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Abstract. This paper studies a new class of vector optimization problems where the objective criteria
are linear fractional functions, the ordering cone can be any nonempty closed convex pointed and solid
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1. INTRODUCTION

Due to their significant applications in management science, remarkable properties, and theo-
retical importance, linear fractional vector optimization problems (LFVOPs) have been studied
intensively in the last forty years. The book by Steuer [25], the papers of Choo and Atkins
[4, 5], Choo [3], Malivert [21] are among the first research works on LFVOPs. For subsequent
studies on this class of nonconvex vector optimization problems, we refer to Benoist [1], Maliv-
ert and Popovici [22], Yen and Phuong [30], Hoa et al. [7, 8, 9], Yen and Yao [32], Yen [29].
Recently, new results on the connectedness of the solution sets and properly efficient solutions
of LFVOPs have been obtained by Huong et al. [11, 12, 13, 14, 15] and Tuyen [26]. Detailed
surveys on the available research results on LFVOPs can be found in [29] and [13].

Yen and Yang [31] have suggested an extension of linear fractional vector optimization prob-
lems to a normed space setting.

All LFVOPs in the above-mentioned books and papers are vector optimization problems with
linear fractional objective criteria, standard ordering cones (that is, the nonnegative orthants
in Euclidean spaces), and polyhedral convex constraint sets (or generalized polyhedral convex
constraint sets).

In this paper, we are interested in studying a new class of vector optimization problems in
finite dimensions where the objective criteria are linear fractional functions, the ordering cone
can be any nonempty closed convex pointed and solid cone, and the constraint set can be any

DEDICATED TO PROFESSOR DINH THE LUC ON THE OCCASION OF HIS 70TH BIRTHDAY.
∗Corresponding author.
E-mail addresses: nguyenhuong2308.mta@gmail.com (N.T.T. Huong), ndyen@math.ac.vn (N.D. Yen)
Received ...; Accepted .....

1



2 N.T.T. HUONG, N.D. YEN

nonempty closed convex set. To the best of our knowledge, those problems are considered for
the first time here. Our main results on the new type of LFVOPs are the following:

- Three theorems on necessary conditions and/or sufficient conditions for a feasible point to
be a weakly efficient solution or an efficient solution;

- Two theorems on the connectedness of the weakly efficient solution set and a certain part
the efficient solution set.

The separation theorem [23, Theorem 11.3], an increment formula for linear fractional func-
tions (see Lemma 2.1 below), the concept of monotone variational inequality [18, p. 83], the
Minty Lemma, the connectedness preservation under certain upper semicontinuous set-valued
maps [6, 27], and the treatment of LFVOPs via monotone affine vector variational inequalities
of Yen and Phuong [30] will be our main tools.

The obtained results are analyzed by some examples. To highlight the difficulties of get-
ting complete results on the new class of LFVOPs, several nontrivial open questions will be
formulated.

The paper organization is as follows. After giving some preliminaries in the next section,
we establish optimality conditions in Section 3, connectedness of the efficient solution sets in
Section 4. Section 5 is devoted to conclusions and topics for further investigations.

2. PRELIMINARIES

As usual, scalar product of two vectors x,y in an Euclidean space is denoted by 〈x,y〉. For
a set A ⊂ Rm, the symbol Ā stands for the closure of A. By riA we denote the relative interior
of A that is, the interior of A in the induced (or relative) topology of its affine hull affA; see, e.g.,
[23, p. 44]. The open ball (resp., closed ball) centered at y ∈ Rm with radius ε > 0 is denoted
by B(y,ε) (resp., B̄(y,ε)). The closed unit ball in Rm is abbreviated to B̄Rm . A subset K ⊂ Rm

is said to be a cone if tv ∈ K for all v ∈ K and t ≥ 0; see, e.g. [16, p. 8] and [20, p. 1].

Let fi : Rn→ R (i = 1,2, · · · ,m) be linear fractional functions, that is

fi(x) =
aT

i x+αi

bT
i x+βi

for some ai ∈ Rn,bi ∈ Rn,αi ∈ R, and βi ∈ R. Let ∆ ⊂ Rn be a nonempty closed convex
set and K ⊂ Rm be a nonempty closed convex cone. It is assumed that K is pointed (i.e.,
K∩ (−K) = {0}) and solid (i.e., the interior of K, denoted by intK, is nonempty). In addition,
we assume that bT

i x+βi > 0 for all i ∈ I and x ∈ ∆, where I := {1, · · · ,m} and T denotes the
matrix transposition. Let

f (x) = ( f1(x), . . . , fm(x))T (∀x ∈ ∆).

For any y2,y1 ∈ Rn, if y2− y1 ∈ K, one writes y1 ≤K y2 and also y2 ≥K y1. If y2− y1 ∈ intK,
one writes y1 <K y2 and also y2 >K y1. Consider the vector optimization problem with linear
fractional objective criteria

minK{ f (x) : x ∈ ∆}. (2.1)

Specializing the general concepts of efficiency and weak efficiency in [24, pp. 33–34] and
[20, p. 57] to problem (2.1), we obtain the following.
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Definition 2.1. A point x ∈ ∆ is said to be an efficient solution of (2.1) if there exists no y ∈ ∆

such that f (y)≤K f (x) and f (y) 6= f (x). If x ∈ ∆ and there exists no y ∈ ∆ with f (y)<K f (x),
then one says that x is a weakly efficient solution of (2.1).

