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Abstract. Our work investigates firstly the unique existence and the continu-

ous dependence (on the singular kernel and initial data) of solutions to nonlocal
evolution equations on Hilbert spaces. Secondly, we prove the well-definedness

of a related semi-dynamical system consisting of Lipschitz continuous map-

pings in the space of continuous functions by constructing a metric utilizing
the kernel of nonlocal derivative. Our results extend and generalize the ex-

isting studies on Caputo fractional differential equations, namely the stability

and structural stability results in Diethelm & Ford (J. Math. Anal. Appl. 265,
no. 2, 229–248, 2002), the related semi-dynamical systems in Son & Kloeden

(Vietnam J. Math. 2021), to the case of nonlocal differential equations.

1. Introduction

Let H be a separable Hilbert space. We consider in this work the following initial
value problem of the semilinear nonlocal evolution equation

k ∗ u′(t) +Au(t) = f(u(t)), t > 0, u(0+) = u0, (1.1)

where k ∗ u′(t) :=
∫ t

0
k(t − τ)u′(τ)dτ stands for the nonlocal derivative in time,

the kernel k belongs to a class of completely positive functions, A is a self-adjoint
operator and f is a global Lipschitz continuous function.

Nonlocal evolution equations have been an active topic of research because of
their important appearance in many mathematical models in processes in materials
with memories, see e.g. [1, 9, 16]. In a particular setting, when H = L2(Ω), Ω ⊂ RN
and A = −∆ is the Laplace operator associated with a Dirichlet or Neumann
boundary condition, Equation (1.1) with different kernel functions k is employed
to describe anomalous diffusion phenomena including slow and ultraslow diffusions,
see e.g. [20].

In the case of special kernel k(t) = g1−α(t) := t−α/Γ(1− α), α ∈ (0, 1), the
term d

dt [k ∗ (u − u0)] represents the Caputo fractional derivative of order α, the
corresponding equation

CDα
0 u(t) +Au(t) = f(u(t)), t > 0, u(0+) = u0, (1.2)

has been studied extensively. We refer to [17, 3] for fractional differential equations
on finite dimensional case and [10] for results on existence, uniqueness, certain
asymptotic behavior of the solutions to nonlocal differential equations on Hilbert
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spaces. Moreover, in typical applications, the parameters of the equation, namely
the order and the initial data, depend on the material constants, and are known
to a moderate accuracy, see [5]. Therefore, the continuous dependence of the so-
lutions on the initial condition and the order α, in other words, the stability and
structural stability of the solutions, are also of great interest. These types of sta-
bility were testified in [6, 7] and were applied to present numerical schemes for
the solutions of certain simple or concrete nonlinearities f . Last but not least,
the knowledge about the asymptotic behavior of solutions to Equation (1.2) would
possibly attain by using the theory of attractors if this equation could generate an
autonomous dynamical system. In [2], it was proved that such equations in general
case cannot generate a dynamical system, however they can associate with a certain
semi-dynamical system as shown in [4].

Our research originates from the existing results for equations involving the
Caputo fractional derivative mentioned above. In the present work, we aim at
extending and generalizing the stability, structural stability results and the well-
definedness of related semi-dynamical system to nonlocal differential equation (1.1).
Our main results are Theorem 3.5 on continuous dependence of the solution on the
initial condition and the kernel; Theorem 3.6 on Lipschitz continuous of the solution
on the initial data; and Theorem 4.2 on the semi-dynamical system generated by
Equation (1.1).

We set the following standing assumptions

(A) The operator A : D(A) → H is densely defined and self-adjoint with com-
pact resolvent.

(K) The kernel function k ∈ L1
loc(R+) is nonnegative and nonincreasing, and

there exists a function l ∈ L1
loc(R+) such that k ∗ l = 1 on (0,∞).

(F) The nonlinearity f satisfies f(0) = 0 and is global Lipschitz continuous on
H, that is, there exists a positive number Lf such that

‖f(u)− f(v)‖ ≤ Lf‖u− v‖, ∀u, v ∈ H. (1.3)

The condition (K) covers a lot of interesting kernels. For example, the case

k(t) = t−α

Γ(1−α) , α ∈ (0, 1), satisfies (K) with l(t) = tα−1

Γ(α) thanks to the identity∫ t

0

(t− τ)−ατα−1dτ = Γ(α)Γ(1− α).

The well-known ultraslow process (more details see [11, 20, 10, 16]) corresponds to

the distributed-order derivative, where the kernel k(t) =
∫ 1

0
g1−α(t)dα. This kernel

also fulfills the condition (K) with l(t) =
∫∞

0
e−pt

1+p dp, t > 0. For further discussion

on the generation of various kernels of ultraslow type satisfying condition (K) we
refer to the recent paper [13] for more details.

Based on the resolvent families of Prüss, by taking the convolution with L1-
function l, one can transform Equation (1.1) into a Volterra integral equation of
the following form

u(t)+l ∗Au(t) =u0 + l ∗Nf (u)(t)︸ ︷︷ ︸
F (t)

, t > 0. (1.4)

This representation has some disadvantages. Because the equation takes place in
an infinite dimensional Hilbert space and the operator A is unbounded in H, the
solution u(t) in search must take values in the domain of A, which narrows the
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suitable functional space. Let D(A) = {u ∈ H : Au ∈ H} furnishes with the graph
norm ‖u‖D(A) = (‖u‖2 + ‖Au‖2)1/2. By the assumption (A), D(A) is a Banach
subspace of H. Consequently, it is harder to verify property of operators acting
on that narrower functional space C([0, T ];D(A)) in proving existence result. The
standard idea to overcome these disadvantages is to establish first the wellposed-
ness of the linear problem and then using the solution operators and perturbation
technique to formulate an expression of mild solution to the nonlinear problem.
Following this approach, let us denote S(t, A)u0 the unique solution of the linear
Volterra equation

w(t) = u0−A (l ∗ w(t)) , t ≥ 0. (1.5)

and R(t, A) is the solution operator, which is determined from the expression

R(t, A) = l(t)I−A
(∫ t

0

l(t− τ)R(τ,A)dτ

)
, t > 0. (1.6)

Then, a mild solution of the linear problem and the nonlinear equation (1.1) can be
defined as in (3.2) and (3.3). The existence can be shown by a fixed point argument
under the global Lipschitz continuity of the nonlinearity f .

