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ABSTRACT. The famous Stein–Weiss inequality on Rn×Rn, also known as the doubly
weighted Hardy– Littlewood–Sobolev inequality, asserts that∣∣∣ ∫∫

Rn×Rn

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

∣∣∣ . ‖f‖Lp(Rn)‖g‖Lr(Rn)
holds for any f ∈ Lp(Rn) and g ∈ Lr(Rn) under several conditions on the parameters
n, p, r, α, β, and λ. Extending the above inequality to either different domains rather
than Rn × Rn or classes of more general kernels rather than the classical singular ker-
nel |x − y|−λ has been the subject of intensive studies over the last three decades. For
example, Stein–Weiss inequalities on the upper half space, on the Heisenberg group, on
homogeneous Lie group are known. Served as the first step, this work belongs to a set in
which the following inequality on the product Rn−k ×Rn is studied∣∣∣ ∫∫

Rn×Rn−k

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

∣∣∣ . ‖f‖Lp(Rn−k)‖g‖Lr(Rn).
Toward the validity of the above new inequality, in this work, by constructing suitable
counter-examples, we establish all conditions for the parameters n, p, r, α, β, and λ nec-
essarily for the validity of the above proposed inequality. Surprisingly, these necessary
conditions applied to the case k = 1 suggest that the existing Stein–Weiss inequalities
on the upper half space are yet in the optimal range of the parameter λ. This could re-
flect limitations of the methods often used. Comments on the Stein–Weiss inequality on
homogeneous Lie groups as well as the reverse form for Stein–Weiss inequalities are also
made.

1. INTRODUCTION

The classical Hardy–Littlewood–Sobolev inequality on Rn states that for any n ≥ 1,
p, r > 1, and λ ∈ (0, n) satisfying the so-called balance condition

1/p+ 1/r + λ/n = 2,

the following convolution-type inequality holds∣∣∣ ∫∫
Rn×Rn

f(x)g(y)

|x− y|λ
dxdy

∣∣∣ . ‖f‖Lp(Rn)‖g‖Lr(Rn) (1.1)

for any f ∈ Lp(Rn) and any g ∈ Lr(Rn). The case n = 1 of (1.1) was first appeared
in a work due to Hardy and Littlewood in 1928; see [HL28]. Then, in 1938 Sobolev
generalized the inequality (1.1) for arbitrary n in [Sob38]. The sharp form of (1.1) as
well as the existence of a pair of the optimal functions was eventually obtained by Lieb
in [Lie83] via a symmetric decreasing rearrangement technique; see also [Lio84] for a
different argument based on concentration-compactness principle.

In 1958, Stein and Weiss proved the so-called doubly weighted Hardy–Littlewood–
Sobolev inequality, which generalizes the HLS inequality (1.1) by inserting two weights
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|x|−α and |y|−β into the integrand f(x)|x− y|−λg(y). To be more precise, it was proved
in [SW58] that for n ≥ 1, p, r > 1,

0 < λ < n (1.2)

and
α < n(p− 1)/p, β < n(r − 1)/r (1.3)

with
α+ β ≥ 0, (1.4)

the following doubly weighted inequality holds∣∣∣ ∫∫
Rn×Rn

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

∣∣∣ . ‖f‖Lp(Rn)‖g‖Lr(Rn) (1.5)

for any f ∈ Lp(Rn) and any g ∈ Lr(Rn) under the following conditions

1/p+ 1/r ≥ 1 (1.6)

and the balance condition

1/p+ 1/r + (λ+ α+ β)/n = 2. (1.7)

In the literature, the inequality (1.5) is widely known as the Stein–Weiss inequality. Ap-
parently, the SW inequality (1.5) becomes the classical HLS inequality (1.1) if α = β = 0.
In the original work of Stein and Weiss [SW58], the condition (1.6) is replaced by the
following condition

p ≤ q :=
(
1− 1

r

)−1
.

However, it is easy to verify that the above condition p ≤ q is actually equivalent to (1.6).
Compared to the situation of (1.1), in the case of (1.5) there are three extra conditions for
α and β: (1.3), (1.4), and (1.6). It is clear that these three conditions are automatically
satisfied if α = β = 0.

Our motivation of writing this note comes from the fact that there was no further infor-
mation on the conditions (1.3), (1.4), and (1.6) in the work of Stein and Weiss. It is worth
noting that in the case n = 1, Hardy and Littewood showed that the three conditions (1.3),
(1.4), and (1.6) are necessary. From this difference, a natural question is that whether these
conditions are also necessary.

In the existing literature, these three conditions are often assumed, without justification,
in many works such as [HLZ12] for the case of the Heisenberg group, [Dou16] for the
case of the upper half space, [CLLT20] for the case with the fractional Poisson kernel, and
[KRS19] for the case of homogeneous Lie groups.

Our first observation in this note is the following which indicates the necessity of all
conditions appearing in the SW inequality (1.5).

Theorem 1.1. All the conditions (1.2), (1.3), (1.4), (1.6), and (1.7) are necessary for
the Stein–Weiss inequality (1.5).

We prove Theorem 1.1 in section 2 by constructing counter-examples whenever one of
these conditions is violated. Clearly, our result now concludes that the SW inequality (1.5)
in its full generality. A careful examination of the necessary conditions for (1.5) reveals
that the quantity α + β cannot be too positive. In fact, the size of α + β is implicitly
encoded in (1.7) because it follows from (1.7) that

α+ β ≤ n− λ,
which cannot be obtained directly from (1.3). Furthermore, it is clear that we have the
following

(1.4), (1.6), and (1.7) −→ (1.2).
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Therefore, to conclude the necessity of all conditions for the SW inequality (1.5), we must
not use the other condition as a means.

To further illustrate the idea of constructing counter-examples when proving Theorem
1.1, let us consider the doubly weighted Hardy–Littlewood–Sobolev inequality on the up-
per half space Rn

+ which is defined as follows

Rn
+ = {(x′, xn) : xn > 0}.

In 2016, Dou proved the so-called the doubly weighted HLS inequality on Rn−1×Rn
+;

see [Dou16] and [DZ15]. To be precise, given n ≥ 2, p, r > 1,

0 < λ < n− 1 (1.8)

and
α < (n− 1)(p− 1)/p, β < n(r − 1)/r (1.9)

with
α+ β ≥ 0, (1.10)

the following inequality holds∣∣∣ ∫∫
Rn

+×Rn−1

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

∣∣∣ . ‖f‖Lp(Rn−1)‖g‖Lr(Rn
+) (1.11)

for any f ∈ Lp(Rn−1) and any g ∈ Lr(Rn
+) under the following conditions

1/p+ 1/r ≥ 1 (1.12)

and the balance condition
n− 1

n

1

p
+

1

r
+
λ+ α+ β + 1

n
= 2. (1.13)

Here we identify Rn−1 as the boundary of Rn
+ and the ‘distance’ |x− y| is understood as

follows
|x− y| =

√
|x− y′|2 + y2n.

