on a given day. Because the number of
effective contacts can be different for different cities/
countries, in our numerical study we base this param-
eter on the NYC analysis provided in Fernández-
Villaverde and Jones (2020). The latter paper estimates
the basic reproduction number R0 of the disease in
NYC before the lockdown to be 2.7 (in mid-March
2020), which in turn implies that β � 0:78 day−1. For
our main analysis, we use the values of the disease-
specific parameters reported here.

In Section EC.2, we provide confidence intervals for
the parameter estimates we report here (also taken
from the literature). We use these for our robustness
analyses. Specifically, we fit distributions to the param-
eters that are consistent with the (median) estimates
and confidence intervals. Then, we sample the parame-
ters from these distributions and resolve our model. As
we detail in Section EC.3.1, our takeaways still hold
when the parameters are sampled from the aforemen-
tioned distributions and the insights obtained by focus-
ing on the parameter estimates reported here turn out
to be robust.

Table 1. Disease-Specific Parameters (Adapted from Li
et al. 2020)

Parameter Estimate (median)

κ−1 day 3.69
ρ 0.14
α 0.55
γ−1 day 3.47
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3.2. Neighborhoods/Nodes (N )
NYC reports confirmed COVID-19 cases at the modi-
fied Zip Code Tabulation Area (MODZCTA) level
(NYC Health 2020). MODZCTAs are obtained from
Zip Code Tabulation areas (ZCTAs) by incorporating
small ZCTAs into adjacent larger ones.13 ZCTAs in
turn consist of census blocks (CBs).14 Motivated by
the availability of the case data at the MODZCTA
level, we define the neighborhoods/nodes in our anal-
ysis as the different MODZCTAs in the city.

We are mainly interested in understanding how
NYC can reduce economic activity in different MOD-
ZCTAs so as to curb the spread of the epidemic. How-
ever, because of the spatial nature of the spread of the
epidemic, infected individuals from outside NYC can
infect susceptible individuals in NYC. To capture this,
we define additional nodes that correspond to the
counties neighboring NYC.15 Specifically, we use the
SafeGraph data (discussed below) to obtain the 10
counties that have the largest inflow/outflow of indi-
viduals to/from NYC. These 10 counties together
with the NYC MODZCTAs constitute the set of all
nodes of our network. The list of these counties is pro-
vided in Table 2. In total, our network has 187 nodes.

3.3. Populations ({Na
i }) and Baseline Economic

Activity ({c̃i})
In order to define the total population of each node,
we use the 2010 Census data that specify populations
at the CB level (U.S. Census Bureau 2010). To capture
the effect of population changes over years, we use
the data in U.S. Census Bureau (2018) that report pop-
ulations in 2018 at the county level. Using these data,
we obtain a multiplier for each county that captures
how much the population changed between 2010 and
2018. Then, we rescale the population of each CB
reported in U.S. Census Bureau (2010) with the multi-
plier of the county to which it belongs. Finally, we use
these to construct the population of each node in our
network. These populations are relevant as they are
the primitives ({Ni}) of our spatial epidemic model.
We plot the spatial distribution of NYC’s population
in Section EC.2 (see Figure EC.1).

Next, we discuss how to construct subpopulations
NA

i ,N
B
i ,N

C
i . For each two-digit North American Indus-

try Classification System (NAICS) industry (see Table
EC.4 in Section EC.2 for a list of all NAICS industries),
U.S. Census Bureau (2017) records (i) the number of
jobs in each CB and (ii) the number of employees who
reside in each CB and have occupations in that

industry. In addition, it considers three supersectors
(each of which consists of different NAICS industries;
see Table EC.3 in Section EC.2) and contains (iii) the
total number of individuals in each supersector who
reside in one CB and work in another. Aggregating
(i), (ii), and (iii) at the MODZCTA level (or county
level for neighboring counties), we construct the num-
ber of jobs {c̄(k)i } in (and employees {r̄(k)i } from) neigh-
borhood i for each NAICS industry k and the number
of employees W(K)

ij who reside in neighborhood i and
work in neighborhood j for each NAICS supersector K.

Define S(K) as the set of NAICS industries contained
in NAICS supersector K. Let w(k)

ij denote the number
of employees who reside in neighborhood i, work in
neighborhood j, and are employed in NAICS industry
k. It follows from these definitions that {w(k)

ij } satisfy
the following constraints:∑

k∈S(K)
w(k)

ij �W(K)
ij ∀i, j,K ,∑

j
w(k)

ij ≤ r̄(k)i ∀i, k ,∑
i
w(k)

ij ≤ c̄(k)j ∀j, k ,

w(k)
ij ≥ 0 ∀i, j, k,

where the second and third constraints are inequal-
ities because there is a small number of work-related
trips between the locations in our network and other
locations (e.g., counties other than those in Table 2).
This set of constraints determines a polytope to which
{w(k)

ij } belongs. For our analysis, we set {w(k)
ij } values to

the centroid of this polytope.16 Let r(k)i � ∑
jw

(k)
ij and

c(k)i � ∑
jw

(k)
ji denote the number of employees/jobs

from/in each MODZCTA (or county) implied by this
solution. We observe that the gap between r̄(k)i and r(k)i

(similarly c̄(k)i and c(k)i ) is small.17

Dingel and Neiman (2020) estimate the teleworkable
ratio (i.e., the fraction of jobs that can be conducted
remotely) {θ(k)} for each two-digit NAICS industry k
(for completeness in Table EC.4 we provide the tele-
workable ratios of different NAICS industries). Using
these together with {c(k)i , r(k)i } constructed earlier, we
compute the number of jobs in each neighborhood i
that are not amenable to remote work c̃i � ∑

kc
(k)
i (1−

θ(k)) and the number of individuals from different
neighborhoods who are employed in teleworkable
and nonteleworkable jobs, that is, subpopulations

Table 2. Counties/Nodes Outside NYC

Fairfield County, CT Bergen County, NJ
Essex County, NJ Hudson County, NJ Middlesex County, NJ Monmouth County, NJ
Union County, NJ Nassau County, NY Suffolk County, NY Westchester County, NY
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NA
i � ∑

kr
(k)
i θ(k) and NB

i � ∑
kr

(k)
i (1−θ(k)). The rest of

the population in each neighborhood is unemployed;
hence, we have NC

i ¢Ni −NA
i −NB

i .
According to the data in U.S. Census Bureau (2017),

there are a total of 4.4M jobs in NYC. Using the esti-
mation of {c̃i} described above, 58% of these, or 2.5M
jobs, are not amenable to remote work. It is worth
pointing out that the number of jobs {ci � ∑

kc
(k)
i } in

each MODZCTA and the number of these jobs that
are not amenable to remote work {c̃i} are strongly cor-
related and exhibit a Pearson correlation coefficient of
0.987. In other words, the distribution of all jobs and
jobs that are not amenable to remote work in NYC
show similar patterns. In Figure EC.3, we also illus-
trate this point through a plot of the spatial distribu-
tion of (nonteleworkable) jobs in NYC.

3.4. Sizes of Compartments ({Sa
i =E

a
i =I

c,a
i =Isc,ai =Ra

i })
We focus on the state of the epidemic in NYC (and
neighboring counties) on April 18, 2020, and solve the
planner’s decision problem. Note that, on the afore-
mentioned date, the total number of infections in
NYC was already nontrivial and the policy goal in
(P1) (reducing infections in all neighborhoods) was
natural. Recall that this formulation is based on the
size of each of the disease compartments. Thus, we
need to estimate the sizes of these components on
April 18. We next describe how we do so. In what fol-
lows, we refer to April 18 as the target date and
denote it by T?. We also focus on April 21 and April
15 and denote these dates respectively by T+ and T−.

