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§0. Introduction

The goal of these notes is to explain recent results in the theory of complex varieties,
mainly projective algebraic ones, through a few geometric questions pertaining to hyperbol-
icity in the sense of Kobayashi. A complex space X is said to be hyperbolic if analytic disks
f : D → X through a given point form a normal family. If X is not hyperbolic, a basic
question is to analyze entire holomorphic curves f : C → X , and especially to understand
the Zariski closure Y ⊂ X of the union

⋃
f(C) of all those curves. A tantalizing conjecture

by Green-Griffiths and Lang says that Y is a proper algebraic subvariety of X whenever
X is a projective variety of general type. It is also expected that very generic algebraic
hypersurfaces X of high degree in complex projective space Pn+1 are Kobayashi hyperbolic,
i.e. without any entire holomorphic curves f : C → X . A convenient framework for this
study is the category of “directed manifolds”, that is, the category of pairs (X, V ) where X
is a complex manifold and V a holomorphic subbundle of TX , possibly with singularities –
this includes for instance the case of holomorphic foliations. If X is compact, the pair (X, V )
is hyperbolic if and only if there are no nonconstant entire holomorphic curves f : C → X
tangent to V , as a consequence of the Brody criterion. We describe here the construction
of certain jet bundles JkX , Jk(X, V ), and corresponding projectivized k-jet bundles PkV .
These bundles, which were introduced in various contexts (Semple in 1954, Green-Griffiths
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in 1978) allow to analyze hyperbolicity in terms of certain negativity properties of the cur-
vature. For instance, πk : PkV → X is a tower of projective bundles over X and carries
a canonical line bundle OPkV (1) ; the hyperbolicity of X is then conjecturally equivalent
to the existence of suitable singular hermitian metrics of negative curvature on OPkV (−1)
for k large enough. The direct images (πk)∗OPkV (m) can be viewed as bundles of algebraic
differential operators of order k and degree m, acting on germs of curves and invariant under
reparametrization.

Following an approach initiated by Green and Griffiths, one can use the Ahlfors-Schwarz
lemma in the situation where the jet bundle carries a (possibly singular) metric of negative
curvature, to infer that every nonconstant entire curve f : C → V tangent to V must be
contained in the base locus of the metric. A related result is the fundamental vanishing
theorem asserting that entire curves must be solutions of the algebraic differential equations
provided by global sections of jet bundles, whenever their coefficients vanish on a given
ample divisor; this result was obtained in the mid 1990’s as the conclusion of contributions
by Bloch, Green-Griffiths, Siu-Yeung and the author. It can in its turn be used to prove
various important geometric statements. One of them is the Bloch theorem, which was
confirmed at the end of the 1970’s by Ochiai and Kawamata, asserting that the Zariski
closure of an entire curve in a complex torus is a translate of a subtorus.

Since then many developments occurred, for a large part via the technique of construct-
ing jet differentials – either by direct calculations or by various indirect methods: Riemann-
Roch calculations, vanishing theorems ... In 1997, McQuillan introduced his “diophantine
approximation” method, which was soon recognized to be an important tool in the study of
holomorphic foliations, in parallel with Nevanlinna theory and the construction of Ahlfors
currents. Around 2000, Siu showed that generic hyperbolicity results in the direction of
the Kobayashi conjecture could be investigated by combining the algebraic techniques of
Clemens, Ein and Voisin with the existence of certain “vertical” meromorphic vector fields
on the jet space of the universal hypersurface of high degree; these vector fields are actually
used to differentiate the global sections of the jet bundles involved, so as to produce new
sections with a better control on the base locus. Also, in 2007, Demailly pioneered the use
of holomorphic Morse inequalities to construct jet differentials; in 2010, Diverio, Merker and
Rousseau were able in that way to prove the Green-Griffiths conjecture for generic hyper-
surfaces of high degree in projective space – their proof also makes an essential use of Siu’s
differentiation technique via meromorphic vector fields, as improved by Păun and Merker
in 2008. The last sections of the notes are devoted to explaining the holomorphic Morse
inequality technique; as an application, one obtains a partial answer to the Green-Griffiths
conjecture in a very wide context : in particular, for every projective variety of general
type X , there exists a global algebraic differential operator P on X (in fact many such
operators Pj) such that every entire curve f : C → X must satisfy the differential equations
Pj(f ; f

′, . . . , f (k)) = 0. We also recover from there the result of Diverio-Merker-Rousseau
on the generic Green-Griffiths conjecture (with an even better bound asymptotically as the
dimension tends to infinity), as well as a recent recent of Diverio-Trapani (2010) on the
hyperbolicity of generic 3-dimensional hypersurfaces in P4.

§1. Basic hyperbolicity concepts

§1.A. Kobayashi hyperbolicity

We first recall a few basic facts concerning the concept of hyperbolicity, according
to S. Kobayashi [Kob70, Kob76]. Let X be a complex space. An analytic disk in X a
holomorphic map from the unit disk ∆ = D(0, 1) to X . Given two points p, q ∈ X , consider
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a chain of analytic disks from p to q, that is a chain of points p = p0, p1, . . . , pk = q of X ,
pairs of points a1, b1, . . . , ak, bk of ∆ and holomorphic maps f1, . . . , fk : ∆ → X such that

fi(ai) = pi−1, fi(bi) = pi, i = 1, . . . , k.

Denoting this chain by α, define its length ℓ(α) by

(1.1′) ℓ(α) = dP (a1, b1) + · · ·+ dP (ak, bk)

and a pseudodistance dKX on X by

(1.1′′) dKX (p, q) = inf
α
ℓ(α).

This is by definition the Kobayashi pseudodistance of X . In the terminology of Kobayashi
[Kob75], a Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous
positive (resp. nonnegative) positive function N on the total space E, that is,

N(λξ) = |λ|N(ξ) for all λ ∈ C and ξ ∈ E,

but in general N is not assumed to be subbadditive (i.e. convex) on the fibers of E. A Finsler
(pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on the tautological line
bundle OP (E)(−1) of lines of E over the projectivized bundle Y = P (E). The Kobayashi-

Royden infinitesimal pseudometric on X is the Finsler pseudometric on the tangent bundle
TX defined by

(1.2) kX (ξ) = inf
{
λ > 0 ; ∃f : ∆ → X, f(0) = x, λf ′(0) = ξ

}
, x ∈ X, ξ ∈ TX,x.

Here, if X is not smooth at x, we take TX,x = (mX,x/m
2
X,x)

∗ to be the Zariski tangent
space, i.e. the tangent space of a minimal smooth ambient vector space containing the
germ (X, x); all tangent vectors may not be reached by analytic disks and in those cases
we put kX(ξ) = +∞. When X is a smooth manifold, it follows from the work of
H.L. Royden ([Roy71], [Roy74]) that dKX is the integrated pseudodistance associated with
the pseudometric, i.e.

dKX (p, q) = inf
γ

∫

γ

kX(γ′(t)) dt,

where the infimum is taken over all piecewise smooth curves joining p to q ; in the case of
complex spaces, a similar formula holds, involving jets of analytic curves of arbitrary order,
cf. S. Venturini [Ven96].

1.3. Definition. A complex space X is said to be hyperbolic (in the sense of Kobayashi) if
dKX is actually a distance, namely if dKX (p, q) > 0 for all pairs of distinct points (p, q) in X.

When X is hyperbolic, it is interesting to investigate when the Kobayashi metric is
complete: one then says that X is a complete hyperbolic space. However, we will be mostly
concerned with compact spaces here, so completeness is irrelevant in that case.

Another important property is the monotonicity of the Kobayashi metric with respect
to holomorphic mappings. In fact, if Φ : X → Y is a holomorphic map, it is easy to see
from the definition that

(1.4) dKY (Φ(p),Φ(q)) 6 dKX(p, q), for all p, q ∈ X .
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The proof merely consists of taking the composition Φ ◦ fi for all clains of analytic disks
connecting p and q in X . Clearly the Kobayashi pseudodistance dKC on X = C is identically
zero, as one can see by looking at arbitrarily large analytic disks ∆ → C, t 7→ λt. Therefore,
if there is any (non constant) entire curve Φ : C → X , namely a non constant holomorphic
map defined on the whole complex plane C, then by monotonicity dKX is identically zero on
the image Φ(C) of the curve, and therefore X cannot be hyperbolic. When X is hyperbolic,
it follows that X cannot contain rational curves C ≃ P1, or elliptic curves C/Λ, or more
generally any non trivial image Φ : W = Cp/Λ → X of a p-dimensional complex torus
(quotient of Cp by a lattice).

§1.B. The case of complex curves (i.e. Riemann surfaces)

The only case where hyperbolicity is easy to assess is the case of curves (dimCX = 1).
In fact, as the disk is simply connected, every holomorphic map f : ∆ → X lifts to the
universal cover f̂ : ∆ → X̂, so that f = ρ ◦ f̂ where ρ : X̂ → X is the projection map.

Now, by the Poincaré-Koebe uniformization theorem, every simply connected Riemann
surface is biholomorphic to C, the unit disk ∆ or the complex projective line P1. The
complex projective line P1 has no smooth étale quotient since every automorphism of P1 has
a fixed point; therefore the only case where X̂ ≃ P1 is when X ≃ P1 already. Assume now
that X̂ ≃ C. Then π1(X) operates by translation on C (all other automorphisms are affine
nad have fixed points), and the discrete subgroups of (C,+) are isomorphic to Zr, r = 0, 1, 2.
We then obtain respectively X ≃ C, X ≃ C/2πiZ ≃ C∗ = C r {0} and X ≃ C/Λ where Λ

is a lattice, i.e. X is an elliptic curve. In all those cases, any entire function f̂ : C → C gives
rise to an entire curve f : C → X , and the same is true when X ≃ P1 = C ∪ {∞}.

Finally, assume that X̂ ≃ ∆; by what we have just seen, this must occur as soon as
X 6≃ P1,C,C∗,C/Λ. Let us take on X the infinitesimal metric ωP which is the quotient of
the Poincaré metric on ∆. The Schwarz-Pick lemma shows that dK∆ = dP coincides with the
Poincaré metric on ∆, and it follows easily by the lifting argument that we have kX = ωP .
In particular, dKX is non degenerate and is just the quotient of the Poincaré metric on ∆, i.e.

dKX (p, q) = inf
p′∈ρ−1(p), q′∈ρ−1(q)

dP (p
′, q′).

We can summarize this discussion as follows.

1.5. Theorem. Up to bihomorphism, any smooth Riemann surface X belongs to one (and
only one) of the following three types.

(a) (rational curve) X ≃ P1.

(b) (parabolic type) X̂ ≃ C, X ≃ C, C∗ or X ≃ C/Λ (elliptic curve)

(c) (hyperbolic type) X̂ ≃ ∆. All compact curves X of genus g > 2 enter in this category,

as well as X = P1 r {a, b, c} ≃ Cr {0, 1}, or X = C/Λr {a} (elliptic curve minus one

point).

In some rare cases, the one-dimensional case can be used to study the case of higher
dimensions. For instance, it is easy to see by looking at projections that the Kobayashi
pseudodistance on a product X × Y of complex spaces is given by

dKX×Y ((x, y), (x
′, y′)) = max

(
dKX(x, x′), dKY (y, y′)

)
,(1.6)

kX×Y (ξ, ξ
′) = max

(
kX(ξ),kY (ξ

′)
)
,(1.6′)

and from there it follows that a product of hyperbolic spaces is hyperbolic. As a consequence
(Cr {0, 1})2, which is also a complement of five lines in P2, is hyperbolic.
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§1.C. Brody criterion for hyperbolicity

Throughout this subsection, we assume that X is a complex manifold. In this context,
we have the following well-known result of Brody [Bro78]. Its main interest is to relate
hyperbolicity to the non existence of entire curves.

1.7. Brody reparametrization lemma. Let ω be a hermitian metric on X and let

f : ∆ → X be a holomorphic map. For every ε > 0, there exists a radius R > (1−ε)‖f ′(0)‖ω
and a homographic transformation ψ of the disk D(0, R) onto (1− ε)∆ such that

‖(f ◦ ψ)′(0)‖ω = 1, ‖(f ◦ ψ)′(t)‖ω 6
1

1− |t|2/R2
for every t ∈ D(0, R).

Proof. Select t0 ∈ ∆ such that (1 − |t|2)‖f ′((1 − ε)t)‖ω reaches its maximum for t = t0.
The reason for this choice is that (1 − |t|2)‖f ′((1 − ε)t)‖ω is the norm of the differential
f ′((1 − ε)t) : T∆ → TX with respect to the Poincaré metric |dt|2/(1 − |t|2)2 on T∆, which
is conformally invariant under Aut(∆). One then adjusts R and ψ so that ψ(0) = (1− ε)t0
and |ψ′(0)| ‖f ′(ψ(0))‖ω = 1. As |ψ′(0)| = 1−ε

R (1− |t0|2), the only possible choice for R is

R = (1− ε)(1− |t0|2)‖f ′(ψ(0))‖ω > (1− ε)‖f ′(0)‖ω.

The inequality for (f ◦ ψ)′ follows from the fact that the Poincaré norm is maximum at the
origin, where it is equal to 1 by the choice of R. Using the Ascoli-Arzelà theorem we obtain
immediately:

1.8. Corollary (Brody). Let (X,ω) be a compact complex hermitian manifold. Given a

sequence of holomorphic mappings fν : ∆ → X such that lim ‖f ′
ν(0)‖ω = +∞, one can find

a sequence of homographic transformations ψν : D(0, Rν) → (1− 1/ν)∆ with limRν = +∞,

such that, after passing possibly to a subsequence, (fν ◦ ψν) converges uniformly on every

compact subset of C towards a non constant holomorphic map g : C → X with ‖g′(0)‖ω = 1
and supt∈C ‖g′(t)‖ω 6 1.

An entire curve g : C → X such that supC ‖g′‖ω = M < +∞ is called a Brody curve;
this concept does not depend on the choice of ω when X is compact, and one can always
assume M = 1 by rescaling the parameter t.

1.9. Brody criterion. Let X be a compact complex manifold. The following properties are

equivalent.

(a) X is hyperbolic.

(b) X does not possess any entire curve f : C → X.

(c) X does not possess any Brody curve g : C → X.

(d) The Kobayashi infinitesimal metric kX is uniformly bouded below, namely

kX(ξ) > c‖ξ‖ω, c > 0,

for any hermitian metric ω on X.

Proof. (a)⇒(b) If X possesses an entire curve f : C → X , then by looking at arbitrary large
disks D(0, R) ⊂ C, it is easy to see that the Kobayashi distance of any two points in f(C)
is zero, so X is not hyperbolic.
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(b)⇒(c) is trivial.

(c)⇒(d) If (d) does not hold, there exists a sequence of tangent vectors ξν ∈ TX,xν
with

‖ξν‖ω = 1 and kX(ξν) → 0. By definition, this means that there exists an analytic curve
fν : ∆ → X with f(0) = xν and ‖f ′

ν(0)‖ω > (1− 1
ν
)/kX(ξν) → +∞. One can then produce

a Brody curve g = C → X by Corollary 1.8, contradicting (c).

(d)⇒(a). In fact (d) implies after integrating that dKX (p, q) > c dω(p, q) where dω is the
geodesic distance associated with ω, so dKX must be non degenerate.

Notice also that if f : C → X is an entire curve such that ‖f ′‖ω is unbounded,
one can apply the Corollary 1.8 to fν(t) := f(t + aν) where the sequence (aν) is chosen
such that ‖f ′

ν(0)‖ω = ‖f(aν)‖ω → +∞. Brody’s result then produces repametrizations
ψν : D(0, Rν) → D(aν , 1 − 1/ν) and a Brody curve g = lim f ◦ ψν : C → X such that
sup ‖g′‖ω = 1 and g(C) ⊂ f(C). It may happen that the image g(C) of such a limiting curve
is disjoint from f(C). In fact Winkelmann [Win07] has given a striking example, actually
a projective 3-fold X obtained by blowing-up a 3-dimensional abelian variety Y , such that
every Brody curve g : C → X lies in the exceptional divisor E ⊂ X ; however, entire curves
f : C → X can be dense, as one can see by taking f to be the lifting of a generic complex
line embedded in the abelian variety Y . For further precise information on the localization
of Brody curves, we refer the reader to the remarkable results of [Duv08].

The absence of entire holomorphic curves in a given complex manifold is often referred
to as Brody hyperbolicity. Thus, in the compact case, Brody hyperbolicity and Kobayashi
hyperbolicity coincide (but Brody hyeperbolicity is in general a strictly weaker property
when X is non compact).

§1.D. Geometric applications

We give here two immediate consequences of the Brody criterion: the openness property
of hyperbolicity and a hyperbolicity criterion for subvarieties of complex tori. By definition,
a holomorphic family of compact complex manifolds is a holomorphic proper submersion
X → S between two complex manifolds.

1.10. Proposition. Let π : X → S be a holomorphic family of compact complex manifolds.

Then the set of s ∈ S such that the fiber Xs = π−1(s) is hyperbolic is open in the Euclidean

topology.

Proof. Let ω be an arbitrary hermitian metric on X, (Xsν )sν∈S a sequence of non hyperbolic
fibers, and s = lim sν . By the Brody criterion, one obtains a sequence of entire maps
fν : C → Xsν such that ‖f ′

ν(0)‖ω = 1 and ‖f ′
ν‖ω 6 1. Ascoli’s theorem shows that there is

a subsequence of fν converging uniformly to a limit f : C → Xs, with ‖f ′(0)‖ω = 1. Hence
Xs is not hyperbolic and the collection of non hyperbolic fibers is closed in S.

Consider now an n-dimensional complex torus W , i.e. an additive quotient W = Cn/Λ,
where Λ ⊂ Cn is a (cocompact) lattice. By taking a composition of entire curves C → Cn

with the projection Cn →W we obtain an infinite dimensional space of entire curves in W .

1.11. Theorem. Let X ⊂ W be a compact complex submanifold of a complex torus. Then

X is hyperbolic if and only if it does not contain any translate of a subtorus.

Proof. If X contains some translate of a subtorus, then it contains lots of entire curves and
so X is not hyperbolic.

Conversely, suppose that X is not hyperbolic. Then by the Brody criterion there exists
an entire curve f : C → X such that ‖f ′‖ω 6 ‖f ′(0)‖ω = 1, where ω is the flat metric on W
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inherited from Cn. This means that any lifting f̃ = (f̃ , . . . , f̃ν) : C → Cn is such that

n∑

j=1

|f ′
j|2 6 1.

Then, by Liouville’s theorem, f̃ ′ is constant and therefore f̃ is affine. But then the closure
of the image of f is a translate a + H of a connected (possibly real) subgroup H of W .
We conclude that X contains the analytic Zariski closure of a +H, namely a +HC where
HC ⊂W is the smallest closed complex subgroup of W containing H.

§2. Directed manifolds

§2.A. Basic definitions concerning directed manifolds

Let us consider a pair (X, V ) consisting of a n-dimensional complex manifoldX equipped
with a linear subspace V ⊂ TX : assuming X connected, this is by definition an irreducible
closed analytic subspace of the total space of TX such that each fiber Vx = V ∩ TX,x is a
vector subspace of TX,x; the rank x 7→ dimC Vx is Zariski lower semicontinuous, and it may a
priori jump. We will refer to such a pair as being a (complex) directed manifold. A morphism
Φ : (X, V ) → (Y,W ) in the category of (complex) directed manifolds is a holomorphic map
such that Φ∗(V ) ⊂W .

The rank r ∈ {0, 1, . . . , n} of V is by definition the dimension of Vx at a generic point.
The dimension may be larger at non generic points; this happens e.g. on X = Cn for
the rank 1 linear space V generated by the Euler vector field: Vz = C

∑
16j6n zj

∂
∂zj

for
z 6= 0, and V0 = Cn. Our philosophy is that directed manifolds are also useful to study
the “absolute case”, i.e. the case V = TX , because there are certain fonctorial constructions
which are quite natural in the category of directed manifolds (see e.g. § 5, 6, 7). We think
of directed manifolds as a kind of “relative situation”, covering e.g. the case when V is the
relative tangent space to a holomorphic map X → S. In general, we can associate to V a
sheaf V = O(V ) ⊂ O(TX) of holomorphic sections. These sections need not generate the
fibers of V at singular points, as one sees already in the case of the Euler vector field when
n > 2. However, V is a saturated subsheaf of O(TX), i.e. O(TX)/V has no torsion: in fact, if
the components of a section have a common divisorial component, one can always simplify
this divisor and produce a new section without any such common divisorial component.
Instead of defining directed manifolds by picking a linear space V , one could equivalently
define them by considering saturated coherent subsheaves V ⊂ O(TX ). One could also take
the dual viewpoint, looking at arbitrary quotient morphisms Ω1

X → W = V∗ (and recovering
V = W∗ = HomO(W,O), as V = V∗∗ is reflexive). We want to stress here that no assumption
need be made on the Lie bracket tensor [ , ] : V×V → O(TX )/V, i.e. we do not assume any
kind of integrability for V or W.

The singular set Sing(V ) is by definition the set of points where V is not locally free,
it can also be defined as the indeterminacy set of the (meromorphic) classifying map
α : X K Gr(TX), z 7→ Vz to the Grasmannian of r dimensional subspaces of TX . We
thus have V|XrSing(V ) = α∗S where S → Gr(TX) is the tautological subbundle of Gr(TX).
The singular set Sing(V ) is an analytic subset of X of codim > 2, hence V is always a
holomorphic subbundle outside of codimension 2. Thanks to this remark, one can most
often treat linear spaces as vector bundles (possibly modulo passing to the Zariski closure
along Sing(V )).
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§2.B. Hyperbolicity properties of directed manifolds

Most of what we have done in §1 can be extended to the category of directed manifolds.

2.1. Definition. Let (X, V ) be a complex directed manifold.

i) The Kobayashi-Royden infinitesimal metric of (X, V ) is the Finsler metric on V defined

for any x ∈ X and ξ ∈ Vx by

k(X,V )(ξ) = inf
{
λ > 0 ; ∃f : ∆ → X, f(0) = x, λf ′(0) = ξ, f ′(∆) ⊂ V

}
.