Compared to the classical SW inequality (1.5) on Rn×Rn, the two conditions (1.10) and
(1.12) remains the same as those of (1.5), only the three conditions (1.8), (1.9), and (1.13)
change. However, we no longer have the following

(1.10), (1.12), and (1.13) −→ (1.8)

as in the previous case. This suggests that one of the three conditions (1.8), (1.9), and
(1.13) should not be necessary. Based on this intriguing observation, we are forced to
further investigate this by seek for the necessity of the above conditions. The following
result is what we obtain.

Theorem 1.2. All the conditions (1.8) replaced by 0 < λ < n − 1/r, (1.9), (1.10),
(1.12), and (1.13) are necessary for the Stein–Weiss inequality (1.11).

We prove Theorem 1.2 in section 3 below. The new threshold n− 1/r for λ appears by
means of the identity (3.1) below, which as far as we know has not been observed before.
As can be seen from Theorem 1.2, we cannot say anything if

n− 1 ≤ λ ≤ n− 1/r.

In fact, one could expect by seeing the condition (1.8) used in [Dou16] that one still needs
λ < n − 1. From this fundamental difference, it is natural to ask whether or not the SW
inequality (1.11) on Rn

+ is still valid for the following new range of the parameter λ

n− 1 ≤ λ < n− 1/r.
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In other words, if we fix 0 < λ < n, this is equivalent to saying that the inequality (1.11)
remains valid so long as

r > max
{
1,

1

n− λ

}
.

It turns out that this is indeed the case. In the paper [NNN20], served as the second in the
set, we address this issue. To be more precise, we prove in [NNN20] the inequality (1.14)
below, namely we are interested in the validity of the following inequality∣∣∣ ∫∫

Rn×Rn−k

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

∣∣∣ . ‖f‖Lp(Rn−k)‖g‖Lr(Rn) (1.14)

for any f ∈ Lp(Rn−k) and any g ∈ Lr(Rn). Here we assume n > k ≥ 0. Clearly, the
above inequality (1.14) includes (1.11) as a special case if we choose k = 1. As far as
we know, the inequality (1.14) is not yet studied. Although the two inequalities (1.11) and
(1.14) look rather similar, the motivation of working on the inequality (1.14) is not just to
create an artificial one, but it stems from an intriguing connection between isoperimetric
inequalities and HLS inequalities with Poisson-type kernel on Rn−1×Rn

+; see [HWY08]
for the intriguing connection between these inequalities. It is shown in [NNN20] that the
inequality (1.14) provides more information on HLS inequalities with Poisson-type kernel
on Rn−1 ×Rn

+ and this is the key observation to work on (1.14).

Toward the validity of the inequality (1.14), we aim to address the necessity for the
inequality (1.14), leading to the content of the next result of the present paper. Inspired by
the set of conditions for (1.11), our set of assumptions for (1.14) is as follows. First we let
p, r > 1,

0 < λ < n− k/r, (1.15)

and
α < (n− k)(p− 1)/p, β < n(r − 1)/r, (1.16)

with
α+ β ≥ 0. (1.17)

We also assume the following conditions

1/p+ 1/r ≥ 1 (1.18)

and
n− k
n

1

p
+

1

r
+
λ+ α+ β + k

n
= 2. (1.19)

Now we identify necessary conditions for the inequality in the same fashion of the previous
two inequalities (1.5) and (1.11). We shall prove the following necessity result.

Theorem 1.3. All the conditions (1.15), (1.16), (1.17), (1.18), and (1.19) are neces-
sary for the validity of the Stein–Weiss inequality (1.14).

We prove Theorem 1.3 in section 4 below. As in the case of the upper half space, we
obviously do not have the following

(1.17), (1.18), and (1.19) −→ (1.15).

In [NNN20], we investigate the validity of (1.14) under the above necessary conditions.
To be more precise, instead of proving (1.14) in its form, we simply consider (1.14) with
α = 0 and the weight |y|−β replaced by |y′′|−β , namely∣∣∣ ∫∫

Rn×Rn−k

f(x)g(y)

|x− y|λ|y′′|β
dxdy

∣∣∣ . ‖f‖Lp(Rn−k)‖g‖Lr(Rn) (1.20)
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with y = (y′, y′′) ∈ Rn−k × Rk. Clearly, a special case of the inequality (1.20) is the
following HLS inequality on Rn−k ×Rn with n > k ≥ 0∣∣∣ ∫∫

Rn×Rn−k

f(x)g(y)

|x− y|λ
dxdy

∣∣∣ . ‖f‖Lp(Rn−k)‖g‖Lr(Rn). (1.21)

Surprisingly, with the new technique introduced in [NNN20], the validity of (1.14) can be
quickly derived from (1.21). This provides a very short proof of the SW inequality (1.11)
on the upper half space Rn

+. For the classical approach of Stein–Weiss applied to the case
of the upper half space Rn

+ with the limitation 0 < λ < n − 1, we refer the reader to the
work [Dou16]. We expect that the classical approach of Stein–Weiss can also be applied
to the case of (1.14) giving another the proof for 0 < λ < n− k, but we are not so sure if
this approach can cover the range n− k ≤ λ < n− k/r. We also expect that the approach
in [SDY14], which is based on interpolation of Lorentz spaces, can also be applied in this
case. Hence, we might have another proof of (1.14).

Before closing this section, we have three comments. First, we can easily show that all
the conditions for the Stein–Weiss inequality∣∣∣ ∫∫

G×G

f(x)g(y)

|x|α|y−1x|λ|y|β
dxdy

∣∣∣ . ‖f‖Lp(G)‖g‖Lr(G)

on the product of the homogeneous Lie group G are also necessary; see [KRS19] for the
precise statement of the inequality. Since the argument in the proof of Theorem 1.1 can be
used for the context of homogeneous Lie groups directly without any difficulty, we omit
the details.

For the second comment, over the last few years, there have been intensive studies
on reverse cases of the classical HLS inequality and well as the classical SW inequality.
For example, the authors in [CLLT18] consider the reverse SW inequality on Rn ×Rn,
following the case on Rn−1×Rn

+ in [CLT19]. These inequalities can formally be written
as follows ∣∣∣ ∫∫ f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

∣∣∣ & ‖f‖Lp‖g‖Lr (1.22)

with λ < 0 and p, r ∈ (0, 1). Accordingly, the above inequality also enjoys the same
balance condition as in (1.7) for the case Rn × Rn and (1.13) for case Rn−1 × Rn

+.
However, unlike the inequalities (1.5) and (1.11), the reverse case (1.22) considered in the
above mentioned papers does not exhibit similar ‘necessary’ conditions except a suitable
balance condition and the natural assumption λ < 0. Using the balance condition and due
to the fact that λ < 0, there are foreseen conditions

α+ β > n[(p− 1)/p+ (r − 1)/r]

for the case Rn ×Rn and

α+ β > n(p− 1)/p+ (n− 1)(r − 1)/r

for the case Rn−1 × Rn
+. Consequently, to verify the validity of (1.22) it is natural to

assume that at least one of the following two conditions

α > n(p− 1)/p, β > n(r − 1)/r

for the case Rn ×Rn and

α > n(p− 1)/p, β > (n− 1)(r − 1)/r

for the case Rn−1 ×Rn
+ occurs.