For the nodes of our network, we can extract the
number of confirmed cases on a given date, using the
data provided in NYC Health (2020) and New York
Times (2020).18 On the other hand, recent studies sug-
gest that there were a large number of individuals
who had the disease but were not among confirmed
cases (either because they did not show any symptoms
or because of congestion in the healthcare system/diag-
nostic test shortages). In fact, antibody studies suggest
that in NYC about 24.7% of the individuals may have
experienced the disease (as of April 27, 2020) (see New
York State Governor’s Office 2020a), a much larger
number than the number of confirmed cases.19

To bridge the gap between the confirmed cases and
the total infections implied by the antibody studies,
we define an identification rate. We first describe how
this quantity and the compartment sizes are obtained
for the MODZCTAs in NYC and then briefly discuss
the extension of the approach to the neighboring
counties.

We assume that on T? 24.7% of NYC have had the
disease.20 We also compute the total number of con-
firmed infections in NYC by T? (at all locations) using
the data set in NYC Health (2020). Dividing the latter

number by the former, we obtain an identification
rate, which represents the fraction of actual infections
that become confirmed cases. We assume that the
identification rate is the same in all neighborhoods.

The data in NYC Health (2020) yield the daily num-
bers of confirmed cases by MODZCTA for NYC. We
analyze the data under the assumption that individu-
als spend three days in the exposed compartment and
three days in the infected compartments (by rounding
down the parameters reported above in our discus-
sion on the disease-specific parameters). Observe that
under this assumption, infected individuals on T−
leave the infected compartments by T?. Hence, we
focus on the cumulative number of confirmed cases
on dates T? and T− in each MODZCTA and interpret
the difference as the number of active identified infec-
tions on T?. By dividing this quantity by our identifi-
cation rate, we obtain the number of infections that
are active in each MODZCTA of NYC on T?. Note that
these active infections may be clinical or subclinical;
thus, the aforementioned quantity is Ici + Isci for
MODZCTA i. We use the clinical rate ρ reported above
to solve for Ici and Isci (where ρ � Ici =(Ici + Isci )) on T?.

Similarly, under our assumption on the time indi-
viduals spend in the exposed/infected compartments,
the only infected individuals on T+ are those who
were in the exposed compartment on T?. We focus on
the cumulative number of confirmed cases in each
MODZCTA on T? and T+. Subtracting the former
number from the latter one, we obtain the number of
active identified infections on T+. Dividing this quan-
tity by the identification rate, and repeating these
steps for each MODZCTA, gives us the active infec-
tions in each MODZCTA on T+ or equivalently the
number of exposed individuals {Ei} on T?.

Finally, under our assumptions all of the confirmed
cases by T− move to the recovered compartment by
T?. Dividing the relevant number in each MODZCTA
by the identification rate yields {Ri} on T?.

Consider node i and the compartment sizes Ei=Ici =
Isci =Ri described above. We compute the difference
between Ni and the sum of these quantities to obtain
the size of the susceptible compartment, Si, for all
MODZCTAs i. Finally, we partition each compart-
ment into subpopulations NA

i ,N
B
i ,N

C
i proportional to

their sizes, that is, we set Sai � SiNa
i =Ni and similarly

for the other compartments.
The compartment sizes for the 10 counties neighboring

NYC are obtained following a similar approach. The
only difference is that the antibody tests suggest lower
prevalence in these counties than in NYC (New York
State Governor’s Office 2020a). Thus, we replace the
number 24.7% with a county-specific number and repeat
the same process (using the data from New York Times
(2020) to compute the county-specific identification rates).
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See Figure EC.5 and Figure EC.6 for illustrations of the
spatial distribution of infections inNYCon T?.

3.5. Edge Weights ({t̃a
ij})

SafeGraph uses data from a number of mobile devices
and applications to derive anonymized location data
that provide insights into locations visited by individ-
uals as well as their movements across different loca-
tions. To preserve anonymity, the data are aggregated
at the census block group (CBG) level. More specifi-
cally, the SafeGraph data set identifies a “home” CBG
for each device/individual and reports the median
home dwell time for each CBG. In addition, it reports
the daily number of individuals who go from their
home CBG to various destination CBGs. Similarly to
MODZCTAs, each CBG consists of a number of CBs.
But, in general, CBGs neither contain nor are con-
tained by MODZCTAs. To get around this difficulty,
we first disaggregate the SafeGraph data at the CB
level. In particular, we focus on all “trips” that origi-
nate from a home CBG i and that go to a destination
CBG j. We assume that the fraction of these trips that
originate from a particular CB in CBG i is simply
given by the ratio of the population of this CB
(obtained from the data in U.S. Census Bureau 2010)
to the total population of CBG i. Similarly, we assume
that the fraction of these trips that end in a particular
CB in CBG j is given by the ratio of the area of this CB
to the area of CBG21 j. Under this assumption, we can
break down the “flow” of individuals between home/
destination CBGs to the flow between home/destina-
tion CBs. Then we aggregate these quantities at the
MODZCTA level for NYC (at the county level for the
nodes outside NYC) to define the flow of individuals
from one node (MODZCTA in NYC or a neighboring
county) to another. Similarly, we assume that all CBs
in the same CBG share the same home dwell time;
we define the home dwell time for a MODZCTA as the
average of these for the CBs that are contained in the
MODZCTA (and similarly for the neighboring counties).

To capture individuals’ movements prior to lock-
downs in NYC, we focus on the SafeGraph data from
January 1, 2020 to February 29, 2020 and for any
home/destination neighborhood pair we aggregate
all trips during this period.22 Our construction allows
us to obtain a representative home dwell time for each
node. Moreover, it allows us to capture the number of
trips (in the data set) from one node to another. Given
node i, we focus on the number of trips to a node j
divided by the total number of trips leaving i. We use
this quantity to define the fraction of time the individ-
uals from i spend in j in aggregate, denoted by τij.
More precisely, if the home dwell time in node i is hi
hours, and the number of trips from i to ℓ is kiℓ, we let
τij � (1− (hi=24)) × (kij=∑ℓkiℓ).

We proceed by decomposing τij into work/leisure-
related components for each subpopulation. Recall
that we obtained {w(k)

ij }, that is, the number of em-
ployees who reside in neighborhood i and work in
neighborhood j for NAICS industry k. We use these to
construct the quantity ζAij,W �

(∑
kw

(k)
ij θ(k)=∑l,kw

(k)
il θ(k)),

which captures the pre-epidemic fraction of work-
related trips of individuals from subpopulation NA

i
that end in node j. Similarly, we define ζBij,W �(∑

kw
(k)
ij (1−θ(k))=∑l,kw

(k)
il (1−θ(k))

)
and ζCij,W � 0 for

subpopulations NB
i and NC

i , respectively.
The American Time Use Survey (ATUS) reports the

amount of time individuals spend on different activi-
ties (see U.S. Bureau of Labor Statistics 2020). We
focus on three numbers derived from these surveys:
(i) the average daily time spent at the workplace per
individual with employment (hW), (ii) the average
daily time spent on outdoor leisure per individual
with employment (hL), (iii) the average daily time
spent on outdoor leisure per individual without
employment (h′L). These quantities are respectively
given as follows: hW�4.82 hours, hL�1.28 hours, h′L �
1:50 hours.23

We denote the leisure time employed (unemployed)
individuals from i spend at location j by hLζij,L (h′Lζij,L).
Here {ζij,L} are leisure-trip factors that determine the
portion of leisure time spent at different locations.
Because we do not have more detailed data, we assume
that subpopulations NA

i ,N
B
i ,N

C
i share the same factors.