Here ∆ ⊂ C is the unit disk and the map f is an arbitrary holomorphic map which

is tangent to V , i.e., such that f ′(t) ∈ Vf(t) for all t ∈ ∆. We say that (X, V ) is

infinitesimally hyperbolic if k(X,V ) is positive definite on every fiber Vx and satisfies a

uniform lower bound k(X,V )(ξ) > ε‖ξ‖ω in terms of any smooth hermitian metric ω on

X, when x describes a compact subset of X.

ii) More generally, the Kobayashi-Eisenman infinitesimal pseudometric of (X, V ) is the

pseudometric defined on all decomposable p-vectors ξ = ξ1 ∧ · · · ∧ ξp ∈ ΛpVx, 1 6 p 6

r = rankV , by

ep(X,V )(ξ) = inf
{
λ > 0 ; ∃f : Bp → X, f(0) = x, λf∗(τ0) = ξ, f∗(TBp

) ⊂ V
}

where Bp is the unit ball in Cp and τ0 = ∂/∂t1 ∧ · · · ∧ ∂/∂tp is the unit p-vector of Cp

at the origin. We say that (X, V ) is infinitesimally p-measure hyperbolic if ep(X,V ) is

positive definite on every fiber ΛpVx and satisfies a locally uniform lower bound in terms

of any smooth metric.

If Φ : (X, V ) → (Y,W ) is a morphism of directed manifolds, it is immediate to check
that we have the monotonicity property

k(Y,W )(Φ∗ξ) 6 k(X,V )(ξ), ∀ξ ∈ V,(2.2)

ep(Y,W )(Φ∗ξ) 6 ep(X,V )(ξ), ∀ξ = ξ1 ∧ · · · ∧ ξp ∈ ΛpV.(2.2p)

The following proposition shows that virtually all reasonable definitions of the hyperbolicity
property are equivalent if X is compact (in particular, the additional assumption that there
is locally uniform lower bound for k(X,V ) is not needed). We merely say in that case that
(X, V ) is hyperbolic.

2.3. Proposition. For an arbitrary directed manifold (X, V ), the Kobayashi-Royden in-

finitesimal metric k(X,V ) is upper semicontinuous on the total space of V . If X is compact,

(X, V ) is infinitesimally hyperbolic if and only if there are no non constant entire curves

g : C → X tangent to V . In that case, k(X,V ) is a continuous (and positive definite) Finsler
metric on V .

Proof. The proof is almost identical to the standard proof for kX , for which we refer to
Royden [Roy71, Roy74].

Another easy observation is that the concept of p-measure hyperbolicity gets weaker
and weaker as p increases (we leave it as an exercise to the reader, this is mostly just linear
algebra).

2.4. Proposition. If (X, V ) is p-measure hyperbolic, then it is (p+ 1)-measure hyperbolic

for all p ∈ {1, . . . , r − 1}.
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Again, an argument extremely similar to the proof of 1.10 shows that relative hyperbol-
icity is again an open property.

2.5. Proposition. Let (X,V) → S be a holomorphic family of compact directed manifolds

(by this, we mean a proper holomorphic map X → S together with an analytic linear subspace

V ⊂ TX/S ⊂ TX of the relative tangent bundle, defining a deformation (Xs, Vs)s∈S of the

fibers). Then the set of s ∈ S such that the fiber (Xs, Vs) is hyperbolic is open in S with

respect to the Euclidean topology.

Let us mention here an impressive result proved by Marco Brunella [Bru03, Bru05,
Bru06] concerning the behavior of the Kobayashi metric on foliated varieties.

2.6. Theorem (Brunella). Let X be a compact Kähler manifold equipped with a (possibly
singular) rank 1 holomorphic foliation which is not a foliation by rational curves. Then the

canonical bundle KF = F∗ of the foliation is pseudoeffective (i.e. the curvature of KF is > 0
in the sense of currents).

The proof is obtained by putting on KF precisely the metric induced by the Kobayashi
metric on the leaves whenever they are generically hyperbolic (i.e. covered by the unit disk).
The case of parabolic leaves (covered by C) has to be treated separately.

§3. Algebraic hyperbolicity

In the case of projective algebraic varieties, hyperbolicity is expected to be related to
other properties of a more algebraic nature. Theorem 3.1 below is a first step in this direction.

3.1. Theorem. Let (X, V ) be a compact complex directed manifold and let
∑
ωjkdzj ⊗ dzk

be a hermitian metric on X, with associated positive (1, 1)-form ω = i
2

∑
ωjkdzj ∧ dzk.

Consider the following three properties, which may or not be satisfied by (X, V ) :

i) (X, V ) is hyperbolic.

ii) There exists ε > 0 such that every compact irreducible curve C ⊂ X tangent to V
satisfies

−χ(C) = 2g(C)− 2 > ε degω(C)

where g(C) is the genus of the normalization C of C, χ(C) its Euler characteristic and

degω(C) =
∫
C
ω. (This property is of course independent of ω.)

iii) There does not exist any non constant holomorphic map Φ : Z → X from an abelian

variety Z to X such that Φ∗(TZ) ⊂ V .

Then i)⇒ ii)⇒ iii).

Proof. i)⇒ ii). If (X, V ) is hyperbolic, there is a constant ε0 > 0 such that k(X,V )(ξ) >

ε0‖ξ‖ω for all ξ ∈ V . Now, let C ⊂ X be a compact irreducible curve tangent to V and let
ν : C → C be its normalization. As (X, V ) is hyperbolic, C cannot be a rational or elliptic
curve, hence C admits the disk as its universal covering ρ : ∆ → C.

The Kobayashi-Royden metric k∆ is the Finsler metric |dz|/(1 − |z|2) associated with
the Poincaré metric |dz|2/(1 − |z|2)2 on ∆, and kC is such that ρ∗kC = k∆. In other

words, the metric kC is induced by the unique hermitian metric on C of constant Gaussian
curvature −4. If σ∆ = i

2dz ∧ dz/(1 − |z|2)2 and σC are the corresponding area measures,

the Gauss-Bonnet formula (integral of the curvature = 2π χ(C)) yields
∫

C

dσC = −1

4

∫

C

curv(kC) = −π
2
χ(C)
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On the other hand, if j : C → X is the inclusion, the monotonicity property (2.2) applied
to the holomorphic map j ◦ ν : C → X shows that

kC(t) > k(X,V )

(
(j ◦ ν)∗t

)
> ε0

∥∥(j ◦ ν)∗t
∥∥
ω
, ∀t ∈ TC .

From this, we infer dσC > ε20(j ◦ ν)∗ω, thus

−π
2
χ(C) =

∫

C

dσC > ε20

∫

C

(j ◦ ν)∗ω = ε20

∫

C

ω.

Property ii) follows with ε = 2ε20/π.

ii)⇒ iii). First observe that ii) excludes the existence of elliptic and rational curves tangent
to V . Assume that there is a non constant holomorphic map Φ : Z → X from an abelian
variety Z to X such that Φ∗(TZ) ⊂ V . We must have dimΦ(Z) > 2, otherwise Φ(Z) would
be a curve covered by images of holomorphic maps C → Φ(Z), and so Φ(Z) would be elliptic
or rational, contradiction. Select a sufficiently general curve Γ in Z (e.g., a curve obtained as
an intersection of very generic divisors in a given very ample linear system |L| in Z). Then
all isogenies um : Z → Z, s 7→ ms map Γ in a 1 : 1 way to curves um(Γ) ⊂ Z, except maybe
for finitely many double points of um(Γ) (if dimZ = 2). It follows that the normalization of
um(Γ) is isomorphic to Γ. If Γ is general enough, similar arguments show that the images

Cm := Φ(um(Γ)) ⊂ X

are also generically 1 : 1 images of Γ, thus Cm ≃ Γ and g(Cm) = g(Γ). We would like to
show that Cm has degree > Constm2. This is indeed rather easy to check if ω is Kähler,
but the general case is slightly more involved. We write

∫

Cm

ω =

∫

Γ

(Φ ◦ um)∗ω =

∫

Z

[Γ] ∧ u∗m(Φ∗ω),

where Γ denotes the current of integration over Γ. Let us replace Γ by an arbitrary translate
Γ + s, s ∈ Z, and accordingly, replace Cm by Cm,s = Φ ◦ um(Γ + s). For s ∈ Z in a Zariski
open set, Cm,s is again a generically 1 : 1 image of Γ+ s. Let us take the average of the last
integral identity with respect to the unitary Haar measure dµ on Z. We find

∫

s∈Z

(∫

Cm,s

ω

)
dµ(s) =

∫

Z

(∫

s∈Z

[Γ + s] dµ(s)

)
∧ u∗m(Φ∗ω).

Now, γ :=
∫
s∈Z

[Γ+s] dµ(s) is a translation invariant positive definite form of type (p−1, p−1)

on Z, where p = dimZ, and γ represents the same cohomology class as [Γ], i.e. γ ≡ c1(L)
p−1.

Because of the invariance by translation, γ has constant coefficients and so (um)∗γ = m2γ.
Therefore we get ∫

s∈Z

dµ(s)

∫

Cm,s

ω = m2

∫

Z

γ ∧ Φ∗ω.

In the integral, we can exclude the algebraic set of values z such that Cm,s is not a generically
1 : 1 image of Γ+s, since this set has measure zero. For each m, our integral identity implies
that there exists an element sm ∈ Z such that g(Cm,sm) = g(Γ) and

degω(Cm,sm) =

∫

Cm,sm

ω > m2

∫

Z

γ ∧ Φ∗ω.



§3. Algebraic hyperbolicity 11

As
∫
Z
γ ∧ Φ∗ω > 0, the curves Cm,sm have bounded genus and their degree is growing

quadratically with m, contradiction to property ii).

3.2. Definition. We say that a projective directed manifold (X, V ) is “algebraically hyper-

bolic” if it satisfies property 3.1 ii), namely, if there exists ε > 0 such that every algebraic

curve C ⊂ X tangent to V satisfies

2g(C)− 2 > ε degω(C).

A nice feature of algebraic hyperbolicity is that it satisfies an algebraic analogue of the
openness property.

3.3. Proposition. Let (X,V) → S be an algebraic family of projective algebraic directed

manifolds (given by a projective morphism X → S). Then the set of t ∈ S such that the fiber

(Xt, Vt) is algebraically hyperbolic is open with respect to the “countable Zariski topology” of

S (by definition, this is the topology for which closed sets are countable unions of algebraic

sets).

Proof. After replacing S by a Zariski open subset, we may assume that the total space X

itself is quasi-projective. Let ω be the Kähler metric on X obtained by pulling back the
Fubini-Study metric via an embedding in a projective space. If integers d > 0, g > 0 are
fixed, the set Ad,g of t ∈ S such that Xt contains an algebraic 1-cycle C =

∑
mjCj tangent

to Vt with degω(C) = d and g(C) =
∑
mj g(Cj) 6 g is a closed algebraic subset of S

(this follows from the existence of a relative cycle space of curves of given degree, and from
the fact that the geometric genus is Zariski lower semicontinuous). Now, the set of non
algebraically hyperbolic fibers is by definition

⋂

k>0

⋃

2g−2<d/k

Ad,g.

This concludes the proof (of course, one has to know that the countable Zariski topology
is actually a topology, namely that the class of countable unions of algebraic sets is stable
under arbitrary intersections; this can be easily checked by an induction on dimension).

3.4. Remark. More explicit versions of the openness property have been dealt with in the
literature. H. Clemens ([Cle86] and [CKL88]) has shown that on a very generic surface of
degree d > 5 in P3, the curves of type (d, k) are of genus g > kd(d − 5)/2 (recall that a
very generic surface X ⊂ P3 of degree > 4 has Picard group generated by OX(1) thanks
to the Noether-Lefschetz theorem, thus any curve on the surface is a complete intersection
with another hypersurface of degree k ; such a curve is said to be of type (d, k) ; genericity
is taken here in the sense of the countable Zariski topology). Improving on this result of
Clemens, Geng Xu [Xu94] has shown that every curve contained in a very generic surface of
degree d > 5 satisfies the sharp bound g > d(d− 3)/2− 2. This actually shows that a very
generic surface of degree d > 6 is algebraically hyperbolic. Although a very generic quintic
surface has no rational or elliptic curves, it seems to be unknown whether a (very) generic
quintic surface is algebraically hyperbolic in the sense of Definition 3.2.

In higher dimension, L. Ein ([Ein88], [Ein91]) proved that every subvariety of a very
generic hypersurface X ⊂ Pn+1 of degree d > 2n + 1 (n > 2), is of general type. This was
reproved by a simple efficient technique by C. Voisin in [Voi96].

3.5. Remark. It would be interesting to know whether algebraic hyperbolicity is open
with respect to the Euclidean topology ; still more interesting would be to know whether
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Kobayashi hyperbolicity is open for the countable Zariski topology (of course, both prop-
erties would follow immediately if one knew that algebraic hyperbolicity and Kobayashi
hyperbolicity coincide, but they seem otherwise highly non trivial to establish). The latter
openness property has raised an important amount of work around the following more par-
ticular question: is a (very) generic hypersurface X ⊂ Pn+1 of degree d large enough (say
d > 2n+1) Kobayashi hyperbolic ? Again, “very generic” is to be taken here in the sense of
the countable Zariski topology. Brody-Green [BrGr77] and Nadel [Nad89] produced exam-
ples of hyperbolic surfaces in P3 for all degrees d > 50, and Masuda-Noguchi [MaNo93] gave
examples of such hypersurfaces in Pn for arbitrary n > 2, of degree d > d0(n) large enough.
The question of studying the hyperbolicity of complements Pn r D of generic divisors is
in principle closely related to this; in fact if D = {P (z0, . . . , zn) = 0} is a smooth generic
divisor of degree d, one may look at the hypersurface

X =
{
zdn+1 = P (z0, . . . , zn)

}
⊂ Pn+1

which is a cyclic d : 1 covering of Pn. Since any holomorphic map f : C → Pn rD can be
lifted to X , it is clear that the hyperbolicity of X would imply the hyperbolicity of Pn rD.
The hyperbolicity of complements of divisors in Pn has been investigated by many authors.

In the “absolute case” V = TX , it seems reasonable to expect that properties 3.1 i),
ii) are equivalent, i.e. that Kobayashi and algebraic hyperbolicity coincide. However, it
was observed by Serge Cantat [Can00] that property 3.1 (iii) is not sufficient to imply the
hyperbolicity of X , at least when X is a general complex surface: a general (non algebraic)
K3 surface is known to have no elliptic curves and does not admit either any surjective
map from an abelian variety; however such a surface is not Kobayashi hyperbolic. We are
uncertain about the sufficiency of 3.1 (iii) when X is assumed to be projective.

§4. The Ahlfors-Schwarz lemma for metrics of negative curvature

One of the most basic ideas is that hyperbolicity should somehow be related with suitable
negativity properties of the curvature. For instance, it is a standard fact already observed
in Kobayashi [Kob70] that the negativity of TX (or the ampleness of T ∗

X) implies the
hyperbolicity of X . There are many ways of improving or generalizing this result. We
present here a few simple examples of such generalizations.

§4.A. Exploiting curvature via potential theory

If (V, h) is a holomorphic vector bundle equipped with a smooth hermitian metric, we
denote by ∇h = ∇′

h +∇′′
h the associated Chern connection and by ΘV,h = i

2π
∇2

h its Chern
curvature tensor.

4.1. Proposition. Let (X, V ) be a compact directed manifold. Assume that V is non

singular and that V ∗ is ample. Then (X, V ) is hyperbolic.

Proof (from an original idea of [Kob75]). Recall that a vector bundle E is said to be ample if
SmE has enough global sections σ1, . . . , σN so as to generate 1-jets of sections at any point,
when m is large. One obtains a Finsler metric N on E∗ by putting

N(ξ) =
( ∑

16j6N

|σj(x) · ξm|2
)1/2m

, ξ ∈ E∗
x,

and N is then a strictly plurisubharmonic function on the total space of E∗ minus the zero
section (in other words, the line bundle OP (E∗)(1) has a metric of positive curvature). By
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the ampleness assumption on V ∗, we thus have a Finsler metric N on V which is strictly
plurisubharmonic outside the zero section. By the Brody lemma, if (X, V ) is not hyperbolic,
there is a non constant entire curve g : C → X tangent to V such that supC ‖g′‖ω 6 1 for
some given hermitian metric ω on X . Then N(g′) is a bounded subharmonic function on
C which is strictly subharmonic on {g′ 6= 0}. This is a contradiction, for any bounded
subharmonic function on C must be constant.

§4.B. Ahlfors-Schwarz lemma

Proposition 4.1 can be generalized a little bit further by means of the Ahlfors-Schwarz
lemma (see e.g. [Lang87]; we refer to [Dem85] for the generalized version presented here; the
proof is merely an application of the maximum principle plus a regularization argument).

4.2. Ahlfors-Schwarz lemma. Let γ(t) = γ0(t) i dt∧dt be a hermitian metric on ∆R where

log γ0 is a subharmonic function such that i ∂∂ log γ0(t) > Aγ(t) in the sense of currents,

for some positive constant A. Then γ can be compared with the Poincaré metric of ∆R as

follows:

γ(t) 6
2

A

R−2|dt|2
(1− |t|2/R2)2

.

More generally, let γ = i
∑
γjkdtj ∧dtk be an almost everywhere positive hermitian form on

the ball B(0, R) ⊂ Cp, such that −Ricci(γ) := i ∂∂ log det γ > Aγ in the sense of currents,

for some constant A > 0 (this means in particular that det γ = det(γjk) is such that log det γ
is plurisubharmonic). Then

det(γ) 6
(p+ 1

AR2

)p 1

(1− |t|2/R2)p+1
.

4.C. Applications of the Ahlfors-Schwarz lemma to hyperbolicity

Let (X, V ) be a compact directed manifold. We assume throughout this subsection that
V is non singular.

4.3. Proposition. Assume V ∗ is “very big” in the following sense: there exists an

ample line bundle L and a sufficiently large integer m such that the global sections in

H0(X,SmV ∗ ⊗ L−1) generate all fibers over X r Y , for some analytic subset Y ( X.

Then all entire curves f : C → X tangent to V satisfy f(C) ⊂ Y [under our assumptions,

X is a projective algebraic manifold and Y is an algebraic subvariety, thus it is legitimate

to say that the entire curves are “algebraically degenerate”].

Proof. Let σ1, . . . , σN ∈ H0(X,SmV ∗ ⊗L−1) be a basis of sections generating SmV ∗ ⊗L−1

over X r Y . If f : C → X is tangent to V , we define a semipositive hermitian form
γ(t) = γ0(t) |dt|2 on C by putting

γ0(t) =
∑

‖σj(f(t)) · f ′(t)m‖2/mL−1

where ‖ ‖L denotes a hermitian metric with positive curvature on L. If f(C) 6⊂ Y , the form
γ is not identically 0 and we then find

i ∂∂ log γ0 >
2π

m
f∗ΘL
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where ΘL is the curvature form. The positivity assumption combined with an obvious
homogeneity argument yield

2π

m
f∗ΘL > ε‖f ′(t)‖2ω |dt|2 > ε′ γ(t)

for any given hermitian metric ω on X . Now, for any t0 with γ0(t0) > 0, the Ahlfors-
Schwarz lemma shows that f can only exist on a disk D(t0, R) such that γ0(t0) 6

2
ε′
R−2,

contradiction.

There are similar results for p-measure hyperbolicity, e.g.

4.4. Proposition. Assume that ΛpV ∗ is ample. Then (X, V ) is infinitesimally p-measure

hyperbolic. More generally, assume that ΛpV ∗ is very big with base locus contained in Y ( X
(see 3.3). Then ep is non degenerate over X r Y .

Proof. By the ampleness assumption, there is a smooth Finsler metric N on ΛpV which
is strictly plurisubharmonic outside the zero section. We select also a hermitian metric ω
on X . For any holomorphic map f : Bp → X we define a semipositive hermitian metric γ̃ on
Bp by putting γ̃ = f∗ω. Since ω need not have any good curvature estimate, we introduce
the function δ(t) = Nf(t)(Λ

pf ′(t) · τ0), where τ0 = ∂/∂t1 ∧ · · · ∧ ∂/∂tp, and select a metric
γ = λγ̃ conformal to γ̃ such that det γ = δ. Then λp is equal to the ratio N/Λpω on the
element Λpf ′(t) · τ0 ∈ ΛpVf(t). Since X is compact, it is clear that the conformal factor λ
is bounded by an absolute constant independent of f . From the curvature assumption we
then get

i ∂∂ log det γ = i ∂∂ log δ > (f,Λpf ′)∗(i ∂∂ logN) > εf∗ω > ε′ γ.

By the Ahlfors-Schwarz lemma we infer that det γ(0) 6 C for some constant C, i.e.,
Nf(0)(Λ

pf ′(0) · τ0) 6 C′. This means that the Kobayashi-Eisenman pseudometric ep(X,V ) is

positive definite everywhere and uniformly bounded from below. In the case ΛpV ∗ is very
big with base locus Y , we use essentially the same arguments, but we then only have N
being positive definite on X r Y .

4.5. Corollary ([Gri71], KobO71]). If X is a projective variety of general type, the

Kobayashi-Eisenmann volume form en, n = dimX, can degenerate only along a proper

algebraic set Y ( X.

§4.C. Main conjectures concerning hyperbolicity

One of the earliest conjectures in hyperbolicity theory is the following statement due to
Kobayashi ([Kob70], [Kob76]).

4.6. Conjecture (Kobayashi).

(a) A (very) generic hypersurface X ⊂ Pn+1 of degree d > dn large enough is hyperbolic.

(b) The complement PnrH of a (very) generic hypersurface H ⊂ Pn of degree d > d′n large

enough is hyperbolic.

In its original form, Kobayashi conjecture did not give the lower bounds dn and d′n.
Zaidenberg proposed the bounds dn = 2n + 1 (for n > 2) and d′n = 2n + 1 (for n > 1),
based on the results of Clemens, Xu, Ein and Voisin already mentioned, and the following
observation (cf. [Zai87], [Zai93]).

4.7. Theorem (Zaidenberg). The complement of a general hypersurface of degree 2n in Pn

is not hyperbolic.
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The converse of Corollary 4.5 is also expected to be true, namely, the generic non
degeneracy of en should imply that X is of general type, but this is only known for surfaces
(see [GrGr80] and [MoMu82]):

4.8. Conjecture (Green-Griffiths [GrGr80]). A projective algebraic variety X is measure

hyperbolic (i.e. en degenerates only along a proper algebraic subvariety) if and only if X is

of general type.

An essential step in the proof of the necessity of having general type subvarieties would be
to show that manifolds of Kodaira dimension 0 (say, Calabi-Yau manifolds and holomorphic
symplectic manifolds, all of which have c1(X) = 0) are not measure hyperbolic, e.g. by
exhibiting enough families of curves Cs,ℓ covering X such that (2g(Cs,ℓ)−2)/ deg(Cs,ℓ) → 0.
Another (even stronger) conjecture which we will investigate at the end of these notes is

4.9. Conjecture (Green-Griffiths [GrGr80]). If X is a variety of general type, there exists a

proper algebraic set Y ( X such that every entire holomorphic curve f : C → X is contained

in Y .