However, we can say more about the two sets of conditions above. Following the argu-
ment proving the necessity of the conditions (1.3) and (1.9) established in Theorems 1.1
and 1.2 above, it is quite clear that if at least one of the two conditions for α and β for each
case does not not occur, the left hand side of (1.22) diverges, leading to the triviality of
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(1.22). This sheds light on why the authors in [CLLT18, Theorem 1] can assume that the
following conditions

0 ≥ α > n(p− 1)/p, 0 ≥ β > n(r − 1)/r.

However, we suspect that the negativity of both α and β seems to be not necessary.

As the final remark before closing this section, we would like to note that during the
preparation of this work, it has come to our attention that the necessity of all conditions for
the SW inequality (1.5) was already studied in [SDY14]. Nevertheless and very fortunate,
the argument and examples demonstrated in (1.5) are essentially different from ours. We
also expect that our finding in this note could be useful and applicable for other cases.

This note is organized as follows:

CONTENTS

1. Introduction 1
2. Necessity of conditions for (1.5): proof of Theorem 1.1 6
2.1. The necessity of (1.2), (1.3), and (1.7) 6
2.2. The necessity of (1.4) 8
2.3. The necessity of (1.6) 10

3. Necessity of conditions for (1.11) on Rn
+ ×Rn−1: proof of Theorem 1.2 11

3.1. The necessity of 0 < λ < n− 1/r 11
3.2. The necessity of (1.9) and (1.13) 13
3.3. The necessity of (1.10) 13
3.4. The necessity of (1.12) 15

4. Necessity of conditions for (1.14) on Rn−k ×Rn: proof of Theorem 1.3 16
4.1. The necessity of (1.15) 16
4.2. The necessity of (1.19) and (1.16) 17
4.3. The necessity of (1.17) 17
4.4. The necessity of (1.18) 19
Acknowledgments 19
References 19

From now on, by B`r we mean the open ball in R` centered at the origin with radius
r. Since we are also interested in the upper half space Rn

+, for simplicity by Bnr we also
mean Rn

+ ∩Bnr if no confusion occurs.

2. NECESSITY OF CONDITIONS FOR (1.5): PROOF OF THEOREM 1.1

In this section, we give a proof of Theorem 1.1. As mentioned earlier, the result is
already known, thanks to [SDY14]. Hence, we aim to provide new examples to support
the finding, especially to be able to consider the case of the upper half space Rn−1 ×Rn

+

as well as Rn−k ×Rn.

Compared to the examples constructed in [SDY14], our main contribution in this sec-
tion is a new example constructed in subsection 2.2 below, which is inspired by a similar
construction due to Hardy and Littewood.

2.1. The necessity of (1.2), (1.3), and (1.7).
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2.1.1. The necessity of 0 < λ < n. We start with the necessity of (1.2), which is quite
obvious and well-known. Indeed, first we rule out the case λ ≤ 0. Clearly for any each
fixed x, near the infinity the quantity |x − y|−λ is as large as we want if λ < 0. Hence
(1.5) cannot hold if λ < 0. The case λ = 0 cannot occur because∫∫

Rn×Rn

dxdy

|x|α|y|β
>

∫∫
{1≤|x|≤2}×Rn

dxdy

|x|α|y|β
= +∞

regardless of β. It is worth noticing that the case λ = 0 is often called the limiting case
and in this scenario, we expect that there is a log-SW inequality in the same fashion of
the log-HLS inequality; see [DZ15, Corollary 5.3]. Clearly, by seeing the necessity of the
conditions (1.4) and (1.6), we must have λ ≤ n. However, we still need to rule out the case
λ = n. To rule out the case λ ≥ n, we simply choose

f = g = χB6\B1
.

and show that the two terms |x|−α and |y|−β are negligible. Then, by Tonelli’s theorem, it
is easy to see that

+∞ >

∫∫
Rn×Rn

χB6\B1
(x)χB6\B1

(y)

|x|α|x− y|λ|y|β
dxdy

&
∫
B4\B2

(∫
B|y|/2(y)

dx

|x− y|λ
)
dy

|y|≥2
≥

∫
B4\B2

(∫
B1(y)

dx

|x− y|λ
)
dy = +∞.

This completes the proof of the necessity of λ < n.

Remark 2.1. In the above argument, if we use the dual version of (1.11), namely

‖f‖qLp(Rn) ≥
∫
Rn

(∫
Rn

f(x)

|x|α|x− y|λ|y|β
dx
)q
dy (2.1)

with q = r/(r − 1), then the above argument still works. Indeed, we easily obtain∫
Rn

(∫
Rn

χB6\B1
(x)

|x|α|x− y|λ|y|β
dx
)q
dy &

∫
B4\B2

(∫
B|y|/2(y)

dx

|x|α|x− y|λ
)q
dy

&
∫
B4\B2

(∫
B1(y)

dx

|x− y|λ
)q
dy = +∞

if λ ≥ n.

2.1.2. The necessity of β < n(r − 1)/r. First, we prove the necessity of the condition
β < n(r − 1)/r. By way of contradiction, we assume

β ≥ n(r − 1)/r = n/q.

We shall obtain contradiction from (2.1). Then we choose f = χB3\B2
and show that the

two terms |x|−α and |x− y|−λ in (2.1) are negligible. Indeed, we can estimate∫
Rn

(∫
Rn

χB3\B2
(x)

|x|α|x− y|λ|y|β
dx
)q
dy ≥

∫
B1

[ ∫
B3\B2

dx

|x|α|x− y|λ
]q dy

|y|βq
= +∞.

This violates (2.1), hence concluding the necessity of β < n(r − 1)/r. Notice that in the
above estimate, we also need the uniformly lower bound of

∫
B3\B2

|x|−α|x− y|−λdx but
this is quite obvious because 2 ≤ |x| ≤ 3 and

1 ≤ |x| − |y| ≤ |x− y| ≤ |x|+ |y| ≤ 4.
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2.1.3. The necessity of α < n(p− 1)/p. Now we establish the necessity of the condition
α < n(p− 1)/p. In this case, we use the following equivalent form of (1.5)

‖g‖qLp(Rn) ≥
∫
Rn

(∫
Rn

g(y)

|x|α|x− y|λ|y|β
dy
)q
dx (2.2)

with q = p/(p− 1). By contradiction, we assume

α ≥ n(p− 1)/p = n/q.

Then we choose g = χB3\B2
and show that the two terms |x − y|−λ and |y|−β are negli-

gible. Indeed, we can estimate∫
Rn

(∫
Rn

χB3\B2
(y)

|x|α|x− y|λ|y|β
dy
)q
dx ≥

∫
B1

[ ∫
B3\B2

dy

|x− y|λ|y|β
]q dx

|x|αq
= +∞.

This violates (2.2), hence concluding the necessity of α < n(p− 1)/p.