Our present work is organized as follows: in Section 2, we summarize some facts
about the generalized Mittag–Leffler functions and the resolvent families; in Section
3, we state and prove the main results on the existence and continuous dependence
on the kernel of the solutions to semilinear equations; in Section 4 we construct the
related semi-dynamical system to Equation (1.1).

2. Preliminaries

2.1. Generalized Mittag–Leffler functions. Let k be a singular kernel which
satisfies the hypothesis (K). Due to the fact that l ∈ L1

loc(R+), as mentioned in
[12], see also [8, Theorem 3.1] the following scalar Volterra equation

r(t, µ) + µl ∗ r(t, µ) = l(t), t > 0, (2.1)

has a unique L1
loc(R+) solution, for an arbitrary µ ∈ R. As a consequence of [1,

Theorem 2.2], condition (K) implies that l is completely positive, hence r(t, µ) > 0
for all µ > 0. On the other hand, l(t) > 0 for almost all t > 0. Combining this with
the representation

r(t, µ) = l(t) +

∞∑
j=1

(−µ)j l ∗ l ∗ . . . ∗ l︸ ︷︷ ︸
j times l

(t), t > 0, (2.2)

consequently, we get r(t, µ) > 0 for µ ≤ 0. Thus, r(t, µ) > 0 for all µ ∈ R. We
denote by s(t, µ) the unique solution of the following relaxation equation

s(t, µ) + µ

∫ t

0

l(t− τ)s(τ, µ)dτ = 1, t > 0.

Then the functions s(t, µ) and r(t, µ) satisfy the relation

s(t, µ) =

∫ t

0

k(t− τ)r(τ, µ)dτ,
ds(t, µ)

dt
= −µr(t, µ), t > 0. (2.3)

Therefore, s(t, µ) > 0 for arbitrary µ ∈ R.
We now recall some further properties of these functions, which play an impor-

tant role in our analysis.
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Proposition 2.1. [10, 21] Let the hypothesis (K) hold. Then for every µ > 0,
s(·, µ), r(·, µ) ∈ L1

loc(R+). In addition, we have:

(1) The function s(·, µ) is nonnegative and nonincreasing if λ > 0, nonnegative
and nondecreasing if λ < 0. Moreover,

s(t, µ)

[
1 + µ

∫ t

0

l(τ)dτ

]
≤ 1, ∀t ≥ 0,

hence if l 6∈ L1(R+) then lim
t→∞

s(t, µ) = 0 for every µ > 0.

(2) For µ > 0, the function r(·, µ) is nonnegative and one has

s(t, µ) = 1− µ
∫ t

0

r(τ, µ)dτ = k ∗ r(·, µ)(t), t ≥ 0,

so
∫ t

0
r(τ, µ)dτ ≤ µ−1, ∀t > 0.

If limt→+∞ 1 ∗ l(t) = +∞ then

lim
t→+∞

s(t, µ) = 0 and

∫ ∞
0

r(τ, µ)dτ = µ−1.

(3) For each t > 0, the functions µ 7→ s(t, µ) and µ 7→ r(t, µ) are nonincreasing.
(4) Let v(t) = s(t, µ)v0 + (r(·, µ) ∗ g)(t), here g ∈ L∞(R+). Then v solves the

problem

d

dt
[k ∗ (v − v0)](t) + µv(t) = g(t), v(0) = v0.

We also refer to the following Gronwall type inequality, which was shown in [10,
Proposition 2.2].

Lemma 2.2. Let v be a nonnegative function satisfying

v(t) ≤ s(t, µ)v0 +

∫ t

0

r(t− τ, µ)[αv(τ) + β(τ)]dτ, t ≥ 0,

for µ > 0, v0 ≥ 0, α > 0 and β ∈ L1
loc(R+). Then

v(t) ≤ s(t, µ− α)v0 +

∫ t

0

r(t− τ, µ− α)β(τ)dτ.

Particularly, if β is a constant then

v(t) ≤ s(t, µ− α)v0 +
β

µ− α
(1− s(t, µ− α)).

2.2. Resolvent families.

2.2.1. Solution operators. It is easy to see that equation (1.1) is equivalent to the
following Volterra equation (Prüss form):

u(t) + l ∗Au(t) = u0 + l ∗ f(t). (2.4)

Note that this right-hand side l ∗ f is different from the well-known one in Prüss
formulation. Via the Laplace transformation, the solution operator is given by

û(λ)u0 = k̂(λ)R(λk̂(λ),−A)u0 +R(λk̂(λ),−A)f̂(λ),

where R(z,−A) = (I + zA)−1.
Motivated by the work in [16] for general Volterra integral equations, we use the

followings:
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Definition 2.1. A family {S(t) = S(t, A)}t≥0 of bounded linear operators in H is
called a Caputo resolvent for (1.1) if the following conditions are satisfied:

(S1) S(t) is strongly continuous on R+ and S(0) = I.
(S2) S(t, A) is commuted with A in the sense that S(t)D(A) ⊂ D(A) and AS(t)x =

S(t)Ax, ∀x ∈ D(A) and t ≥ 0;
(S3) The resolvent equation holds

S(t)x+

∫ t

0

l(t− s)AS(s)xds = x for all x ∈ D(A), t ≥ 0. (2.5)

Definition 2.2. A family {R(t) = R(t, A)}t>0 of bounded linear operators in H is
called an integral resolvent generated by A if the following conditions are satisfied:

(R1) R(t) is strongly continuous on t > 0.
(R2) R(t) is commuted with A in the sense that R(t)D(A) ⊂ D(A) and AR(t)x =

R(t)Ax, ∀x ∈ D(A) and t > 0;
(R3) The resolvent equation holds

R(t)x+

∫ t

0

l(t− s)AR(s)xds = l(t)x for all x ∈ D(A), t > 0. (2.6)

2.2.2. Known results. When A is a (bounded) normal operator in a Hilbert space
H then the necessary and sufficient conditions for the well-posedness of Equation
(1.1) is formulated in terms of spectral functions s(t, µ), r(t, µ), the solutions of the
following scalar Volterra equations:

s(t, µ) + µ

∫ t

0

l(t− τ)s(τ, µ)dτ = 1, t > 0,

r(t, µ) + µ

∫ t

0

l(t− τ)r(τ, µ)dτ = l(t), t > 0.

(2.7)

See [16, Prop. 1.5] for more details.
Under the assumption (A), there exists a normal basis of H which consists of

eigenvectors {en}n≥1 corresponding to the nondecreasing sequence of eigenvalues
{λn}n≥1 of the operator A. In this case, the solution operators S(t), R(t) can be
represented as Fourier series as follow:

S(t)v :=

∞∑
n=1

s(t, λn)〈v, en〉en,

R(t)v : =

∞∑
n=1

r(t, λn)〈v, en〉en, v ∈ H.

In case A has positive spectrum, that means λ1 > 0, the well-definedness and
qualitative properties of S(t), R(t) are considered in detail by the authors in [10].
Note that it easily extends to the case λ1 < 0.

Lemma 2.3. [10] Let {S(t)}t≥0 and {R(t)}t>0, be the families of linear operators
defined by (2.5) and (2.6), respectively. Then
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(1) For each v ∈ H and T > 0, S(·)v ∈ C([0, T ];H) and AS(·)v ∈ C((0, T ];H).
Moreover,

‖S(t)v‖ ≤ s(t, λ1)‖v‖, t ∈ [0, T ],

‖AS(t)v‖ ≤ ‖v‖
(1 ∗ l)(t)

, t ∈ (0, T ].

(2) Let v ∈ H,T > 0 and g ∈ C([0, T ];H). Then R(·)v ∈ C((0, T ];H), R ∗ g ∈
C([0, T ];H) and A(R ∗ g) ∈ C([0, T ];V− 1

2
). Furthermore,

‖R(t)v‖ ≤ r(t, λ1)‖v‖, t ∈ (0, T ],

‖(R ∗ g)(t)‖ ≤
∫ t

0

r(t− τ, λ1)‖g(τ)‖dτ, t ∈ [0, T ],

‖A(R ∗ g)(t)‖− 1
2
≤
(∫ t

0

r(t− τ, λ1)‖g(τ)‖2dτ
) 1

2

, t ∈ [0, T ].

3. Solvability and structural stability

3.1. Solvability of semilinear initial value problems. We consider the linear
Cauchy problem of differential form

k ∗ u′(t) +Au(t) = g(t), u(0) = u0, (3.1)

where g is a bounded continuous function on R+. It is proved in [10] that the
equation (3.1) possesses a mild solution (and actually a weak solution) u : R+ → H,
which can be expressed as follows

u(t) = S(t)u0 +

∫ t

0

R(t− τ)g(τ)dτ, t ≥ 0. (3.2)

Motivated by formula (3.2), a function u is called a mild solution to the original
problem (1.1) if

u(t) = S(t)u0 +

∫ t

0

R(t− τ)Nf (u)(τ)dτ, t > 0, (3.3)

where Nf (u)(t) = f(u(t)) stands for the Nemytskii operator induced by the non-
linear map f . Based on this point of view, we are now examining the semilinear
Volterra equation of the form

u(t) = ϕ(t) +

∫ t

0

R(t− τ)Nf (u)(τ)dτ, t > 0. (3.4)

where ϕ is a given function. Mild solutions for initial value problem (1.1) is a
special case when ϕ(t) = S(t, A)u0.

Utilizing perturbation technique and working in a Banach space furnished by
a suitable Bielecki weighted norm, we obtain the solvability result of nonlinear
problem.

Theorem 3.1. Assume that (A), (K) and (F) are fulfilled. Then for an arbitrary
T > 0 and given continuous function ϕ ∈ C([0, T ];H), Problem (3.4) has a unique
mild solution u(t, ϕ) on [0, T ]. Furthermore, one has

‖u(t)‖ ≤Mϕs(t, λ1 − Lf ), where Mϕ = sup
t∈[0,T ]

‖ϕ(t)‖
s(t, λ1)

. (3.5)
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Proof. Fix a suitable constant γ which will be specified later. Let C(γ) denote the
Banach space of all functions w ∈ C([0, T ];H) endowed with the following Bielecki
weighted norm

‖w‖C(γ) = sup
t∈[0,T ]

‖w(t)‖
s(t, γ)

. (3.6)

We define an operator Φ on the space C([0, T ];H) by

Φ(u)(t) = ϕ(t) +

∫ t

0

R(t− τ)f(u(τ))dτ.

By properties of the operators R(t) in Lemma 2.3(2), one concludes that Φ acts on
C([0, T ];H).

Let u, v be in C([0, T ];H). Because f(·) is Lipschitz continuous, we have follow-
ing estimate

‖Φ(u)(t)− Φ(v)(t)‖ =

∥∥∥∥∫ t

0

R(t− τ)
[
f(u(τ))− f(v(τ))

]
dτ

∥∥∥∥
≤ Lf

∫ t

0

‖R(t− τ)‖‖u(τ)− v(τ)‖dτ

≤ Lf
∫ t

0

r(t− τ, λ1)s(τ, γ)
‖u(τ)− v(τ)‖

s(τ, γ)
dτ

≤ Lf sup
τ∈[0,T ]

‖u(τ)− v(τ)‖
s(τ, γ)

∫ t

0

r(t− τ, λ1)s(τ, γ)dτ. (3.7)

We compute the last integral by using the fundamental properties of generalized
Mittag-Lefller functions

s(t, a)− s(t, b) = (b− a)

∫ t

0

r(t− τ, a)s(τ, b)dτ, a, b ∈ R.