One of the early important result in the direction of Conjecture 4.9 is the proof of the
Bloch theorem, as proposed by Bloch [Blo26a] and Ochiai [Och77]. The Bloch theorem
is the special case of 4.9 when the irregularity of X satisfies q = h0(X,Ω1

X) > dimX .
Various solutions have then been obtained in fundamental papers of Noguchi [Nog77, 81, 84],
Kawamata [Kaw80] and Green-Griffiths [GrGr80], by means of different techniques. See
section § 10 for a proof based on jet bundle techniques. A much more recent result is
the striking statement due to Diverio, Merker and Rousseau [DMR10], confirming 4.9 when
X ⊂ Pn+1 is a generic non singular hypersurface of sufficiently large degree d > 2n

5

(cf. §16).
Conjecture 4.9 was also considered by S. Lang [Lang86, Lang87] in view of arithmetic
counterparts of the above geometric statements.

4.10. Conjecture (Lang). A projective algebraic variety X is hyperbolic if and only if all

its algebraic subvarieties (including X itself ) are of general type.

4.11. Conjecture (Lang). Let X be a projective variety defined over a number field K.

(a) If X is hyperbolic, then the set of K-rational points is finite.

(a′)Conversely, if the set of K ′-rational points is finite for every finite extension K ′ ⊃ K,

then X is hyperbolic.

(b) If X is of general type, then the set of K-rational points is not Zariski dense.

(b′)Conversely, if the set of K ′-rational points is not Zariski dense for any extension

K ′ ⊃ K, then X is of general type.

In fact, in 4.11 (b), if Y ( X is the “Green-Griffiths locus” of X , it is expected that
X r Y contains only finitely many rational K-points. Even when dealing only with the
geometric statements, there are several interesting connections between these conjectures.

4.12. Proposition. Conjecture 4.9 implies the “if” part of conjecture 4.8, and Conjec-

ture 4.8 implies the “only if” part of Conjecture 4.8, hence (4.8 and 4.9) ⇒ (4.10).

Proof. In fact if Conjecture 4.9 holds and every subariety Y of X is of general type, then it
is easy to infer that every entire curve f : C → X has to be constant by induction on dimX ,
because in fact f maps C to a certain subvariety Y ( X . Therefore X is hyperbolic.
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Conversely, if Conjecture 4.8 holds and X has a certain subvariety Y which is not
of general type, then Y is not measure hyperbolic. However Proposition 2.4 shows that
hyperbolicity implies measure hyperbolicity. Therefore Y is not hyperbolic and so X itself
is not hyperbolic either.

4.13. Proposition. Assume that the Green-Griffiths conjecture 4.9 holds. Then the

Kobayashi conjecture 4.6 (a) holds with dn = 2n+ 1.

Proof. We know by Ein [Ein88, Ein91] and Voisin [Voi96] that a very generic hypersurface
X ⊂ Pn+1 of degree d > 2n + 1, n > 2, has all its subvarieties that are of general type.
We have seen that the Green-Griffiths conjecture 4.9 implies the hyperbolicity of X in this
circumstance.

§5. Projectivization of a directed manifold

§5.A. The 1-jet fonctor

The basic idea is to introduce a fonctorial process which produces a new complex directed
manifold (X̃, Ṽ ) from a given one (X, V ). The new structure (X̃, Ṽ ) plays the role of a space
of 1-jets over X . We let

X̃ = P (V ), Ṽ ⊂ TX̃

be the projectivized bundle of lines of V , together with a subbundle Ṽ of TX̃ defined as
follows: for every point (x, [v]) ∈ X̃ associated with a vector v ∈ Vx r {0},
(5.1) Ṽ (x,[v]) =

{
ξ ∈ TX̃, (x,[v]) ; π∗ξ ∈ Cv

}
, Cv ⊂ Vx ⊂ TX,x,

where π : X̃ = P (V ) → X is the natural projection and π∗ : TX̃ → π∗TX is its
differential. On X̃ = P (V ) we have a tautological line bundle OX̃(−1) ⊂ π∗V such that
OX̃(−1)(x,[v]) = Cv. The bundle Ṽ is characterized by the two exact sequences

0 −→ TX̃/X −→ Ṽ
π∗−→ OX̃(−1) −→ 0,(5.2)

0 −→ OX̃ −→ π∗V ⊗ OX̃(1) −→ TX̃/X −→ 0,(5.2′)

where TX̃/X denotes the relative tangent bundle of the fibration π : X̃ → X . The first
sequence is a direct consequence of the definition of Ṽ , whereas the second is a relative
version of the Euler exact sequence describing the tangent bundle of the fibers P (Vx). From
these exact sequences we infer

(5.3) dim X̃ = n+ r − 1, rank Ṽ = rank V = r,

and by taking determinants we find det(TX̃/X) = π∗ detV ⊗ OX̃ (r), thus

(5.4) det Ṽ = π∗ detV ⊗ OX̃(r − 1).

By definition, π : (X̃, Ṽ ) → (X, V ) is a morphism of complex directed manifolds. Clearly,
our construction is fonctorial, i.e., for every morphism of directed manifolds Φ : (X, V ) →
(Y,W ), there is a commutative diagram

(5.5)

(X̃, Ṽ )
π−→ (X, V )

Φ̃y
yΦ

(Ỹ , W̃ )
π−→ (Y,W )

where the left vertical arrow is the meromorphic map P (V ) K P (W ) induced by the
differential Φ∗ : V → Φ∗W (Φ̃ is actually holomorphic if Φ∗ : V → Φ∗W is injective).
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§5.B. Lifting of curves to the 1-jet bundle

Suppose that we are given a holomorphic curve f : ∆R → X parametrized by the disk
∆R of centre 0 and radius R in the complex plane, and that f is a tangent curve of the
directed manifold, i.e., f ′(t) ∈ Vf(t) for every t ∈ ∆R. If f is non constant, there is a well
defined and unique tangent line [f ′(t)] for every t, even at stationary points, and the map

(5.6) f̃ : ∆R → X̃, t 7→ f̃(t) := (f(t), [f ′(t)])

is holomorphic (at a stationary point t0, we just write f ′(t) = (t− t0)
su(t) with s ∈ N∗ and

u(t0) 6= 0, and we define the tangent line at t0 to be [u(t0)], hence f̃(t) = (f(t), [u(t)]) near
t0 ; even for t = t0, we still denote [f

′(t0)] = [u(t0)] for simplicity of notation). By definition
f ′(t) ∈ OX̃(−1)f̃(t) = Cu(t), hence the derivative f ′ defines a section

(5.7) f ′ : T∆R
→ f̃∗OX̃(−1).

Moreover π ◦ f̃ = f , therefore

π∗f̃
′(t) = f ′(t) ∈ Cu(t) =⇒ f̃ ′(t) ∈ Ṽ (f(t),u(t)) = Ṽ f̃(t)

and we see that f̃ is a tangent trajectory of (X̃, Ṽ ). We say that f̃ is the canonical lifting

of f to X̃. Conversely, if g : ∆R → X̃ is a tangent trajectory of (X̃, Ṽ ), then by definition
of Ṽ we see that f = π ◦ g is a tangent trajectory of (X, V ) and that g = f̃ (unless g is
contained in a vertical fiber P (Vx), in which case f is constant).

For any point x0 ∈ X , there are local coordinates (z1, . . . , zn) on a neighborhood Ω of
x0 such that the fibers (Vz)z∈Ω can be defined by linear equations

(5.8) Vz =
{
ξ =

∑

16j6n

ξj
∂

∂zj
; ξj =

∑

16k6r

ajk(z)ξk for j = r + 1, . . . , n
}
,

where (ajk) is a holomorphic (n−r)×r matrix. It follows that a vector ξ ∈ Vz is completely
determined by its first r components (ξ1, . . . , ξr), and the affine chart ξj 6= 0 of P (V )↾Ω can
be described by the coordinate system

(5.9)
(
z1, . . . , zn;

ξ1
ξj
, . . . ,

ξj−1

ξj
,
ξj+1

ξj
, . . . ,

ξr
ξj

)
.

Let f ≃ (f1, . . . , fn) be the components of f in the coordinates (z1, . . . , zn) (we suppose here
R so small that f(∆R) ⊂ Ω). It should be observed that f is uniquely determined by its
initial value x and by the first r components (f1, . . . , fr). Indeed, as f ′(t) ∈ Vf(t) , we can
recover the other components by integrating the system of ordinary differential equations

(5.10) f ′
j(t) =

∑

16k6r

ajk(f(t))f
′
k(t), j > r,

on a neighborhood of 0, with initial data f(0) = x. We denote by m = m(f, t0) the
multiplicity of f at any point t0 ∈ ∆R, that is, m(f, t0) is the smallest integer m ∈ N∗ such

that f
(m)
j (t0) 6= 0 for some j. By (5.10), we can always suppose j ∈ {1, . . . , r}, for example

f
(m)
r (t0) 6= 0. Then f ′(t) = (t− t0)

m−1u(t) with ur(t0) 6= 0, and the lifting f̃ is described in
the coordinates of the affine chart ξr 6= 0 of P (V )↾Ω by

(5.11) f̃ ≃
(
f1, . . . , fn;

f ′
1

f ′
r

, . . . ,
f ′
r−1

f ′
r

)
.
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§5.C. Curvature properties of the 1-jet bundle

We end this section with a few curvature computations. Assume that V is equipped with
a smooth hermitian metric h. Denote by ∇h = ∇′

h +∇′′
h the associated Chern connection

and by ΘV,h = i
2π∇2

h its Chern curvature tensor. For every point x0 ∈ X , there exists a
“normalized” holomorphic frame (eλ)16λ6r on a neighborhood of x0, such that

(5.12) 〈eλ, eµ〉h = δλµ −
∑

16j,k6n

cjkλµzjzk +O(|z|3),

with respect to any holomorphic coordinate system (z1, . . . , zn) centered at x0. A compu-
tation of d′〈eλ, eµ〉h = 〈∇′

heλ, eµ〉h and ∇2
heλ = d′′∇′

heλ then gives

∇′
heλ = −

∑

j,k,µ

cjkλµzk dzj ⊗ eµ +O(|z|2),

ΘV,h(x0) =
i

2π

∑

j,k,λ,µ

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ.(5.13)

The above curvature tensor can also be viewed as a hermitian form on TX ⊗ V . In fact, one
associates with ΘV,h the hermitian form 〈ΘV,h〉 on TX ⊗ V defined for all (ζ, v) ∈ TX ×X V
by

(5.14) 〈ΘV,h〉(ζ ⊗ v) =
∑

16j,k6n, 16λ,µ6r

cjkλµζjζkvλvµ.

Let h1 be the hermitian metric on the tautological line bundle OP (V )(−1) ⊂ π∗V induced by
the metric h of V . We compute the curvature (1, 1)-form Θh1

(OP (V )(−1)) at an arbitrary
point (x0, [v0]) ∈ P (V ), in terms of ΘV,h. For simplicity, we suppose that the frame
(eλ)16λ6r has been chosen in such a way that [er(x0)] = [v0] ∈ P (V ) and |v0|h = 1. We
get holomorphic local coordinates (z1, . . . , zn ; ξ1, . . . , ξr−1) on a neighborhood of (x0, [v0])
in P (V ) by assigning

(z1, . . . , zn ; ξ1, . . . , ξr−1) 7−→ (z, [ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)]) ∈ P (V ).

Then the function

η(z, ξ) = ξ1e1(z) + · · ·+ ξr−1er−1(z) + er(z)

defines a holomorphic section of OP (V )(−1) in a neighborhood of (x0, [v0]). By using the
expansion (5.12) for h, we find

|η|2h1
= |η|2h = 1 + |ξ|2 −

∑

16j,k6n

cjkrrzjzk +O((|z|+ |ξ|)3),

Θh1
(OP (V )(−1))(x0,[v0]) = − i

2π
∂∂ log |η|2h1

=
i

2π

( ∑

16j,k6n

cjkrrdzj ∧ dzk −
∑

16λ6r−1

dξλ ∧ dξλ
)
.(5.15)
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§6. Jets of curves and Semple jet bundles

Let X be a complex n-dimensional manifold. Following ideas of Green-Griffiths
[GrGr80], we let Jk → X be the bundle of k-jets of germs of parametrized curves inX , that is,
the set of equivalence classes of holomorphic maps f : (C, 0) → (X, x), with the equivalence
relation f ∼ g if and only if all derivatives f (j)(0) = g(j)(0) coincide for 0 6 j 6 k, when
computed in some local coordinate system of X near x. The projection map Jk → X is
simply f 7→ f(0). If (z1, . . . , zn) are local holomorphic coordinates on an open set Ω ⊂ X ,
the elements f of any fiber Jk,x, x ∈ Ω, can be seen as Cn-valued maps

f = (f1, . . . , fn) : (C, 0) → Ω ⊂ Cn,

and they are completetely determined by their Taylor expansion of order k at t = 0

f(t) = x+ t f ′(0) +
t2

2!
f ′′(0) + · · ·+ tk

k!
f (k)(0) +O(tk+1).

In these coordinates, the fiber Jk,x can thus be identified with the set of k-tuples of vectors
(ξ1, . . . , ξk) = (f ′(0), . . . , f (k)(0)) ∈ (Cn)k. It follows that Jk is a holomorphic fiber bundle
with typical fiber (Cn)k over X (however, Jk is not a vector bundle for k > 2, because of
the nonlinearity of coordinate changes; see formula (7.2) in § 7).

According to the philosophy developed throughout this paper, we describe the concept
of jet bundle in the general situation of complex directed manifolds. If X is equipped with
a holomorphic subbundle V ⊂ TX , we associate to V a k-jet bundle JkV as follows.

6.1. Definition. Let (X, V ) be a complex directed manifold. We define JkV → X to be the

bundle of k-jets of curves f : (C, 0) → X which are tangent to V , i.e., such that f ′(t) ∈ Vf(t)
for all t in a neighborhood of 0, together with the projection map f 7→ f(0) onto X.

It is easy to check that JkV is actually a subbundle of Jk. In fact, by using (5.8) and
(5.10), we see that the fibers JkVx are parametrized by

(
(f ′

1(0), . . . , f
′
r(0)); (f

′′
1 (0), . . . , f

′′
r (0)); . . . ; (f

(k)
1 (0), . . . , f (k)

r (0))
)
∈ (Cr)k

for all x ∈ Ω, hence JkV is a locally trivial (Cr)k-subbundle of Jk. Alternatively, we can
pick a local holomorphic connection ∇ on V , defined on some open set Ω ⊂ X , and compute
inductively the successive derivatives

∇f = f ′, ∇jf = ∇f ′(∇j−1f)

with respect to ∇ along the cure t 7→ f(t). Then

(ξ1, ξ2, . . . , ξk) = (∇f(0),∇2f(0), . . . ,∇kf(0)) ∈ V ⊕k
x

provides a “trivialization” JkV|Ω ≃ V ⊕k
|Ω . This identification depends of course on the choice

of ∇ and cannot be defined globally in general (unless we are in the rare situation where V
has a global holomorphic connection).

We now describe a convenient process for constructing “projectivized jet bundles”,
which will later appear as natural quotients of our jet bundles JkV (or rather, as suitable
desingularized compactifications of the quotients). Such spaces have already been considered
since a long time, at least in the special case X = P2, V = TP2 (see Gherardelli [Ghe41],
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Semple [Sem54]), and they have been mostly used as a tool for establishing enumerative
formulas dealing with the order of contact of plane curves (see [Coll88], [CoKe94]); the article
[ASS92] is also concerned with such generalizations of jet bundles, as well as [LaTh96] by
Laksov and Thorup.

We define inductively the projectivized k-jet bundle PkV = Xk (or Semple k-jet bundle)
and the associated subbundle Vk ⊂ TXk

by

(6.2) (X0, V0) = (X, V ), (Xk, Vk) = (X̃k−1, Ṽ k−1).

In other words, (PkV, Vk) = (Xk, Vk) is obtained from (X, V ) by iterating k-times the lifting
construction (X, V ) 7→ (X̃, Ṽ ) described in § 5. By (5.2–5.7), we find

(6.3) dimPkV = n+ k(r − 1), rank Vk = r,

together with exact sequences

0 −→ TPkV/Pk−1V −→ Vk
(πk)∗−−−−→ OPkV (−1) −→ 0,(6.4)

0 −→ OPkV −→ π∗
kVk−1 ⊗ OPkV (1) −→ TPkV/Pk−1V −→ 0.(6.4′)

where πk is the natural projection πk : PkV → Pk−1V and (πk)∗ its differential. Formula
(5.4) yields

(6.5) detVk = π∗
k detVk−1 ⊗ OPkV (r − 1).

Every non constant tangent trajectory f : ∆R → X of (X, V ) lifts to a well defined and
unique tangent trajectory f[k] : ∆R → PkV of (PkV, Vk). Moreover, the derivative f ′

[k−1]
gives rise to a section

(6.6) f ′
[k−1] : T∆R

→ f∗
[k]OPkV (−1).

In coordinates, one can compute f[k] in terms of its components in the various affine charts
(5.9) occurring at each step: we get inductively

(6.7) f[k] = (F1, . . . , FN ), f[k+1] =
(
F1, . . . , FN ,

F ′
s1

F ′
sr

, . . . ,
F ′
sr−1

F ′
sr

)

where N = n + k(r − 1) and {s1, . . . , sr} ⊂ {1, . . . , N}. If k > 1, {s1, . . . , sr} contains the
last r−1 indices of {1, . . . , N} corresponding to the “vertical” components of the projection
PkV → Pk−1V , and in general, sr is an index such that m(Fsr , 0) = m(f[k], 0), that is, Fsr

has the smallest vanishing order among all components Fs (sr may be vertical or not, and
the choice of {s1, . . . , sr} need not be unique).

By definition, there is a canonical injection OPkV (−1) →֒ π∗
kVk−1, and a composition

with the projection (πk−1)∗ (analogue for order k − 1 of the arrow (πk)∗ in sequence (6.4))
yields for all k > 2 a canonical line bundle morphism

(6.8) OPkV (−1) −֒→ π∗
kVk−1

(πk)
∗(πk−1)∗−−−−−−−→ π∗

kOPk−1V (−1),

which admits precisely Dk = P (TPk−1V/Pk−2V ) ⊂ P (Vk−1) = PkV as its zero divisor (clearly,
Dk is a hyperplane subbundle of PkV ). Hence we find

(6.9) OPkV (1) = π∗
kOPk−1V (1)⊗ O(Dk).
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Now, we consider the composition of projections

(6.10) πj,k = πj+1 ◦ · · · ◦ πk−1 ◦ πk : PkV −→ PjV.

Then π0,k : PkV → X = P0V is a locally trivial holomorphic fiber bundle over X , and
the fibers PkVx = π−1

0,k(x) are k-stage towers of Pr−1-bundles. Since we have (in both
directions) morphisms (Cr, TCr) ↔ (X, V ) of directed manifolds which are bijective on
the level of bundle morphisms, the fibers are all isomorphic to a “universal” nonsingular
projective algebraic variety of dimension k(r − 1) which we will denote by Rr,k ; it is not
hard to see that Rr,k is rational (as will indeed follow from the proof of Theorem 6.8 below).
The following Proposition will help us to understand a little bit more about the geometric
structure of PkV . As usual, we define the multiplicity m(f, t0) of a curve f : ∆R → X at a
point t ∈ ∆R to be the smallest integer s ∈ N∗ such that f (s)(t0) 6= 0, i.e., the largest s such
that δ(f(t), f(t0)) = O(|t− t0|s) for any hermitian or riemannian geodesic distance δ on X .
As f[k−1] = πk ◦ f[k], it is clear that the sequence m(f[k], t) is non increasing with k.

6.11. Proposition. Let f : (C, 0) → X be a non constant germ of curve tangent

to V . Then for all j > 2 we have m(f[j−2], 0) > m(f[j−1], 0) and the inequality is

strict if and only if f[j](0) ∈ Dj . Conversely, if w ∈ PkV is an arbitrary element and

m0 > m1 > · · · > mk−1 > 1 is a sequence of integers with the property that

∀j ∈ {2, . . . , k}, mj−2 > mj−1 if and only if πj,k(w) ∈ Dj,

there exists a germ of curve f : (C, 0) → X tangent to V such that f[k](0) = w and

m(f[j], 0) = mj for all j ∈ {0, . . . , k − 1}.

Proof. i) Suppose first that f is given and put mj = m(f[j], 0). By definition, we
have f[j] = (f[j−1], [uj−1]) where f ′

[j−1](t) = tmj−1−1uj−1(t) ∈ Vj−1, uj−1(0) 6= 0.
By composing with the differential of the projection πj−1 : Pj−1V → Pj−2V , we find
f ′
[j−2](t) = tmj−1−1(πj−1)∗uj−1(t). Therefore

mj−2 = mj−1 + ordt=0(πj−1)∗uj−1(t),

and so mj−2 > mj−1 if and only if (πj−1)∗uj−1(0) = 0, that is, if and only if uj−1(0) ∈
TPj−1V/Pj−2V , or equivalently f[j](0) = (f[j−1](0), [uj−1(0)]) ∈ Dj .

ii) Suppose now that w ∈ PkV and m0, . . . , mk−1 are given. We denote by wj+1 = (wj , [ηj]),
wj ∈ PjV , ηj ∈ Vj , the projection of w to Pj+1V . Fix coordinates (z1, . . . , zn) on X centered
at w0 such that the r-th component η0,r of η0 is non zero. We prove the existence of the
germ f by induction on k, in the form of a Taylor expansion

f(t) = a0 + t a1 + · · ·+ tdkadk
+O(tdk+1), dk = m0 +m1 + · · ·+mk−1.

If k = 1 and w = (w0, [η0]) ∈ P1Vx, we simply take f(t) = w0 + tm0η0 + O(tm0+1). In
general, the induction hypothesis applied to PkV = Pk−1(V1) over X1 = P1V yields a curve
g : (C, 0) → X1 such that g[k−1] = w and m(g[j], 0) = mj+1 for 0 6 j 6 k − 2. If w2 /∈ D2,
then [g′[1](0)] = [η1] is not vertical, thus f = π1 ◦ g satisfies m(f, 0) = m(g, 0) = m1 = m0

and we are done.

If w2 ∈ D2, we express g = (G1, . . . , Gn;Gn+1, . . . , Gn+r−1) as a Taylor expansion
of order m1 + · · · + mk−1 in the coordinates (5.9) of the affine chart ξr 6= 0. As
η1 = limt→0 g

′(t)/tm1−1 is vertical, we must have m(Gs, 0) > m1 for 1 6 j 6 n. It follows
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from (6.7) that G1, . . . , Gn are never involved in the calculation of the liftings g[j]. We can
therefore replace g by f ≃ (f1, . . . , fn) where fr(t) = tm0 and f1, . . . , fr−1 are obtained
by integrating the equations f ′

j(t)/f
′
r(t) = Gn+j(t), i.e., f ′

j(t) = m0t
m0−1Gn+j(t), while

fr+1, . . . , fn are obtained by integrating (5.10). We then get the desired Taylor expansion
of order dk for f .