On the other hand, it follows from the definitions of τij,
ζaij,W, ζij,L that these quantities satisfy the following
relation:

24Niτij � hW(NA
i ζAij,W +NB

i ζ
B
ij,W) + hL(NA

i +NB
i )ζij,L

+ h′LN
C
i ζij,L: (5)

Here both sides of the equation reflect the total num-
ber of hours (in an average day) that individuals who
reside in node i spend in node j. The left-hand side
expresses this quantity directly by focusing on {τij},
that is, the fraction of time individuals who reside in i
spend in j. The right-hand side expresses the same
quantity by focusing on subpopulations {NA

i ,N
B
i ,N

C
i }

as well as their work/leisure behavior. To see this
more clearly, recall that a fraction ζaij,W of the work
trips of subpopulation Na

i end in j, and individuals
who take these trips spend hW hours a day on average
working in node j. Similarly, as explained earlier, the
leisure time that employed (unemployed) individuals
who reside in i spend in j is given by hLζij,L (h′Lζij,L).
Thus, the quantity on the right-hand side also gives
the total number of hours that individuals who reside
in i spend in j.
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Using (5) and the quantities defined earlier, we solve
for {ζij,L} as well. Specifically, we express {τaij,W ,τaij,L}a∈A
as follows:24 τAij,W � (hW=24)ζAij,W, τBij,W � (hW=24)ζBij,W,

τAij,L � τBij,L � (hL=24)ζij,L, and τCij,L � (h′L=24)ζij,L. Finally,
the {τ̃a

ij} variables that appear in our optimization pro-
gram (P1) can be computed in terms of the aforemen-
tioned quantities as τ̃A

ij � τAij,L, τ̃
B
ij � τBij,L + τBij,W, and τ̃C

ij

� τCij,L.

4. Optimal Targeted Closures
In this section, we use our model to illuminate critical
issues for planners to consider in determining how to
minimize the economic costs from unemployment
while controlling an epidemic. We use the NYC data
to demonstrate the potential advantages of targeted
closures compared with uniform ones. The results
show significant potential gains in employment (or sig-
nificantly reduced economic costs from unemployment)
from the use of targeted policies. In addition, they dem-
onstrate that the implied policies differ substantially
from naïve policies that do not consider mobility and
only focus on localized infection numbers. They also
highlight the significant impact that considering regions
beyond the planner’s jurisdiction can have on the plan-
ner’s capabilities to control an epidemic.

We consider three different scenarios y ∈ {0, 0:5, 1}
to capture the permitted economic activity in the
neighboring counties (N \Z) and solve (P1) to obtain
the optimal policy ({xi}i∈Z) for the MODZCTAs of
NYC (Z) in each scenario. The optimal policies are
presented in Figure 1.25

When the economic activity in the neighboring
regions is completely suspended, the optimal targeted
closure policy can guarantee 42.4% efficiency, while
achieving the relevant policy goal. On the other hand,
when the economic activity level in the neighboring
counties is 0.5 or 1, the efficiency decreases to 34.8%
and 23.1%, respectively. Hence, the change in the

economic activity level of neighboring counties
from y� 0 to y� 1 reduces the achievable nontele-
workable employment level in NYC by 45.4%. This
observation highlights the necessity of coordination
between states or other governing bodies to ensure
small economic losses.

In all cases, the optimal policy involves having
some economic activity in Midtown Manhattan, while
restricting economic activity substantially (and in
some cases completely) elsewhere in Manhattan. The
latter effect is more prominent when the economic
activity in neighboring counties increases. The afore-
mentioned structure of the optimal policy is partly
because Midtown has the largest number of jobs in
the city (both nonteleworkable and total; see Figure
EC.3 in Section EC.2). It is worth noting that other
neighborhoods (such as Lower Manhattan) also have
a substantial number of jobs, yet the permitted eco-
nomic activity at the optimal solution is (almost) zero.
This is because if the permitted economic activity in
those neighborhoods were increased, then because of
the spatial nature of disease spread, in order to
achieve the policy goals, the economic activity level in
other locations (such as Midtown) would need to be
reduced. The cost of the latter reduction outweighs
the benefit of increasing economic activity in Lower
Manhattan.

It is worth highlighting that the restrictions can
change substantially even between adjacent neighbor-
hoods (e.g., those in Staten Island). More interestingly,
even among neighborhoods with a similar number of
jobs, the ones with higher levels of permitted eco-
nomic activity are not necessarily those with lower
levels of infection. For instance, in Staten Island, some
neighborhoods that are permitted to continue eco-
nomic activity have higher infection rates than the
adjacent neighborhoods that are completely shut
down (see Figure EC.5 in Section EC.2). This is
because, when a planner decides how much economic
activity to allow, in addition to neighborhood-specific

Figure 1. (Color online) The Neighborhoods’ Colors (as Summarized in the Color Bar) Indicate the Optimal {xi}
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metrics (such as the infection rate in a neighborhood),
the spillovers across neighborhoods (i.e., imports/
exports of the disease across neighborhoods) also
matter.

The significant differences in permitted economic
activity levels even in adjacent MODZCTAs may be
undesirable because of fairness concerns. A conceptu-
ally more fair alternative is to limit the differences in
the level of permitted economic activity in all neigh-
borhoods. We study this alternative by including the
“fairness constraint” xi − xj ≤ 1−θ for all i, j ∈ Z in
(P1), where θ ≥ 0 characterizes the maximum allowed
difference. In Figure 2(a), we focus on scenarios y ∈
{0, 0:5, 1} and illustrate how the efficiency of the opti-
mal solution varies with θ. In all scenarios, the fair-
ness constraints result in a reduction in efficiency. The
extreme where θ�1 captures uniform policies where
the planner must permit the same level of economic
activity everywhere.26 Relative to the optimal targeted
policy (θ � 0), we see that the optimal uniform policy
yields a 3.92–6.25-fold reduction in efficiency (or,
equivalently, the permitted nonteleworkable employ-
ment level). In Section EC.3.6, we consider a similar
variant where we impose the constraint xi − xj ≤ 1−θ
on neighborhoods i, j ∈ Z that are adjacent.27 We show
that this variant yields similar conclusions in terms of
the value of targeting (over uniform policies) as well
as the targeting structure.

A subtle point about fairness constraints is worth
highlighting: they ensure fairness in terms of restric-
tions of economic activity. On the other hand, given
the heterogeneity in terms of the population move-
ment patterns and infection levels across locations,
such constraints may be unfair in terms of the induced
infection rates. To illustrate this, at the optimal solu-
tion obtained for different θ, we compute the rate at
which infections decrease (zi � |∑a∈AE

a′
i + Ic,a

′
i + Isc,a

′
i |)

in each neighborhood i ∈ Z, that is, the slack in the rel-
evant constraints of (P1). We then compute the Gini

coefficient ∑
i∈Z

∑
j∈Z |zi − zj | =2∑i∈Z

∑
j∈Zzj, which meas-

ures the degree of inequality in these rates. Figure 2(a)
illustrates that indeed more equal treatment in terms
of closures could translate to less fair outcomes in
terms of the spread of the infection.

Infections could induce additional societal losses
(such as excess deaths); hence, it may be desirable to
reduce cases more aggressively. We consider such a
variant of the problem by replacing the constraint∑

a∈AE
a′
i + Ic,a

′
i + Isc,a

′
i ≤ 0 in (P1) with

∑
a∈AE

a′
i + Ic,a

′
i +

Isc,a
′

i ≤ −(ω=100)∑a∈A(Ea
i + Ic,ai + Isc,ai ). Here, ω can take

positive or negative values and ω > 0 encodes
the requirement of reducing cases aggressively.28 We
compute the efficiency for different ω under the opti-
mal targeted and uniform policies. The induced
curves, referred to as Pareto frontiers, capture the best
trade-offs achievable between ω and efficiency. Figure
2(b) presents Pareto frontiers for y ∈ {0, 0:5, 1} and
shows that the gap between the optimal targeted and
uniform policies is large for any value of ω. For large
ω, the social planner’s problem becomes infeasible;
the lines are cut off at the ω-values where this hap-
pens. Note that larger values of ω guarantee faster
reduction in cases at the expense of higher unemploy-
ment. To illustrate this for y�0.5, we obtain the opti-
mal targeted policies for different ω and compute the
time it takes city-wide active infections to decrease to
half of the initial level. We see that by setting
ω � 0:5, ω � 1:0, ω � 2:0, the social planner can guar-
antee that the infections will halve in 10, 9, and 8 days
and achieve an efficiency of 32.1%, 29.2%, and 21.3%,
respectively. We detail the trade-offs between halving
times and efficiency that can be obtained through an
appropriate choice of ω in Section EC.3.6.