Indeed, direct computation from the defining integral equations of s(t, a) and s(t, b)
we have

s(t, a)− s(t, b) + al ∗ (s(t, a)− s(t, b)) = (b− a)l ∗ s(t, b).
That means w = s(t, a)− s(t, b) is a solution to the equation

w + al ∗ w = l ∗ (b− a)s(t, b).

Moreover, r(t, a) is the unique solution to the equation r(t, a) + al ∗ r(t, a) = l, we
obtain

s(t, a)− s(t, b) = w = r(t, a) ∗ (b− a)s(t, b) = (b− a)

∫ t

0

r(t− τ, a)s(τ, b)dτ.

Therefore, the estimate (3.7) induces

‖Φ(u)(t)− Φ(v)(t)‖ ≤ Lf .‖u− v‖C(γ)
s(t, γ)− s(t, λ1)

λ1 − γ

≤ Lf
λ1 − γ

‖u− v‖C(γ)s(t, γ).

Consequently,

sup
t∈[0,T ]

‖Φ(u)(t)− Φ(v)(t)‖
s(t, γ)

≤ Lf
λ1 − γ

‖u− v‖C(γ).
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It yields that Φ is a contraction mapping in C(γ) provided that γ < λ1−Lf . Hence,
by Banach fixed point theorem, Φ has a unique fixed point u ∈ C([0, T ];H).

Moreover, by the definition of Φ(u), we can rewrite

u(t) = ϕ(t) +

∫ t

0

R(t− τ) (f(u(τ))− f(0)) dτ,

which together with Lemma 2.1 imply that

‖u(t)‖ ≤‖ϕ(t)‖+ Lf

∫ t

0

‖R(t− τ)‖.‖u(τ)‖dτ

≤Mϕs(t, λ1) + Lf

∫ t

0

r(t− τ, λ1)‖u(τ)‖dτ,

Appyling Lemma 2.2, we obtain

‖u(t)‖ ≤Mϕs(t, λ1 − Lf ). (3.8)

�

In particular, when ϕ(t) = S(t, A)u0, it holds for a mild solution to Equation
(1.1)

‖u(t, ϕ)‖ ≤ s(t, λ1 − Lf )‖u0‖, t ≥ 0.

3.2. Continuous dependence of solutions on the kernel. In this section, we
denote s(t, µ) = s(t, µ; l), r(t, µ) = r(t, µ; l) to emphasize the dependence of s and
r on the kernel l.

Lemma 3.2. For a given number µ ∈ R, the mapping l 7→ s(t, µ; l) is continuous
and bounded from L1(0, T ) to C([0, T ];R).

Proof. The function s(t, µ; l) is the unique solution of the scalar Volterra equation

w + µl ∗ w = 1.

Therefore, s(t, µ; l) possesses the following representation

s(t, µ; l) = 1− µ1 ∗ l + µ21 ∗ l ∗ l − . . .+ (−µ)m1 ∗ l ∗ . . . ∗ l︸ ︷︷ ︸
m times l

+ . . . (3.9)

Take two kernels l, l̄ ∈ L1(0, T ), and denote the corresponding solutions by s(t, µ; l)
and s̄(t, µ; l̄).

Set E(t) = |s(t, µ; l)− s̄(t, µ; l̄)|. From the scalar defining integral equation of s,
we have

E(t) =

∣∣∣∣µ∫ t

0

l(t− τ)
(
s(τ, µ; l)− s̄(τ, µ; l̄)

)
dτ − µ

∫ t

0

(l̄ − l)(t− τ)s̄(τ, µ; l̄)dτ

∣∣∣∣
≤ |µ|l ∗ |s− s̄|(t) + |µ|1 ∗ |l − l̄|(t).

By Lemma 2.2, one has

E(t) ≤ |µ|s(t,−|µ|)‖l − l̄‖L1(0,T ) ≤ |µ|s(T,−|µ|; l)‖l − l̄‖L1(0,T ).

Hence, ‖s(·, µ; l)− s̄(·, µ; l̄)‖C[0,T ] ≤ |µ|s(T,−|µ|; l)‖l− l̄‖L1(0,T ), which finishes the
proof. �

Let CP0 be the set of all function l ∈ L1(0, T ) such that there exists a nonnega-
tive, noninceasing function k ∈ L1(0, T ) such that k ∗ l = 1 on (0, T ).



STRUCTURAL STABILITY 9

Lemma 3.3. For µ ≥ 0, the mapping l 7→ r(t, µ; l) is continuous from L1(0, T ) ∩
CP0 to L1(0, T ) ∩ CP0.

Proof. If k∗ l = 1 then by direct computation, the function kµ(t) = k(t)+µ satisfies∫ t

0

kµ(t− τ)r(τ, µ)dτ = kµ ∗ r = 1, for all t > 0.