The efficient solution set and the weakly efficient solution set) of (2.1) are denoted, respec-
tively, by E and Ew.

Linear fractional functions have remarkable properties; see, e.g., [21] and [19, pp. 144–145].
The next lemma will be very useful for our study of (2.1).

Lemma 2.1. The equality

fi(y)− fi(x) =
bT

i x+βi

bT
i y+βi

× [(bT
i x+βi)aT

i − (aT
i x+αi)bT

i ](y− x)
(bT

i x+βi)2 (2.2)

holds for any x,y ∈ ∆ and i ∈ I.

Proof. Let x,y ∈ ∆ and i ∈ I be given arbitrarily. We have

fi(y)− fi(x) =
aT

i y+αi

bT
i y+βi

− aT
i x+αi

bT
i x+βi

=
bT

i x+βi

bT
i y+βi

× (aT
i y+αi)(bT

i x+βi)− (aT
i x+αi)(bT

i y+βi)

(bT
i x+βi)2

=
bT

i x+βi

bT
i y+βi

× aT
i (y− x)(bT

i x+βi)−bT
i (y− x)(aT

i x+αi)

(bT
i x+βi)2 ,

where the third equality follows from the identity

(aT
i y+αi)(bT

i x+βi)− (aT
i x+αi)(bT

i y+βi)
=
[
aT

i (y− x)(bT
i x+βi)+(aT

i x+αi)(bT
i x+βi)

]
−
[
bT

i (y− x)(aT
i x+αi)+(bT

i x+βi)(aT
i x+αi)

]
and an obvious cancellation. So, equality (2.2) is valid. �

Several useful facts about convex cones in Euclidean spaces can be presented in a unified
form in the forthcoming lemma, whose proof is given for convenience of the reader. Note that
each assertion of the lemma is given under a minimal set of assumptions.

Lemma 2.2. Let K ⊂Rm be a nonempty convex cone and K∗ := {v∗ ∈Rm : 〈v∗,v〉 ≥ 0 ∀v∈K}
be its positive dual cone. The following assertions are valid:

(a1) If K is closed, then intK∗ = {y∗ ∈ Rm : 〈y∗,v〉> 0 ∀v ∈ K \{0}}.
(a2) If K is closed and pointed, then intK∗ is nonempty.
(a3) If intK is nonempty, then K∗ is pointed.
(a4) If intK is nonempty and K is closed then, for any v0 ∈ intK, the set

Λ :=
{

ξ ∈ K∗ : 〈ξ ,v0〉= 1
}

(2.3)

is convex, compact, and for every v∗ ∈ K∗ \ {0} there exists a unique t > 0 such that
tv∗ ∈ Λ (thus, K∗ has a compact base).

(a5) If K is closed and pointed then, for any ξ 0 ∈ intK∗, the set

B :=
{

u ∈ K : 〈ξ 0,u〉= 1
}

is convex, compact, and for every v∈K \{0} there exists a unique t > 0 such that tv∈ B
(thus, K has a compact base).
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(a6) If ξ ∈ K∗ \{0}, then 〈ξ ,v〉> 0 for all v ∈ intK.

Proof. (a1) Suppose that the convex cone K is closed. If ξ ∈ intK∗, then there exists ε > 0
such that ξ + εB̄Rm ⊂ K∗. So, for any v ∈ K \{0}, one has 〈ξ + εz,v〉 ≥ 0 for all z ∈ B̄Rm . This
implies that

0≤ inf
z∈B̄Rm

〈ξ + εz,v〉= 〈ξ ,v〉+ ε inf
z∈B̄Rm

〈z,v〉= 〈ξ ,v〉− ε‖v‖.

It follows that 〈ξ ,v〉 ≥ ε‖v‖> 0. Thus,

intK∗ ⊂ {y∗ ∈ Rm : 〈y∗,v〉> 0 ∀v ∈ K \{0}}. (2.4)

Now, let ξ be a vector from the set on the right-hand-side of (2.4). Put K1 = K∩{v : ‖v‖= 1}.
Clearly, K1 is compact and one has 〈ξ ,v〉 > 0 for every v ∈ K1. For each v ∈ K1, there exist
εv > 0 and an open neighborhood Uv of v in the induced topology of K1 such that

〈ξ ′,v′〉> 0 ∀ξ ′ ∈ B(ξ ,εv), ∀v′ ∈Uv. (2.5)

Sine K1 =
⋃

v∈K1

U(v) and K1 is compact, there exist v1,v2, . . . ,vk ∈ K1 such that

K1 =
k⋃

i=1

U(vi). (2.6)

Set ε = min{εv1, . . . ,εvk}. For every ξ ′ ∈ B(ξ ,ε) and v ∈ K1, by (2.6) we can find an index
i ∈ {1,2, . . . ,k} such that v ∈U(vi). So, by (2.5) we have 〈ξ ′,v〉> 0. Therefore,

〈ξ ′,v〉> 0 ∀ξ ′ ∈ B(ξ ,ε), ∀v ∈ K1. (2.7)

Take any ξ ′ ∈ B(ξ ,ε) and w ∈ K. If w = 0, then 〈ξ ′,w〉= 0. If w 6= 0, then w
‖w‖ ∈ K1. By (2.7),

〈ξ ′, w
‖w‖〉 > 0. So, 〈ξ ′,w〉 > 0. Thus, 〈ξ ′,w〉 ≥ 0 for every w ∈ K. This means that ξ ′ ∈ K∗.