Since we can always take mk−1 = 1 without restriction, we get in particular:

6.12. Corollary. Let w ∈ PkV be an arbitrary element. Then there is a germ of curve

f : (C, 0) → X such that f[k](0) = w and f ′
[k−1](0) 6= 0 (thus the liftings f[k−1] and f[k]

are regular germs of curve). Moreover, if w0 ∈ PkV and w is taken in a sufficiently small

neighborhood of w0, then the germ f = fw can be taken to depend holomorphically on w.

Proof. Only the holomorphic dependence of fw with respect to w has to be guaranteed. If
fw0

is a solution for w = w0, we observe that (fw0
)′[k] is a non vanishing section of Vk along

the regular curve defined by (fw0
)[k] in PkV . We can thus find a non vanishing section ξ

of Vk on a neighborhood of w0 in PkV such that ξ = (fw0
)′[k] along that curve. We define

t 7→ Fw(t) to be the trajectory of ξ with initial point w, and we put fw = π0,k ◦ Fw. Then
fw is the required family of germs.

Now, we can take f : (C, 0) → X to be regular at the origin (by this, we mean f ′(0) 6= 0)
if and only if m0 = m1 = · · · = mk−1 = 1, which is possible by Proposition 6.11 if and only
if w ∈ PkV is such that πj,k(w) /∈ Dj for all j ∈ {2, . . . , k}. For this reason, we define

(6.13)

PkV
reg =

⋂

26j6k

π−1
j,k(PjV rDj),

PkV
sing =

⋃

26j6k

π−1
j,k(Dj) = PkV r PkV

reg,

in other words, PkV
reg is the set of values f[k](0) reached by all regular germs of curves f .

One should take care however that there are singular germs which reach the same points
f[k](0) ∈ PkV

reg, e.g., any s-sheeted covering t 7→ f(ts). On the other hand, if w ∈ PkV
sing,

we can reach w by a germ f with m0 = m(f, 0) as large as we want.

6.14. Corollary. Let w ∈ PkV
sing be given, and let m0 ∈ N be an arbitrary integer larger

than the number of components Dj such that πj,k(w) ∈ Dj. Then there is a germ of curve

f : (C, 0) → X with multiplicity m(f, 0) = m0 at the origin, such that f[k](0) = w and

f ′
[k−1](0) 6= 0.

§7. Jet differentials

§7.A. Green-Griffiths jet differentials

We first introduce the concept of jet differentials in the sense of Green-Griffiths [GrGr80].
The goal is to provide an intrinsic geometric description of holomorphic differential equations
that a germ of curve f : (C, 0) → X may satisfy. In the sequel, we fix a directed manifold
(X, V ) and suppose implicitly that all germs of curves f are tangent to V .

Let Gk be the group of germs of k-jets of biholomorphisms of (C, 0), that is, the group
of germs of biholomorphic maps

t 7→ ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C∗, aj ∈ C, j > 2,
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in which the composition law is taken modulo terms tj of degree j > k. Then Gk is a k-
dimensional nilpotent complex Lie group, which admits a natural fiberwise right action
on JkV . The action consists of reparametrizing k-jets of maps f : (C, 0) → X by a
biholomorphic change of parameter ϕ : (C, 0) → (C, 0), that is, (f, ϕ) 7→ f ◦ ϕ. There
is an exact sequence of groups

1 → G′
k → Gk → C∗ → 1

where Gk → C∗ is the obvious morphism ϕ 7→ ϕ′(0), and G′
k = [Gk,Gk] is the group of k-jets

of biholomorphisms tangent to the identity. Moreover, the subgroup H ≃ C∗ of homotheties
ϕ(t) = λt is a (non normal) subgroup of Gk, and we have a semidirect decomposition
Gk = G′

k ⋉H. The corresponding action on k-jets is described in coordinates by

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

Following [GrGr80], we introduce the vector bundle EGG
k,mV

∗ → X whose fibers are

complex valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibers of JkV , of weighted degree m
with respect to the C∗ action defined by H, that is, such that

(7.1) Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k))

for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkV . Here we view (f ′, f ′′, . . . , f (k)) as indeterminates
with components

(
(f ′

1, . . . , f
′
r); (f

′′
1 , . . . , f

′′
r ); . . . ; (f

(k)
1 , . . . , f (k)

r )
)
∈ (Cr)k.

Notice that the concept of polynomial on the fibers of JkV makes sense, for all coordinate
changes z 7→ w = Ψ(z) on X induce polynomial transition automorphisms on the fibers of
JkV , given by a formula

(7.2) (Ψ ◦ f)(j) = Ψ′(f) · f (j) +

s=j∑

s=2

∑

j1+j2+···+js=j

cj1...jsΨ
(s)(f) · (f (j1), . . . , f (js))

with suitable integer constants cj1...js (this is easily checked by induction on s). In the
“absolute case” V = TX , we simply write EGG

k,mT
∗
X = EGG

k,m. If V ⊂W ⊂ TX are holomorphic
subbundles, there are natural inclusions

JkV ⊂ JkW ⊂ Jk, PkV ⊂ PkW ⊂ Pk.

The restriction morphisms induce surjective arrows

EGG
k,m → EGG

k,mW
∗ → EGG

k,mV
∗,

in particular EGG
k,mV

∗ can be seen as a quotient of EGG
k,m. (The notation V ∗ is used here to

make the contravariance property implicit from the notation). Another useful consequence
of these inclusions is that one can extend the definition of JkV and PkV to the case where V
is an arbitrary linear space, simply by taking the closure of JkVXrSing(V ) and PkVXrSing(V )

in the smooth bundles Jk and Pk, respectively.
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If Q ∈ EGG
k,mV

∗ is decomposed into multihomogeneous components of multidegree

(ℓ1, ℓ2, . . . , ℓk) in f
′, f ′′, . . . , f (k) (the decomposition is of course coordinate dependent), these

multidegrees must satisfy the relation

ℓ1 + 2ℓ2 + · · ·+ kℓk = m.

The bundle EGG
k,mV

∗ will be called the bundle of jet differentials of order k and weighted

degreem. It is clear from (7.2) that a coordinate change f 7→ Ψ◦f transforms every monomial
(f (•))ℓ = (f ′)ℓ1(f ′′)ℓ2 · · · (f (k))ℓk of partial weighted degree |ℓ|s := ℓ1 + 2ℓ2 + · · · + sℓs,
1 6 s 6 k, into a polynomial ((Ψ ◦ f)(•))ℓ in (f ′, f ′′, . . . , f (k)) which has the same partial
weighted degree of order s if ℓs+1 = · · · = ℓk = 0, and a larger or equal partial degree
of order s otherwise. Hence, for each s = 1, . . . , k, we get a well defined (i.e., coordinate
invariant) decreasing filtration F •

s on EGG
k,mV

∗ as follows:

(7.3) F p
s (E

GG
k,mV

∗) =

{
Q(f ′, f ′′, . . . , f (k)) ∈ EGG

k,mV
∗ involving

only monomials (f (•))ℓ with |ℓ|s > p

}
, ∀p ∈ N.

The graded terms Grpk−1(E
GG
k,mV

∗) associated with the filtration F p
k−1(E

GG
k,mV

∗) are pre-

cisely the homogeneous polynomials Q(f ′, . . . , f (k)) whose monomials (f•)ℓ all have partial
weighted degree |ℓ|k−1 = p (hence their degree ℓk in f (k) is such that m − p = kℓk, and
Grpk−1(E

GG
k,mV

∗) = 0 unless k|m − p). The transition automorphisms of the graded bundle
are induced by coordinate changes f 7→ Ψ ◦ f , and they are described by substituting the
arguments of Q(f ′, . . . , f (k)) according to formula (7.2), namely f (j) 7→ (Ψ ◦ f)(j) for j < k,
and f (k) 7→ Ψ′(f)◦f (k) for j = k (when j = k, the other terms fall in the next stage F p+1

k−1 of

the filtration). Therefore f (k) behaves as an element of V ⊂ TX under coordinate changes.
We thus find

(7.4) Gm−kℓk
k−1 (EGG

k,mV
∗) = EGG

k−1,m−kℓk
V ∗ ⊗ SℓkV ∗.

Combining all filtrations F •
s together, we find inductively a filtration F • on EGG

k,mV
∗ such

that the graded terms are

(7.5) Grℓ(EGG
k,mV

∗) = Sℓ1V ∗ ⊗ Sℓ2V ∗ ⊗ · · · ⊗ SℓkV ∗, ℓ ∈ Nk, |ℓ|k = m.

The bundles EGG
k,mV

∗ have other interesting properties. In fact,

EGG
k,• V

∗ :=
⊕

m>0

EGG
k,mV

∗

is in a natural way a bundle of graded algebras (the product is obtained simply by taking
the product of polynomials). There are natural inclusions EGG

k,• V
∗ ⊂ EGG

k+1,•V
∗ of algebras,

hence EGG
∞,•V

∗ =
⋃

k>0 E
GG
k,• V

∗ is also an algebra. Moreover, the sheaf of holomorphic

sections O(EGG
∞,•V

∗) admits a canonical derivation ∇GG given by a collection of C-linear
maps

∇GG : O(EGG
k,mV

∗) → O(EGG
k+1,m+1V

∗),

constructed in the following way. A holomorphic section of EGG
k,mV

∗ on a coordinate open
set Ω ⊂ X can be seen as a differential operator on the space of germs f : (C, 0) → Ω of the
form

(7.6) Q(f) =
∑

|α1|+2|α2|+···+k|αk|=m

aα1...αk
(f) (f ′)α1(f ′′)α2 · · · (f (k))αk
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in which the coefficients aα1...αk
are holomorphic functions on Ω. Then ∇Q is given by the

formal derivative (∇Q)(f)(t) = d(Q(f))/dt with respect to the 1-dimensional parameter t
in f(t). For example, in dimension 2, if Q ∈ H0(Ω,O(EGG

2,4 )) is the section of weighted
degree 4

Q(f) = a(f1, f2) f
′3
1 f

′
2 + b(f1, f2) f

′′2
1 ,

we find that ∇Q ∈ H0(Ω,O(EGG
3,5 )) is given by

(∇Q)(f) =
∂a

∂z1
(f1, f2) f

′4
1 f

′
2 +

∂a

∂z2
(f1, f2) f

′3
1 f

′2
2 +

∂b

∂z1
(f1, f2) f

′
1f

′′2
1

+
∂b

∂z2
(f1, f2) f

′
2f

′′2
1 + a(f1, f2)

(
3f ′2

1 f
′′
1 f

′
2 + f ′3

1 f
′′
2 ) + b(f1, f2) 2f

′′
1 f

′′′
1 .

Associated with the graded algebra bundle EGG
k,• V

∗, we have an analytic fiber bundle

(7.7) XGG
k := Proj(EGG

k,• V
∗) = (JkV r {0})/C∗

over X , which has weighted projective spaces P(1[r], 2[r], . . . , k[r]) as fibers (these weighted
projective spaces are singular for k > 1, but they only have quotient singularities, see [Dol81] ;
here JkV r {0} is the set of non constant jets of order k ; we refer e.g. to Hartshorne’s book
[Har77] for a definition of the Proj fonctor). As such, it possesses a canonical sheaf OXGG

k
(1)

such that OXGG
k

(m) is invertible when m is a multiple of lcm(1, 2, . . . , k). Under the natural
projection πk : XGG

k → X , the direct image (πk)∗OXGG
k

(m) coincides with polynomials

(7.8) P (z ; ξ1, . . . , ξk) =
∑

αℓ∈Nr , 16ℓ6k

aα1...αk
(z) ξα1

1 . . . ξαk

k

of weighted degree |α1|+ 2|α2| + . . .+ k|αk| = m on JkV with holomorphic coefficients; in
other words, we obtain precisely the sheaf of sections of the bundle EGG

k,mV
∗ of jet differentials

of order k and degree m.

7.9. Proposition. By construction, if πk : XGG
k is the natural projection, we have the

direct image formula

(πk)∗OXGG
k

(m) = O(EGG
k,mV

∗)

for all k and m.

§7.B. Invariant jet differentials

In the geometric context, we are not really interested in the bundles (JkV r {0})/C∗

themselves, but rather on their quotients (JkV r {0})/Gk (would such nice complex space
quotients exist!). We will see that the Semple bundle PkV constructed in § 6 plays the role
of such a quotient. First we introduce a canonical bundle subalgebra of EGG

k,• V
∗.

7.10. Definition. We introduce a subbundle Ek,mV
∗ ⊂ EGG

k,mV
∗, called the bundle of

invariant jet differentials of order k and degree m, defined as follows: Ek,mV
∗ is the set

of polynomial differential operators Q(f ′, f ′′, . . . , f (k)) which are invariant under arbitrary

changes of parametrization, i.e., for every ϕ ∈ Gk

Q
(
(f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)) = ϕ′(0)mQ(f ′, f ′′, . . . , f (k)).
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Alternatively, Ek,mV
∗ = (EGG

k,mV
∗)G

′

k is the set of invariants of EGG
k,mV

∗ under the action

of G′
k. Clearly, E∞,•V

∗ =
⋃

k>0

⊕
m>0Ek,mV

∗ is a subalgebra of EGG
k,mV

∗ (observe however

that this algebra is not invariant under the derivation ∇GG, since e.g. f ′′
j = ∇GGfj is

not an invariant polynomial). In addition to this, there are natural induced filtrations
F p
s (Ek,mV

∗) = Ek,mV
∗ ∩F p

s (E
GG
k,mV

∗) (all locally trivial over X). These induced filtrations
will play an important role later on.

7.11. Theorem. Suppose that V has rank r > 2. Let π0,k : PkV −→ X be the Semple

jet bundles constructed in section 6, and let JkV
reg be the bundle of regular k-jets of maps

f : (C, 0) → X, that is, jets f such that f ′(0) 6= 0.

i) The quotient JkV
reg/Gk has the structure of a locally trivial bundle over X, and there is

a holomorphic embedding JkV
reg/Gk →֒ PkV over X, which identifies JkV

reg/Gk with

PkV
reg (thus PkV is a relative compactification of JkV

reg/Gk over X).

ii) The direct image sheaf

(π0,k)∗OPkV (m) ≃ O(Ek,mV
∗)

can be identified with the sheaf of holomorphic sections of Ek,mV
∗.

iii) For every m > 0, the relative base locus of the linear system |OPkV (m)| is equal to the

set PkV
sing of singular k-jets. Moreover, OPkV (1) is relatively big over X.

Proof. i) For f ∈ JkV
reg, the lifting f̃ is obtained by taking the derivative (f, [f ′]) without

any cancellation of zeroes in f ′, hence we get a uniquely defined (k − 1)-jet f̃ : (C, 0) → X̃ .
Inductively, we get a well defined (k− j)-jet f[j] in PjV , and the value f[k](0) is independent
of the choice of the representative f for the k-jet. As the lifting process commutes with
reparametrization, i.e., (f ◦ϕ)∼ = f̃ ◦ϕ and more generally (f ◦ϕ)[k] = f[k] ◦ϕ, we conclude
that there is a well defined set-theoretic map

JkV
reg/Gk → PkV

reg, f mod Gk 7→ f[k](0).

This map is better understood in coordinates as follows. Fix coordinates (z1, . . . , zn) near
a point x0 ∈ X , such that Vx0

= Vect(∂/∂z1, . . . , ∂/∂zr). Let f = (f1, . . . , fn) be a regular
k-jet tangent to V . Then there exists i ∈ {1, 2, . . . , r} such that f ′

i(0) 6= 0, and there is a
unique reparametrization t = ϕ(τ) such that f ◦ ϕ = g = (g1, g2, . . . , gn) with gi(τ) = τ
(we just express the curve as a graph over the zi-axis, by means of a change of parameter
τ = fi(t), i.e. t = ϕ(τ) = f−1

i (τ)). Suppose i = r for the simplicity of notation. The space
PkV is a k-stage tower of Pr−1-bundles. In the corresponding inhomogeneous coordinates
on these Pr−1’s, the point f[k](0) is given by the collection of derivatives

(
(g′1(0), . . . , g

′
r−1(0)); (g

′′
1 (0), . . . , g

′′
r−1(0)); . . . ; (g

(k)
1 (0), . . . , g

(k)
r−1(0))

)
.

[Recall that the other components (gr+1, . . . , gn) can be recovered from (g1, . . . , gr) by
integrating the differential system (5.10)]. Thus the map JkV

reg/Gk → PkV is a bijection
onto PkV

reg, and the fibers of these isomorphic bundles can be seen as unions of r affine
charts ≃ (Cr−1)k, associated with each choice of the axis zi used to describe the curve
as a graph. The change of parameter formula d

dτ
= 1

f ′

r(t)
d
dt

expresses all derivatives

g
(j)
i (τ) = djgi/dτ

j in terms of the derivatives f
(j)
i (t) = djfi/dt

j

(g′1, . . . , g
′
r−1) =

(f ′
1

f ′
r

, . . . ,
f ′
r−1

f ′
r

)
;
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(g′′1 , . . . , g
′′
r−1) =

(f ′′
1 f

′
r − f ′′

r f
′
1

f ′3
r

, . . . ,
f ′′
r−1f

′
r − f ′′

r f
′
r−1

f ′3
r

)
; . . . ;(7.12)

(g
(k)
1 , . . . , g

(k)
r−1) =

(f (k)
1 f ′

r − f
(k)
r f ′

1

f ′k+1
r

, . . . ,
f
(k)
r−1f

′
r − f

(k)
r f ′

r−1

f ′k+1
r

)
+ (order < k).

Also, it is easy to check that f ′2k−1
r g

(k)
i is an invariant polynomial in f ′, f ′′, . . . , f (k) of total

degree 2k − 1, i.e., a section of Ek,2k−1.

ii) Since the bundles PkV and Ek,mV
∗ are both locally trivial over X , it is sufficient to

identify sections σ of OPkV (m) over a fiber PkVx = π−1
0,k(x) with the fiber Ek,mV

∗
x , at any

point x ∈ X . Let f ∈ JkV
reg
x be a regular k-jet at x. By (6.6), the derivative f ′

[k−1](0)

defines an element of the fiber of OPkV (−1) at f[k](0) ∈ PkV . Hence we get a well defined
complex valued operator

(7.13) Q(f ′, f ′′, . . . , f (k)) = σ(f[k](0)) · (f ′
[k−1](0))

m.

Clearly, Q is holomorphic on JkV
reg
x (by the holomorphicity of σ), and the Gk-invariance

condition of Def. 7.10 is satisfied since f[k](0) does not depend on reparametrization and
(f ◦ ϕ)′[k−1](0) = f ′

[k−1](0)ϕ
′(0). Now, JkV

reg
x is the complement of a linear subspace of

codimension n in JkVx, hence Q extends holomorphically to all of JkVx ≃ (Cr)k by
Riemann’s extension theorem (here we use the hypothesis r > 2 ; if r = 1, the situation is
anyway not interesting since PkV = X for all k). Thus Q admits an everywhere convergent
power series

Q(f ′, f ′′, . . . , f (k)) =
∑

α1,α2,...,αk∈Nr

aα1...αk
(f ′)α1(f ′′)α2 · · · (f (k))αk .

The Gk-invariance (7.10) implies in particular that Q must be multihomogeneous in the
sense of (7.1), and thus Q must be a polynomial. We conclude that Q ∈ Ek,mV

∗
x , as desired.

Conversely, Corollary 6.12 implies that there is a holomorphic family of germs fw :
(C, 0) → X such that (fw)[k](0) = w and (fw)

′
[k−1](0) 6= 0, for all w in a neighborhood of

any given point w0 ∈ PkVx. Then every Q ∈ Ek,mV
∗
x yields a holomorphic section σ of

OPkV (m) over the fiber PkVx by putting

(7.14) σ(w) = Q(f ′
w, f

′′
w, . . . , f

(k)
w )(0)

(
(fw)

′
[k−1](0)

)−m
.

iii) By what we saw in i-ii), every section σ of OPkV (m) over the fiber PkVx is given by a
polynomial Q ∈ Ek,mV

∗
x , and this polynomial can be expressed on the Zariski open chart

f ′
r 6= 0 of PkV

reg
x as

(7.15) Q(f ′, f ′′, . . . , f (k)) = f ′m
r Q̂(g′, g′′, . . . , g(k)),

where Q̂ is a polynomial and g is the reparametrization of f such that gr(τ) = τ . In fact Q̂

is obtained from Q by substituting f ′
r = 1 and f

(j)
r = 0 for j > 2, and conversely Q can be

recovered easily from Q̂ by using the substitutions (7.12).

In this context, the jet differentials f 7→ f ′
1, . . . , f 7→ f ′

r can be viewed as sections of
OPkV (1) on a neighborhood of the fiber PkVx. Since these sections vanish exactly on PkV

sing,
the relative base locus of OPkV (m) is contained in PkV

sing for every m > 0. We see that
OPkV (1) is big by considering the sections of OPkV (2k− 1) associated with the polynomials
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Q(f ′, . . . , f (k)) = f ′2k−1
r g

(j)
i , 1 6 i 6 r − 1, 1 6 j 6 k; indeed, these sections separate all

points in the open chart f ′
r 6= 0 of PkV

reg
x .

Now, we check that every section σ of OPkV (m) over PkVx must vanish on PkV
sing
x . Pick

an arbitrary element w ∈ PkV
sing and a germ of curve f : (C, 0) → X such that f[k](0) = w,

f ′
[k−1](0) 6= 0 and s = m(f, 0) ≫ 0 (such an f exists by Corollary 6.14). There are local

coordinates (z1, . . . , zn) on X such that f(t) = (f1(t), . . . , fn(t)) where fr(t) = ts. Let Q, Q̂
be the polynomials associated with σ in these coordinates and let (f ′)α1(f ′′)α2 · · · (f (k))αk

be a monomial occurring in Q, with αj ∈ Nr, |αj| = ℓj , ℓ1 + 2ℓ2 + · · ·+ kℓk = m. Putting
τ = ts, the curve t 7→ f(t) becomes a Puiseux expansion τ 7→ g(τ) = (g1(τ), . . . , gr−1(τ), τ)
in which gi is a power series in τ1/s, starting with exponents of τ at least equal to 1. The
derivative g(j)(τ) may involve negative powers of τ , but the exponent is always > 1+ 1

s − j.