Therefore, when µ ≥ 0, the mapping l 7→ r(t, µ; l) maps L1(0, T ) ∩ CP0 to itself.
Let r(t, µ; l), r̄(t, µ; l̄) be solutions corresponding to the kernels l and l̄, respec-

tively. Set Ẽ(t) = r(t, µ; l)− r̄(t, µ; l̄). From the defining equations of r and r̄, one
reduces

Ẽ(t) ≤ µl ∗ Ẽ(t) + |l − l̄|(t) + µr̄(·, µ) ∗ |l − l̄|(t). (3.10)

Choosing a positive constant γ such that

µ

∫ T

0

l(t)e−γtdt < 1/2 (3.11)

thanks to the fact that lim
γ→+∞

∫ T

0

l(t)e−γtdt = 0. Multiplying both sides of (3.10)

by the function e−γt and taking the L1-norm, one gets

‖e−γtẼ‖L1(0,T ) ≤µ
∫ T

0

l(t)e−γtdt

∫ T

0

Ẽ(t)e−γtdt

+‖l − l̄‖L1(0,T )(1 + ‖µr̄(·, µ)‖L1(0,T )). (3.12)

By Lemma 2.1 (2), ‖µr̄(·, µ)‖L1(0,T ) ≤ ‖µr̄(·, µ)‖L1(0,∞) ≤ 1. Therefore, one obtains

e−γT ‖Ẽ‖L1(0,T ) ≤ ‖e−γtẼ‖L1(0,T ) ≤ 2
‖l − l̄‖L1(0,T )

1− µ
∫ T

0
e−γtl(t)dt

. (3.13)

Finally, one concludes that

‖Ẽ‖L1(0,T ) ≤ 4eγT ‖l − l̄‖L1(0,T ),

where the number γ depends continuously on µ and ‖l‖L1(0,T ). �

Remark 3.1. If µ < 0 then the mapping l 7→ r(t, µ; l) is continuous from L1(0, T )
to L1(0, T ) by an analogous argument.

As we can choose a common γ for all µ varying in a compact set, the fam-
ily of functions r(t, µ; l) is uniformly continuous. The continuous dependence of
r(t, µ; l) on the kernel l, for a given µ can be obtained from [8, Theorem 3.1, p.42].
Now we are in a position now to extend this continuous dependence to the infinite
dimensional case as follow.

Proposition 3.4. For any ε > 0, there exists δ > 0 such that for all completely
positive kernels l, l̄ satisfying ‖l − l̄‖ ≤ δ, it holds∫ T

0

‖R(t)− R̄(t)‖dt < ε,

where R, R̄ are solution operators with respect to the kernels l, l̄, respectively.
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Proof. By the representation formula of solution operator, one has

[R− R̄](t)v =

∞∑
i=1

(r(t, λi; l)− r(t, λi; l̄))〈v, ei〉ei, (3.14)

For a given µ, decompose R− R̄ into three parts

[R− R̄](t)v =
∑
i:λi≤µ

(r(t, λi; l)− r̄(t, λi; l̄))〈v, ei〉ei +
∑
i:λi>µ

r(t, λi; l)〈v, ei〉ei

−
∑
i:λi>µ

r̄(t, λi; l̄)〈v, ei〉ei

=E1(t)v + E2(t)v − E3(t)v.

By the decreasing monotonicity of the map λ 7→ r(t, λ; l), the last two terms can
be easily estimated

‖E2(t)‖ = r(t, λ(µ); l), ‖E3(t)‖ = r̄(t, λ(µ); l̄) (3.15)

where λ(µ) = min{λi : λi > µ}. Clearly,

‖E2‖L1(0,T ) =
1− s(T, λ(µ); l)

λ(µ)
≤ 1

λ(µ)
,

‖E3‖L1(0,T ) =
1− s̄(T, λ(µ); l̄)

λ(µ)
≤ 1

λ(µ)
.

Combining with the fact that limµ→+∞ λ(µ) = +∞, for an arbitrary given ε > 0,
one can fix a number µ such that

‖E2‖L1(0,T ) + ‖E3‖L1(0,T ) ≤
2

λ(µ)
≤ ε/2. (3.16)

We now consider the first term E1(t). Obviously, definition of E1 yields

‖E1(t)‖ ≤ max
λi≤µ

|r(t, λi; l)− r̄(t, λi; l̄)| ≤
∑
λi≤µ

|r(t, λi; l)− r̄(t, λi; l̄)|.

Denote by n(µ) the number of eigenvalues of A which are less than or equal to µ.
By Lemma 3.3, one can choose a δ > 0 such that

‖r(·, λi; l)− r̄(·, λi; l̄)‖L1(0,T ) ≤
ε

2n(µ) + 1
,∀λi < µ, (3.17)

provided that ‖l − l̄‖L1(0,T ) < δ. Hence,

‖E1‖L1(0,T ) ≤
∑
λi≤µ

‖r(·, λi; l)− r̄(·, λi; l̄)‖L1(0,T ) ≤ n(µ)
ε

2n(µ) + 1
< ε/2. (3.18)

Combining (3.16) and (3.18), it follows

‖R− R̄‖L1(0,T ) ≤ ‖E1‖L1(0,T ) + ‖E2‖L1(0,T ) + ‖E3‖L1(0,T ) < ε,

provided that ‖l̄ − l‖L1(0,T ) < δ. This completes the proof. �

Theorem 3.5. Let ul(t, ϕ) denote the unique solution to Equation (3.4) corre-
sponding to the kernel l and the initial condition ϕ. Then the solution mapping
(ϕ, l) 7→ ul(t, ϕ) is continuous from C([0, T ];H)× L1(0, T ) into C([0, T ];H).
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Proof. We first observe that: combining the estimate (3.7) and Lemma 3.2, the
solution mapping is the composition of bounded maps, so it is also bounded.

Fix a point (ϕ, l) and consider (ϕ̄, l̄) belonging to a neighbourhood of (ϕ, l). Let
ul(t, ϕ), ūl̄(t, ϕ̄) be the unique mild solutions to Equation (3.4) with the kernels l
and l̄ and the initial conditions ϕ(t) and ϕ̄(t), respectively.