Since the last inclusion holds for every ξ ′ ∈ B(ξ ,ε), we have ξ ∈ intK∗. Hence, the reverse of
the inclusion (2.4) is valid. Our assertion has been proved.

(a2) Suppose that K is closed and pointed. As K∗ is a nonempty convex subset of Rm,
riK∗ 6= /0 (see [23, Theorem 6.2]). If dim(affK∗) = m, then intK∗ = riK∗. So, intK∗ 6= /0.
If dim(affK∗) < m, then the linear subspace (affK∗)⊥ := {y ∈ Rm : 〈y∗,y〉 = 0 ∀y∗ ∈ K∗} is
nontrivial. Taking any y ∈ (affK∗)⊥ \ {0}, we have y ∈ (K∗)∗ and −y ∈ (K∗)∗. Since K is a
nonempty convex cone, by [23, Theorem 14.1] we have (K∗)∗= K. Thus, the fact y∈K∩(−K)
contradicts the pointedness of K. Hence, we must have intK∗ 6= /0.

(a3) Suppose that intK is nonempty. If K∗ is not pointed, then there exists a nonzero vector
v∗ ∈ K∗∩ (−K∗). Take any v0 ∈ intK and let ε > 0 be such that B(v0,ε)⊂ K. Then, for every
u ∈ B̄Rm we have 〈v∗,v0 + εu〉 ≥ 0 and 〈−v∗,v0 + εu〉 ≥ 0. This implies that 〈v∗,v0 + εu〉 = 0
for all u ∈ B̄Rm . Taking supremum of the left-hand-side of the last equality w.r.t. u ∈ B̄Rm yields
〈v∗,v0〉+ ε‖v∗‖= 0. We have arrived at a contradiction, because 〈v∗,v0〉 ≥ 0 and ε‖v∗‖> 0.

(a4) Suppose that intK is nonempty and K is closed. As K is a nonempty convex cone, by [23,
Theorem 14.1] one has K = (K∗)∗. Then, applying the assertion (a1) for K∗ instead of K, we
get intK = {v ∈ K : 〈v∗,v〉> 0 ∀v∗ ∈ K∗ \{0}}. So, given any v0 ∈ intK, we have 〈v∗,v0〉> 0

for all v∗ ∈ K∗ \ {0}. Hence, for every v∗ ∈ K∗ \ {0}, putting t =
1

〈v∗,v0〉
, we have t > 0 and

〈tv∗,v0〉= 1. So tv∗ ∈ Λ, where Λ is given by (2.3). The fact that t > 0 is uniquely defined for
every v∗ ∈ K∗ \{0} by the condition tv∗ ∈ Λ is obvious. It is also clear that the set Λ is closed
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and convex. If Λ is bounded, then Λ is compact. The case where Λ is unbounded is excluded.
Indeed, if Λ is unbounded, then the recession cone 0+Λ of Λ (see [23, p. 61] for the definition
of recession cone) is nontrivial by [23, Theorem 8.4]. Thus, there exists some η ∈ 0+Λ \{0}.
Let ξ̄ ∈ Λ be chosen arbitrarily. Since ξ̄ + tη ∈ Λ for all t > 0, we have 〈ξ̄ + tη ,v0〉= 1 for all
t > 0. This yields

〈η ,v0〉= 0. (2.8)

As ξ̄ + tη ∈ Λ ⊂ K∗ for all t > 0, we have
1
t

ξ̄ +η ∈ K∗ for every t > 0. Passing the left-
hand-side of the last inclusion to the limit as t → +∞, we get η ∈ K∗ by the closedness of K∗.
Then, (2.8) contradicts the property that 〈v∗,v0〉> 0 for all v∗ ∈ K∗ \{0}.

(a5) Suppose that K is closed and pointed. By the assertion (a2), intK∗ 6= /0. Since K is a
nonempty closed convex cone, according to [23, Theorem 14.1], we have K = (K∗)∗. Then, the
desired conclusion follows from applying the assertion (a4) to the nonempty closed convex K∗

whose interior is nonempty.
(a6) Let ξ ∈K∗ \{0} and v∈ intK be given arbitrarily. Choose ε > 0 as small as B̄(v,ε)⊂K.

Then we have 〈ξ ,v+ εz〉 ≥ 0 for every z ∈ B̄Rm . This implies that

0≤ inf
z∈B̄Rm

〈ξ ,v+ εz〉= 〈ξ ,v〉+ ε inf
z∈B̄Rm

〈ξ ,z〉= 〈ξ ,v〉− ε‖ξ‖.