Hence the Puiseux expansion of Q̂(g′, g′′, . . . , g(k)) can only involve powers of τ of exponent
> −maxℓ((1− 1

s
)ℓ2 + · · ·+ (k − 1− 1

s
)ℓk). Finally f ′

r(t) = sts−1 = sτ1−1/s, thus the

lowest exponent of τ in Q(f ′, . . . , f (k)) is at least equal to

(
1− 1

s

)
m−max

ℓ

((
1− 1

s

)
ℓ2 + · · ·+

(
k − 1− 1

s

)
ℓk

)

> min
ℓ

(
1− 1

s

)
ℓ1 +

(
1− 1

s

)
ℓ2 + · · ·+

(
1− k − 1

s

)
ℓk

where the minimum is taken over all monomials (f ′)α1(f ′′)α2 · · · (f (k))αk , |αj| = ℓj ,
occurring in Q. Choosing s > k, we already find that the minimal exponent is positive,
hence Q(f ′, . . . , f (k))(0) = 0 and σ(w) = 0 by (7.14).

Theorem (7.11 iii) shows that OPkV (1) is never relatively ample over X for k > 2. In
order to overcome this difficulty, we define for every a = (a1, . . . , ak) ∈ Zk a line bundle
OPkV (a) on PkV such that

(7.16) OPkV (a) = π∗
1,kOP1V (a1)⊗ π∗

2,kOP2V (a2)⊗ · · · ⊗ OPkV (ak).

By (6.9), we have π∗
j,kOPjV (1) = OPkV (1)⊗OPkV (−π∗

j+1,kDj+1−· · ·−Dk), thus by putting
D∗

j = π∗
j+1,kDj+1 for 1 6 j 6 k − 1 and D∗

k = 0, we find an identity

OPkV (a) = OPkV (bk)⊗ OPkV (−b ·D∗), where(7.17)

b = (b1, . . . , bk) ∈ Zk, bj = a1 + · · ·+ aj,

b ·D∗ =
∑

16j6k−1

bj π
∗
j+1,kDj+1.

In particular, if b ∈ Nk, i.e., a1 + · · ·+ aj > 0, we get a morphism

(7.18) OPkV (a) = OPkV (bk)⊗ OPkV (−b ·D∗) → OPkV (bk).

7.19. Remark. As in Green-Griffiths [GrGr80], Riemann’s extension theorem shows that
for every meromorphic map Φ : X K Y there are well-defined pullback morphisms

Φ∗ : H0(Y,EGG
k,m) → H0(X,EGG

k,m), Φ∗ : H0(Y,Ek,m) → H0(X,Ek,m).

In particular the dimensions h0(X,EGG
k,m) and h0(X,EGG

k,m) are bimeromorphic invariants

of X . The same is true for spaces of sections of any subbundle of EGG
k,m or Ek,m constructed

by means of the canonical filtrations F •
s .
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7.20. Remark. As Gk is a non reductive group, it is not a priori clear that the graded
ring An,k,r =

⊕
m∈ZEk,mV

⋆ is finitely generated (pointwise). This can be checked by hand
([Dem07a], [Dem07b]) for n = 2 and k > 4. Rousseau [Rou06b] also checked the case n = 3,
k = 3, and then Merker [Mer08] proved the finiteness for n = 2, k = 5. Recently, Bérczi and
Kirwan [BeKi10] found a nice geometric argument proving the finiteness in full generality.

§8. k-jet metrics with negative curvature

The goal of this section is to show that hyperbolicity is closely related to the existence of
k-jet metrics with suitable negativity properties of the curvature. The connection between
these properties is in fact a simple consequence of the Ahlfors-Schwarz lemma. Such ideas
have been already developed long ago by Grauert-Reckziegel [GRec65], Kobayashi [Kob75]
for 1-jet metrics (i.e., Finsler metrics on TX) and by Cowen-Griffiths [CoGr76], Green-
Griffiths [GrGr80] and Grauert [Gra89] for higher order jet metrics.

§8.A. Definition of k-jet metrics

Even in the standard case V = TX , the definition given below differs from that of
[GrGr80], in which the k-jet metrics are not supposed to be G′

k-invariant. We prefer to deal
here with G′

k-invariant objects, because they reflect better the intrinsic geometry. Grauert
[Gra89] actually deals with G′

k-invariant metrics, but he apparently does not take care of the
way the quotient space J reg

k V/Gk can be compactified; also, his metrics are always induced
by the Poincaré metric, and it is not at all clear whether these metrics have the expected
curvature properties (see 8.14 below). In the present situation, it is important to allow also
hermitian metrics possessing some singularities (“singular hermitian metrics” in the sense
of [Dem90]).

8.1. Definition. Let L→ X be a holomorphic line bundle over a complex manifold X. We

say that h is a singular metric on L if for any trivialization L↾U ≃ U × C of L, the metric

is given by |ξ|2h = |ξ|2e−ϕ for some real valued weight function ϕ ∈ L1
loc(U). The curvature

current of L is then defined to be the closed (1, 1)-current ΘL,h = i
2π
∂∂ϕ, computed in the

sense of distributions. We say that h admits a closed subset Σ ⊂ X as its degeneration set

if ϕ is locally bounded on X r Σ and is unbounded on a neighborhood of any point of Σ.

An especially useful situation is the case when the curvature of h is positive definite.
By this, we mean that there exists a smooth positive definite hermitian metric ω and a
continuous positive function ε on X such that ΘL,h > εω in the sense of currents, and we
write in this case ΘL,h ≫ 0. We need the following basic fact (quite standard when X is
projective algebraic; however we want to avoid any algebraicity assumption here, so as to
be able to cover the case of general complex tori in § 10).

8.2. Proposition. Let L be a holomorphic line bundle on a compact complex manifold X.

i) L admits a singular hermitian metric h with positive definite curvature current ΘL,h ≫ 0
if and only if L is big.

Now, define Bm to be the base locus of the linear system |H0(X,L⊗m)| and let

Φm : X rBm → PN

be the corresponding meromorphic map. Let Σm be the closed analytic set equal to the union

of Bm and of the set of points x ∈ X r Bm such that the fiber Φ−1
m (Φm(x)) is positive

dimensional.
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ii) If Σm 6= X and G is any line bundle, the base locus of L⊗k ⊗ G−1 is contained in Σm

for k large. As a consequence, L admits a singular hermitian metric h with degeneration

set Σm and with ΘL,h positive definite on X.

iii) Conversely, if L admits a hermitian metric h with degeneration set Σ and positive

definite curvature current ΘL,h, there exists an integer m > 0 such that the base locus

Bm is contained in Σ and Φm : X r Σ → Pm is an embedding.

Proof. i) is proved e.g. in [Dem90, 92], and ii) and iii) are well-known results in the basic
theory of linear systems.

We now come to the main definitions. By (6.6), every regular k-jet f ∈ JkV gives rise
to an element f ′

[k−1](0) ∈ OPkV (−1). Thus, measuring the “norm of k-jets” is the same as

taking a hermitian metric on OPkV (−1).

8.3. Definition. A smooth, (resp. continuous, resp. singular) k-jet metric on a complex

directed manifold (X, V ) is a hermitian metric hk on the line bundle OPkV (−1) over PkV
(i.e. a Finsler metric on the vector bundle Vk−1 over Pk−1V ), such that the weight functions

ϕ representing the metric are smooth (resp. continuous, L1
loc). We let Σhk

⊂ PkV be the

singularity set of the metric, i.e., the closed subset of points in a neighborhood of which the

weight ϕ is not locally bounded.

We will always assume here that the weight function ϕ is quasi psh. Recall that a
function ϕ is said to be quasi psh if ϕ is locally the sum of a plurisubharmonic function and
of a smooth function (so that in particular ϕ ∈ L1

loc). Then the curvature current

Θh−1
k
(OPkV (1)) =

i

2π
∂∂ϕ.

is well defined as a current and is locally bounded from below by a negative (1, 1)-form with
constant coefficients.

8.4. Definition. Let hk be a k-jet metric on (X, V ). We say that hk has negative jet

curvature (resp. negative total jet curvature) if Θhk
(OPkV (−1)) is negative definite along the

subbundle Vk ⊂ TPkV (resp. on all of TPkV ), i.e., if there is ε > 0 and a smooth hermitian

metric ωk on TPkV such that

〈Θh−1
k
(OPkV (1))〉(ξ) > ε|ξ|2ωk

, ∀ξ ∈ Vk ⊂ TPkV (resp. ∀ξ ∈ TPkV ).

(If the metric hk is not smooth, we suppose that its weights ϕ are quasi psh, and the curvature

inequality is taken in the sense of distributions.)

It is important to observe that for k > 2 there cannot exist any smooth hermitian metric
hk on OPkV (1) with positive definite curvature along TXk/X , since OPkV (1) is not relatively
ample over X . However, it is relatively big, and Prop. 8.2 i) shows that OPkV (−1) admits a
singular hermitian metric with negative total jet curvature (whatever the singularities of the
metric are) if and only if OPkV (1) is big over PkV . It is therefore crucial to allow singularities
in the metrics in Def. 8.4.

§8.B. Special case of 1-jet metrics

A 1-jet metric h1 on OP1V (−1) is the same as a Finsler metric N =
√
h1 on V ⊂ TX .

Assume until the end of this paragraph that h1 is smooth. By the well known Kodaira
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embedding theorem, the existence of a smooth metric h1 such that Θh−1
1
(OP1V (1)) is positive

on all of TP1V is equivalent to OP1V (1) being ample, that is, V ∗ ample.

8.5 Remark. In the absolute case V = TX , there are only few examples of varieties X such
that T ∗

X is ample, mainly quotients of the ball Bn ⊂ Cn by a discrete cocompact group of
automorphisms.

The 1-jet negativity condition considered in Definition 8.4 is much weaker. For example,
if the hermitian metric h1 comes from a (smooth) hermitian metric h on V , then formula
(5.16) implies that h1 has negative total jet curvature (i.e. Θh−1

1
(OP1V (1)) is positive) if and

only if 〈ΘV,h〉(ζ⊗v) < 0 for all ζ ∈ TX r{0}, v ∈ V r{0}, that is, if (V, h) is negative in the

sense of Griffiths. On the other hand, V1 ⊂ TP1V consists by definition of tangent vectors
τ ∈ TP1V,(x,[v]) whose horizontal projection Hτ is proportional to v, thus Θh1

(OP1V (−1))
is negative definite on V1 if and only if ΘV,h satisfies the much weaker condition that the
holomorphic sectional curvature 〈ΘV,h〉(v ⊗ v) is negative on every complex line.

§8.C. Vanishing theorem for invariant jet differentials

We now come back to the general situation of jets of arbitrary order k. Our first
observation is the fact that the k-jet negativity property of the curvature becomes actually
weaker and weaker as k increases.

8.6. Lemma. Let (X, V ) be a compact complex directed manifold. If (X, V ) has a (k − 1)-
jet metric hk−1 with negative jet curvature, then there is a k-jet metric hk with negative jet

curvature such that Σhk
⊂ π−1

k (Σhk−1
) ∪ Dk. (The same holds true for negative total jet

curvature).

Proof. Let ωk−1, ωk be given smooth hermitian metrics on TPk−1V and TPkV . The hypothesis
implies

〈Θh−1
k−1

(OPk−1V (1))〉(ξ) > ε|ξ|2ωk−1
, ∀ξ ∈ Vk−1

for some constant ε > 0. On the other hand, as OPkV (Dk) is relatively ample over Pk−1V

(Dk is a hyperplane section bundle), there exists a smooth metric h̃ on OPkV (Dk) such that

〈Θ
h̃
(OPkV (Dk))〉(ξ) > δ|ξ|2ωk

− C|(πk)∗ξ|2ωk−1
, ∀ξ ∈ TPkV

for some constants δ, C > 0. Combining both inequalities (the second one being applied to
ξ ∈ Vk and the first one to (πk)∗ξ ∈ Vk−1), we get

〈Θ
(π∗

k
hk−1)−ph̃

(π∗
kOPk−1V (p)⊗ OPkV (Dk))〉(ξ) >

> δ|ξ|2ωk
+ (pε− C)|(πk)∗ξ|2ωk−1

, ∀ξ ∈ Vk.

Hence, for p large enough, (π∗
khk−1)

−ph̃ has positive definite curvature along Vk. Now, by
(6.9), there is a sheaf injection

OPkV (−p) = π∗
kOPk−1V (−p)⊗ OPkV (−pDk) →֒

(
π∗
kOPk−1V (p)⊗ OPkV (Dk)

)−1

obtained by twisting with OPkV ((p − 1)Dk). Therefore hk := ((π∗
khk−1)

−ph̃)−1/p =

(π∗
khk−1)h̃

−1/p induces a singular metric on OPkV (1) in which an additional degeneration
divisor p−1(p− 1)Dk appears. Hence we get Σhk

= π−1
k Σhk−1

∪Dk and

Θh−1
k
(OPkV (1)) =

1

p
Θ

(π∗

k
hk−1)−ph̃

+
p− 1

p
[Dk]
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is positive definite along Vk. The same proof works in the case of negative total jet curvature.

One of the main motivations for the introduction of k-jets metrics is the following list
of algebraic sufficient conditions.

8.7. Algebraic sufficient conditions. We suppose here that X is projective algebraic,
and we make one of the additional assumptions i), ii) or iii) below.

i) Assume that there exist integers k,m > 0 and b ∈ Nk such that the line bundle
OPkV (m) ⊗ OPkV (−b ·D∗) is ample over PkV . Set A = OPkV (m) ⊗ OPkV (−b ·D∗). Then
there is a smooth hermitian metric hA on A with positive definite curvature on PkV . By
means of the morphism µ : OPkV (−m) → A−1, we get an induced metric hk = (µ∗h−1

A )1/m

on OPkV (−1) which is degenerate on the support of the zero divisor div(µ) = b ·D∗. Hence
Σhk

= Supp(b ·D∗) ⊂ PkV
sing and

Θh−1
k
(OPkV (1)) =

1

m
ΘhA

(A) +
1

m
[b ·D∗] >

1

m
ΘhA

(A) > 0.

In particular hk has negative total jet curvature.

ii) Assume more generally that there exist integers k,m > 0 and an ample line bundle L on
X such that H0(PkV,OPkV (m) ⊗ π∗

0,kL
−1) has non zero sections σ1, . . . , σN . Let Z ⊂ PkV

be the base locus of these sections; necessarily Z ⊃ PkV
sing by 7.11 iii). By taking a smooth

metric hL with positive curvature on L, we get a singular metric h′k on OPkV (−1) such that

h′k(ξ) =
( ∑

16j6N

|σj(w) · ξm|2
h−1
L

)1/m
, w ∈ PkV, ξ ∈ OPkV (−1)w.

Then Σh′

k
= Z, and by computing i

2π∂∂ logh
′
k(ξ) we obtain

Θh′ −1
k

(OPkV (1)) >
1

m
π∗
0,kΘL.

By (7.18) and 7.19 iii), there exists b ∈ Qk
+ such that OPkV (1)⊗OPkV (−b ·D∗) is relatively

ample over X . Hence A = OPkV (1) ⊗ OPkV (−b · D∗) ⊗ π∗
0,kL

⊗p is ample on X for
p ≫ 0. The arguments used in i) show that there is a k-jet metric h′′k on OPkV (−1) with
Σh′′

k
= Supp(b ·D∗) = PkV

sing and

Θh′′ −1
k

(OPkV (1)) = ΘA + [b ·D∗]− p π∗
0,kΘL,

where ΘA is positive definite on PkV . The metric hk = (h′mp
k h′′k)

1/(mp+1) then satisfies
Σhk

= Σh′

k
= Z and

Θh−1
k
(OPkV (1)) >

1

mp+ 1
ΘA > 0.

iii) If Ek,mV
∗ is ample, there is an ample line bundle L and a sufficiently high symmetric

power such that Sp(Ek,mV
∗)⊗ L−1 is generated by sections. These sections can be viewed

as sections of OPkV (mp) ⊗ π∗
0,kL

−1 over PkV , and their base locus is exactly Z = PkV
sing

by 7.11 iii). Hence the k-jet metric hk constructed in ii) has negative total jet curvature and
satisfies Σhk

= PkV
sing.
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An important fact, first observed by [GRe65] for 1-jet metrics and by [GrGr80] in the
higher order case, is that k-jet negativity implies hyperbolicity. In particular, the existence
of enough global jet differentials implies hyperbolicity.

8.8. Theorem. Let (X, V ) be a compact complex directed manifold. If (X, V ) has a k-jet
metric hk with negative jet curvature, then every entire curve f : C → X tangent to V is

such that f[k](C) ⊂ Σhk
. In particular, if Σhk

⊂ PkV
sing, then (X, V ) is hyperbolic.

Proof. The main idea is to use the Ahlfors-Schwarz lemma, following the approach of
[GrGr80]. However we will give here all necessary details because our setting is slightly
different. Assume that there is a k-jet metric hk as in the hypotheses of Theorem 8.8. Let
ωk be a smooth hermitian metric on TPkV . By hypothesis, there exists ε > 0 such that

〈Θh−1
k
(OPkV (1))〉(ξ) > ε|ξ|2ωk

∀ξ ∈ Vk.

Moreover, by (6.4), (πk)∗ maps Vk continuously to OPkV (−1) and the weight eϕ of hk is
locally bounded from above. Hence there is a constant C > 0 such that

|(πk)∗ξ|2hk
6 C|ξ|2ωk

, ∀ξ ∈ Vk.

Combining these inequalities, we find

〈Θh−1
k
(OPkV (1))〉(ξ) >

ε

C
|(πk)∗ξ|2hk

, ∀ξ ∈ Vk.

Now, let f : ∆R → X be a non constant holomorphic map tangent to V on the disk ∆R.
We use the line bundle morphism (6.6)

F = f ′
[k−1] : T∆R

→ f∗
[k]OPkV (−1)

to obtain a pullback metric

γ = γ0(t) dt⊗ dt = F ∗hk on T∆R
.

If f[k](∆R) ⊂ Σhk
then γ ≡ 0. Otherwise, F (t) has isolated zeroes at all singular points

of f[k−1] and so γ(t) vanishes only at these points and at points of the degeneration set
(f[k])

−1(Σhk
) which is a polar set in ∆R. At other points, the Gaussian curvature of γ

satisfies

i ∂∂ log γ0(t)

γ(t)
=

−2π (f[k])
∗Θhk

(OPkV (−1))

F ∗hk
=

〈Θh−1
k
(OPkV (1))〉(f ′

[k](t))

|f ′
[k−1](t)|2hk

>
ε

C
,

since f ′
[k−1](t) = (πk)∗f

′
[k](t). The Ahlfors-Schwarz lemma 4.2 implies that γ can be

compared with the Poincaré metric as follows:

γ(t) 6
2C

ε

R−2|dt|2
(1− |t|2/R2)2

=⇒ |f ′
[k−1](t)|2hk

6
2C

ε

R−2

(1− |t|2/R2)2
.

If f : C → X is an entire curve tangent to V such that f[k](C) 6⊂ Σhk
, the above estimate

implies as R → +∞ that f[k−1] must be a constant, hence also f . Now, if Σhk
⊂ PkV

sing,
the inclusion f[k](C) ⊂ Σhk

implies f ′(t) = 0 at every point, hence f is a constant and
(X, V ) is hyperbolic.
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Combining Theorem 8.8 with 8.7 ii) and iii), we get the following consequences.

8.9. Corollary. Assume that there exist integers k,m > 0 and an ample line bundle L on

X such that H0(PkV,OPkV (m)⊗π∗
0,kL

−1) ≃ H0(X,Ek,m(V ∗)⊗L−1) has non zero sections

σ1, . . . , σN . Let Z ⊂ PkV be the base locus of these sections. Then every entire curve

f : C → X tangent to V is such that f[k](C) ⊂ Z. In other words, for every global Gk-

invariant polynomial differential operator P with values in L−1, every entire curve f must

satisfy the algebraic differential equation P (f) = 0.

8.10. Corollary. Let (X, V ) be a compact complex directed manifold. If Ek,mV
∗ is ample

for some positive integers k,m, then (X, V ) is hyperbolic.

8.11. Remark. Green and Griffiths [GrGr80] stated that Corollary 8.9 is even true with
sections σj ∈ H0(X,EGG

k,m(V ∗)⊗L−1), in the special case V = TX they consider. We refer to
[SiYe97] by Siu and Yeung for a detailed proof of this fact, based on a use of the well-known
logarithmic derivative lemma in Nevanlinna theory (the original proof given in [GrGr80]
does not seem to be complete, as it relies on an unsettled pointwise version of the Ahlfors-
Schwarz lemma for general jet differentials); other proofs seem to have been circulating in
the literature in the last years. We give here a very short proof for the case when f is
supposed to have a bounded derivative (thanks to the Brody criterion, this is enough if one
is merely interested in proving hyperbolicity, thus Corollary 8.10 will be valid with EGG

k,mV
∗

in place of Ek,mV
∗). In fact, if f ′ is bounded, one can apply the Cauchy inequalities to

all components fj of f with respect to a finite collection of coordinate patches covering X .
As f ′ is bounded, we can do this on sufficiently small discs D(t, δ) ⊂ C of constant radius
δ > 0. Therefore all derivatives f ′, f ′′, . . . f (k) are bounded. From this we conclude that
σj(f) is a bounded section of f∗L−1. Its norm |σj(f)|L−1 (with respect to any positively
curved metric | |L on L) is a bounded subharmonic function, which is moreover strictly
subharmonic at all points where f ′ 6= 0 and σj(f) 6= 0. This is a contradiction unless f is
constant or σj(f) ≡ 0.

The above results justify the following definition and problems.

8.12. Definition. We say that X, resp. (X, V ), has non degenerate negative k-jet curvature
if there exists a k-jet metric hk on OPkV (−1) with negative jet curvature such that Σhk

⊂
PkV

sing.

8.13. Conjecture. Let (X, V ) be a compact directed manifold. Then (X, V ) is hyperbolic

if and only if (X, V ) has nondegenerate negative k-jet curvature for k large enough.

This is probably a hard problem. In fact, we will see in the next section that the
smallest admissible integer k must depend on the geometry of X and need not be uniformly
bounded as soon as dimX > 2 (even in the absolute case V = TX). On the other hand, if
(X, V ) is hyperbolic, we get for each integer k > 1 a generalized Kobayashi-Royden metric
k(Pk−1V,Vk−1) on Vk−1 (see Definitions 1.2 and 2.1), which can be also viewed as a k-jet
metric hk on OPkV (−1) ; we will call it the Grauert k-jet metric of (X, V ), although it
formally differs from the jet metric considered in [Gra89] (see also [DGr91]). By looking at
the projection πk : (PkV, Vk) → (Pk−1V, Vk−1), we see that the sequence hk is monotonic,
namely π∗

khk 6 hk+1 for every k. If (X, V ) is hyperbolic, then h1 is nondegenerate and
therefore by monotonicity Σhk

⊂ PkV
sing for k > 1. Conversely, if the Grauert metric

satisfies Σhk
⊂ PkV

sing, it is easy to see that (X, V ) is hyperbolic. The following problem
is thus especially meaningful.
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8.14. Problem. Estimate the k-jet curvature Θh−1
k
(OPkV (1)) of the Grauert metric hk on

(PkV, Vk) as k tends to +∞.