Social planners could prioritize low-risk businesses
over high-risk ones (e.g., bars and restaurants) by
allowing the former to remain open while closing the
latter. Our model is flexible enough to capture such
prioritization. Specifically, suppose that if a fraction xj

Figure 2. (Color online) Impact of Fairness Constraints (a), Pareto Frontiers (b), and Prioritizing Low-Risk Businesses (c) for
y ∈ {0, 0:5, 1}

Note. (a) Efficiency andGini coefficient for different θ; (b) Pareto frontiers; (c) efficiencywhen low-risk businesses are prioritized.
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of the businesses are open, then infections happen in j
at a rate proportional to xjη(xj). Here, η is a (weakly)
increasing function that captures infection efficiency:
as xj increases, more risky businesses are allowed to
operate, thereby leading to a disproportionately larger
number of infections. We can reflect the impact of
infection efficiency on the evolution of the epidemic
and our optimization framework by replacing xj with
xjη(xj) in (2) and (3) as well as the constraints of (P1).

Note that for increasing η, after this change, (P1)
remains a convex program. To illustrate how the
findings change under prioritization of low-risk busi-
nesses, we let η(xj) � (1− q) + qxj. This parameteriza-
tion of η ensures that when all businesses are closed
(xj�0) and all of them are open (xj�1), xjη(xj) � xj and
the rate of infection is the same as in the baseline
model (because at these extremes, prioritization does
not play a role). Here, q captures the value of prioritiz-
ing low-risk businesses: when q�1 the marginal risk
is arbitrarily smaller for xj � 1 than for xj ≈ 1. Using
the aforementioned optimization formulation, we
obtain the optimal targeting and uniform policies. Fig-
ure 2(c) shows that for different values of q, the effi-
ciency gap between these remains sizable. That is,
similar to the baseline model (q�0), targeting achieves
the policy goal with substantially lower unemploy-
ment, even when low-risk businesses are prioritized
(for all levels of y).

In the variants of our baseline model considered
here, the optimal targeting structure is similar to Figure
1. For instance, when y� 0.5, the Pearson correlation
coefficient between the baseline optimal solution and
the variant in which (i) θ � 0:5 is 0.71, (ii) ω�2 is 0.66,
and (iii) q�0.5 is 0.91. The differences in the solutions
are mainly driven by neighborhoods outside Manhat-
tan. In all cases, the optimal solutions exhibit similari-
ties; for example, within Manhattan some economic
activity is permitted in Midtown, whereas more strin-
gent restrictions are imposed elsewhere (including
Lower Manhattan). See Figure EC.20 in Section EC.3.6.

5. Trip Substitutions, Coarse Targeting,
and Dynamic Policies

Whereas our baseline model applies directly to sit-
uations in which individuals prefer to stay at home
(as opposed to traveling to other destinations) when
a destination has restricted activity, the planner al-
lows for fine-grained decisions on restrictions and
the planner’s focus is on the immediate containment
of infections; alternative settings may be relevant. In
this section, we incorporate three practically relevant
features highlighted earlier into our baseline model
and verify that our main observations (particularly
in terms of the significant gains from targeted rela-
tive to uniform policies) still hold.

As a first alternative, we consider settings where
trip substitutions play a role: individuals whose desti-
nation neighborhoods are targeted with restrictions
may instead decide to visit other neighborhoods. Note
that such trip substitutions could be relevant for lei-
sure trips, but this is unlikely the case for work-
related trips. This is because it is unlikely that many
individuals would be able to switch jobs in a short
amount of time in response to restrictions of economic
activity in neighborhoods that contain their workpla-
ces. Second, fine-grained (e.g., MODZCTA level) tar-
geting may not always be feasible; and it may be
necessary to develop coarser targeted policies. In
addition, as opposed to specifying the policy goal in
terms of instantaneous infection rates, it may be rea-
sonable in practice to express it in terms of the cases
induced over time. We first explain how we incorpo-
rate these features into our model and develop coarse
targeted policies that control the spread of the epi-
demic. Using our trip substitution model and coarse-
targeting approach as building blocks, we then turn
our attention to controlling the disease using dynamic
policies. Throughout this section, we discuss our find-
ings by focusing on the y� 0.5 case for the employ-
ment level in regions outside the planner’s control.

5.1. Leisure-Trip Substitutions
To capture leisure-trip substitutions, we posit a model
similar to multinomial (MNL) choice models. Specifi-
cally, we assume that individuals from i can choose to
spend their leisure time by (i) visiting neighborhood
j≠ i, (ii) spending time in neighborhood i outside
home, and (iii) spending time at home. We refer to
these respectively as action j, action i, and action ∅ and
denote the set of possible actions by Li � {j ∈N |∑

a∈AN
a
i × τaij,L ≥ 1}⋃ {∅}. As discussed in Section 2,

τaij,L captures the fraction of time individuals from sub-
population Na

i spend in j for leisure and is constructed
using the pre-epidemic mobility data. Set Li is obtained
from N by excluding neighborhoods to which almost
no (more precisely, on average less than one) individ-
ual from i travels for leisure. We observe from data that
leisure trips are concentrated locally, which suggests
that for leisure trips the disutility increases quickly in
the distance between the origin neighborhood and the
destination neighborhood (see Figure EC.7 in Section
EC.2 for an illustration).

Given the permitted economic activity levels {xi}i∈N
(¢x), we denote the expected payoff from action ℓ ∈
Li by uai,ℓ(x). We assume that

uai,ℓ(x) � xℓ(V(ℓ)1{ℓ ∉ {i,∅}} +H1(i)1{ℓ � i})
+Ha

2(i)1{ℓ � ∅} −Kdνi,ℓ1{ℓ ∉ {i,∅}}: (6)

Here, V(ℓ) captures the value individuals derive from
spending leisure time in neighborhood ℓ. Individuals
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could derive a different value from visiting attractions
that are local to them. We incorporate this into the
model through the second term, which explicitly
allows individuals who reside in i to have value H1(i)
(possibly different from V(i)) for spending leisure
time in i. The xℓ multiplier ensures that the payoff
from these options decreases with restrictions in ℓ.
Although the first two terms capture the value for
spending time outside home, the third term captures
the value from spending leisure time at home. We
allow this term to be different for distinct subpopula-
tions a to reflect the fact that some subpopulations
(e.g., unemployed individuals) have more leisure time
and may spend a different fraction of this time at
home.29 The last term captures the disutility due to
traveling from neighborhood i to ℓ, which depends on
the distance di,ℓ between them. As we mentioned
above, it can be observed from data that leisure trips
are concentrated locally, which suggests that for short
distances the disutility increases quickly in di,ℓ. To
accommodate different impacts of distance on trip
patterns, we allow the distance penalty to have an
exponent ν and estimate our model with different ν.
We observe that the best fit is achieved for ν � 0:1 and
use this value in our analysis.30

We assume that the total utility an individual
derives from action ℓ ∈ Li is given by uai,ℓ(x) + εai,ℓ,
where εi is the choice-specific shock drawn indepen-
dent and identically distributed from Extreme Value
Type I Distribution with location parameter 0 (Hotz
and Miller 1993). Individuals first observe the realiza-
tion of the choice-specific shock and then select the
action to maximize their utility. For the given model
of choice-specific shocks, the ex ante probability that
action ℓ is chosen is proportional to exp (uai,ℓ(x)). In
turn, this implies that the (average) fraction of time
τaiℓ,L(x) an individual in subpopulation Na

i spends on
leisure by choosing action ℓ ∈ Li is proportional to
exp (uai,ℓ(x)). Hence, after appropriate normalization,
for each i ∈N , a ∈A and ℓ ∈ Li, we obtain

τaiℓ,L(x) �
exp (uai,ℓ(x))∑

ℓ′∈Li
exp

(uai,ℓ′ (x)) ·
h̄
a
i,L

24
ℓ ∈ Li ,

0 ℓ ∉ Li ,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (7)

where h̄
a
i,L is the average number of hours individuals

in subpopulation Na
i spend on leisure per day.