2.1.4. The necessity of 1/p+ 1/r + (λ+ α + β)/n = 2. This part is well-known due to
the scaling invariance of the inequality. Since its argument is short, we include its proof
for completeness. Fix two positive functions f and g such that ‖f‖Lp(R) < +∞ and
‖g‖Lr(Rn) < +∞. Denote

fε(x) = ε−
n
p f
(x
ε

)
, gε(y) = ε−

n
r g
(y
ε

)
. (2.3)

Obviously,

‖fε‖Lp(R) = ‖f‖Lp(R) < +∞, ‖gε‖Lr(Rn) = ‖g‖Lr(Rn) < +∞.
A simple change of variables gives∫∫

Rn×Rn

fε(x)gε(y)dxdy

|x|α|x− y|λ|y|β
=

∫∫
Rn×Rn

f(xε )g(
y
ε )dxdy

ε
n
p+

n
r+λ+α+β |xε |α|

x
ε −

y
ε |λ|

y
ε |β

=
(1
ε

)( 1
p+

1
r+

λ+α+β
n −2)n

∫∫
Rn×Rn

f(x)g(y)dxdy

|x|α|x− y|λ|y|β
.

Hence, if the balance condition (1.7) does not hold, we simply send ε to zero or to infinity
to get a contradiction.

Remark 2.2. J. Dou kindly informs us that the necessity of (1.7) can also be derived from
a suitable Pohozaev-type identity. We leave the detail for the interested readers.

2.2. The necessity of (1.4). To verify the necessity of α + β ≥ 0 for the SW inequality
on Rn, we construct an example of non-negative functions f and g in such a way that
‖f‖Lp(Rn) < +∞, ‖g‖Lr(Rn) < +∞, but∫∫

Rn×Rn

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy = +∞.

Our example is inspired by a similar example in 1-dimensional case due to Hardy and
Littewood; see [HL28, page 580]. Roughly speaking, we construct an example in such a
way that the following two properties are satisfied:

• |x− y|−λ is bounded from below away from zero and
• |x| and |y| are compatible (near infinity).

For a general point x ∈ Rn, we often write x = (x′, xn) ∈ Rn−1×R. Now fix any small
ε > 0 and define

f(x) =


(log2 xn)

− 1
p−ε if 2m ≤ xn ≤ 2m + 1, m ≥ 1,

and |x′| ≤ 1,

0 otherwise,
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and

g(y) =


(log2 yn)

− 1
r−ε if 2m ≤ yn ≤ 2m + 1, m ≥ 1,

and |y′| ≤ 1,

0 otherwise.

Intuitively, the support of f and g consists of disjoint cylinders concentrated along the half
axis xn. The condition |x′| ≤ 1 is used to make the functions f and g essentially depending
only on the last coordinate. Observe that∫

Rn

f(x)pdx =
∑
m≥1

∫ 2m+1

2m

(∫
|x′|≤1

1

(log2 xn)
1+pε

dx′
)
dxn

≤ |Bn−11 |
∑
m≥1

1

m1+pε
< +∞.

Hence f ∈ Lp(Rn). Similarly, we also obtain g ∈ Lr(Rn). Now we estimate the double
integral as follows∫∫

Rn×Rn

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

≥
∑
m≥1

∫∫
Bn−1

1 ×[2m,2m+1]

(∫∫
Bn−1

1 ×[2m,2m+1]

g(y)dy

|x− y|λ|y|β
)f(x)dx
|x|α

.

(2.4)
For each m ≥ 1, let x and y be such that

x, y ∈ Bn−11 × [2m, 2m + 1]. (2.5)

We need to estimate |x|−α, |y|−β , and |x− y|−λ from below. Apparently, we easily bound
|x− y| from the above as follows

|x− y|2 = |x′ − y′|2 + |xn − yn|2 ≤ 2(|x′|2 + |y′|2) + 1 ≤ 5.

This together with λ > 0 allows us to estimate

|x− y|−λ ≥ 3−λ

provided (2.5) holds for each m ≥ 1. Since |x′| ≤ 1 and xn ≥ 2, it is easy to verify that

xn ≤
√
|x′|2 + x2n ≤ 2xn.

Similarly, we get
yn ≤

√
|y′|2 + y2n ≤ 2yn.

Hence, regardless of the sign of α and β, we always have

|x|−α & x−αn and |y|−β & y−βn .

Putting the above estimates together, we can further estimate (2.4) as follows∫∫
Rn×Rn

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

&
∑
m≥1

(∫∫
Bn−1

1 ×[2m,2m+1]

f(x)dx

|x|α
)(∫∫

Bn−1
1 ×[2m,2m+1]

g(y)dy

|y|β
)

= |Bn−11 |2
∑
m≥1

(∫ 2m+1

2m

dxn

xαn(log2 xn)
1
p+ε

)(∫ 2m+1

2m

dyn

yβn(log2 yn)
1
r+ε

)
&
∑
m≥1

1

(m+ 1)
1
p+

1
r+2ε

(∫ 2m+1

2m

dxn
xαn

)(∫ 2m+1

2m

dyn

yβn

)
.

(2.6)
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Notice that for 2m ≤ xn ≤ 2m + 1 we always have

1

xαn
≥


1

2α
1

(2m)α
if α ≥ 0,

1

(2m)α
if α < 0.

Similarly, we also obtain y−βn & (2m)−β provided 2m ≤ yn ≤ 2m + 1. Hence(∫ 2m+1

2m

dxn
xαn

)(∫ 2m+1

2m

dyn
yαn

)
≥ 1

(2m)α+β
.

Thus, recalling (2.6) we arrive at∫∫
Rn×Rn

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy &

∑
m≥1

1

(2m)α+β
1

(m+ 1)
1
p+

1
r+2ε

.

Obviously, one can easily see that the above sum diverges if α + β < 0. Hence, the
necessity of (1.3) is proved.

2.3. The necessity of (1.6). Now we establish the necessity of the condition (1.6). Indeed,
suppose 1/p+ 1/r < 1. Then

q :=
(
1− 1

r

)−1
< p.

(Note that this is also equivalent to λ + α + β > n.) In view of (2.1), it suffices to show
that the left hand side of (2.1) becomes infinity for suitable f ∈ Lp(Rn). By modifying
the counter-example constructed in subsection 2.2 above, we now choose

f(x) =

{
|x|−

n
p (log |x|)−

1
q if |x| ≥ 2,

0 otherwise.

It is not hard to see that∫
Rn

f(x)pdx = |Sn−1|
∫ +∞

2

dρ

ρ(log ρ)p/q
< +∞,

thanks to p > q. Hence, f ∈ Lp(Rn). To obtain a contradiction, we estimate the double
integral near the region {|x− y| = 0}; see [HL28, page 580]. By (1.5) we have

+∞ > ‖f‖qLp(Rn) >

∫
Rn

(∫
Rn

f(x)

|x|α|x− y|λ|y|β
dx
)q
dy

≥
∫
|y|≥4

(∫
|y|/2≤|x|≤2|y|

dx

|x|α+
n
p (log |x|)

1
q |x− y|λ

)q dy

|y|βq
.