Let denote S̄ and R̄ the solution operators corresponding to the kernel k̄. By
the formulae determining a mild solution to (3.4), we have

‖ul(t, ϕ)− ūl̄(t, ϕ̄)‖ =

∥∥∥∥ϕ(t)− ϕ̄(t) +

∫ t

0

[
R(t− τ)f(u(τ))− R̄(t− τ)f(ū(τ))

]
dτ

∥∥∥∥
≤ ‖ϕ(t)− ϕ̄(t)‖+

∫ t

0

‖R(t− τ)‖‖f(u(τ))− f(ū(τ))‖dτ+

+

∫ t

0

‖R(t− τ)− R̄(t− τ)‖‖f(ū(τ))‖dτ

≤ ‖ϕ− ϕ̄‖C[0,T ] +

∫ t

0

r(t− τ, λ1; l)Lf‖ul(τ, ϕ)− ūl̄(τ, ϕ̄)‖dτ

+

∫ T

0

‖R(t)− R̄(t)‖dt · sup
[0,T ]

‖Nf (ūl̄)(τ)‖.

Fix a positive number δ0. Because the solution map is bounded, there exists a
constant M = M(δ0) such that whenever ‖ϕ− ϕ̄‖ ≤ δ0, ‖l − l̄‖L1(0,T ) ≤ δ0 then

sup
[0,T ]

‖Nf (ūl̄)(τ)‖ ≤ ‖f(0)‖+ Lf sup
[0,T ]

‖ūl̄(τ)‖ ≤M. (3.19)

Let ε be an arbitrary positive number. Thanks to Proposition 3.3, one can choose
a δ ∈ (0, δ0) ∩ (0, s(T, λ1; l)ε/2) such that

‖l − l̄‖L1(0,T ) ≤ δ yields

∫ T

0

‖R(t)− R̄(t)‖dt ≤ s(T, λ1; l)ε

2M + 1
.

Set e(t) = ‖ul(t, ϕ)− ūl̄(t, ϕ̄)‖. Plugging this estimate above, one gets

e(t) ≤ εs(T, λ1; l) + Lf

∫ t

0

r(t− τ, λ1; l)e(τ)dτ (3.20)

≤ εs(t, λ1; l) + Lf

∫ t

0

r(t− τ, λ1; l)e(τ)dτ, (3.21)

due to the decreasing monotonicity of the function t 7→ s(t, λ1; l). Applying Lemma
2.2, one finally gains

e(t) ≤ s(t, λ1 − Lf ; l)ε.

This means that

‖ul(·, ϕ)− ul̄(·, ϕ̄)‖C([0,T ];H) = sup
[0,T ]

e(t) ≤ ε‖s(·, λ1 − Lf ; l)‖C[0,T ].

This finishes the proof. �

The kernel k naturally appears in Equation (1.1), while its related kernel l
presents in the Prüss form Equation (1.4). If CP0 is the set of all function l ∈
L1(0, T ) such that there exists a nonnegative, nonincreasing function k ∈ L1(0, T )
such that k ∗ l = 1 on (0, T ), then the mapping k 7→ l is an injection. One can
use either k or l to present the pair of kernels (k, l). One may furnish the set of
kernels k with the induced topology from this injective mapping and then obtain
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the continuous dependence of solutions on the kernel k directly. However, since the
original kernel k also requires the nondecreasing monotonicity, which is difficult to
be characterised from topological point of view, hence, we decide to formulate our
continuous dependence results on the induced kernel l. In some special cases, when
the mapping k 7→ l is continuous, then one concludes that the solution continuously
depends on the kernel k too. Let us consider the following two examples.

(1) The subclass of fractional kernels, k(t) = g1−α(t), α ∈ (0, 1). Clearly, if
kn(t) = g1−αn(t), {αn} converges to a fractional order α ∈ (0, 1) then the
corresponding kernel ln = gαn tends to gα in L1(0, T ). Therefore, one gains
that the solution of fractional order continuously depends on their order.

(2) The subclass of ultraslow diffusion kernels k(t) =
∫ 1

0
g1−α(t)dµ(α) with µ

is a nonnegative continuous function on [0, 1] as in [11]. If {kn}n≥1 is a
sequence of kernels related to a sequence of weight functions {µn(α)}n≥1

then by the formula stated in [11, page 261], the corresponding kernels
{ln}n≥1 is given by

ln(t) =
1

π

∫ +∞

0

e−tτ
∫ 1

0
τα sin(απ)µn(α)dα

[
∫ 1

0
τα sin(απ)µn(α)dα]2 + [

∫ 1

0
τα cos(απ)µn(α)dα]2

dτ.

Therefore, if µn → µ in C3([0, 1]) then ln → l as n → ∞. Thus one
obtains the continuous dependence of solutions on the weight function µ ∈
C3([0, 1]).

3.3. Continuous dependence of solutions on the initial function.

Theorem 3.6. For a given kernel k, the solution mapping ϕ 7→ u(t, ϕ) correspond-
ing to Equation (3.4) is Lipschitz continuous on C([0, T ];H).

Proof. Assume ϕ, ϕ̄ ∈ C([0, T ];H). Let er(t) = ‖u(t, ϕ)−u(t, ϕ̄)‖, t ∈ [0, T ]. Using
the similar argument as in the proof of Theorem 3.5, one has

er(t) ≤ ‖ϕ(t)− ϕ̄(t)‖+

∫ t

0

r(t− τ, λ1)Lfer(τ)dτ (3.22)

≤ ‖ϕ− ϕ̄‖C[0,T ] + Lf

∫ t

0

r(t− τ, λ1)er(τ)dτ. (3.23)

Denote Ψ ∈ C[0, T ] is the unique solution of the following Volterra equation

Ψ(t) = 1 + Lf

∫ t

0

r(t− τ, λ1)Ψ(τ)dτ, t > 0.

Then one concludes that

er(t) ≤ Ψ(t)‖ϕ− ϕ̄‖C([0,T ];H),

which finally implies that

‖u(·, ϕ)− u(·, ϕ̄)‖C([0,T ];H) ≤ ‖Ψ‖C[0,T ] · ‖ϕ− ϕ̄‖C([0,T ];H).