§8.D. Vanishing theorem for non invariant k-jet differentials

We prove here a more general vanishing theorem which strengthens Theorem 8.8 and
Corollary 8.9. In this form, the result is due to Siu and Yeung ([SiYe96a, SiYe97], [Siu97],
cf. also [Dem97] for a more detailed account (in French)).

8.15. Fundamental vanishing theorem. Let (X, V ) be a directed projective vari-

ety and f : (C, TC) → (X, V ) an entire curve tangent to V . Then for every global

section P ∈ H0(X,EGG
k,mV

∗ ⊗ O(−A)) where A is an ample divisor of X, one has

P (f ; f ′, f ′′, . . . , f (k)) = 0.

Proof. After raising P to a power P s and replacing O(−A) with O(−sA), one can always
assume that A is very ample divisor. We interpret EGG

k,mV
∗⊗O(−A) as the bundle of complex

valued differential operators whose coefficients aα(z) vanish along A.

Let us first give the proof of (8.15) in the special case where f is a brody curve, i.e.
supt∈C ‖f ′(t)‖ω < +∞ with respect to a given Hermitian metric ω on X . Fix a finite
open covering of X by coordinate balls B(pj , Rj) such that the balls Bj(pj , Rj/4) still
cover X . As f ′ is bounded, there exists δ > 0 such that for f(t0) ∈ B(pj, Rj/4) we
have f(t) ∈ B(pj , Rj/2) whenever |t − t0| < δ, uniformly for every t0 ∈ C. The Cauchy
inequalities applied to the components of f in each of the balls imply that the derivatives
f (j)(t) are bounded on C, and therefore, since the coefficients aα(z) of P are also uniformly
bounded on each of the balls B(pj, Rj/2) we conclude that g := P (f ; f ′, f ′′, . . . , f (k)) is
a bounded holomorphic function on C. After moving A in the linear system |A|, we may
further assume that SuppA intersects f(C). Then g vanishes somewhere, hence g ≡ 0 by
Liouville’s theorem, as expected.

The proof for the general case where f ′ is unbounded is slightly more subtle (cf. [Siu87]),
and makes use of Nevanlinna theory, especially the logarithmic derivative lemma. Assume
that g = P (f ′, . . . , f (k)) does not vanish identically. Fix a hermitian metric h on O(−A)
such that ω := ΘO(A),h−1 > 0 is a Kähler metric. The starting point is the inequality

i

2π
∂∂ log ‖g‖2h =

i

2π
∂∂ log ‖P (f ′, . . . , f (k))‖2h > f∗ω.

In fact, as we are on C, the Lelong-Poincaré equation shows that the left hand side is equal
to the right hand side plus a certain linear combination of Dirac measures at points where
P (f ′, . . . , f (k)) vanishes. Let us consider the growth and proximity functions

Tf,ω(r) :=

∫ r

r0

dρ

ρ

∫

D(0,ρ)

f∗ω,(8.16)

mg(r) :=
1

2π

∫ 2π

0

log+ ‖g(r eiθ)‖2h dθ.(8.17)

We get

(8.18) Tf,ω(r) 6

∫ r

r0

dρ

ρ

∫

D(0,ρ)

i

2π
∂∂ log ‖g‖2h = mg(r) + Const

thanks to the Jensen formula. Now, consider a (finite) family of rational functions (uj) on
X such that one can extract local coordinates from local determinations of the logarithms
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log uj at any point of X (if X is embedded in some projective space, it is sufficient to take
rational functions of the form uj(z) = ℓj(z)/ℓ

′
j(z) where ℓj , ℓ

′
j are linear forms; we also view

the uj ’s as rational maps uj : X K P1). One can then express locally P (f ′, . . . , f (k)) as
a polynomial Q in the logarithmic derivatives Dp(log uj ◦ f), with holomorphic coefficients
in f , i.e.,

g = P (f ′, . . . , f (k)) = Q
(
f,Dp(log uj ◦ f)p,j

)
, Q(z, vp,j) =

∑
aα(z)v

α.

By compactness of X , we infer

(8.19) mg(r) =
1

2π

∫ 2π

0

log+ ‖g(r eiθ)‖2h dθ 6 C1

∑

j, 16p6k

mDp(log uj◦f)(r) + C2

with suitable constants C1, C2. The logarithmic derivative lemma states that for every
meromorphic function h : C → P1 we have

mDp logh(r) 6 log r + (1 + ε) log+ Th,ωFS
(r) +O(1) //,

where the notation // indicates as usual that the inequality holds true outside a set of finite
Lebesgue measure in [0,+∞[. We apply this to h = uj ◦ f and use the standard fact that
Tuj◦f,ωFS

(r) 6 CjTf,ω(r). We find in this way

(8.20) mDp(log uj◦f)(r) 6 C3

(
log r + log+ Tf,ω(r)

)
//.

By putting (8.18–8.20) together, one obtains

Tf,ω(r) 6 C
(
log r + log+ Tf,ω(r)

)
//.

We infer from here that Tf,ω(r) = O(log r), hence f(C) has a finite total area. By well

known facts of Nevanlinna theory, we conclude that C = f(C) is a rational curve and that
f extends as a rational map P1 → X . In particular the derivative f ′ is bounded, but then
the first case of the proof can be applied to conclude that g = P (f ′, . . . , f (k)) ≡ 0.

§8.E. Bloch theorem

The core of the result can be expressed as a characterization of the Zariski closure of an
entire curve drawn on a complex torus. The proof is a simple consequence of the Ahlfors-
Schwarz lemma (more specifically Theorem 8.8), combined with a jet bundle argument. We
refer to [Och], [GrG80] (also [Dem95]) for a detailed proof.

8.21. Theorem. Let Z be a complex torus and let f : C → Z be a holomorphic map. Then

the (analytic) Zariski closure f(C)Zar is a translate of a subtorus, i.e. of the form a + Z ′,

a ∈ Z, where Z ′ ⊂ Z is a subtorus.

The converse is of course also true: for any subtorus Z ′ ⊂ Z, we can choose a dense line
L ⊂ Z ′, and the corresponding map f : C ≃ a+L →֒ Z has Zariski closure f(C)Zar = a+Z ′.

§9. Morse inequalities and the Green-Griffiths-Lang conjecture

The goal of this section is to study the existence and properties of entire curves
f : C → X drawn in a complex irreducible n-dimensional variety X , and more specifically
to show that they must satisfy certain global algebraic or differential equations as soon
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as X is projective of general type. By means of holomorphic Morse inequalities and a
probabilistic analysis of the cohomology of jet spaces, we are able to prove a significant step
of a generalized version of the Green-Griffiths-Lang conjecture on the algebraic degeneracy of
entire curves. The use of holomorphic Morse inequalities was first suggested in [Dem07a], and
then carried out in an algebraic context by S. Diverio in his PhD work ([Div08, Div09]). The
general more analytic and more powerful results presented here first appeared in [Dem11].
We refer to [Dem12] for a more detailed exposition.

§9.A. Introduction

Our main target is the following deep conjecture concerning the algebraic degeneracy
of entire curves, which generalizes the similar absolute statements given in § 4 (see also
[GrGr79], [Lang86, Lang87]).

9.1. Generalized Green-Griffiths-Lang conjecture. Let (X, V ) be a projective directed

manifold such that the canonical sheaf KV is big (in the absolute case V = TX , this means

that X is a variety of general type, and in the relative case we will say that (X, V ) is of

general type). Then there should exist an algebraic subvariety Y ( X such that every non

constant entire curve f : C → X tangent to V is contained in Y .

The precise meaning of KV and of its bigness will be explained below – our definition
does not coincide with other frequently used definitions and is in our view better suited to
the study of entire curves of (X, V ). One says that (X, V ) is Brody-hyperbolic when there
are no entire curves tangent to V . According to (generalized versions of) conjectures of
Kobayashi [Kob70, Kob76] the hyperbolicity of (X, V ) should imply that KV is big, and
even possibly ample, in a suitable sense. It would then follow from conjecture (9.1) that
(X, V ) is hyperbolic if and only if for every irreducible variety Y ⊂ X , the linear subspace

(9.2) V
Ỹ
= T

Ỹ rE
∩ µ−1

∗ V ⊂ T
Ỹ

has a big canonical sheaf whenever µ : Ỹ → Y is a desingularization and E is the exceptional
locus.

By definition, proving the algebraic degeneracy means finding a non zero polynomial P
on X such that all entire curves f : C → X satisfy P (f) = 0. As already explained in § 14,
all known methods of proof are based on establishing first the existence of certain algebraic
differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0 of some order k, and then trying to find
enough such equations so that they cut out a proper algebraic locus Y ( X . We use for this
global sections of H0(X,EGG

k,mV
∗ ⊗ O(−A)) where A is ample, and apply the fundamental

vanishing theorem 8.9. It is expected that the global sections of H0(X,EGG
k,mV

∗ ⊗ O(−A))
are precisely those which ultimately define the algebraic locus Y ( X where the curve f
should lie. The problem is then reduced to (i) showing that there are many non zero sections
of H0(X,EGG

k,mV
∗ ⊗ O(−A)) and (ii) understanding what is their joint base locus. The first

part of this program is the main result of this section.

9.3. Theorem. Let (X, V ) be a directed projective variety such that KV is big and let A
be an ample divisor. Then for k ≫ 1 and δ ∈ Q+ small enough, δ 6 c(log k)/k, the number

of sections h0(X,EGG
k,mV

∗ ⊗ O(−mδA)) has maximal growth, i.e. is larger that ckm
n+kr−1

for some m > mk, where c, ck > 0, n = dimX and r = rankV . In particular, entire curves

f : (C, TC) → (X, V ) satisfy (many) algebraic differential equations.

The statement is very elementary to check when r = rank V = 1, and therefore when
n = dimX = 1. In higher dimensions n > 2, only very partial results were known at
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this point, concerning merely the absolute case V = TX . In dimension 2, Theorem 9.3
is a consequence of the Riemann-Roch calculation of Green-Griffiths [GrGr79], combined
with a vanishing theorem due to Bogomolov [Bog79] – the latter actually only applies to
the top cohomology group Hn, and things become much more delicate when extimates of
intermediate cohomology groups are needed. In higher dimensions, Diverio [Div08, Div09]
proved the existence of sections of H0(X,EGG

k,mV
∗ ⊗ O(−1)) whenever X is a hypersurface

of Pn+1
C of high degree d > dn, assuming k > n and m > mn. More recently, Merker

[Mer10] was able to treat the case of arbitrary hypersurfaces of general type, i.e. d > n+ 3,
assuming this time k to be very large. The latter result is obtained through explicit algebraic
calculations of the spaces of sections, and the proof is computationally very intensive. Bérczi
[Ber10] also obtained related results with a different approach based on residue formulas,
assuming d > 27n logn.

All these approaches are algebraic in nature. Here, however, our techniques are based on
more elaborate curvature estimates in the spirit of Cowen-Griffiths [CoGr76]. They require
holomorphic Morse inequalities (see 9.10 below) – and we do not know how to translate our
method in an algebraic setting. Notice that holomorphic Morse inequalities are essentially
insensitive to singularities, as we can pass to non singular models and blow-up X as much
as we want: if µ : X̃ → X is a modification then µ∗OX̃

= OX and Rqµ∗OX̃
is supported on

a codimension 1 analytic subset (even codimension 2 if X is smooth). It follows from the
Leray spectral sequence that the cohomology estimates for L on X or for L̃ = µ∗L on X̃
differ by negligible terms, i.e.

(9.4) hq(X̃, L̃⊗m)− hq(X,L⊗m) = O(mn−1).

Finally, singular holomorphic Morse inequalities (in the form obatined by L. Bonavero
[Bon93]) allow us to work with singular Hermitian metrics h; this is the reason why we
will only require to have big line bundles rather than ample line bundles. In the case of
linear subspaces V ⊂ TX , we introduce singular Hermitian metrics as follows.

9.5. Definition. A singular Hermitian metric on a linear subspace V ⊂ TX is a metric h
on the fibers of V such that the function logh : ξ 7→ log |ξ|2h is locally integrable on the total

space of V .

Such a metric can also be viewed as a singular Hermitian metric on the tautological line
bundle OP (V )(−1) on the projectivized bundle P (V ) = V r {0}/C∗, and therefore its dual
metric h∗ defines a curvature current ΘOP (V )(1),h∗ of type (1, 1) on P (V ) ⊂ P (TX), such
that

p∗ΘOP (V )(1),h∗ =
i

2π
∂∂ logh, where p : V r {0} → P (V ).

If logh is quasi-plurisubharmonic (or quasi-psh, which means psh modulo addition of a
smooth function) on V , then log h is indeed locally integrable, and we have moreover

(9.6) ΘOP (V )(1),h∗ > −Cω

for some smooth positive (1, 1)-form on P (V ) and some constant C > 0 ; conversely, if (9.6)
holds, then log h is quasi-psh.

9.7. Definition. We will say that a singular Hermitian metric h on V is admissible if

h can be written as h = eϕh0|V where h0 is a smooth positive definite Hermitian on TX
and ϕ is a quasi-psh weight with analytic singularities on X, as in Definition 9.5. Then h
can be seen as a singular Hermitian metric on OP (V )(1), with the property that it induces a
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smooth positive definite metric on a Zariski open set X ′ ⊂ X r Sing(V ) ; we will denote by

Sing(h) ⊃ Sing(V ) the complement of the largest such Zariski open set X ′.

If h is an admissible metric, we define Oh(V
∗) to be the sheaf of germs of holomorphic

sections sections of V ∗
|XrSing(h) which are h∗-bounded near Sing(h); by the assumption on

the analytic singularities, this is a coherent sheaf (as the direct image of some coherent sheaf
on P (V )), and actually, since h∗ = e−ϕh∗0, it is a subsheaf of the sheaf O(V ∗) := Oh0

(V ∗)
associated with a smooth positive definite metric h0 on TX . If r is the generic rank of V and
m a positive integer, we define similarly Km

V,h to be sheaf of germs of holomorphic sections

of (detV ∗
|X′)⊗m = (ΛrV ∗

|X′)⊗m which are det h∗-bounded, and Km
V := Km

V,h0
.

If V is defined by α : X K Gr(TX), there always exists a modification µ : X̃ → X
such that the composition α ◦ µ : X̃ → Gr(µ

∗TX) becomes holomorphic, and then
µ∗V|µ−1(XrSing(V )) extends as a locally trivial subbundle of µ∗TX which we will simply
denote by µ∗V . If h is an admissible metric on V , then µ∗V can be equipped with the
metric µ∗h = eϕ◦µµ∗h0 where µ∗h0 is smooth and positive definite. We may assume that
ϕ ◦ µ has divisorial singularities (otherwise just perform further blow-ups of X̃ to achieve
this). We then see that there is an integer m0 such that for all multiples m = pm0 the
pull-back µ∗Km

V,h is an invertible sheaf on X̃, and det h∗ induces a smooth non singular
metric on it (when h = h0, we can even take m0 = 1). By definition we always have
Km

V,h = µ∗(µ
∗Km

V,h) for any m > 0. In the sequel, however, we think of KV,h not really as a
coherent sheaf, but rather as the “virtual” Q-line bundle µ∗(µ

∗Km0

V,h)
1/m0 , and we say that

KV,h is big if h0(X,Km
V,h) > cmn for m > m1, with c > 0 , i.e. if the invertible sheaf µ∗Km0

V,h

is big in the usual sense.

At this point, it is important to observe that “our” canonical sheaf KV differs from
the sheaf KV := i∗O(KV ) associated with the injection i : X r Sing(V ) →֒ X , which is
usually referred to as being the “canonical sheaf”, at least when V is the space of tangents
to a foliation. In fact, KV is always an invertible sheaf and there is an obvious inclusion
KV ⊂ KV . More precisely, the image of O(ΛrT ∗

X) → KV is equal to KV ⊗OX
J for a certain

coherent ideal J ⊂ OX , and the condition to have h0-bounded sections on X r Sing(V )
precisely means that our sections are bounded by Const

∑
|gj| in terms of the generators

(gj) of KV ⊗OX
J, i.e. KV = KV ⊗OX

J where J is the integral closure of J. More generally,

(9.8) Km
V,h = Km

V ⊗OX
J
m/m0

h,m0

where J
m/m0

h,m0
⊂ OX is the (m/m0)-integral closure of a certain ideal sheaf Jh,m0

⊂ OX ,
which can itself be assumed to be integrally closed; in our previous discussion, µ is chosen
so that µ∗Jh,m0

is invertible on X̃ .

The discrepancy already occurs e.g. with the rank 1 linear space V ⊂ TPn
C
consisting

at each point z 6= 0 of the tangent to the line (0z) (so that necessarily V0 = TPn
C
,0). As a

sheaf (and not as a linear space), i∗O(V ) is the invertible sheaf generated by the vector field
ξ =

∑
zj∂/∂zj on the affine open set Cn ⊂ Pn

C, and therefore KV := i∗O(V
∗) is generated

over Cn by the unique 1-form u such that u(ξ) = 1. Since ξ vanishes at 0, the generator
u is unbounded with respect to a smooth metric h0 on TPn

C
, and it is easily seen that KV

is the non invertible sheaf KV = KV ⊗ mPn
C
,0. We can make it invertible by considering

the blow-up µ : X̃ → X of X = Pn
C at 0, so that µ∗KV is isomorphic to µ∗KV ⊗ O

X̃
(−E)

where E is the exceptional divisor. The integral curves C of V are of course lines through 0,
and when a standard parametrization is used, their derivatives do not vanish at 0, while
the sections of i∗O(V ) do – another sign that i∗O(V ) and i∗O(V

∗) are the wrong objects to
consider. Another standard example is obtained by taking a generic pencil of elliptic curves
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λP (z) + µQ(z) = 0 of degree 3 in P2
C, and the linear space V consisting of the tangents to

the fibers of the rational map P2
C K P1

C defined by z 7→ Q(z)/P (z). Then V is given by

0 −→ i∗O(V ) −→ O(TP2
C

)
PdQ−QdP→ OP2

C

(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0} ∩ {Q(z) = 0}, and JS is the
corresponding ideal sheaf of S. Since detO(TP2) = O(3), we see that KV = O(3) is ample,
which seems to contradict 9.1 since all leaves are elliptic curves. There is however no such
contradiction, because KV = KV ⊗JS is not big in our sense (it has degree 0 on all members
of the elliptic pencil). A similar example is obtained with a generic pencil of conics, in which
case KV = O(1) and cardS = 4.

For a given admissible Hermitian structure (V, h), we define similarly the sheaf EGG
k,mV

∗
h

to be the sheaf of polynomials defined over XrSing(h) which are “h-bounded”. This means
that when they are viewed as polynomials P (z ; ξ1, . . . , ξk) in terms of ξj = (∇1,0

h0
)jf(0) where

∇1,0
h0

is the (1, 0)-component of the induced Chern connection on (V, h0), there is a uniform
bound

(9.9)
∣∣P (z ; ξ1, . . . , ξk)

∣∣ 6 C
(∑

‖ξj‖1/jh

)m

near points of X r X ′ (see section 2 for more details on this). Again, by a direct image
argument, one sees that EGG

k,mV
∗
h is always a coherent sheaf. The sheaf EGG

k,mV
∗ is defined

to be EGG
k,mV

∗
h when h = h0 (it is actually independent of the choice of h0, as follows from

arguments similar to those given in section 2). Notice that this is exactly what is needed to
extend the proof of the vanishing theorem 9.4 to the case of a singular linear space V ; the
value distribution theory argument can only work when the functions P (f ; f ′, . . . , f (k))(t)
do not exhibit poles, and this is guaranteed here by the boundedness assumption.

Our strategy can be described as follows. We consider the Green-Griffiths bundle of
k-jets XGG

k = JkV r {0}/C∗, which by (9.3) consists of a fibration in weighted projective

spaces, and its associated tautological sheaf

L = OXGG
k

(1),

viewed rather as a virtual Q-line bundle OXGG
k

(m0)
1/m0 with m0 = lcm(1, 2, ... , k). Then,

if πk : XGG
k → X is the natural projection, we have

EGG
k,m = (πk)∗OXGG

k
(m) and Rq(πk)∗OXGG

k
(m) = 0 for q > 1.

Hence, by the Leray spectral sequence we get for every invertible sheaf F on X the
isomorphism

Hq(X,EGG
k,mV

∗ ⊗ F ) ≃ Hq(XGG
k ,OXGG

k
(m) ⊗ π∗

kF ).

The latter group can be evaluated thanks to holomorphic Morse inequalities. Let us recall
the main statement.

9.10. Holomorphic Morse inequalities ([Dem85]). Let X be a compact complex

manifolds, E → X a holomorphic vector bundle of rank r, and (L, h) a hermitian line

bundle. The dimensions hq(X,E ⊗ Lk) of cohomology groups of the tensor powers E ⊗ Lk

satisfy the following asymptotic estimates as k → +∞ :
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(WM) Weak Morse inequalities :

hq(X,E ⊗ Lk) 6 r
kn

n!

∫

X(L,h,q)

(−1)qΘn
L,h + o(kn) .

(SM) Strong Morse inequalities :

∑

06j6q

(−1)q−jhj(X,E ⊗ Lk) 6 r
kn

n!

∫

X(L,h,6q)

(−1)qΘn
L,h + o(kn) .

(RR) Asymptotic Riemann-Roch formula :

χ(X,E ⊗ Lk) :=
∑

06j6n

(−1)jhj(X,E ⊗ Lk) = r
kn

n!

∫

X

Θn
L,h + o(kn) .

Moreover (cf. Bonavero’s PhD thesis [Bon93]), if h = e−ϕ is a singular hermitian metric
with analytic singularities, the estimates are still true provided all cohomology groups are
replaced by cohomology groups Hq(X,E ⊗ Lk ⊗ I(hk)) twisted with the multiplier ideal
sheaves

I(hk) = I(kϕ) =
{
f ∈ OX,x, ∃V ∋ x,

∫

V

|f(z)|2e−kϕ(z)dλ(z) < +∞
}
.

The special case of 9.10 (SM) when q = 1 yields a very useful criterion for the existence of
sections of large multiples of L.