Note that the model readily captures trip substitu-
tions. Specifically, if the economic activity in neigh-
borhood ℓ is restricted, the payoff individuals derive
from visiting ℓ decreases (see (6)). As a result, the por-
tion of leisure time they spend in ℓ decreases and they
start spending more time in neighborhood j≠ ℓ or at
home. The rate at which trips are substituted depends
on the values of different neighborhoods.31

5.2. Model Estimation
We estimate the parameters V, H1, Ha

2, and K, which
capture the attractiveness of different neighborhoods
(as well as the disutility due to traveling to more dis-
tant neighborhoods), by focusing on the period before
lockdowns in NYC.

As mentioned earlier, U.S. Bureau of Labor Statis-
tics (2020) reports (i) the average daily time spent on
outdoor leisure per individual with employment (hL)
and (ii) the average daily time spent on outdoor lei-
sure per individual without employment (h′L). In addi-
tion, it reports (iii) the average daily time spent on
leisure per individual (both outdoors and at home)
with employment (h̄L and (iv) the average daily time
spent on leisure per individual (both outdoors and at
home) without employment (h̄

′
L). These quantities are

given as follows: hL � 1:28 hours, h′L � 1:50 hours, h̄L �
4:18 hours, and h̄

′
L � 6:91 hours. Thus, the ratio of total

leisure time to outdoor leisure time is κL � h̄L=hL for
employed individuals and κ′

L � h̄
′
L=h

′
L for unemployed

ones. We assume that the ratio of total leisure time to
outdoor leisure time depends only on the employ-
ment status and that these ratios are the same for all
neighborhoods.

Note that h̄
a
i,L can be expressed in terms of these

parameters as follows:

h̄
A
i,L � 24κL

∑
j∈N

τAij,L(1), h̄
B
i,L � 24κL

∑
j∈N

τBij,L(1),

h̄
C
i,L � 24κ′

L

∑
j∈N

τCij,L(1):

To see these relations, observe that 24
∑

j∈N τaij,L(1) rep-
resents the time (in hours) individuals from subpopu-
lation Na

i spend on leisure outside home. Scaling this
quantity by κL for subpopulations NA

i ,N
B
i (or κ′

L for
subpopulation NC

i ) yields the average leisure time
(both outdoors and at home) for that subpopulation.
Similarly, τai∅,L(1) (i.e., the average fraction of time
spent at home—in the absence of closures—for leisure
by individuals in subpopulation Na

i ) satisfies

τai∅,L(1) �
h̄
a
i,L

24
−∑

j∈N
τaij,L(1),

because 24(τai∅,L(1) +
∑

j∈N τaij,L(1)) gives the average

daily leisure time (in hours), h̄
a
i,L. The parameters

{τaij,L(1) � τaij,L} were obtained in Section 3; using them

together with κL,κ′
L we derive {h̄ai,L,τai∅,L(1)} as well.

Note that (7) implies that for each neighborhood i,
subpopulation a, and action ℓ ∈ Li, we have

log τaiℓ,L(1)
( )

− log τai∅,L(1)
( )

� uai,ℓ(1) − uai,∅(1): (8)

Using (6), we can express the right-hand side as a lin-
ear function of V, H1, Ha

2, and K. The coefficients of
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these linear terms are known and obtained from data,
and the left-hand side of (8) is also derived from the
data as described above.

Similar to MNL models, our model is identified up
to a normalization constant; that is, if a constant is
added to V,H1,Ha

2, the choice probabilities/fractions
remain unchanged. Thus, we first set one of the
parameters V(i?) (where i? corresponds to MODZCTA
11215) equal to zero and estimate the remaining
parameters of our model by solving the following
ordinary least squares problem:

min
({V(i)}i≠i? , {H1(i)}i, {Ha

2(i)}i,K)
∑
i∈N

∑
a∈A

∑
ℓ∈Li

log τaiℓ,L(1)
( )(

− log τai∅,L(1)
( )

− uai,ℓ(1) + uai,∅(1)
)
:2

All parameters estimated in this linear regression are
statistically significant (with all p-values less than 1%)
and the adjusted R2 is 0.751. The summary table for
the regression results is included in Table 3.

We observe from the mobility data that the initial
city-wide restrictions of economic activity reduced the
aggregate leisure time spent outside home to roughly
10% of the total leisure time. We use this observation
to choose the normalization constant such that if xi� 0
for all i, the leisure time spent outside home matches
this observation. We obtain our final estimates by
adding this normalization constant to our estimates of
V, H1, and Ha

2. We see that the resulting parameters
are such that the H1( j) parameters are nonnegative for
all but 14 neighborhoods; for the remaining neighbor-
hoods, the aforementioned parameter is very close to
zero. The parameters other than H1 are also nonnega-
tive. To ensure that uaij(x) is weakly increasing in xj, in
the remainder of our analysis we set the latter set of
H1( j) parameters (which are close to zero) to zero.

The estimated parameters, together with (6) and (7),
give us a model of trip substitutions in response to
closures. We next analyze how the planner can use
this model and obtain (coarse) targeted restrictions, in
settings with trip substitutions.

5.3. Coarse Targeting
In the remainder of the paper, we focus on our model
that allows trip substitutions. Under this model, the
dependence of new infections on permitted activity
levels is nonlinear. As a result, the constraint

∑
a∈AE

a′
i

+ Ic,a
′

i + Isc,a
′

i ≤ 0 becomes nonconvex in the decision
variables and the resulting variant of (P1) is less trac-
table. At the same time, this constraint captures only
the instantaneous changes in infections; in practice, it
may be more reasonable to focus on policy goals that
ensure a reduction in active cases in a certain time
frame (e.g., two weeks). Finally, targeted interventions
at the fine-grained MODZCTA level may pose diffi-
culties in implementation. We simultaneously address
these issues and obtain targeted policies that take into
account trip substitutions.

Though the targeting structure illustrated in Figure 1
is obtained ignoring trip substitutions, it still captures
information on infections and employment characteris-
tics in different neighborhoods as well as population
movements. Thus, we consider coarse targeted policies
by clustering MODZCTAs whose {xi} are similar, using
a geographical clustering algorithm: max-p-regions
(Duque et al. 2012). In the max-p-regions problem, the
goal is to cluster n areas into an unknown maximum
number of regions. Each area has a vector of attributes,
and a distance function measures how different two vec-
tors of attributes are. The heterogeneity of a region is the
total distance between every pair of areas within that
region. Moreover, there is an additional attribute,
referred to as the spatially extensive attribute, where
the feasible partitions of areas into regions satisfy (i) a
spatial contiguity condition and (ii) a minimum thresh-
old value condition that requires that the sum of spa-
tially extensive attributes of the areas contained in each
region is greater than a prespecified threshold. The lat-
ter condition can be used to ensure that no region is too
small or large in size. The objective is to obtain a feasible
partition that has the largest number of partition ele-
ments and ensures the smallest total heterogeneity
among all feasible partitions with the same cardinality.
Duque et al. (2012) present both an exact algorithm
(using mixed-integer programming) and a heuristic
algorithm (using local search) for the solution of the
max-p-regions problem.