So, we get 〈ξ ,v〉 ≥ ε‖ξ‖> 0, as desired. �

3. OPTIMALITY CONDITIONS

To obtain optimality conditions for problem (2.1), we fix an arbitrary vector v0 ∈ intK and
define the set Λ by (2.3). By the assumptions made on K and the assertion (a4) in Lemma 2.2,
Λ is a convex, compact base of K∗. Observe that riΛ = Λ∩ intK∗.

Theorem 3.1. (Necessary Condition for the Weak Efficiency) Let x ∈ ∆. If x ∈ Ew, then there
exists ξ = (ξ1, . . . ,ξm) ∈ Λ such that〈

m

∑
i=1

[
ξi
(bT

i x+βi)ai− (aT
i x+αi)bi

(bT
i x+βi)2

]
,y− x

〉
≥ 0 ∀y ∈ ∆. (3.1)

Proof. By Lemma 2.1, for any x,y ∈ ∆, one has

f (y)− f (x) =


bT

1 x+β1

bT
1 y+β1

×
[(bT

1 x+β1)aT
1 − (aT

1 x+α1)bT
1 ](y− x)

(bT
1 x+β1)2

...
bT

mx+βm

bT
my+βm

× [(bT
mx+βm)aT

m− (aT
mx+αm)bT

m](y− x)
(bT

mx+βm)2

 . (3.2)

Consider the m×n matrix

Qx :=


(bT

1 x+β1)aT
1 − (aT

1 x+α1)bT
1

(bT
1 x+β1)2

...
(bT

mx+βm)aT
m− (aT

mx+αm)bT
m

(bT
mx+βm)2

 . (3.3)
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To prove the theorem, we first show that if x ∈ Ew then

Qx(∆− x)∩
(
− intK) = /0, (3.4)

where and Qx(∆− x) = {Qx(y− x) : y ∈ ∆}. Suppose, on the contrary, that x ∈ Ew but (3.4)
does not hold. Then there exists z ∈ ∆ such that Qx(z− x) ∈ −intK. For each t ∈ (0,1), we
define yt = (1− t)x+ tz. By the convexity of ∆, we have yt ∈ ∆. Substituting yt for y in (3.2)
and dividing both sides of the obtained equality by t, one gets

f (yt)− f (x)
t

=


bT

1 x+β1

bT
1 yt +β1

×
[(bT

1 x+β1)aT
1 − (aT

1 x+α1)bT
1 ](z− x)

(bT
1 x+β1)2

...
bT

mx+βm

bT
myt +βm

× [(bT
mx+βm)aT

m− (aT
mx+αm)bT

m](z− x)
(bT

mx+βm)2

 . (3.5)

Since yt = x+ t(z− x) converges to x as t tends to 0, we have

lim
t→0

bT
i x+βi

bT
i yt +βi

= 1 (∀i ∈ I).

Hence, the vector on the right-hand side of (3.5) converges to Qx(z− x) as t tends to 0. So,
recalling that Qx(z− x) ∈ −intK, we can infer by (3.5) that there exists δ ∈ (0,1) such that
f (yt)− f (x)

t
∈ −intK for all t ∈ (0,δ ). Then, as intK is a cone, the inequality f (yt) <K f (x)

holds for all t ∈ (0,δ ). This is impossible because x ∈ Ew. We have thus established (3.4).
Since Qx is an m×n matrix (see (3.3)) and ∆ is a convex set by our assumption, Qx(∆−x) is

a nonempty convex subset of Rm. (Note that 0 ∈ Qx(∆− x).) So, thanks to (3.4), we can apply
the separation theorem [23, Theorem 11.3] to find a vector η ∈ Rm \{0} such that

〈η ,u〉 ≥ 〈η ,w〉 (∀u ∈ Qx(∆− x), ∀w ∈ −intK). (3.6)

From (3.6) we can deduce that η ∈ K∗ \{0}. Then, as Λ is a base of K∗, there exists t > 0 such
that ξ := tη belongs to Λ. Invoking (3.6) we can easily show that

〈ξ ,u〉 ≥ 0 ∀u ∈ Qx(∆− x).

Therefore,
〈QT

x ξ ,y− x〉 ≥ 0 ∀y ∈ ∆. (3.7)

Let ξ = (ξ1, . . . ,ξm). Combining (3.7) with (3.3) establishes (3.1) and completes the proof. �

Setting

Fξ (x) =
m

∑
i=1

[
ξi
(bT

i x+βi)ai− (aT
i x+αi)bi

(bT
i x+βi)2

]
(3.8)

for all x ∈ ∆ and ξ ∈ Λ, we can consider the following parametric variational inequality of the
Stampacchia type [18, p. 13] defined by Fξ and ∆, where ξ ∈ Λ plays the role of a parameter:
Find x ∈ ∆ such that 〈

Fξ (x),y− x
〉
≥ 0 ∀y ∈ ∆. (3.9)

The solution set of (3.9) is denoted by S(ξ ).
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Remark 3.1. Theorem 3.1 can be reformulated equivalently as follows: If x ∈ Ew, then x is a
solution of the (3.9) for some ξ ∈ Λ. So, the union

⋃
ξ∈Λ

S(ξ ) contains the set Ew.

Let us show that the necessary condition for the weak efficiency given by Theorem 3.1 is also
a sufficient one, provided that K has a special form or all the functions fi(x), i ∈ I, are affine.