As λ > 0 and |x| ≤ 2|y|, we have |x− y|λ ≤ 3λ|y|λ, which then yields

|x|α+
n
p |x− y|λ ≤ 2α+

n
p 3λ|y|λ+α+

n
p

for any |x|/2 ≤ |y| ≤ 2|x|. (We need the extra condition |y| ≥ |x|/2 because α + n/p
could be negative.) Hence, together with

0 < log |x| ≤ log(2|y|) ≤ log 2 + log |y| ≤ 2 log |y|,

we arrive at
1

|x|α+
n
p (log |x|)

1
q |x− y|λ

&
1

|y|λ+α+
n
p (log |y|)

1
q

.

Keep in mind that q > 1. Thus,

+∞ > ‖f‖qLp(Rn) &
∫
|y|≥4

(∫
|y|/2≤|x|≤2|y|

dx
)q dy

|y|(λ+α+β+
n
p )q log |y|
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&
∫
|y|≥4

dy

|y|n log |y|
= +∞,

thanks to(
λ+ α+ β +

n

p

)
q =

(λ+ α+ β

n
+

1

p

)
nq =

(
1− 1

r
+ 1
)
nq = n+ nq.

In the above estimate, we have used the fact that
∫
|y|/2≤|x|≤2|y| dx & |y|n, thanks to

|y| ≥ 4. Hence, we obtain a contradiction.

3. NECESSITY OF CONDITIONS FOR (1.11) ON Rn
+ ×Rn−1: PROOF OF THEOREM 1.2

In this section, we show that our argument performed in section 2 above can be applied
to the case of the upper half space Rn

+ with some changes. Although there are some
similarities between the previous section and this section, for a number of reasons, the
analysis in this section is considerably more difficult than that in section 2.

For a general point x ∈ Rn−1, we write

x = (x′, xn−1) ∈ Rn−2 ×R.

Hence for y ∈ Rn we can also write

y = (y′, yn−1, yn) ∈ Rn−2 ×R×R.

3.1. The necessity of 0 < λ < n − 1/r. Employing a similar argument as in subsection
2.1, we can easily rule out the case λ ≤ 0. Now we rule out the case λ ≥ n − 1/r.
Compared to the case of (1.2), this case is non-trivial due to the presence of the factional
number n− 1/r. Our crucial observation can be described as follows. Still denote

q :=
(
1− 1

r

)−1
,

the condition
λ ≥ n− 1/r is equivalent to λ− 1/q ≥ n− 1.

It is important to note that the balance condition (1.13) can be rewritten as

1

p
+

1

r
+
λ+ α+ β − 1

q

n− 1
= 2. (3.1)

Hence, the two conditions λ−1/q ≥ n−1 and α+β ≥ 0 basically say that we must have

1/p+ 1/r ≤ 1,

which should not occur by seeing (1.12). However, we still need to rule out the case
1/p+ 1/r = 1, which corresponds to the case both

λ− 1/q = n− 1 and α+ β = 0

occur simultaneously by seeing (3.1). This is a delicate issue, as we shall soon see.

The difficulty comes from the presence of the fractional number 1/q. Hence we need
some new idea. It is worth noticing that our argument below works for all λ ≥ n − 1/r,
not just λ = n − 1/r, and it does not depend on other conditions for the inequality, as
expected.

To overcome this difficulty and in view of Remark 2.1, we need to use the dual version
of (1.11). Clearly, for some non-negative function f ∈ Lp(Rn−1) to be determined later,
the inequality (1.13) is equivalent to

+∞ > ‖f‖qLp(Rn−1) &
∫
Rn

+

(∫
Rn−1

f(x)

|x|α|x− y|λ|y|β
dx
)q
dy
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=

∫
Rn−1

∫ +∞

0

( 1

|y|β

∫
Rn−1

f(x)

|x|α|x− y|λ
dx
)q
dyndy

′,

with q = r/(r − 1). Using Fubini’s theorem and the non-decreasing of the integral∫
Bn−1
ρ (y′)

|x|−αf(x)dx in ρ, we easily get∫
Rn−1

f(x)

|x|α|x− y|λ
dx = λ

∫
Rn−1

(∫ +∞

|x−y|

dρ

ρλ+1

)f(x)
|x|α

dx

= λ

∫ +∞

yn

(∫
Bn−1
ρ−yn (y

′)

f(x)

|x|α
dx
) dρ

ρλ+1

&
1

yλn

∫
Bn−1
yn (y′)

f(x)

|x|α
dx.

Hence, we obtain∫
Rn−1

∫ +∞

0

( 1

|y|β

∫
Rn−1

f(x)

|x|α|x− y|λ
dx
)q
dyndy

′

≥
∫
Bn−1

4 \Bn−1
2

∫ 1

0

( 1

y
λ−1/q
n |y|β

∫
Bn−1
yn (y′)

f(x)

|x|α
dx
)q dyn

yn
dy′.

For the last line in the above computation, thanks to |y′| ≥ 2 and 0 ≤ yn ≤ 1, we know
that

Bn−11 ⊂ Bn−1yn (y′) ⊂ Bn−15

and that 2 ≤ |y| ≤
√
5. Hence, if we choose f = χBn−1

6
, then we can bound

1

|y|β

∫
Bn−1
yn (y′)

f(x)

|x|α
dx =

1

|y|β

∫
Bn−1
yn (y′)

1

|x|α
dx & yn−1n ,

which yields∫ 1

0

( 1

y
λ−1/q
n

1

|y|β

∫
Bn−1
yn (y′)

f(x)

|x|α
dx
)q dyn

yn
&
∫ 1

0

dyn

y
(λ−1/q+1−n)q+1
n

.

However, the integral on the right hand side of the preceding inequality diverges if

λ− 1/q ≥ n− 1.

Hence, we necessarily have λ− 1/q < n− 1. This completes the proof.

Remark 3.1. Now we have some remarks.

• The identity (3.1) reveals that we can transform the HLS inequality on Rn
+ to a

suitable HLS inequality on Rn−1. This point is fully exploited in [NNN20].
• Suppose that we only assume λ ≥ n− 1, instead of λ ≥ n− 1/r. In this scenario,

the key estimate (3.6) is no longer true because we do not necessarily have

α+ β ≥ 1/q.

• As mentioned in the proof, the above argument works for all

λ ≥ n− 1/r

regardless of α and β, and this could confuse us why this condition does not de-
pend on α and β. Nevertheless, seeing (3.1) and (1.12), by a simple contradiction
argument, we are led to the following inequality for the validity of (1.11)

λ+ α+ β ≤ n− 1/r,

which now depends on α and β. The above condition tells us that the closer to
n− 1/r the parameter λ is, the smaller the sum α+ β is.
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3.2. The necessity of (1.9) and (1.13). In this part we prove the necessity of (1.9) and
(1.13), whose proof makes use of the same idea used in sections 2.1.3, 2.1.2, and 2.1.4.
However, to be able to consider the case of Rn−k ×Rn in Section 4 below, we provide a
quick argument for completeness.