We formulate the max-p-regions problem to cluster
MODZCTAs into several geographically connected32

regions (condition (i)) such that the number of nonte-
leworkable jobs in each region is at least 1=6 of the
total number of nonteleworkable jobs in NYC (condi-
tion (ii)). We use {xi} in the solution of our baseline
model as the attribute that is used to identify similar
regions and define the attribute “distance” between
two neighborhoods as the absolute difference of their
attributes. Because of running-time considerations, we
implement the heuristic algorithm of Duque et al. (2012)
and get the clustering structure given in Figure 3(a). This
partition R has five regions (equal to the number of
boroughs in NYC). Every region is geographically
connected and accounts for at least 1=6 of the nontele-
workable employment in NYC. It can be seen that the

Table 3. Summary Table for Regression Results

Dep. variable: y R2 0.755
Model: OLS Adj. R2: 0.751
Method: Least squares F-statistic: 190.2
No. observations: 46,917 Prob(F-statistic): 0.00
Df residuals: 46,169 Log-likelihood: −60,409
Df model: 747 AIC: 1:223 × 105

Covariance type: Nonrobust BIC: 1:289 × 105
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clustering structure largely follows the optimal solu-
tion in Figure 1, with some deviations due to geo-
graphical contiguity requirements.

We focus on coarse targeted policies where all neigh-
borhoods in region r ∈R have the same level of permit-
ted activity, xr. Motivated by practical implementation
considerations, we restrict attention to a grid of permit-
ted economic activity levels G � {0%,20%, : : : , 100%}
for the targeted policy. Our policy goal is to ensure a
reduction in active cases

∑
a∈AE

a
i + Ic,ai + Isc,ai in all

neighborhoods i ∈ Z in a time frame of two weeks
(while keeping the permitted activity levels the same
throughout). Specifically, for an arbitrary policy
x � {xr}, let Ai,t(x) denote the active infections in neigh-
borhood i on day t (or more precisely t days after the
restrictions are imposed, where, as before, we assume
that the policy is employed starting from April 18,
2020). Our policy goal requires Ai,14(x) ≤ Ai,0(x) for
each MODZCTA i ∈ Z. The optimal (coarse targeted)
policy is the one that achieves this policy goal while
yielding minimal nonteleworkable unemployment.
This policy is found via exhaustive search (over five
regions and six permitted economic activity levels) and
is given in Figure 3(b).33 As before, targeting yields sub-
stantially higher efficiency: in the scenario y�0.5, the
efficiency of the optimal coarse targeted solution is
34.0%, whereas the optimal uniform solution (obtained
after we require xr � xr† for r, r† ∈R) is 12.5%. The tar-
geting structure exhibits similarities to the baseline
model: no neighborhood in Manhattan is open at a
higher level than Midtown, and there are neighbor-
hoods outside Manhattan where even more economic
activity is allowed. Because of coarse targeting, the per-
mitted economic activity levels are more restricted and
hence less extreme than before: they vary between 0
and 0.6 (as opposed to zero and one).

5.4. Dynamic Policies
Next, we focus on a setting where the planner decides
how to control the spread of the epidemic over 10
weeks by adjusting his or her targeting decisions
every two weeks (i.e., there are five decision epochs).
We denote by xr,t the level of permitted activity in
region r ∈R on day t. We allow for trip substitutions
and once again restrict attention to coarse targeted
policies (such that xr,t ∈ G). For an arbitrary policy
x � {xr,t}, as before, we denote by Ai,t(x) the active
infections in neighborhood i on day t.

We impose two types of constraints on our policies.
The first type of constraint requires that the number of
active infections be smaller at the end of each epoch
than in the beginning for each MODZCTA i ∈ Z, that is,

Ai,t+14(x) ≤ Ai,t(x), ∀i ∈ Z, t ∈ {0, 14, : : : ,T − 14},
(9)

where T�70 denotes the last day of the planning hori-
zon. The second type of constraint requires that the
city-wide active infections under dynamic policy x be
not much larger than those under the full closure pol-
icy (which sets xr,t � 0 for all r and t), denoted by 0.
More precisely, we require that∑
i∈Z

Ai,t(x)≤
∑
i∈Z

Ai,t(0)+b ·∑
i∈Z

Ai,T=2(0), ∀t∈{0,:::,T}:
(10)

Here,
∑

i∈ZAi,t(0) denotes the total active infections in
the city under the full closure policy on day t. The var-
iable b is a fixed constant, and

∑
i∈ZAi,T=2(0) represents

the active infections in the middle of the horizon
under the full closure policy. When b�0, the only fea-
sible policy is the full closure policy; b �∞ yields poli-
cies that only enforce nonincreasingness in infections
in each neighborhood. As b increases, infections

Figure 3 (Color online) Clustering Structure, Optimal Static Solution with Trip Substitutions, and Dynamic Policies for y � 0.5

Notes. In (c), the solid curve is the optimal uniform policy; and the dashed curves define the greedy targeted policy. (a) Clustering structure. (b)
Optimal solution w/substitutions. (c) Dynamic policies.
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increase and unemployment decreases. By choosing
b > 0 appropriately, different trade-offs between these
can be obtained. For instance, to ensure swift reduc-
tion in infections (and in turn disease-induced deaths),
small values of b can be adopted.

Finding the optimal dynamic targeted policy appears
intractable (because of the high-dimensional state space
and large number, 625, of different policies). We instead
obtain the optimal dynamic uniform policy (which
requires xr,t � xr†,t for r, r† ∈R and all t) via exhaustive
search. In addition, we compute the greedy dynamic
targeted policy, which at each decision epoch finds the
targeting structure that satisfies the policy goal while
inducing the lowest nonteleworkable unemployment
level (at that epoch). Figure 3(c) shows the greedy
dynamic targeted policy for b � 10% in the scenario
y�0.5. Our greedy dynamic targeted policy yields
much higher efficiency (averaged over time) than the
optimal dynamic uniform policy: 18.0% versus 8.0%,
respectively, highlighting the power of targeting even
in the dynamic variants of the problem.34

Despite its desirable performance against the opti-
mal dynamic uniform policy, the greedy dynamic tar-
geted policy is not necessarily the optimal dynamic
targeted policy. Solving for the latter is computation-
ally hard; thus, we also explore a more limited sce-
nario in which only coarser targeted policies (with
three regions over three epochs) are allowed and shed
light on the efficiency gap between the greedy dynamic
targeted policy and the optimal dynamic targeted pol-
icy. Specifically, following a similar approach to the
one above (but requiring each region to have at least
1=4 of all the nonteleworkable employment), we obtain
a coarser clustering structure that divides NYC into
three regions (see Figure 4(a)). We consider dynamic
policies over six weeks with three decision epochs
(once again adjusting closure decisions every two
weeks). We focus on the same types of constraints with
both b � 10% and b � 20%. The small dimension of this
example enables us to compute the optimal dynamic
targeted policy via exhaustive search. For b � 10% (Fig-
ure 4(b)), the greedy dynamic targeted policy is indeed
the optimal dynamic targeted policy and yields higher
efficiency than the optimal dynamic uniform policy:
10.1% versus 6.7%, respectively. For b � 20% (Figure
4(c)), both the optimal dynamic targeted policy and the
greedy dynamic targeted policy yield relatively higher
efficiency than the optimal dynamic uniform policy:
18.5%, 16.8% versus 13.3%, respectively. Moreover, in
both cases the greedy dynamic policy is near optimal.
Two additional comments about these results are worth
highlighting. First, because this example considers very
coarse targeting structures (i.e., three regions in NYC),
the efficiency gap between the greedy dynamic tar-
geted policy and the optimal dynamic uniform policy
is smaller than the one in our five-region five-epoch

example. Second, interestingly, the optimal dynamic
targeted policy also exhibits a nonmonotone structure
(see, e.g., the solid yellow curve in Figure 4(c)).