As usual, Rm
+ stands for the nonnegative orthant in Rm, and fi(x) =

aT
i x+αi

bT
i x+βi

, i ∈ I, is said to be

an affine function if bi = 0 and βi = 1.

Theorem 3.2. (Sufficient Conditions for the Weak Efficiency) Let x ∈ ∆. If either K = Rm
+ or

fi(x) is an affine function for every i ∈ I, and there exists a vector ξ = (ξ1, . . . ,ξm) ∈ Λ such
that (3.1) holds, then x ∈ Ew.

Proof. Assume that x ∈ ∆ and there exists a vector ξ = (ξ1, . . . ,ξm) ∈ Λ such that (3.1) holds.
Since (3.1) can be rewritten equivalently as (3.7), we have

〈ξ ,Qx(y− x)〉 ≥ 0 ∀y ∈ ∆. (3.10)

The property ξ ∈K∗\{0} yields 〈ξ ,v〉> 0 for all v∈ intK (see the assertion (a6) in Lemma 2.2).
Hence, if there is some y ∈ ∆ with Qx(y−x)∈−intK, then one has 〈ξ ,Qx(y−x)〉< 0, contrary
to (3.10). Therefore, the relation (3.4) must hold.

Arguing by contradiction, suppose that x /∈ Ew. Then, we could find some z ∈ ∆ such that
f (z)<K f (x), i.e.,

f (z)− f (x) ∈ −intK. (3.11)

By Lemma 2.1, we have the equality (3.2) for any y ∈ ∆. Substituting z for y in (3.2), we obtain

f (z)− f (x) =


bT

1 x+β1

bT
1 z+β1

×
[(bT

1 x+β1)aT
1 − (aT

1 x+α1)bT
1 ](z− x)

(bT
1 x+β1)2

...
bT

mx+βm

bT
mz+βm

× [(bT
mx+βm)aT

m− (aT
mx+αm)bT

m](z− x)
(bT

mx+βm)2

 . (3.12)

CASE 1: K = Rm
+. In this case, (3.11) means that fi(z)− fi(x) < 0 for all i ∈ I. Hence,

using (3.12) and the condition bT
i y+βi > 0 for all i ∈ I and y ∈ ∆, we get

Qx(z− x) =


[(bT

1 x+β1)aT
1 − (aT

1 x+α1)bT
1 ](z− x)

(bT
1 x+β1)2

...
[(bT

mx+βm)aT
m− (aT

mx+αm)bT
m](z− x)

(bT
mx+βm)2

 ∈ −intRm
+.

But this contradicts (3.4). We have thus proved that x ∈ Ew.
CASE 2: fi(x) is an affine function for every i ∈ I. In this case, bT

i x+βi = 1 for any i ∈ I and
x ∈ ∆. So, combining (3.12) with (3.3) yields

f (z)− f (x) =

 [(b
T
1 x+β1)aT

1 − (aT
1 x+α1)bT

1 ](z− x)
...

(bT
mx+βm)aT

m− (aT
mx+αm)bT

m](z− x)

= Qx(z− x). (3.13)
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Therefore, by (3.11) we obtain Qx(z−x) ∈−intK. Since this contradicts (3.4), we have proved
that x ∈ Ew. �

As E ⊂ Ew, Theorem 3.1 also gives a necessary condition for the efficiency.

Theorem 3.3. (Sufficient Conditions for the Efficiency) Let x ∈ ∆. If either K =Rm
+ or fi(x) is

an affine function for every i∈ I, and there exists a vector ξ = (ξ1, . . . ,ξm)∈ riΛ such that (3.1)
holds, then x ∈ E.

Proof. Suppose that x ∈ ∆ and there exists a vector ξ = (ξ1, . . . ,ξm) ∈ riΛ such that (3.1) holds.
Repeating the first argument of the proof of Theorem 3.2, we get (3.10).

Firstly, consider the case where K = Rm
+. In this situation, we have ξi > 0 for all i ∈ I. If

x /∈ E, then there exits z ∈ ∆ such that f (z)≤K f (x) and f (z) 6= f (x), i.e.,

f (z)− f (x) ∈ −Rm
+ \{0}. (3.14)

Similarly as it was done in the proof of Theorem 3.2, we can show that the equality (3.12) holds.
By (3.14), fi(z)− fi(x) ≤ 0 for all i ∈ I and at least one inequality must be strict. From (3.12)
and the condition bT

i y+βi > 0 for all i ∈ I and y ∈ ∆ it follows that

Qx(z− x) =


[(bT

1 x+β1)aT
1 − (aT

1 x+α1)bT
1 ](z− x)

(bT
1 x+β1)2

...
[(bT

mx+βm)aT
m− (aT

mx+αm)bT
m](z− x)

(bT
mx+βm)2

 ∈ −Rm
+ \{0}.

As ξi > 0 for all i ∈ I, this implies that 〈ξ ,Qx(z− x)〉 < 0. We have arrived at a contradiction,
because 〈ξ ,Qx(z− x)〉 ≥ 0 by (3.10). So, we must have x ∈ E.