The proof is completed. �
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4. The related semi-group construction

In the case of finite dimensional without nonlinearity, that is, H = Rd, A is a
given matrix and f = 0, the nonlocal equation (1.1) can be transformed into a
linear Volterra equation, which has been investigated thoroughly in [8, Chapter 8]
via the initial and forcing function semigroups. Motivated by this approach, we
now to consider the infinite dimensional case with Lipschitzian nonlinearity.

Lemma 4.1. Assume that l is Laplace transformable on the right half plane, that
is, for all ε > 0,

l̂(ε) =

∫ +∞

0

e−εtl(t)dt < +∞. (4.1)

For a given µ ∈ R+ and a the kernels k satisfying (K), there exists a constant
ω = ω(µ, l) > 0 such that s(t,−µ; l) ≤ 2eωt for all t ≥ 0.

Proof. The function s(t,−µ) is the unique solution of scalar Volterra equation
s(t,−µ) = 1 +µl ∗ s(t,−µ), which possesses the following representation (see (3.9))

s(t,−µ) = 1 + µ1 ∗ l(t) + µ21 ∗ l ∗ l(t) + . . .+ µj1 ∗ l ∗ . . . ∗ l︸ ︷︷ ︸
j times l

(t) + . . .

Multiplying both sides by the function e−ωt and direct computation implies

s(t,−µ)e−ωt = e−ωt + e−ωt ∗m+ e−ωt ∗m ∗m+ . . .

where m(t) = µe−ωtl(t). Thanks to (4.1), we choose ω > 0 such that

µ

∫ +∞

0

e−ωtl(t)dt < 1/2.

Because m(t) ≥ 0, ω > 0, we have

e−ωt ∗m ∗ . . . ∗m︸ ︷︷ ︸
j times m

(t) ≤ 1 ∗m ∗ . . . ∗m︸ ︷︷ ︸
j times m

(t)

≤ [1 ∗m(t)]j (by induction on j)

≤
(∫ +∞

0

m(t)dt

)j
< 2−j .

Therefore, one concludes that

e−ωts(t,−µ) ≤
+∞∑
j=0

2−j = 2. (4.2)

Thus, s(t,−µ) ≤ 2eωt for all t ≥ 0. �

We denote by C([0,+∞);H) the space of continuous functions ϕ : R+ → H,
with the topology of uniform convergence on compact subsets. This topology is
metrizable, whose metric is given by

ρ(ϕ, φ) =

∞∑
n=1

1

qn
ρn(ϕ, φ), (4.3)

where

ρn(ϕ, φ) =
supt∈[0,n] ‖ϕ(t)− φ(t)‖

1 + supt∈[0,n] ‖ϕ(t)− φ(t)‖
,
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and q > q∗ with q∗ :=

{
1, if λ1 > 0

eω, if λ1 ≤ 0
. Here we design the metric inducing the

topology of uniform convergence on compact intervals by specifying the value of
q such that the following semi-dynamical family consists of Lipschitz continuous
transformations. We now in a position to follow closely the idea in Son et. al. in
[4] (see also [19, Chapter XI]).

For a given Lipschitzian nonlinearity f , we define the following family {Tt}t≥0

of transformation on C([0,+∞);H)

Ttϕ(θ) = ϕ(t+θ)+

∫ t

0

R(t+θ−τ)Nf (u)(τ)dτ, for θ ≥ 0, ϕ ∈ C([0,+∞);H), (4.4)

where u : R+ → H is the unique solution of the initial value problem (3.4), namely

u(t) = ϕ(t) +

∫ t

0

R(t− τ)Nf (u)(τ)dτ.

Theorem 4.2. Suppose that the assumptions (A), (K) and (F) hold. Then the
family of operators {Tt}t≥0 associated to Problem (3.4) forms a semigroup of Lip-
schitzian mapping in C([0,+∞);H) with respect to the metric ρ.

Proof. The proof is divided into two parts.
Step 1. The operator Tt : C([0,+∞);H)→ C([0,+∞);H) is Lipschitz continu-

ous. For a given t, let dte = min{m ∈ N : m ≥ t}. One has for ϕ, φ ∈ C([0,+∞);H):

‖Ttϕ(θ)− Ttφ(θ)‖ ≤ ‖ϕ(t+ θ)− φ(t+ θ)‖+

+ Lf sup
τ∈[0,t]

‖u(τ, ϕ)− u(τ, φ)‖
∫ t

0

‖R(t+ θ − τ)‖dτ

≤ ‖ϕ(t+ θ)− φ(t+ θ)‖+

+ Lf sup
τ∈[0,t]

‖u(τ, ϕ)− u(τ, φ)‖
∫ t

0

r(t− τ + θ, λ1)dτ.

1. Case 1: λ1 ≤ 0. By the decreasing monotonicity with respect to λ of r(t, λ),
one sees that r(τ, λ) ≤ r(τ,−µ), where µ = |λ1|+ 1 > 0. Hence,∫ t

0

r(t− τ + θ, λ1)dτ ≤ s(t+ θ,−µ)− s(θ,−µ)

µ
≤ s(t+ θ,−µ)

µ
. (4.5)

Applying Lemma 4.1 for this µ, it follows that

sup
[0,n]

‖Ttϕ(θ)− Ttφ(θ)‖ ≤ sup
[0,n]

‖ϕ(θ + t)− φ(θ + t)‖+

+ sup
[0,n]

s(t+ θ,−µ)
Lf
µ
‖u(θ, ϕ)− u(θ, φ)‖,

which yields

ρn(Ttϕ, Ttφ) ≤ ρn+dte(ϕ, φ) +
Lf
µ

2eω(n+dte) sup
θ∈[0,t]

‖u(θ, ϕ)− u(θ, φ)‖.