3.2.1. The necessity of β < n(r − 1)/r. Following the idea used in section 2.1.2, to see
why β < n(r − 1)/r is necessary, we simply choose f = χBn−1

3 \Bn−1
2

and estimate∫
Rn

+

(∫
Rn−1

χBn−1
3 \Bn−1

2
(x)dx

|x|α|x− y|λ|y|β
)q
dy ≥

∫
Bn1

[ ∫
Bn−1

3 \Bn−1
2

dx

|x|α|x− y|λ
]q dy

|y|βq
= +∞

if β ≥ n(r − 1)/r = n/q. Here q = (1− 1/r)−1 and we need the estimate

|x− y| ≤
√
2|x|2 + 3|y|2 ≤

√
19

to bound the integral of |x|−α|x− y|−λ from below away from zero.

3.2.2. The necessity of α < (n− 1)(p− 1)/p. Now to see why α < (n− 1)(p− 1)/p is
necessary, we choose g = χBn3 \Bn2 and estimate∫

Rn−1

(∫
Rn

+

χBn3 \Bn2 (y)dy

|x|α|x− y|λ|y|β
)q
dx ≥

∫
Bn−1

1

[ ∫
Bn3 \Bn2

dy

|x− y|λ|y|β
]q dx

|x|αq
= +∞,

thanks to α ≥ (n − 1)(p − 1)/p = (n − 1)/q. Here q = (1 − 1/p)−1 and, as before, we
need

|x− y| ≤
√

2|x|2 + 3|y|2 ≤
√
29

to bound the integral of |x− y|−λ|y|−β from below away from zero.

3.2.3. The necessity of (n− 1)/(np) + 1/r + (λ+ α + β + 1)/n = 2. Still using (2.3),
we now obtain∫∫

Rn
+×Rn−1

fε(x)gε(y)dxdy

|x|α|x− y|λ|y|β

=

∫∫
Rn

+×Rn−1

f(xε )g(
y
ε )dxdy

ε
n−1
p +n

r+λ+α+β |xε |α|
x
ε −

y
ε |λ|

y
ε |β

=
(1
ε

)(n−1
n

1
p+

1
r+

λ+α+β+1
n −2)n

∫∫
Rn

+×Rn−1

f(x)g(y)dxdy

|x|α|x− y|λ|y|β
.

From this we obtain the necessity of (1.13).

3.3. The necessity of (1.10). As before, to verify the necessity of α + β ≥ 0 for the SW
inequality on Rn

+, we construct an example of non-negative functions f and g in such a
way that ‖f‖Lp(Rn−1) < +∞, ‖g‖Lr(Rn

+) < +∞, but∫∫
Rn

+×Rn−1

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy = +∞.

To this purpose, we modify our example constructed in subsection 2.2. The idea consists
of the following two points

• to isolate |x− y|, as in the previous case, and
• to make sure that |x| and |y| behave similarly, which can be done if we isolate yn.
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Now fix any small ε > 0 and define

f(x) =


(log2 xn−1)

− 1
p−ε if 2m ≤ xn−1 ≤ 2m + 1, m ≥ 1,

and |x′| ≤ 1,

0 otherwise,

and

g(y) =


(log2 yn−1)

− 1
r−εyn if 2m ≤ yn−1 ≤ 2m + 1, m ≥ 1,

and |y′| ≤ 1, 1 < yn < 2,

0 otherwise.

Intuitively, the support of f and g still consists of disjoint cylinders concentrated along the
half axis xn−1. However, to isolate the extra dimension yn, the support of g is chosen as a
‘slice’ of that of f . From the above, we obviously have f ∈ Lp(Rn−1). Observe that∫

Rn
+

g(y)rdy =
∑
m≥1

∫ 2

1

(∫ 2m+1

2m

(∫
|y′′|≤1

1

(log2 yn−1)
1+rε

dy′
)
dyn−1

)
dyn

≤ |Bn−21 |
∑
m≥1

1

m1+rε
< +∞,

which implies g ∈ Lr(Rn
+). Now we estimate the double integral as follows∫∫

R+n×Rn−1

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

≥
∑
m≥1

∫∫
Bn−2

1 ×[2m,2m+1]

(∫∫∫
Bn−2

1 ×[2m,2m+1]×[1,2]

g(y)dy

|x− y|λ|y|β
)f(x)dx
|x|α

.

(3.2)
For each m ≥ 1, let x and y be such that

x, (y′, yn−1) ∈ Bn−21 × [2m, 2m + 1], 1 < yn < 2. (3.3)

In view of (3.2), we need to estimate |x|−α, |y|−β , and |x− y|−λ from below. Apparently,
we can easily bound |x− y| from the above as follows

|x− y|2 = |x′′ − y′′|2 + |xn−1 − yn−1|2 + y2n ≤ 9.

This together with λ > 0 allows us to estimate |x − y|−λ ≥ 3−λ provided (3.3) holds for
each m ≥ 1. Since |x′| ≤ 1 and xn−1 ≥ 2, we also have

xn−1 ≤
√
|x′|2 + x2n−1 ≤ 2xn−1.

Similarly, as |y′| ≤ 1, yn−1 ≥ 2, and 1 ≤ yn ≤ 2 we get

yn−1 ≤
√
|y′|2 + y2n−1 + y2n ≤ 2yn−1.

Hence, regardless of the sign of α and β, we always have

|x|−α & x−αn−1, |y|−β & y−βn−1.
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Putting the above estimates together, we can further estimate (3.2) as follows∫∫
Rn

+×Rn−1

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

&
∑
m≥1

(∫∫
Bn−2

1 ×[2m,2m+1]

f(x)dx

|x|α
)(∫∫∫

Bn−2
1 ×[2m,2m+1]×[1,2]

g(y)dy

|y|β
)

=|Bn−21 |2
∑
m≥1

(∫ 2m+1

2m

dxn−1

xαn−1(log2 xn−1)
1
p+ε

)
×
(∫ 2

1

yndyn

)(∫ 2m+1

2m

dyn−1

yβn−1(log2 yn−1)
1
r+ε

)
&
∑
m≥1

1

(m+ 1)
1
p+

1
r+2ε

(∫ 2m+1

2m

dxn−1
xαn−1

)(∫ 2m+1

2m

dyn−1

yβn−1

)
.

(3.4)
Arguing as in section 2.2, we know that(∫ 2m+1

2m

dxn−1
xαn−1

)(∫ 2m+1

2m

dyn−1

yβn−1

)
≥ 1

(2m)α+β

provided (3.3) holds. Thus, recalling (3.4) we arrive at∫∫
Rn

+×Rn−1

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy &

∑
m≥1

1

(2m)α+β
1

(m+ 1)
1
p+

1
r+2ε

.

From this we necessarily have α+ β ≥ 0. This proves the necessity of (1.9).