Secondly, consider the case where fi(x) is an affine function for every i ∈ I. If x /∈ E, then we
can find some z ∈ ∆ such that

f (z)− f (x) ∈ −K \{0}. (3.15)

Substituting z for y in (3.2), we obtain (3.12). As bT
1 x + β1 = 1 for any i ∈ I and x ∈ ∆,

from (3.12) and (3.3) we get (3.13). Then, (3.15) implies that Qx(z− x) ∈ −K \{0}. Recalling
that ξ ∈ riΛ, from this we can deduce that 〈ξ ,Qx(z− x)〉 < 0, contradicting (3.10). Thus, we
have shown that x ∈ E. �

Remark 3.2. The sufficient condition for the efficiency provided by Theorem 3.3 is not a suf-
ficient one. To justify this observation, choose n = m = 2, ∆ = B̄(0,1) :=

{
x ∈ R2 : ‖x‖ ≤ 1

}
,

K =R2
+, fi(x) = xi for all x = (x1,x2) ∈R2 and i ∈ I = {1,2}. For v0 := (1,1) ∈ intK, one sees

that Λ =
{

ξ = (ξ1,ξ2) ∈ R2
+ : ξ1 +ξ2 = 1

}
. In accordance with (3.8), here we have

Fξ (x) = ξ1

[
1
0

]
+ξ2

[
0
1

]
=

[
ξ1
ξ2

]
for all x ∈ ∆ and ξ = (ξ1,ξ2) ∈ Λ. Hence, S(ξ ) = {x ∈ ∆ : 〈ξ ,y− x〉 ≥ 0 ∀y ∈ ∆}. Setting
x̄ = (−1,0) and x̂ = (0,−1), we can check that {x̄, x̂}⊂ E, but x̄ /∈

⋃
ξ∈riΛ

S(ξ ) and x̂ /∈
⋃

ξ∈riΛ

S(ξ ).

Thus, it may happen that for some efficient solution of (2.1) there does not exist any ξ ∈ riΛ

such that (3.1) is fulfilled.
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Consider the variational inequality (3.9) with ξ ∈ ∆ being fixed. In agreement with [18,
p. 83], we say that the problem is monotone if 〈Fξ (y)−Fξ (x),y− x〉 ≥ 0 for all x,y ∈ ∆.

Remark 3.3. The variational inequality (3.9) arisen in the general setting of (2.1) may not be
monotone. Indeed, for any x,y ∈ ∆, one has〈

Fξ (y)−Fξ (x),y− x
〉

=

〈
m

∑
i=1

[
ξi

(
(bT

i y+βi)ai− (aT
i y+αi)bi

(bT
i y+βi)2 − (bT

i x+βi)ai− (aT
i x+αi)bi

(bT
i x+βi)2

)]
,y− x

〉
=

m

∑
i=1

[
ξi

(
(bT

i y+βi)aT
i (y− x)− (aT

i y+αi)bT
i (y− x)

(bT
i y+βi)2

−(bT
i x+βi)aT

i (y− x)− (aT
i x+αi)bT

i (y− x)
(bT

i x+βi)2

)]
=

m

∑
i=1

[
ξi

(
(bT

i y+βi)
[
(aT

i y+αi)− (aT
i x+αi)

]
− (aT

i y+αi)
[
(bT

i y+βi)− (bT
i x+βi)

]
(bT

i y+βi)2

−
(bT

i x+βi)
[
(aT

i y+αi)− (aT
i x+αi)

]
− (aT

i x+αi)
[
(bT

i y+βi)− (bT
i x+βi)

]
(bT

i x+βi)2

)]
=

m

∑
i=1

{
ξi
[
(aT

i y+αi)(bT
i x+βi)− (bT

i y+βi)(aT
i x+αi)

]( 1
(bT

i y+βi)2 −
1

(bT
i x+βi)2

)}
.

So, one may not have 〈Fξ (y)−Fξ (x),y−x〉 ≥ 0 for all x,y ∈ ∆, unless fi(x) is an affine function
for every i ∈ I. In the latter case, bT

i x+βi = 1 for all x ∈ ∆ and i ∈ I. So, the above calcula-
tion yields 〈Fξ (y)−Fξ (x),y− x〉 = 0 for all x,y ∈ ∆, which signifies the monotonicity of the
variational inequality (3.9) for every ξ ∈ Λ.

Remark 3.4. If K =Rm
+ and ξ ∈Λ such that (3.1) holds, then by setting ξ̃ = (ξ̃1, . . . , ξ̃m) where

ξ̃i :=
ξi

(bT
i x+βi)2 for all i ∈ I, we have ξ̃ ∈ Rm

+ \ {0}. Let τ > 0 be such that τξ̃ ∈ Λ. Then,

condition (3.1) is equivalent to〈
m

∑
i=1

(τξ̃ )i
[
(bT

i x+βi)ai− (aT
i x+αi)bi

]
,y− x

〉
≥ 0 ∀y ∈ ∆.