9.11. Corollary. Under the above hypotheses, we have

h0(X,E ⊗ Lk) > h0(X,E ⊗ Lk)− h1(X,E ⊗ Lk) > r
kn

n!

∫

X(L,h,61)

Θn
L,h − o(kn) .

Especially L is big as soon as
∫
X(L,h,61)

Θn
L,h > 0 for some hermitian metric h on L.

Now, given a directed manifold (X, V ), we can associate with any admissible metric h
on V a metric (or rather a natural family) of metrics on L = OXGG

k
(1). The space XGG

k

always possesses quotient singularities if k > 2 (and even some more if V is singular), but
we do not really care since Morse inequalities still work in this setting thanks to Bonavero’s
generalization. As we will see, it is then possible to get nice asymptotic formulas as k → +∞.
They appear to be of a probabilistic nature if we take the components of the k-jet (i.e. the
successive derivatives ξj = f (j)(0), 1 6 j 6 k) as random variables. This probabilistic
behaviour was somehow already visible in the Riemann-Roch calculation of [GrGr79]. In
this way, assuming KV big, we produce a lot of sections σj = H0(XGG

k ,OXGG
k

(m) ⊗ π∗
kF ),

corresponding to certain divisors Zj ⊂ XGG
k . The hard problem which is left in order to

complete a proof of the generalized Green-Griffiths-Lang conjecture is to compute the base
locus Z =

⋂
Zj and to show that Y = πk(Z) ⊂ X must be a proper algebraic variety.

§9.B. Hermitian geometry of weighted projective spaces

The goal of this section is to introduce natural Kähler metrics on weighted projective
spaces, and to evaluate the corresponding volume forms. Here we put dc = i

4π
(∂−∂) so that

ddc = i
2π∂∂. The normalization of the dc operator is chosen such that we have precisely
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(ddc log |z|2)n = δ0 for the Monge-Ampère operator in Cn. Given a k-tuple of “weights”
a = (a1, . . . , ak), i.e. of integers as > 0 with gcd(a1, . . . , ak) = 1, we introduce the weighted
projective space P (a1, . . . , ak) to be the quotient of Ck r {0} by the corresponding weighted
C∗ action:

(9.12) P (a1, . . . , ak) = Ck r {0}/C∗, λ · z = (λa1z1, . . . , λ
akzk).

As is well known, this defines a toric (k − 1)-dimensional algebraic variety with quotient
singularities. On this variety, we introduce the possibly singular (but almost everywhere
smooth and non degenerate) Kähler form ωa,p defined by

(9.13) π∗
aωa,p = ddcϕa,p, ϕa,p(z) =

1

p
log

∑

16s6k

|zs|2p/as ,

where πa : Ck r {0} → P (a1, . . . , ak) is the canonical projection and p > 0 is a positive
constant. It is clear that ϕp,a is real analytic on Ck r {0} if p is an integer and a common
multiple of all weights as, and we will implicitly pick such a p later on to avoid any difficulty.
Elementary calculations give the following well-known formula for the volume

(9.14)

∫

P (a1,...,ak)

ωk−1
a,p =

1

a1 . . . ak

(notice that this is independent of p, as it is obvious by Stokes theorem, since the cohomology
class of ωa,p does not depend on p).

Our later calculations will require a slightly more general setting. Instead of looking at
Ck, we consider the weighted C∗ action defined by

(9.15) C|r| = Cr1 × . . .× Crk , λ · z = (λa1z1, . . . , λ
akzk).

Here zs ∈ Crs for some k-tuple r = (r1, . . . , rk) and |r| = r1 + . . .+ rk. This gives rise to a
weighted projective space

P (a
[r1]
1 , . . . , a

[rk]
k ) = P (a1, . . . , a1, . . . , ak, . . . , ak),

πa,r : Cr1 × . . .× Crk r {0} −→ P (a
[r1]
1 , . . . , a

[rk]
k )(9.16)

obtained by repeating rs times each weight as. On this space, we introduce the degenerate
Kähler metric ωa,r,p such that

(9.17) π∗
a,rωa,r,p = ddcϕa,r,p, ϕa,r,p(z) =

1

p
log

∑

16s6k

|zs|2p/as

where |zs| stands now for the standard Hermitian norm (
∑

16j6rs
|zs,j|2)1/2 on Crs . This

metric is cohomologous to the corresponding “polydisc-like” metric ωa,p already defined,
and therefore Stokes theorem implies

(9.18)

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

ω|r|−1
a,r,p =

1

ar11 . . . arkk
.

Using standard results of integration theory (Fubini, change of variable formula...), one
obtains:
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9.19. Proposition. Let f(z) be a bounded function on P (a
[r1]
1 , . . . , a

[rk]
k ) which is

continuous outside of the hyperplane sections zs = 0. We also view f as a C∗-invariant

continuous function on
∏
(Crs r {0}). Then

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

f(z)ω|r|−1
a,r,p

=
(|r| − 1)!∏

s a
rs
s

∫

(x,u)∈∆k−1×
∏

S2rs−1

f(x
a1/2p
1 u1, . . . , x

ak/2p
k uk)

∏

16s6k

xrs−1
s

(rs − 1)!
dx dµ(u)

where ∆k−1 is the (k − 1)-simplex {xs > 0,
∑
xs = 1}, dx = dx1 ∧ . . . ∧ dxk−1 its standard

measure, and where dµ(u) = dµ1(u1) . . . dµk(uk) is the rotation invariant probability measure

on the product
∏

s S
2rs−1 of unit spheres in Cr1 × . . .× Crk . As a consequence

lim
p→+∞

∫

P (a
[r1]

1 ,...,a
[rk ]

k
)

f(z)ω|r|−1
a,r,p =

1∏
s a

rs
s

∫
∏

S2rs−1

f(u) dµ(u).

Also, by elementary integrations by parts and induction on k, r1, . . . , rk, it can be
checked that

(9.20)

∫

x∈∆k−1

∏

16s6k

xrs−1
s dx1 . . . dxk−1 =

1

(|r| − 1)!

∏

16s6k

(rs − 1)! .

This implies that (|r| − 1)!
∏

16s6k
xrs−1
s

(rs−1)! dx is a probability measure on ∆k−1.

§9.C. Probabilistic estimate of the curvature of k-jet bundles

Let (X, V ) be a compact complex directed non singular variety. To avoid any technical
difficulty at this point, we first assume that V is a holomorphic vector subbundle of TX ,
equipped with a smooth Hermitian metric h.

According to the notation already specified in § 7, we denote by JkV the bundle of k-jets
of holomorphic curves f : (C, 0) → X tangent to V at each point. Let us set n = dimCX
and r = rankC V . Then JkV → X is an algebraic fiber bundle with typical fiber Crk, and
we get a projectivized k-jet bundle

(9.21) XGG
k := (JkV r {0})/C∗, πk : XGG

k → X

which is a P (1[r], 2[r], . . . , k[r]) weighted projective bundle over X , and we have the direct
image formula (πk)∗OXGG

k
(m) = O(EGG

k,mV
∗) (cf. Proposition 7.9). In the sequel, we do

not make a direct use of coordinates, because they need not be related in any way to
the Hermitian metric h of V . Instead, we choose a local holomorphic coordinate frame
(eα(z))16α6r of V on a neighborhood U of x0, such that

(9.22) 〈eα(z), eβ(z)〉 = δαβ +
∑

16i,j6n, 16α,β6r

cijαβzizj +O(|z|3)

for suitable complex coefficients (cijαβ). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor i

2πD
2
V,h of (V, h)

at x0 is then given by

(9.23) ΘV,h(x0) = − i

2π

∑

i,j,α,β

cijαβ dzi ∧ dzj ⊗ e∗α ⊗ eβ .
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Cnsider a local holomorphic connection∇ on V|U (e.g. the one which turns (eα) into a parallel

frame), and take ξk = ∇kf(0) ∈ Vx defined inductively by∇1f = f ′ and∇sf = ∇f ′(∇s−1f).
This gives a local identification

JkV|U → V ⊕k
|U , f 7→ (ξ1, . . . , ξk) = (∇f(0), . . . ,∇fk(0))

and the weighted C∗ action on JkV is expressed in this setting by

λ · (ξ1, ξ2, . . . , ξk) = (λξ1, λ
2ξ2, . . . , λ

kξk).

Now, we fix a finite open covering (Uα)α∈I of X by open coordinate charts such that
V|Uα

is trivial, along with holomorphic connections ∇α on V|Uα
. Let θα be a partition

of unity of X subordinate to the covering (Uα). Let us fix p > 0 and small parameters
1 = ε1 ≫ ε2 ≫ . . . ≫ εk > 0. Then we define a global weighted Finsler metric on JkV by
putting for any k-jet f ∈ Jk

xV

(9.24) Ψh,p,ε(f) :=
(∑

α∈I

θα(x)
∑

16s6k

ε2ps ‖∇s
αf(0)‖

2p/s
h(x)

)1/p

where ‖ ‖h(x) is the Hermitian metric h of V evaluated on the fiber Vx, x = f(0). The
function Ψh,p,ε satisfies the fundamental homogeneity property

(9.25) Ψh,p,ε(λ · f) = Ψh,p,ε(f) |λ|2

with respect to the C∗ action on JkV , in other words, it induces a Hermitian metric on the
dual L∗ of the tautological Q-line bundle Lk = OXGG

k
(1) over XGG

k . The curvature of Lk is
given by

(9.26) π∗
kΘLk,Ψ

∗

h,p,ε
= ddc logΨh,p,ε

where πk : JkV r {0} → XGG
k is the canonical projection. Our next goal is to compute

precisely the curvature and to apply holomorphic Morse inequalities to L→ XGG
k with the

above metric. It might look a priori like an untractable problem, since the definition of
Ψh,p,ε is a rather unnatural one. However, the “miracle” is that the asymptotic behavior of
Ψh,p,ε as εs/εs−1 → 0 is in some sense uniquely defined and very natural. It will lead to a
computable asymptotic formula, which is moreover simple enough to produce useful results.

9.27. Lemma. On each coordinate chart U equipped with a holomorphic connection ∇
of V|U , let us define the components of a k-jet f ∈ JkV by ξs = ∇sf(0), and consider the

rescaling transformation

ρ∇,ε(ξ1, ξ2, . . . , ξk) = (ε11ξ1, ε
2
2ξ2, . . . , ε

k
kξk) on Jk

xV , x ∈ U

(it commutes with the C∗-action but is otherwise unrelated and not canonically defined over

X as it depends on the choice of ∇). Then, if p is a multiple of lcm(1, 2, . . . , k) and

εs/εs−1 → 0 for all s = 2, . . . , k, the rescaled function Ψh,p,ε ◦ ρ−1
∇,ε(ξ1, . . . , ξk) converges

towards ( ∑

16s6k

‖ξs‖2p/sh

)1/p
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on every compact subset of JkV|U r {0}, uniformly in C∞ topology.

Proof. Let U ⊂ X be an open set on which V|U is trivial and equipped with some

holomorphic connection ∇. Let us pick another holomorphic connection ∇̃ = ∇+ Γ where
Γ ∈ H0(U,Ω1

X ⊗ Hom(V, V ). Then ∇̃2f = ∇2f + Γ(f)(f ′) · f ′, and inductively we get

∇̃sf = ∇sf + Ps(f ; ∇1f, . . . ,∇s−1f)

where P (x ; ξ1, . . . , ξs−1) is a polynomial with holomorphic coefficients in x ∈ U which is of
weighted homogeneous degree s in (ξ1, . . . , ξs−1). In other words, the corresponding change
in the parametrization of JkV|U is given by a C∗-homogeneous transformation

ξ̃s = ξs + Ps(x ; ξ1, . . . , ξs−1).

Let us introduce the corresponding rescaled components

(ξ1,ε, . . . , ξk,ε) = (ε11ξ1, . . . , ε
k
kξk), (ξ̃1,ε, . . . , ξ̃k,ε) = (ε11ξ̃1, . . . , ε

k
kξ̃k).

Then

ξ̃s,ε = ξs,ε + εss Ps(x ; ε
−1
1 ξ1,ε, . . . , ε

−(s−1)
s−1 ξs−1,ε)

= ξs,ε +O(εs/εs−1)
sO(‖ξ1,ε‖+ . . .+ ‖ξs−1,ε‖1/(s−1))s

and the error terms are thus polynomials of fixed degree with arbitrarily small coefficients
as εs/εs−1 → 0. Now, the definition of Ψh,p,ε consists of glueing the sums

∑

16s6k

ε2ps ‖ξk‖2p/sh =
∑

16s6k

‖ξk,ε‖2p/sh

corresponding to ξk = ∇s
αf(0) by means of the partition of unity

∑
θα(x) = 1. We see that

by using the rescaled variables ξs,ε the changes occurring when replacing a connection ∇α

by an alternative one ∇β are arbitrary small in C∞ topology, with error terms uniformly
controlled in terms of the ratios εs/εs−1 on all compact subsets of V kr{0}. This shows that
in C∞ topology, Ψh,p,ε ◦ρ−1

∇,ε(ξ1, . . . , ξk) converges uniformly towards (
∑

16s6k ‖ξk‖
2p/s
h )1/p,

whatever the trivializing open set U and the holomorphic connection ∇ used to evaluate the
components and perform the rescaling are.

Now, we fix a point x0 ∈ X and a local holomorphic frame (eα(z))16α6r satisfying (9.22)
on a neighborhood U of x0. We introduce the rescaled components ξs = εss∇sf(0) on JkV|U
and compute the curvature of

Ψh,p,ε ◦ ρ−1
∇,ε(z ; ξ1, . . . , ξk) ≃

( ∑

16s6k

‖ξs‖2p/sh

)1/p

(by Lemma 9.27, the errors can be taken arbitrary small in C∞ topology). We write
ξs =

∑
16α6r ξsαeα. By (9.22) we have

‖ξs‖2h =
∑

α

|ξsα|2 +
∑

i,j,α,β

cijαβzizjξsαξsβ +O(|z|3|ξ|2).
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The question is to evaluate the curvature of the weighted metric defined by

Ψ(z ; ξ1, . . . , ξk) =

( ∑

16s6k

‖ξs‖2p/sh

)1/p

=

( ∑

16s6k

(∑

α

|ξsα|2 +
∑

i,j,α,β

cijαβzizjξsαξsβ

)p/s)1/p

+O(|z|3).

We set |ξs|2 =
∑

α |ξsα|2. A straightforward calculation yields

logΨ(z ; ξ1, . . . , ξk) =

=
1

p
log

∑

16s6k

|ξs|2p/s +
∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβzizj
ξsαξsβ
|ξs|2

+O(|z|3).

By (9.26), the curvature form of Lk = OXGG
k

(1) is given at the central point x0 by the
following formula.

9.28. Proposition. With the above choice of coordinates and with respect to the rescaled

components ξs = εss∇sf(0) at x0 ∈ X, we have the approximate expression

ΘLk,Ψ
∗

h,p,ε
(x0, [ξ]) ≃ ωa,r,p(ξ) +

i

2π

∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβ
ξsαξsβ
|ξs|2

dzi ∧ dzj

where the error terms are O(max26s6k(εs/εs−1)
s) uniformly on the compact variety

XGG
k . Here ωa,r,p is the (degenerate) Kähler metric associated with the weight a =

(1[r], 2[r], . . . , k[r]) of the canonical C∗ action on JkV .

Thanks to the uniform approximation, we can (and will) neglect the error terms in the
calculations below. Since ωa,r,p is positive definite on the fibers of XGG

k → X (at least
outside of the axes ξs = 0), the index of the (1, 1) curvature form ΘLk,Ψ

∗

h,p,ε
(z, [ξ]) is equal

to the index of the (1, 1)-form

(9.29) γk(z, ξ) :=
i

2π

∑

16s6k

1

s

|ξs|2p/s∑
t |ξt|2p/t

∑

i,j,α,β

cijαβ(z)
ξsαξsβ
|ξs|2

dzi ∧ dzj

depending only on the differentials (dzj)16j6n on X . The q-index integral of (Lk,Ψ
∗
h,p,ε) on

XGG
k is therefore equal to

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗

h,p,ε
=

=
(n+ kr − 1)!

n!(kr − 1)!

∫

z∈X

∫

ξ∈P (1[r],...,k[r])

ωkr−1
a,r,p (ξ)1lγk,q(z, ξ)γk(z, ξ)

n

where 1lγk,q(z, ξ) is the characteristic function of the open set of points where γk(z, ξ) has
signature (n − q, q) in terms of the dzj ’s. Notice that since γk(z, ξ)

n is a determinant, the
product 1lγk,q(z, ξ)γk(z, ξ)

n gives rise to a continuous function on XGG
k . Formula 9.20 with

r1 = . . . = rk = r and as = s yields the slightly more explicit integral
∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗

h,p,ε
=

(n+ kr − 1)!

n!(k!)r
×

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n (x1 . . . xk)
r−1

(r − 1)!k
dx dµ(u),
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where gk(z, x, u) = γk(z, x
1/2p
1 u1, . . . , x

k/2p
k uk) is given by

(9.30) gk(z, x, u) =
i

2π

∑

16s6k

1

s
xs

∑

i,j,α,β

cijαβ(z) usαusβ dzi ∧ dzj

and 1lgk,q(z, x, u) is the characteristic function of its q-index set. Here

(9.31) dνk,r(x) = (kr − 1)!
(x1 . . . xk)

r−1

(r − 1)!k
dx

is a probability measure on ∆k−1, and we can rewrite

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗

h,p,ε
=

(n+ kr − 1)!

n!(k!)r(kr − 1)!
×

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgk,q(z, x, u)gk(z, x, u)

n dνk,r(x) dµ(u).(9.32)

Now, formula (9.30) shows that gk(z, x, u) is a “Monte Carlo” evaluation of the curvature
tensor, obtained by averaging the curvature at random points us ∈ S2r−1 with certain
positive weights xs/s ; we should then think of the k-jet f as some sort of random
variable such that the derivatives ∇kf(0) are uniformly distributed in all directions. Let us
compute the expected value of (x, u) 7→ gk(z, x, u) with respect to the probability measure
dνk,r(x) dµ(u). Since

∫
S2r−1 usαusβdµ(us) =

1
r δαβ and

∫
∆k−1

xs dνk,r(x) =
1
k , we find

E(gk(z, •, •)) =
1

kr

∑

16s6k

1

s
· i

2π

∑

i,j,α

cijαα(z) dzi ∧ dzj .

In other words, we get the normalized trace of the curvature, i.e.

(9.33) E(gk(z, •, •)) =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
Θdet(V ∗),deth∗ ,

where Θdet(V ∗),deth∗ is the (1, 1)-curvature form of det(V ∗) with the metric induced by h. It
is natural to guess that gk(z, x, u) behaves asymptotically as its expected value E(gk(z, •, •))
when k tends to infinity. If we replace brutally gk by its expected value in (9.32), we get
the integral

(n+ kr − 1)!

n!(k!)r(kr − 1)!

1

(kr)n

(
1 +

1

2
+ . . .+

1

k

)n ∫

X

1lη,qη
n,

where η := Θdet(V ∗),deth∗ and 1lη,q is the characteristic function of its q-index set in X .
The leading constant is equivalent to (log k)n/n!(k!)r modulo a multiplicative factor 1 +
O(1/ log k). By working out a more precise analysis of the deviation, the following result
has been proved in [Dem11] and [Dem12].

9.34. Probabilistic estimate. Fix smooth Hermitian metrics h on V and ω =
i
2π

∑
ωijdzi ∧ dzj on X. Denote by ΘV,h = − i

2π

∑
cijαβdzi ∧ dzj ⊗ e∗α ⊗ eβ the curvature

tensor of V with respect to an h-orthonormal frame (eα), and put

η(z) = Θdet(V ∗),deth∗ =
i

2π

∑

16i,j6n

ηijdzi ∧ dzj , ηij =
∑

16α6r

cijαα.
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Finally consider the k-jet line bundle Lk = OXGG
k

(1) → XGG
k equipped with the induced

metric Ψ∗
h,p,ε (as defined above, with 1 = ε1 ≫ ε2 ≫ . . . ≫ εk > 0). When k tends to

infinity, the integral of the top power of the curvature of Lk on its q-index set XGG
k (Lk, q)

is given by

∫

XGG
k

(Lk,q)

Θn+kr−1
Lk,Ψ

∗

h,p,ε
=

(log k)n

n! (k!)r

(∫

X

1lη,qη
n +O((log k)−1)

)

for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly in terms of

ΘV , η and ω. Moreover, the left hand side is identically zero for q > n.

The final statement follows from the observation that the curvature of Lk is positive
along the fibers of XGG

k → X , by the plurisubharmonicity of the weight (this is true even
when the partition of unity terms are taken into account, since they depend only on the
base); therefore the q-index sets are empty for q > n. It will be useful to extend the above
estimates to the case of sections of

(9.35) Lk = OXGG
k

(1)⊗ π∗
kO

( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

where F ∈ PicQ(X) is an arbitrary Q-line bundle on X and πk : XGG
k → X is the natural

projection. We assume here that F is also equipped with a smooth Hermitian metric hF .
In formulas (9.32–9.34), the renormalized curvature ηk(z, x, u) of Lk takes the form

(9.36) ηk(z, x, u) =
1

1
kr (1 +

1
2 + . . .+ 1

k )
gk(z, x, u) + ΘF,hF

(z),

and by the same calculations its expected value is

(9.37) η(z) := E(ηk(z, •, •)) = Θdet V ∗,deth∗(z) + ΘF,hF
(z).

Then the variance estimate for ηk − η is unchanged, and the Lp bounds for ηk are still
valid, since our forms are just shifted by adding the constant smooth term ΘF,hF

(z). The
probabilistic estimate 9.34 is therefore still true in exactly the same form, provided we use
(9.35 – 9.37) instead of the previously defined Lk, ηk and η. An application of holomorphic
Morse inequalities gives the desired cohomology estimates for

hq
(
X,EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

= hq(XGG
k ,OXGG

k
(m)⊗ π∗

kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))
,

provided m is sufficiently divisible to give a multiple of F which is a Z-line bundle.