We also analyze the performance of the greedy
dynamic targeted policy and the optimal dynamic
uniform policy under model misspecification. In this
analysis, we capture the possibility that (i) the realized
economic activity in each neighborhood may deviate
from what is required by the planner and (ii) there is
uncertainty in both the disease parameters and other
data sources (i.e., initial infection numbers and mobil-
ity patterns). Specifically, we assume that in each
neighborhood i, the realized economic activity is a
noisy version of the activity level xi set by the planner
(using the greedy dynamic targeted policy or the opti-
mal dynamic uniform policy), the actual values of the
disease parameters differ from our assumptions (and
are sampled from the confidence intervals reported in
the literature), and only noisy information is available
on the initial infection numbers/mobility patterns.
We show that our greedy dynamic targeted policy
(which does not know the actual realization of the
model parameters and incorrectly assumes that the
realized economic activity levels match the levels set
by the planner) continues to achieve much higher effi-
ciency than the uniform policy, while having a very
similar “risk profile,” that is, inducing a very similar
distribution of total infections. In other words, our find-
ings seem to be robust with respect to model misspeci-
fication. We detail these results in Section EC.3.10.

6. Conclusions
This paper illustrates that targeted closure policies have
the potential of reaching the same goals in terms of epi-
demic control as uniform closure policies but at substan-
tially lower economic costs (due to unemployment) than
uniform policies. In addition, the paper highlights that
population movement within a region makes the opti-
mal targeted policies quite different from policies built
on local infection measures and that practices in adjoin-
ing regions may have a significant effect on the efficacy
and design of epidemic control policies. This analysis
opens up a number of interesting research directions.
First, our observation of the importance of considering
populationmovement patterns and costs associatedwith
the control of the disease provide motivation for the
control of infectious diseases in different settings from
those considered here. Indeed, subsequent research has
started exploring this direction (e.g., see Ma et al. 2020).
Second, it is not a priori clear for which type of popula-
tion movement patterns targeting becomes more valu-
able (relative to uniform policies); a theoretical analysis
of this question is an interesting researchdirection. Third,
although optimal dynamic control of infections appears
intractable because of the large scale of the problem and
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the nontrivial evolution of the state, we proposed a
greedy dynamic targeted policy and illustrated that it
already provides a substantial improvement over the
optimal dynamic uniform policy. Providing algorithms
for obtaining better dynamic policies with provable per-
formance guarantees remains an interesting research di-
rection. Fourth, other stronger restrictions of individual
activities (e.g., strict shelter-in-place orders or neighbor-
hood quarantines) can be used to curb the spread of an
epidemic. Providing an optimization framework for the
design of such policies, exploring their performance,
and shedding light on when such stronger controls pro-
vide substantial improvement over the less stringent
ones we considered here are additional interesting fu-
ture directions.

Our objective in this paper was not to provide a
definitive decision support tool for targeted interven-
tions but rather to shed light on the value of targeting
and provide insights into its structure. A natural and
important direction is to refine the model, assump-
tions, and optimization framework of this paper in
order to provide a decision support tool for social

planners. To accomplish this, several practical consid-
erations need to be addressed. For instance, imple-
menting policies such as ours requires keeping track
of the sizes of disease compartments (at each decision
epoch), and relevant data may not always be avail-
able. Also, it may not be easy to restrict the activity in
a neighborhood to a specified level. Finally, social
planners may have other considerations beyond the
trade-off between infection and unemployment rates.
Exploring these and other practically relevant consid-
erations, and adapting the targeted policies discussed
in this paper to handle those issues, continue to be
interesting future directions.

Acknowledgments
The authors thank SafeGraph for providing the mobility
data.

Endnotes
1 New York State Governor’s Office (2020d) states that “instead of
analyzing data by region, county, or even just ZIP, the micro-cluster
strategy will use granular data to pinpoint the epicenters of viral

Figure 4. (Color online) Dynamic Policies with Three Epochs and Three Regions

Notes. (a) Three-region clustering structure. (b) Dynamic policies with b � 10%. The thick curve is the optimal uniform policy, and the thin curves
define the optimal targeted policy and the greedy targeted policy. (c) Dynamic policies with b � 20%. The thick curve is the optimal uniform pol-
icy, and the thin dashed (resp. solid) curves define the greedy (resp. optimal) targeted policy.
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outbreaks in neighborhoods and smaller areas.”Notably, these poli-
cies showed promise in curbing the spread of the epidemic, at least
locally: after keeping this targeted policy in place for two weeks,
the positivity rate in targeted locations decreased substantially; for
example, for Brooklyn and Rockland, the positivity rates before/
after this intervention are respectively 5.88%/3.57% and 9.77%/
3.21%; see New York State Governor’s Office (2020c).
2 Although we frame our discussion in terms of the economic costs
of lockdown-induced unemployment, it is worth noting that
besides the economic costs, unemployment can also cause adverse
health outcomes; see, for example, The Hill (2020).
3 Interestingly, they find that the change in mobility also depends
on the socioeconomic characteristics of individuals. For both high-
and low-income zones of the city, the reduction in mobility is sub-
stantial; but high-income zones exhibit more sizable reductions in
mobility than lower-income ones. One explanation the authors
provide for this is the fact that high-income individuals may have
professions that are amenable to remote work. The authors also
document that there are nontrivial spillovers, that is, lockdowns in
a region impact other regions.
4 This parameter controls the aggregate capacity at which the busi-
nesses in a neighborhood operate. In practice, capacity reduction in a
neighborhood can be achieved by, for example, (i) closing a fraction
of businesses in a neighborhood (possibly by prioritizing essential
businesses), (ii) limiting the number of people who can be present in
businesses, and (iii) restricting the hours of operation.
5 The insights hold and the framework applies even if it is assumed
that individuals cannot work remotely; see Section EC.3.5.
6 In practice, some infected individuals may not realize that they
are sick or they may have only mild symptoms that they attribute
to other causes. Motivated by this, we take a conservative approach
and assume that they do not self-isolate in the absence of restric-
tions. It is straightforward to model self-isolation by scaling the
populations of the infected compartments.
7 It can be seen that the closures in neighborhood j impact the infec-
tions among individuals who reside in other neighborhoods but
visit j. In turn, provided that the latter neighborhoods do not experi-
ence full closures, this impacts the subsequent infections that take
place there. With full closures in j (i.e., when xj� 0), our baseline
model assumes that there will be no infections in j. In the case of
full closures, in practice, one could still expect individuals (from all
neighborhoods, including j) to spend a limited amount of time in j,
which causes a small number of infections there. Our trip substitu-
tion model already accounts for this behavior; see Section 5.
8 In our NYC example, Z corresponds to all modified Zip Code
Tabulation Areas (MODZCTAs) in NYC and N corresponds to all
MODZCTAs in NYC and neighboring counties (see Table 2) that
have the largest inflow/outflow of individuals to/from NYC. See
Section 3 for further discussion.
9 The change in compartment sizes in a short amount of time can be
approximately given by the right-hand sides of (2)–(4) times the
duration. Thus, the aforementioned condition allows for controlling
the evolution of the disease in the short term. Over time the suscep-
tible population shrinks, and each infected individual can cause
fewer infections. Thus, a (static) policy that initially satisfies this
condition is also likely to achieve a reduction in infections in the
long run. This observation suggests that our condition also offers a
tractable proxy for the long run.
10 SafeGraph is a data company that aggregates anonymized loca-
tion data from numerous applications in order to provide insights
into physical places.
11 In Section EC.2, we conduct a model validation exercise and
verify that the model we detail here has reasonable predictions.