Therefore, if K = Rm
+, then (3.1) can be put in the following simpler form:〈
m

∑
i=1

ξi
[
(bT

i x+βi)ai− (aT
i x+αi)bi

]
,y− x

〉
≥ 0 ∀y ∈ ∆. (3.16)

Clearly, condition (3.16) corresponds to a variational inequality of the form (3.9), where Fξ (x)
is given by

Fξ (x) =
m

∑
i=1

ξi
[
(bT

i x+βi)ai− (aT
i x+αi)bi

]
. (3.17)

Thanks to (3.17) and the calculation given in Remark 3.3, we have
〈
Fξ (y)−Fξ (x),y− x

〉
= 0

for any x,y ∈ ∆. In particular, (3.16) is a monotone variational inequality.



10 N.T.T. HUONG, N.D. YEN

4. CONNECTEDNESS OF THE EFFICIENT SOLUTION SETS

.
Let G : X ⇒Y be a set-valued map between two topological spaces. One says that G is upper

semicontinuous (usc) at u ∈ X if for every open set V ⊂ Y satisfying G(u) ⊂ V there exists a
neighborhood U of u, such that G(u′)⊂V for all u′ ∈U.

A topological space Z is called connected if one cannot represent Z =W1∪W2 with W1 and
W2 being nonempty disjoint open subsets of Z; see [17, p. 53] for an equivalent definition. One
says (see, e.g., [28, Definition 27.1]) that Z is pathwise connected if for any u1,u2 ∈ Z there
exits a continuous mapping γ : [0,1]→ Z such that γ(0) = u1, γ(1) = u2. It is well known (see,
e.g., [28, Theorem 27.1]) that every pathwise connected space is connected. In particular, every
convex subset of Rn is connected.

Theorem 4.1. (Connectedness Preservation) (See [6, 27]) Assume that X is connected. If for
every x ∈ X the set G(x) is nonempty and connected, and G is upper semicontinuous at every
u ∈ X, then the image set G(X) :=

⋃
x∈X

G(x), which is equipped with the induced topology, is

connected.

Based on Theorem 4.1 and the results obtained in the preceding section, we can establish
some sufficient conditions for the connectedness of the weakly efficient solution set and the
efficient solution set of the vector optimization problem (2.1).

Theorem 4.2. (Sufficient Conditions for the Connectedness of Ew) Assume that either K =Rm
+

or fi(x) is an affine function for every i ∈ I. If ∆ is compact, then Ew is a connected set.

Proof. First, consider the case where K = Rm
+ and the set ∆ is compact. According to Theo-

rems 3.1 and 3.2, a vector x ∈ ∆ belongs Ew if and only if there is ξ = (ξ1, . . . ,ξm) ∈ Λ such
that (3.1) holds. By Remark 3.4, this is equivalent to saying that x ∈ ∆ is a solution of (3.16),
which is a monotone variational inequality. Denote the solution set of (3.16) by S1(ξ ). As the
map Fξ : ∆→ Rn, x 7→ Fξ (x), given in (3.17) is continuous, (3.16) has a solution by [18, Theo-
rem 1.4 in Chapter III]. Moreover, by the Minty Lemma (see [18, Lemma 1.4 in Chapter III]),
x ∈ S1(ξ ) if and only if x ∈ ∆ and〈

Fξ (y),y− x
〉
≥ 0 ∀y ∈ ∆.

Since x 7→
〈
Fξ (y),y− x

〉
is an affine function, it follows that S1(ξ ) is a closed convex subset of

∆. Thus, the set-valued map S1 : Λ ⇒ ∆ has nonempty, compact, and connected images.
As ∆ is compact and S1(ξ )⊂ ∆ for all ξ ∈Λ, the map S1 is uniformly compact near any point

of Λ (see [10, p. 594]). Hence, by [10, Theorem 3], to prove that S1 is usc at any ξ̄ =(ξ̄1, . . . , ξ̄m)
belonging to Λ, we need only to show that S1 is closed (see [10, p. 592]) at ξ̄ . To do so, take any
sequence {ξ k} ⊂ Λ converging to ξ̄ , a sequence {xk} ⊂ Rn with xk ∈ S1(ξ

k) for all k, which
converges to x̄. Then, for every index k, we have〈

m

∑
i=1

ξ
k
i

[
(bT

i xk +βi)ai− (aT
i xk +αi)bi

]
,y− xk

〉
≥ 0 ∀y ∈ ∆. (4.1)
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For each y ∈ ∆, passing the inequality in (4.1) to the limit as k→ ∞, one gets〈
m

∑
i=1

ξ̄i
[
(bT

i x̄+βi)ai− (aT
i x̄+αi)bi

]
,y− x̄

〉
≥ 0 ∀y ∈ ∆,

which shows that x̄ ∈ S1(ξ̄ ). Therefore, S1 is closed at any ξ̄ ∈ Λ.
Now, applying Theorem 4.1 to the set-valued map S1 : Λ ⇒ ∆, we can assert that the set⋃

ξ∈Λ

S1(ξ ) is connected. As Ew =
⋃

ξ∈Λ

S1(ξ ), the conclusion of our theorem has been proved.