It reduces to

ρ(Ttϕ, Ttφ) ≤ qdteρ(ϕ, φ) +
∑
n≥1

2Lf
µqn

eω(n+dte) sup
θ∈[0,t]

‖u(θ, ϕ)− u(θ, φ)‖.
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This means that

ρ(Ttϕ, Ttφ) ≤ qdteρ(ϕ, φ) +
2Lfe

ω(dte)+1

µ(q − eω)
sup
θ∈[0,t]

‖u(θ, ϕ)− u(θ, φ)‖. (4.6)

2. Case 2: λ1 > 0. We have∫ t

0

r(t− τ + θ, λ1)dτ =

∫ t+θ

θ

r(ξ, λ1)dξ ≤
∫ +∞

0

r(ξ, λ1)dξ = 1/λ1,

Hence, one concludes that

‖Ttϕ(θ)− Ttφ(θ)‖ ≤ ‖ϕ(t+ θ)− φ(t+ θ)‖+
Lf
λ1

sup
τ∈[0,t]

‖u(τ, ϕ)− u(τ, φ)‖.

Similar to case 1, one obtains

sup
[0,n]

‖Ttϕ(θ)− Ttφ(θ)‖ ≤ sup
[0,n]

‖ϕ(θ + t)− φ(θ + t)‖+

+
Lf
λ1

sup
τ∈[0,t]

‖u(τ, ϕ)− u(τ, φ)‖.

This estimate yields that

ρn(Ttϕ, Ttφ) ≤ ρn+dte(ϕ, φ) +
Lf
λ1

sup
τ∈[0,t]

‖u(τ, ϕ)− u(τ, φ)‖,

and consequently,

ρ(Ttϕ, Ttφ) ≤ qdteρ(ϕ, φ) +
∑
n≥1

1

qn
Lf
λ1

sup
τ∈[0,t]

‖u(τ, ϕ)− u(τ, φ)‖

≤ qdteρ(ϕ, φ) +
1

q − 1

Lf
λ1

sup
τ∈[0,t]

‖u(τ, ϕ)− u(τ, φ)‖. (4.7)

As a consequence of Theorem 3.6, there exists a constant C which is independent
of ϕ, φ such that

‖u(·, ϕ)− u(·, φ)‖C([0,t];H) ≤ C‖ϕ− φ‖C([0,t];H) ≤ C̃ρ(ϕ, φ).

Combining this fact and the estimates (4.6) and (4.7) in each case mentioned above,
we conclude that Tt is a Lipschitz continuous mapping on C([0,+∞);H).

Step 2. The family {Tt, t ≥ 0} satisfies the law of semigroup. Namely, take
σ, σ̃ ∈ R+, ϕ ∈ C([0,+∞);H) and denote u(θ) = uϕ(θ) the solution of Equation
(3.4). By this equation, we have

u(σ + θ) = ϕ(σ + θ) +

∫ σ+θ

0

R(t+ θ − τ)f(u(τ))dτ

= ϕ(σ + θ) +

∫ σ

0

R(σ + θ − τ)f(u(τ))dτ +

∫ σ+θ

σ

R(σ + θ − τ)f(u(τ))dτ

= Tσϕ(θ) +

∫ θ

0

R(θ − r)f(u(σ + r))dr, (we change τ = σ + r).

It means that ψ(θ) := u(σ + θ) is the unique solution to the following equation

ψ(θ) = Tσϕ(θ) +

∫ θ

0

R(θ − r)f(ψ(r))dr.
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Tσϕ plays the same role as ϕ in Equation (3.4), therefore, it holds

Tσ̃ (Tσϕ) (θ) = Tσϕ(σ̃ + θ) +

∫ σ̃

0

R(σ̃ + θ − τ)f(ψ(τ))dτ

= ϕ(σ + σ̃ + θ) +

∫ σ

0

R(σ + σ̃ + θ − τ)f(u(τ))dτ+

+

∫ σ̃

0

R(σ̃ + θ − τ)f(ψ(τ))dτ.

We change τ := r − σ in the last integral, and substitute ψ(r − σ) = u(r), which
yields ∫ σ̃

0

R(σ̃ + θ − τ)f(u(σ + τ))dτ =

∫ σ+σ̃

σ

R(σ + σ̃ + θ − r)f(u(r)dr.

We obtain that

Tσ̃ (Tσϕ) (θ) = ϕ(σ + σ̃ + θ) +

∫ σ+σ̃

0

R(σ + σ̃ + θ − τ)f(u(τ))dτ

= Tσ+σ̃ϕ(θ) for all θ ≥ 0.

ϕ is arbitrary, therefore, we conclude that Tσ̃ ◦ Tσ = Tσ̃+σ, {Tt} satisfies the semi-
group law. �

In the present work, we consider derivatives of Caputo type, hence, some re-
sults are stated in the class of continuous functions. For other types of deriva-
tives, for example the nonlocal derivatives of Riemann-Liouville type RLD(k)u(t) =
d
dt [k ∗ u(t)], t > 0, one must work on a larger class of functional spaces, such as
Lp((0, T );H). As one can see from the proofs above, most analogous results still
hold in this larger setting with a minor modification.

As mentioned in Prüss monograph [16, Chapter 13], the semigroup approach can
be utilized to investigate the solvability of linear singular Volterra integral equations
via many different ways, such as the forcing function approach or the history func-
tion approach,... For linear evolution equations, although it is very hard to obtain
optimal solvability results for nonlocal equations in terms of semigroup theory, the
embedding of solution operators into a semi-dynamical setting is still meaningful,
as it allows us to use powerful tool and very rich concepts of dynamical systems
theory to gain asymptotic properties of solutions. The related semi-dynamical sys-
tem constructed in this paper can be seen as our first attempt to study asymptotic
behavior of solutions to nonlocal evolution equations via dynamical approach. The
pullback of the objects from dynamical theory might induce some lights on the
study of stability theory for nonlocal evolution equations.
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