3.4. The necessity of (1.12). Now we establish the necessity of the condition 1/p+1/r ≥
1. The example provided below is essentially the same as that constructed in section 2.3
with some necessary changes due to the fact that we now work on Rn

+ × Rn−1. To this
purpose, by duality, we obtain an equivalent form of (1.11) as follows∫

Rn−1

(∫
Rn

+

g(y)

|x|α|x− y|λ|y|β
dy
)q
dx . ‖g‖Lp(Rn

+) (3.5)

with

q =
(
1− 1

p

)−1 (3.1)
=
(1
r
+
λ+ α+ β − 1

q

n− 1
− 1
)−1

< r, (3.6)

thanks to λ+ α+ β − 1/q > n− 1. Now we choose

g(y) =

{
|y|−nr (log |y|)−

1
q if |y| ≥ 2,

0 otherwise.

As in subsection 2.3, we clearly have∫
Rn

g(y)rdy = |Sn−1|
∫ +∞

2

dρ

ρ(log ρ)
r
q
< +∞,

thanks to r > q. Hence, g ∈ Lr(Rn
+). Clearly, by (3.5) we have

+∞ > ‖g‖qLp(Rn
+) >

∫
Rn−1

(∫
Rn

+

g(y)

|x|α|x− y|λ|y|β
dy
)q
dx

≥
∫
|x|≥4

(∫
|x|/2≤|y|≤2|x|

dy

|y|β+n
r (log |y|)

1
q |x− y|λ

)q dx

|x|αq
.

As λ > 0 and |y| ≤ 2|x|, we can bound |x− y| from the above as follows

|x− y|2 = |x− y′|2 + y2n ≤ 2|x|2 + 2|y′|2 + y2n ≤ 6|x|2,
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which, together with λ > 0, implies

|y|β+n
r |x− y|λ . |x|λ+β+n

r

for any |x|/2 ≤ |y| ≤ 2|x|. Hence, together with

0 < log |y| ≤ log(2|x|) ≤ log 2 + log |x| ≤ 2 log |x|,
we know that

1

|y|β+n
r (log |y|)

1
q |x− y|λ

&
1

|x|λ+β+n
r (log |x|)

1
q

.

Observe that(
λ+ α+ β +

n

r

)
q =

(n− 1

n

(
1− 1

p

)
+ 1
)
nq = n− 1 + nq. (3.7)

Hence

+∞ > ‖g‖qLp(Rn
+) &

∫
|x|≥4

(∫
|x|/2≤|y|≤2|x|

dy
)q dx

|x|(λ+α+β+n
r )q(log |x|)

=

∫
|x|≥4

1

|x|n−1 log |x|
= +∞,

thanks to
∫
|x|/2≤|y|≤2|x| dy ∼ |x|

n. Hence, we obtain the necessity of (1.12) as claimed.

4. NECESSITY OF CONDITIONS FOR (1.14) ON Rn−k ×Rn: PROOF OF THEOREM 1.3

In this section, we show that our argument performed in section 3 above can be further
applied to the case of Rn−k ×Rn with some changes due to the fact that we are no longer
in Rn−1 × (0,+∞). The key idea is to transform the higher-dimensional space Rk into
the one-dimensional case (0,+∞). We also note that if we let k = 0, then Theorem 1.3
becomes Theorem 1.1. However, to further illustrate the method, we shall use the condition
k ≥ 1 in several places.

For clarity and convenience, for a general point x ∈ Rn−k, we write

x = (x′, xn−k) ∈ Rn−k−1 ×R.

Hence, for y ∈ Rn we shall write

y = (y′, yn−k, y
′′) ∈ Rn−k−1 ×R×Rk.

4.1. The necessity of (1.15). Employing a similar argument as in subsection 3.1, we can
easily rule out the case λ ≤ 0. Now we rule out the case λ ≥ n − k/r. For some non-
negative function f ∈ Lp(Rn−k) to be determined later, the inequality (1.19) is equivalent
to

‖f‖q
Lp(Rn−k)

&
∫
Rn

(∫
Rn−k

f(x)

|x|α|x− y|λ|y|β
dx
)q
dy

= |Sk−1|
∫
Rn−k

[ ∫ +∞

0

( 1

|y|β

∫
Rn−k

f(x)

|x|α|x− y|λ
dx
)q
ρk−1dρ

]
dy′,

with q = r/(r − 1) and ρ = |y′′|. Now we need some estimate for the integral
∫
Rn−k

which costs us some energy due to the fact that k ≥ 1. Still by Fubini’s theorem and the
non-decreasing of

ρ 7→
∫
Bn−kρ (y′,yn−k)

|x|−αf(x)dx,

we easily get∫
Rn−k

f(x)

|x|α|x− y|λ
dx = λ

∫
Rn−k

(∫ +∞

|x−y|

dρ

ρλ+1

)f(x)
|x|α

dx
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= λ

∫ +∞

|y′′|

(∫
Bn−k
ρ−|y′′|(y

′,yn−k)

f(x)

|x|α
dx
) dρ

ρλ+1

&
∫ +∞

2|y′′|

(∫
Bn−k
ρ−|y′′|(y

′,yn−k)

f(x)

|x|α
dx
) dρ

ρλ+1

≥
(∫

Bn−k|y′′| (y
′,yn−k)

f(x)

|x|α
dx
)∫ +∞

2|y′′|

dρ

ρλ+1

&
1

|y′′|λ

∫
Bn−k|y′′| (y

′,yn−k)

f(x)

|x|α
dx.

Hence, we obtain

‖f‖q
Lp(Rn−k)

& |Sk−1|
∫
Rn−k

[ ∫ +∞

0

( 1

|y|β

∫
Rn−k

f(x)

|x|α|x− y|λ
dx
)q
ρk−1dρ

]
dy′dyn−k

&
∫
Bn−k4 \Bn−k2

[ ∫ 1

0

( 1

ρλ−k/q|y|β

∫
Bn−kρ (y′,yn−k)

f(x)

|x|α
dx
)q dρ

ρ

]
dy′dyn−k.

For the last line in the above computation, thanks to |(y′, yn−k)|2 ≥ 4 and 0 ≤ |y′′| ≤ 1,
we know that

Bn−k1 ⊂ Bn−kρ (y′, yn−k) ⊂ Bn−k5

and that 2 ≤ |y| ≤
√
5. Hence, if we choose f = χBn−1

6
, then we can bound

1

|y|β

∫
Bn−kρ (y′,yn−k)

f(x)

|x|α
dx & ρn−k,

which yields∫ 1

0

( 1

ρλ−k/q
1

|y|β

∫
Bn−kρ (y′,yn−k)

f(x)

|x|α
dx
)q dρ

ρ
&
∫ 1

0

dρ

ρ(λ−k/q−(n−k))q+1
.

However, the integral on the right hand side of the preceding inequality diverges if

λ− k/q ≥ n− k.

Hence, we necessarily have λ− k/q < n− k. This completes the proof.

Remark 4.1. The necessity of the condition λ − k/q < n − k for (1.14) is quite different
from that of (1.20) as (1.20) holds for any λ > 0; see [NNN20].

4.2. The necessity of (1.19) and (1.16). As before, the balance condition (1.19) follows
from standard computation. In addition, the condition (1.16) can also be proved by using
the idea in subsections 3.2.2 and 3.2.1. Hence we omit the details.