Second, consider the case where fi(x), i ∈ I, are affine functions, and the set ∆ is compact.
By Theorems 3.1 and 3.2, x ∈ ∆ belongs Ew if and only if there is ξ = (ξ1, . . . ,ξm) from Λ

such that (3.1) holds. As it has been shown in Remark 3.2, this means that x ∈ ∆ is a solution
of (3.9), a monotone variational inequality. Repeating the above arguments, we can show that
the solution map S : Λ ⇒ ∆, ξ 7→ S(ξ ), has nonempty, compact, connected images, and is usc
at any ξ̄ ∈ Λ. Hence, thanks to Theorem 4.1, we can conclude that the set Ew =

⋃
ξ∈Λ

S(ξ ) is

connected. �

Theorem 4.3. (Connectedness of some Part of E) The following assertions are valid:

(a) If fi(x) is an affine function for every i ∈ I and ∆ is compact, then E0 :=
⋃

ξ∈riΛ

S(ξ ) is a

connected subset of E.
(b) If K = Rm

+ and ∆ is compact, then E1 :=
⋃

ξ∈riΛ

S1(ξ ), where S1(ξ ) denotes the solution

set of (3.16), is a connected subset of E.

Proof. To prove the assertions (a) and (b), it suffices to repeat the arguments of the preceding
proof, use Theorem 3.3 instead of Theorem 3.2, and apply Theorem 4.1 to some set-valued
maps defined on riΛ, which is a connected set. �

Remark 4.1. If a set-valued map G : X ⇒Y between two topological spaces is usc at any u∈ X ,
X is compact, and G(u) is nonempty and compact for every u ∈ X , then G(X) is a compact set.
By this fact, the assumptions of Theorem 4.2 imply that the weakly efficient solution set of (2.1)
is not only connected, but also compact.

Example 4.1. Let n,m, K, fi for i ∈ I = {1,2}, v0, Λ be the same as in Remark 3.2, and

let ∆ =
{

x ∈ R2 : ‖x‖ ≤ 1, x1 ≥−3
4

}
. Setting x̄ =

(
−3

4
,−
√

7
4

)
and x̂ = (0,−1), we have

{x̄, x̂} ⊂ E, x̄ ∈
⋃

ξ∈riΛ

S(ξ ), but x̂ /∈
⋃

ξ∈riΛ

S(ξ ). Set ξ̄ =

(
9−3

√
7

2
,
3
√

7−7
2

)
, ξ̃ = (1,0), ξ̂ =

(0,1), and observe that {ξ̄ , ξ̃ , ξ̂} ⊂Λ. For every ξ ∈ {(1− t)ξ̄ + tξ̃ : 0≤ t < 1} ⊂ riΛ, one has
S1(ξ ) = S(ξ ) = {x̄}. In addition, on the interval {(1−t)ξ̂ +tξ̄ : 0≤ t < 1}, the map ξ 7→ S1(ξ )
coincides with the map ξ 7→ S(ξ ). In fact, the maps have single values and they draw the curve{

x = (x1,x2) ∈ R2 : ‖x‖ ≤ 1, −3
4
< x1 ≤ 0, x2 ≤ 0

}
.
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Remark 4.2. In Example 4.1, the multiplier ξ̃ = (1,0) is very special. Indeed, for x̃ :=(
−3

4
,

√
7

4

)
, we see that both sets S1(ξ̃ ) and S(ξ̃ ) collapse to the segment

{(1− t)x̄+ tx̃ : 0≤ t ≤ 1} ,

which is a part of Ew and which has x̄ as a unique efficient point. Therefore, for some multipliers
ξ ∈ Λ, S(ξ ) may contain weakly efficient points not belonging to E, while S(ξ )∩E 6= /0. The
same circumstance also happens with the map S1(·). This does allow us to apply Theorem 4.1
and the techniques for proving Theorem 4.2 to establish results on the connectedness of E.

Remark 4.3. If A and B are subsets of a topological space, A is connected, A⊂ B⊂ Ā, then B
is connected (see, e.g., [28, Theorem 26.8]). So, in the setting of Theorem 4.3, if we can show
that E0 (resp., E1) is dense in E, i.e., E0 ⊂ E ⊂ Ē0 (resp., E1 ⊂ E ⊂ Ē1), then E is connected.

5. CONCLUSIONS AND TOPICS FOR FURTHER INVESTIGATIONS

In this paper, we have studied a new class of vector optimization problems with linear frac-
tional objective criteria. Necessary optimality conditions, as well as sufficient optimality con-
ditions, were obtained. In addition, two theorems on the connectedness of the weakly efficient
solution set and the efficient solution set were established.

There are some open questions:

Question 1. Are the sufficient conditions for the weak efficiency in Theorem 3.2 valid without
any additional assumption, or not?

Question 2. Are the sufficient conditions for the efficiency in Theorem 3.3 valid without any
additional assumption, or not?

Question 3. Are the sufficient conditions for the connectedness of Ew in Theorem 4.2 valid
without any additional assumption, or not?

Question 4. Are the sufficient conditions for the connectedness of some part of E in Theo-
rem 4.3 valid without any additional assumption, or not?

It is also worthy to carry some investigations on the Benson proper efficiency [2] of this
class of vector optimization problems with linear fractional objective criteria similarly as the
ones which were done in [3, 13, 14, 15]. Besides, we still don’t know whether an analogue of
Theorem 7 of [30] on the solution stability of LFVOPs can be obtained for (2.1), or not.
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