12 Li et al. (2020) divide the infected population into two groups: (i)
documented infected individuals with symptoms severe enough to
be confirmed and (ii) the rest. They refer to the rate at which
infected individuals belong to the first group as the reporting rate
and estimate it to be 0.14. We assume that this quantity is equal to
the clinical rate and use their estimate. The estimates reported here
are also largely consistent with other available estimates in the liter-
ature; see, for example, Wu et al. (2020) and Ferretti et al. (2020).
13 The case data prior to June 2020 are also available at the ZCTA
level. The aggregation of the data to the MODZCTA level allows
more stable analysis and reporting of case numbers, and more
recent data are reported only at the MODZCTA (or coarser) level
(see NYC Health 2020). Motivated by this, we conduct our analysis
by focusing on the MODZCTA level data. An earlier version of this
paper was based on the ZCTA level data and obtained similar
insights to those provided in this version; see Birge et al. (2020).
14 ZCTAs are closely related to zip codes, and in fact the ZCTA
code of a block is the most common zip code contained in it; see
U.S. Census Bureau (2020).
15 Here we aggregate data at the county level, as outside NYC the infec-
tion data were provided at the county level (New York Times 2020).
16 We also explore alternative specifications such as one where, for
each i, j, the employees who live in i and work in j, are allocated
equally to different NAICS industries. We verify that our insights
remain unchanged.
17 For instance, {r(k)i } account for 96% of all the employees in NYC,
whereas the remaining employees live in NYC but work at locations
outside NYC or the 10 counties mentioned above, and similarly
{c(k)i } account for 93% of all the jobs in NYC.
18 The data exhibit some day-of-the-week effect; for example, on
certain days of the week fewer tests are done and cases reported.
When constructing the initial sizes of infected populations, we focus
on both the reported case counts and a version that is smoothed
using a five-day window (to sidestep the aforementioned issue)
and obtain similar results. In the remainder of the paper, we report
the results using smoothed data.
19 Similarly, Hortaçsu et al. (2021) estimate that 4%–14% of the
actual number of infections had been reported in the United States
up to March 16.
20 The antibodies appear with some delay after the infection.
According to Wölfel et al. (2020), half of the infected mild cases
developed antibodies within a week of the onset of symptoms,
whereas the rest developed antibodies in the second week. Even
though 24.7% was reported on April 27, because of the aforemen-
tioned delay as well as the time spent surveying the patients, it is
reasonable to expect a similar infection rate earlier as well, consis-
tent with our assumption on T?.
21 We distribute the origins according to the populations of the CBs,
whereas we distribute the destinations according to the areas. This
is because the number of “homes” in a CB is naturally proportional
to the population of that CB; hence, when allocating origins of trips
to CBs, it is natural to focus on populations. On the other hand, the
destinations of the trips can be to nonresidential areas and focusing
on populations in that case could be misleading. Therefore, in the
latter case, we focus on the areas of CBs. We also ran our model
when the origins/destinations are both distributed according to
areas or populations. We obtained similar results to our main model
and verified the robustness of our findings.
22 We also do sensitivity analysis by considering different time win-
dows and obtain similar findings; see Section EC.3.3.
23 More precisely, the surveys project that on an average day (i)
112,700K individuals work (in the United States) and they spend
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(on average) 7.62 hours on work and (ii) 92,274K individuals work
at their workplace (at least partially) and they spend (on average)
7.86 hours working there. This implies that on an average (pre-epi-
demic), a total of 112700K × 7:62 hours of work is done and
92274K × 7:86 hours of work is done at the workplace. Hence, tak-
ing the ratio we conclude that approximately 84.4% of work is done
at the workplace. We assume that workers in NYC work for 40
hours a week on average. Although not specific to NYC, similar
numbers are reported by the ATUS: employed individuals work
eight hours on an average weekday, whereas this number is 7.94
hours for single job holders (we also repeated our analysis using
these numbers as well as 7.62 hours of work on an average work
day mentioned earlier and obtained very similar results). This
assumption together with our earlier observation implies that 40 ×
84:4% � 33:76 hours of work is done at the workplace in an average
week by an employed individual. This in turn implies that on aver-
age an employed individual spends 33:76=7 � 4:82 hours at the
workplace per day. The surveys also directly report the time spent
on different leisure activities by employment characteristics (see
U.S. Bureau of Labor Statistics (2020), ATUS table 11A). The quanti-
ties hL and h′L are obtained by combining the time spent on various
“outdoor” activities: (i) participating in sports, exercise, and recrea-
tion; (ii) socializing and communicating; and (iii) other leisure and
sports activities, including travel.
24 The aforementioned approach toobtaining {ζij,L} yields a small
number of i, j pairs for which ζij,L < 0. These i, j mainly correspond
to locations between which only a small number of individuals
travel in the SafeGraph data set. For such i, j, the left-hand side of
(5) is smaller than the first term on the right-hand side. Denote by
Ξ(i) the set of j such that the (i, j) tuple exhibits this property. The
quantity

∑
j∈Ξ(i)(hW(NA

i ζAij,W +NB
i ζij,W) − 24Niτij)=Ni, which is a mea-

sure of the aggregate inconsistency in node i, is bounded by 32
minutes for all i. In other words, the maximum inconsistency (over all
nodes) is relatively small (2.2% of the daily window we use in our
analysis). It can be attributed partly to the assumptions we made to
deal with data unavailability (e.g., subpopulations NA

i ,N
B
i ,N

C
i have

identical leisure-trip factors {ζij,L}j) and partly to the sampling errors
in the SafeGraph data. In addition, U.S. Census Bureau (2017) data are
a few years old and the employment patterns can change over time
and have additional noise. Given that 2.2% of daily time is relatively
small, we manually adjust those edges by setting ζij,L � 0 and ζAij,W �
ζBij,W � τij × (24Ni=hW(NA

i +NB
i )) and derive {τaij,W ,τaij,L} accordingly.

25 It is interesting to explore whether the optimal policy permits
more economic activity in neighborhoods where individuals have
higher incomes on average. We find no evidence for this. See Sec-
tion EC.2 for details.
26 In this and other variants of (P1), when the additional parameter
is set equal to zero we recover the baseline model. In all variants we
study, whenever we solve for the uniform policies we impose the
constraint xi − xj ≤ 1−θ for θ�1 for i, j ∈ Z.
27 We say that MODZCTAs i and j are neighbors if (i) they share a
border or (ii) they are separated by the East or the Harlem River
and i is geographically the closest MODZCTA to j on the other side
of the river (or vice versa) or (iii) they are connected by a bridge.
28 This formulation is also useful to obtain robust solutions that
ensure that small perturbations to the parameters do not violate the
original policy goal.
29 Though we verify that if this term takes the same value for all
subpopulations, the change in the results is marginal.
30 When i, ℓ both correspond to MODZCTAs or neighboring coun-
ties, we measure the distance by focusing on the distance between
their centroids. When one of them is a MODZCTA and the other is
a neighboring county, we measure the distance between the cen-
troid of the MODZCTA and the closest point (at the border) of the
neighboring county. We experiment with other utility specifications

and verify that the above functional form yields the best fit, and the
results are not sensitive to the way the distances are measured
(using centroids versus borders).
31 In light of the pandemic, there may have been other changes in
individuals’ trip patterns, triggered, for example, by aversion to
public transit. Although we do not explicitly model such changes
here, we verified that the majority of leisure trips are of a local
nature (even prior to the pandemic); hence, they are unlikely to be
drastically impacted by attitudes toward public transit.
32 Here we use the same adjacency relation as the one in Endnote 29.
33 Specifically, for each {xr}r∈R ∈ GR, we first numerically solve the
system (2)–(4) and compute the active infections at the end of a
two-week horizon. We then identify solutions that achieve a reduc-
tion in cases and among these find the solution that yields minimal
nonteleworkable unemployment.
34 Despite the fact that this policy is nonmonotone (in the sense that
some regions may face harsher restrictions after initially opening
up), a monotone variant can trivially be obtained by setting
x̂r,t �mint†≥txr,t† , where xr,t and x̂r,t respectively denote the permit-
ted economic activity in region r at epoch t under the greedy
dynamic policy and its monotone variant. Interestingly, the effi-
ciency of the monotone variant is also substantially larger than that
of the optimal dynamic uniform policy: 16.2%.
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