4.3. The necessity of (1.17). To verify the necessity of α+β ≥ 0 for the inequality (1.14)
on Rn−k ×Rn, we follows the construction in subsection 3.3. Now fix any small ε > 0
and define

f(x) =


(log2 xn−k)

− 1
p−ε if 2m ≤ xn−k ≤ 2m + 1, m ≥ 1,

and |x′| ≤ 1,

0 otherwise,

and

g(y) =


(log2 yn−k)

− 1
r−ε|y′′| if 2m ≤ yn−k ≤ 2m + 1, m ≥ 1,

and |y′| ≤ 1, 1 < |y′′| < 2,

0 otherwise.
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From the above construction, it is clear that the quantity |y′′| serves a similar role as yn
in the case of Rn−1 ×Rn

+. Now we obviously have f ∈ Lp(Rn−k). Recall that
∫
Rk =

|Sk−1|
∫ +∞
0

. Then for the function g we have∫
Rn

g(y)rdy = |Sk−1|
∑
m≥1

∫ 2

1

(∫ 2m+1

2m

(∫
|y′|≤1

1

(log2 yn−k)
1+rε

dy′
)
dyn−k

)
dρ

≤ |Sk−1||Bn−k−11 |
∑
m≥1

1

m1+rε
< +∞,

which implies g ∈ Lr(Rn). Now we estimate the double integral as follows∫∫
Rn×Rn−k

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

≥
∑
m≥1

∫∫
Bn−k−1

1 ×[2m,2m+1]

(∫∫∫
Bn−k−1

1 ×[2m,2m+1]×[1,2]

g(y)dy

|x− y|λ|y|β
)f(x)dx
|x|α

.

(4.1)
For each m ≥ 1, let x and y be such that

x, (y′, yn−k) ∈ Bn−k−11 × [2m, 2m + 1], 1 < |y′′| < 2.

As before, we need to estimate |x|−α, |y|−β , and |x − y|−λ from below. Apparently, we
can easily bound |x− y| from the above as follows

|x− y|2 = |x′ − y′|2 + |xn−k − yn−k|2 + |y′′|2 ≤ 9,

giving |x − y|−λ ≥ 3−λ. Now as |x′| ≤ 1 and xn−k ≥ 2, we also have xn−k ≤ |x ≤
2xn−k, giving

|x|−α & x−αn−k.

Similarly, as |y′| ≤ 1, yn−k ≥ 2, and 1 ≤ |y′′| ≤ 2 we get yn−k ≤ |y| ≤ 2yn−k, giving

|y|−β & y−βn−k.

Putting the above estimates together and similar to (3.4) we can further estimate (4.1) as
follows ∫∫

Rn×Rn−k

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

&
∑
m≥1

(∫ 2m+1

2m

dxn−k

xαn−k(log2 xn−k)
1
p+ε

)
×
(
|Sk−1|

∫ 2

1

ρkdρ
)(∫ 2m+1

2m

dyn−k

yβn−k(log2 yn−k)
1
r+ε

)
&
∑
m≥1

1

(m+ 1)
1
p+

1
r+2ε

(∫ 2m+1

2m

dxn−k
xαn−k

)(∫ 2m+1

2m

dyn−k

yβn−k

)
.

Thus, we arrive at∫∫
Rn×Rn−k

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy &

∑
m≥1

1

(2m)α+β
1

(m+ 1)
1
p+

1
r+2ε

.

This proves the necessity of (1.16), thanks to (1.14).
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4.4. The necessity of (1.18). Now we establish the necessity of the condition 1/p+1/r ≥
1 by following the construction in subsection 3.4 with some necessary changes due to the
fact that we now work on Rn−k×Rn. To this purpose, by duality, we obtain an equivalent
form of (1.14) as follows∫

Rn−k

(∫
Rn

g(y)

|x|α|x− y|λ|y|β
dy
)q
dx . ‖g‖qLp(Rn) (4.2)

with q = (1− 1/p)−1 < r, thanks to λ+ α+ β − 1/q > n− k. Now we choose

g(y) =

{
|y|−nr (log |y|)−

1
q if |y| ≥ 2,

0 otherwise.

We clearly have g ∈ Lr(Rn), thanks to r > q. Clearly, by (3.5) we have

+∞ > ‖g‖qLp(Rn) >

∫
Rn−k

(∫
Rn

g(y)

|x|α|x− y|λ|y|β
dy
)q
dx

≥
∫
|x|≥4

(∫
|x|/2≤|y|≤2|x|

dy

|y|β+n
r (log |y|)

1
q |x− y|λ

)q dx

|x|αq
.

As λ > 0 and |y| ≤ 2|x|, we can bound |x− y| from the above as follows

|x− y|2 = |x′ − y′|2 + |xn−k − xn−k|2 + |y′′|2

≤ 2|x|2 + 2|y′|2 + 2y2n + |y′′|2

≤ 6|x|2,
which implies

|y|β+n
r |x− y|λ . |x|λ+β+n

r

for any |x|/2 ≤ |y| ≤ 2|x|. Hence, we know that
1

|y|β+n
r (log |y|)

1
q |x− y|λ

&
1

|x|λ+β+n
r (log |x|)

1
q

.

Hence, together with (4.2) we can estimate

+∞ > ‖g‖qLp(Rn) &
∫
|x|≥4

(∫
|x|/2≤|y|≤2|x|

dy
)q dx

|x|(λ+α+β+n
r )q(log |x|)

=

∫
|x|≥4

1

|x|n−k log |x|
= +∞,

thanks to (λ+α+β+n/r)q = n−k+nq. This proves the necessity of (1.18) as claimed.
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[Dou16] J. DOU, Weighted Hardy–Littlewood–Sobolev inequalities on the upper half space, Commun. Con-
temp. Math. 18 (2016) Art. 1550067. 2, 3, 5

[DZ15] J. DOU AND M. ZHU, Sharp Hardy–Littlewood–Sobolev inequality on the upper half space, Int.
Math. Res. Not. IMRN 2015 (2015) 651–687. 3, 7

[HLZ12] X. HAN, G. LU, AND Z. ZHU, Hardy-Littlewood-Sobolev and Stein-Weiss inequalities and integral
systems on the Heisenberg group, Nonlinear Anal. 75 (2012) 4296–4314. 2

[HWY08] F. HANG, X.D. WANG, AND X.D. YAN, Sharp integral inequalities for harmonic functions, Comm.
Pure Appl. Math. 61 (2008) 54–95. 4

[HL28] G.H. HARDY AND J.E. LITTLEWOOD, Some properties of fractional integrals. I, Math. Z. 27 (1928)
565-606. 1, 8, 10

[KRS19] A. KASSYMOV, M. RUZHANSKY, AND D. SURAGAN, Hardy–Littlewood–Sobolev and Stein–Weiss
inequalities on homogeneous Lie groups, Integral Transforms Spec. Funct. 30 (2019) 643–655. 2, 5

[Lie83] E.H. LIEB, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math.
118 (1983) 349–374. 1

[Lio84] P.L. LIONS, The concentration-compactness principle in the calculus of variations. The locally com-
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