9.38. Theorem. Let (X, V ) be a directed manifold, F → X a Q-line bundle, (V, h) and

(F, hF ) smooth Hermitian structure on V and F respectively. We define

Lk = OXGG
k

(1)⊗ π∗
kO

( 1

kr

(
1 +

1

2
+ . . .+

1

k

)
F
)
,

η = Θdet V ∗,deth∗ +ΘF,hF
.
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Then for all q > 0 and all m≫ k ≫ 1 such that m is sufficiently divisible, we have

hq(XGG
k ,O(L⊗m

k )) 6
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,q)

(−1)qηn +O((log k)−1)

)
,(a)

h0(XGG
k ,O(L⊗m

k )) >
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(∫

X(η,61)

ηn −O((log k)−1)

)
,(b)

χ(XGG
k ,O(L⊗m

k )) =
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r
(
c1(V

∗ ⊗ F )n +O((log k)−1)
)
.(c)

Green and Griffiths [GrGr79] already checked the Riemann-Roch calculation (9.38 c)
in the special case V = T ∗

X and F = OX . Their proof is much simpler since it relies
only on Chern class calculations, but it cannot provide any information on the individual
cohomology groups, except in very special cases where vanishing theorems can be applied;
in fact in dimension 2, the Euler characteristic satisfies χ = h0 − h1 + h2 6 h0 + h2, hence
it is enough to get the vanishing of the top cohomology group H2 to infer h0 > χ ; this
works for surfaces by means of a well-known vanishing theorem of Bogomolov which implies
in general

Hn

(
X,EGG

k,mT
∗
X ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)))

= 0

as soon as KX ⊗ F is big and m≫ 1.

In fact, thanks to Bonavero’s singular holomorphic Morse inequalities [Bon93], every-
thing works almost unchanged in the case where V ⊂ TX has singularities and h is an
admissible metric on V (see Definition 9.7). We only have to find a blow-up µ : X̃k → Xk

so that the resulting pull-backs µ∗Lk and µ∗V are locally free, and µ∗ det h∗, µ∗Ψh,p,ε only
have divisorial singularities. Then η is a (1, 1)-current with logarithmic poles, and we have
to deal with smooth metrics on µ∗L⊗m

k ⊗ O(−mEk) where Ek is a certain effective divisor
on Xk (which, by our assumption in 9.7, does not project onto X). The cohomology groups
involved are then the twisted cohomology groups

Hq(XGG
k ,O(L⊗m

k )⊗ Jk,m)

where Jk,m = µ∗(O(−mEk)) is the corresponding multiplier ideal sheaf, and the Morse
integrals need only be evaluated in the complement of the poles, that is on X(η, q) r S
where S = Sing(V ) ∪ Sing(h). Since

(πk)∗
(
O(L⊗m

k )⊗ Jk,m
)
⊂ EGG

k,mV
∗ ⊗ O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the un-twisted
line bundle O(L⊗m

k ) on XGG
k ). If we assume that KV ⊗ F is big, these considerations also

allow us to obtain a strong estimate in terms of the volume, by using an approximate Zariski
decomposition on a suitable blow-up of (X, V ). The following corollary implies in particular
Theorem 9.2.

9.39. Corollary. If F is an arbitrary Q-line bundle over X, one has

h0
(
XGG

k ,OXGG
k

(m)⊗ π∗
kO

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
))

>
mn+kr−1

(n+ kr − 1)!

(log k)n

n! (k!)r

(
Vol(KV ⊗ F )−O((log k)−1)

)
− o(mn+kr−1),
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when m ≫ k ≫ 1, in particular there are many sections of the k-jet differentials of degree

m twisted by the appropriate power of F if KV ⊗ F is big.

Proof. The volume is computed here as usual, i.e. after performing a suitable modification
µ : X̃ → X which converts KV into an invertible sheaf. There is of course nothing to prove if
KV ⊗F is not big, so we can assume Vol(KV ⊗F ) > 0. Let us fix smooth Hermitian metrics
h0 on TX and hF on F . They induce a metric µ∗(det h−1

0 ⊗ hF ) on µ
∗(KV ⊗ F ) which, by

our definition of KV , is a smooth metric. By the result of Fujita [Fuj94] on approximate
Zariski decomposition, for every δ > 0, one can find a modification µδ : X̃δ → X dominating
µ such that

µ∗
δ(KV ⊗ F ) = O

X̃δ
(A+ E)

where A and E are Q-divisors, A ample and E effective, with

Vol(A) = An
> Vol(KV ⊗ F )− δ.

If we take a smooth metric hA with positive definite curvature form ΘA,hA
, then we get

a singular Hermitian metric hAhE on µ∗
δ(KV ⊗ F ) with poles along E, i.e. the quotient

hAhE/µ
∗(deth−1

0 ⊗ hF ) is of the form e−ϕ where ϕ is quasi-psh with log poles log |σE |2
(mod C∞(X̃δ)) precisely given by the divisor E. We then only need to take the singular
metric h on TX defined by

h = h0e
1
r
(µδ)

∗ϕ

(the choice of the factor 1
r

is there to correct adequately the metric on detV ). By
construction h induces an admissible metric on V and the resulting curvature current
η = ΘKV ,deth∗ +ΘF,hF

is such that

µ∗
δη = ΘA,hA

+ [E], [E] = current of integration on E.

Then the 0-index Morse integral in the complement of the poles is given by

∫

X(η,0)rS

ηn =

∫

X̃δ

Θn
A,hA

= An
> Vol(KV ⊗ F )− δ

and (9.39) follows from the fact that δ can be taken arbitrary small.

9.40. Example. In some simple cases, the above estimates can lead to very explicit results.
Take for instance X to be a smooth complete intersection of multidegree (d1, d2, . . . , ds) in
Pn+s
C and consider the absolute case V = TX . Then KX = OX(d1+ . . .+ds−n− s−1) and

one can check via explicit bounds of the error terms (cf. [Dem11], [Dem12]) that a sufficient
condition for the existence of sections is

k > exp
(
7.38nn+1/2

( ∑
dj + 1∑

dj − n− s− a− 1

)n)
.

This is good in view of the fact that we can cover arbitrary smooth complete intersections of
general type. On the other hand, even when the degrees dj tend to +∞, we still get a large
lower bound k ∼ exp(7.38nn+1/2) on the order of jets, and this is far from being optimal :
Diverio [Div08, Div09] has shown e.g. that one can take k = n for smooth hypersurfaces of
high degree, using the algebraic Morse inequalities of Trapani [Tra95]. The next paragraph
uses essentially the same idea, in our more analytic setting.
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§9.D. Non probabilistic estimate of the Morse integrals

We assume here that the curvature tensor (cijαβ) satisfies a lower bound

(9.41)
∑

i,j,α,β

cijαβξiξjuαuβ > −
∑

γijξiξj |u|2, ∀ξ ∈ TX , u ∈ X

for some semipositive (1, 1)-form γ = i
2π

∑
γij(z) dzi ∧ dzj on X . This is the same as

assuming that the curvature tensor of (V ∗, h∗) satisfies the semipositivity condition

(9.41′) ΘV ∗,h∗ + γ ⊗ IdV ∗ > 0

in the sense of Griffiths, or equivalently ΘV,h−γ⊗IdV 6 0. Thanks to the compactness ofX ,
such a form γ always exists if h is an admissible metric on V . Now, instead of replacing ΘV

with its trace free part Θ̃V and exploiting a Monte Carlo convergence process, we replace
ΘV with Θγ

V = ΘV − γ ⊗ IdV 6 0, i.e. cijαβ by cγijαβ = cijαβ + γijδαβ . Also, we take a line

bundle F = A−1 with ΘA,hA
> 0, i.e. F seminegative. Then our earlier formulas (9.28),

(9.35), (9.36) become instead

gγk (z, x, u) =
i

2π

∑

16s6k

1

s
xs

∑

i,j,α,β

cγijαβ(z) usαusβ dzi ∧ dzj > 0,(9.42)

Lk = OXGG
k

(1)⊗ π∗
kO

(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
,(9.43)

ΘLk
= ηk(z, x, u) =

1
1
kr (1 +

1
2 + . . .+ 1

k )
gγk (z, x, u)− (ΘA,hA

(z) + rγ(z)).(9.44)

In fact, replacing ΘV by ΘV − γ ⊗ IdV has the effect of replacing Θdet V ∗ = TrΘV ∗ by
Θdet V ∗ +rγ. The major gain that we have is that ηk = ΘLk

is now expressed as a difference
of semipositive (1, 1)-forms, and we can exploit the following simple lemma, which is the key
to derive algebraic Morse inequalities from their analytic form (cf. [Dem94], Theorem 12.3).

9.45. Lemma. Let η = α−β be a difference of semipositive (1, 1)-forms on an n-dimensional

complex manifold X, and let 1lη,6q be the characteristic function of the open set where η is

non degenerate with a number of negative eigenvalues at most equal to q. Then

(−1)q1lη,6q η
n
6
∑

06j6q

(−1)q−jαn−jβj ,

in particular

1lη,61 η
n
> αn − nαn−1 ∧ β for q = 1.

Proof. Without loss of generality, we can assume α > 0 positive definite, so that α can be
taken as the base hermitian metric on X . Let us denote by

λ1 > λ2 > . . . > λn > 0

the eigenvalues of β with respect to α. The eigenvalues of η = α − β are then given by

1− λ1 6 . . . 6 1− λq 6 1− λq+1 6 . . . 6 1− λn,
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hence the open set {λq+1 < 1} coincides with the support of 1lη,6q, except that it may also
contain a part of the degeneration set ηn = 0. On the other hand we have

(
n

j

)
αn−j ∧ βj = σj

n(λ)α
n,

where σj
n(λ) is the j-th elementary symmetric function in the λj ’s. Thus, to prove the

lemma, we only have to check that
∑

06j6q

(−1)q−jσj
n(λ)− 1l{λq+1<1}(−1)q

∏

16j6n

(1− λj) > 0.

This is easily done by induction on n (just split apart the parameter λn and write
σj
n(λ) = σj

n−1(λ) + σj−1
n−1(λ)λn).

We apply here Lemma 9.45 with

α = gγk (z, x, u), β = βk =
1

kr

(
1 +

1

2
+ . . .+

1

k

)
(ΘA,hA

+ rγ),

which are both semipositive by our assumption. The analogue of (9.32) leads to
∫

XGG
k

(Lk,61)

Θn+kr−1
Lk,Ψ

∗

h,p,ε

=
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
1lgγ

k
−βk,61 (gγk − βk)

n dνk,r(x) dµ(u)

>
(n+ kr − 1)!

n!(k!)r(kr − 1)!

∫

z∈X

∫

(x,u)∈∆k−1×(S2r−1)k
((gγk)

n − n(gγk )
n−1 ∧ βk) dνk,r(x) dµ(u).

The resulting integral now produces a “closed formula” which can be expressed solely in
terms of Chern classes (assume that γ is the Chern form of some semipositive line bundle).
It is just a matter of routine to find a sufficient condition for the positivity of the integral.
One can first observe that gγk is bounded from above by taking the trace of (cijαβ, in this
way we get

0 6 gγk 6

( ∑

16s6k

xs
s

)(
Θdet V ∗ + rγ

)

where the right hand side no longer depends on u. Also, since γγk is a sum of semipositive
(1, 1)-forms

gγk =
∑

16s6k

xs
s
θγ(us), θγ(u) =

∑

i,j,α,β

cγijαβuαuβ dzi ∧ dzj ,

hence for k > n we have

(gγk )
n
> n!

∑

16s1<...<sn6k

xs1 . . . xsn
s1 . . . sn

θγ(us1) ∧ θγ(us2) ∧ . . . ∧ θγ(usn).

Since
∫
S2r−1 θ

γ(u) dµ(u) = 1
r
Tr(ΘV ∗ + γ) = 1

r
Θdet V ∗ + γ, we infer from this

∫

(x,u)∈∆k−1×(S2r−1)k
(gγk )

n dνk,r(x) dµ(u)

> n!
∑

16s1<...<sn6k

1

s1 . . . sn

(∫

∆k−1

x1 . . . xn dνk,r(x)
)(1

r
ΘdetV ∗ + γ

)n
.
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By putting everything together, we conclude:

9.46. Theorem. Assume that ΘV ∗ > −γ ⊗ IdV ∗ with a semipositive (1, 1)-form γ on X.

Then the Morse integral of the line bundle

Lk = OXGG
k

(1)⊗ π∗
kO

(
− 1

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
, A > 0

satisfies for k > n the inequality

1

(n+ kr − 1)!

∫

XGG
k

(Lk,61)

Θn+kr−1
Lk,Ψ

∗

h,p,ε

>
1

n!(k!)r(kr − 1)!

∫

X

cn,r,k
(
Θdet V ∗ + rγ

)n − c′n,r,k
(
Θdet V ∗ + rγ

)n−1 ∧
(
ΘA,hA

+ rγ
)

(∗)

where

cn,r,k =
n!

rn

( ∑

16s1<...<sn6k

1

s1 . . . sn

)∫

∆k−1

x1 . . . xn dνk,r(x),

c′n,r,k =
n

kr

(
1 +

1

2
+ . . .+

1

k

)∫

∆k−1

( ∑

16s6k

xs
s

)n−1

dνk,r(x).

Especially we have a lot of sections in H0(XGG
k , mLk), m ≫ 1, as soon as the difference

occurring in (∗) is positive.

The statement is also true for k < n, but then cn,r,k = 0 and the lower bound (∗)
cannot be positive. By Corollary 9.11, it still provides a non trivial lower bound for
h0(XGG

k , mLk) − h1(XGG
k , mLk), though. For k > n we have cn,r,k > 0 and (∗) will be

positive if Θdet V ∗ is large enough. By Formula 9.20 we have

(9.47) cn,r,k =
n! (kr − 1)!

(n+ kr − 1)!

∑

16s1<...<sn6k

1

s1 . . . sn
>

(kr − 1)!

(n+ kr − 1)!
,

(with equality for k = n), and by ([Dem11], Lemma 2.20 (b)) we get the upper bound

c′n,k,r
cn,k,r

6
(kr + n− 1)rn−2

k/n

(
1+

1

2
+ . . .+

1

k

)n[
1+

1

3

n−1∑

m=2

2m(n− 1)!

(n− 1−m)!

(
1+

1

2
+ . . .+

1

k

)−m
]
.

The case k = n is especially interesting. For k = n > 2 one can show (with r 6 n and Hn

denoting the harmonic sequence) that

(9.48)
c′n,k,r
cn,k,r

6
n2 + n− 1

3
nn−2 exp

(2(n− 1)

Hn
+ n logHn

)
6

1

3

(
n log(n log 24n)

)n
.

We will also need the particular values

c2,2,2 =
1

20
, c′2,2,2 =

9

16
,

c′2,2,2
c2,2,2

=
45

4
,(9.492)

c3,3,3 =
1

990
, c′3,3,3 =

451

4860
,

c′3,3,3
c3,3,3

=
4961

54
,(9.493)

which can be obtained by direct calculations.
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§10. Hyperbolicity properties of hypersurfaces of high degree

§10.A. Global generation of the twisted tangent space of the universal family

In [Siu02, Siu04], Y.T. Siu developed a new stategy to produce jet differentials, involving
meromorphic vector fields on the total space of jet bundles – these vector fields are used to
differentiate the sections of EGG

k,m so as to produce new ones with less zeroes. The approach
works especially well on universal families of hypersurfaces in projective space, thanks to the
good positivity properties of the relative tangent bundle, as shown by L. Ein [Ein88, Ein91]
and C. Voisin [Voi96]. This allows at least to prove the hyperbolicity of generic surfaces
and generic 3-dimensional hypersurfaces of sufficiently high degree. We reproduce here the
improved approach given by [Pau08] for the twisted global generation of the tangent space of
the space of vertical two jets. The situation of k-jets in arbitrary dimension n is substantially
more involved, details can be found in [Mer09].

Consider the universal hypersurface X ⊂ Pn+1 × PNd of degree d given by the equation
∑

|α|=d

Aα Z
α = 0,

where [Z] ∈ Pn+1, [A] ∈ PNd , α = (α0, . . . , αn+1) ∈ Nn+2 and

Nd =

(
n+ d+ 1

d

)
− 1.

Finally, we denote by V ⊂ X the vertical tangent space, i.e. the kernel of the projection

π : X → U ⊂ PNd

where U is the Zariski open set parametrizing smooth hypersurfaces, and by JkV the bundle
of k-jets of curves tangent to V, i.e. curves contained in the fibers Xs = π−1(s). The goal is
to describe certain meromorphic vector fields on the total space of JkV. In the special case
n = 2, k = 2 considered by Păun [Pau08], one fixes the affine open set

U0 = {Z0 6= 0} × {A0d00 6= 0} ≃ C3 × CNd

in P3 × PNd with the corresponding inhomogeneous coordinates (zj = Zj/Z0)j=1,2,3 and
(aα = Aα/A0d00)|α|=d,α1<d. Since α0 is determined by α0 = d − (α1 + α2 + α3), with a
slight abuse of notation in the sequel, α will be seen as a multiindex (α1, α2, α3) in N3, with
moreover the convention that ad00 = 1. On this affine open set we have

X0 := X ∩ U0 =

{
zd1 +

∑

|α|6d,α1<d

aα z
α = 0

}
.

We now write down equations for the open variety J2V0, where we indicated with V0 the
restriction of V ⊂ TX, the kernel of the differential of the second projection, to X0: elements
in J2V0 are therefore 2-jets of germs of “vertical” holomorphic curves in X0, that is curves
tangent to vertical fibers. The equations, which live in a natural way in C3

zj
×CNd

aα
×C3

z′

j
×C3

z′′

j
,

stand as follows. ∑

|α|6d

aα z
α = 0,

∑

16j63

∑

|α|6d

aα
∂zα

∂zj
z′j = 0,

∑

16j63

∑

|α|6d

aα
∂zα

∂zj
z′′j +

∑

16j,k63

∑

|α|6d

aα
∂2zα

∂zj∂zk
z′jz

′
k = 0.
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Let W0 to be the closed algebraic subvariety of J2V0 defined by

W0 = {(z, a, z′, z′′) ∈ J2V0 | z′ ∧ z′′ = 0}

and let W be the Zariski closure of W0 in J2V: we call this set the Wronskian locus of J2V.
Explicit calculations (cf. [Pau08]) then produce the following vector fields:

First family of tangent vector fields. For any multiindex α such that α1 > 3, consider the
vector field

θ300α =
∂

∂aα
− 3z1

∂

∂aα−δ1

+ 3z21
∂

∂aα−2δ1

− z31
∂

∂aα−3δ1

,

where δj ∈ N4 is the multiindex whose j-th component is equal to 1 and the others are zero.
For the multiindexes α which verify α1 > 2 and α2 > 1, define

θ210α =
∂

∂aα
− 2z1

∂

∂aα−δ1

− z2
∂

∂aα−δ2

+ z21
∂

∂aα−2δ1

+ 2z1z2
∂

∂aα−δ1−δ2

− z21z2
∂

∂aα−2δ1−δ2

.

Finally, for those α for which α1, α2, α3 > 1, set

θ111α =
∂

∂aα
− z1

∂

∂aα−δ1

− z2
∂

∂aα−δ2

− z3
∂

∂aα−δ3

+ z1z2
∂

∂aα−δ1−δ2

+ z1z3
∂

∂aα−δ1−δ3

+ z2z3
∂

∂aα−δ2−δ3

− z1z2z3
∂

∂aα−δ1−δ2−δ3

.

Second family of tangent vector fields. We construct here the holomorphic vector fields in
order to span the ∂/∂zj-directions. For j = 1, 2, 3, consider the vector field

∂

∂zj
−

∑

|α+δj |6d

(αj + 1)aα+δj

∂

∂aα
.

Third family of tangent vector fields. In order to span the jet directions, consider a vector
field of the following form:

θB =
∑

|α|6d,α1<d

pα(z, a, b)
∂

∂aα
+
∑

16j63

2∑

k=1

ξ
(k)
j

∂

∂z
(k)
j

,

where ξ(k) = B · z(k), k = 1, 2, and B = (bjk) varies among 3 × 3 invertible matrices with
complex entries. By studying more carefully these three families of vector fields, one obtains:

10.1. Theorem. The twisted tangent space TJ2V⊗OP3(7)⊗OPNd (1) is generated over by its

global sections over the complement J2VrW of the Wronskian locus W. Moreover, one can

choose generating global sections that are invariant with respect to the action of G2 on J2V.

By similar, but more computationally intensive arguments [Mer09], one can investigate
the higher dimensional case. The following result strengthens the initial announcement
of [Siu04].
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10.2. Theorem. Let Jvert
k (X) be the space of vertical k-jets of the universal hypersurface

X ⊂ Pn+1 × PNd

parametrizing all projective hypersurfaces X ⊂ Pn+1 of degree d. Then for k = n, there exist

constants cn and c′n such that the twisted tangent bundle

TJvert
k

(X) ⊗ OPn+1(cn)⊗ OPNd (c
′
n)

is generated by its global Gk-invariant sections outside a certain exceptional algebraic subset

Σ ⊂ Jvert
k (X). One can take either cn = 1

2 (n
2 + 5n), c′n = 1 and Σ defined by the vanishing

of certain Wronskians, or cn = n2 +2n and a smaller set Σ̃ ⊂ Σ defined by the vanishing of

the 1-jet part.

10.B. General strategy of proof

Let again X ⊂ Pn+1 × PNd be the universal hypersurface of degree d in Pn+1.

(10.3) Assume that we can prove the existence of a non zero polynomial differential operator

P ∈ H0(X, EGG
k,mT

∗
X ⊗ O(−A)),

where A is an ample divisor on X, at least over some Zariski open set U in the base of the

projection π : X → U ⊂ PNd .

Observe that we now have a lot of techniques to do this; the existence of P over the
family follows from lower semicontinuity in the Zariski topology, once we know that such a
section P exists on a generic fiber Xs = π−1(s). Let Y ⊂ X be the set of points x ∈ X where
P (x) = 0, as an element in the fiber of the vector bundle EGG

k,mT
∗
X
⊗ O(−A)) at x. Then Y

is a proper algebraic subset of X, and after shrinking U we may assume that Ys = Y∩Xs is
a proper algebraic subset of Xs for every s ∈ U .

(10.4) Assume also, according to Theorems 10.1 and 10.2, that we have enough global

holomorphic Gk-invariant vector fields θi on JkV with values in the pull-back of some ample

divisor B on X, in such a way that they generate TJkV
⊗p∗kB over the dense open set (JkV)

reg

of regular k-jets, i.e. k-jets with non zero first derivative (here pk : JkV → X is the natural

projection).

Considering jet differentials P as functions on JkV, the idea is to produce new ones by
taking differentiations

Qj := θj1 . . . θjℓP, 0 6 ℓ 6 m, j = (j1, . . . , jℓ).

Since the θj’s are Gk-invariant, they are in particular C∗-invariant, thus

Qj ∈ H0(X, EGG
k,mT

∗
X ⊗ O(−A + ℓB))

(and Q is in fact G′
k invariant as soon as P is). In order to be able to apply the vanishing

theorems of § 8, we need A − mB to be ample, so A has to be large compared to B. If
f : C → Xs is an entire curve contained in some fiber Xs ⊂ X, its lifting jk(f) : C → JkV
has to lie in the zero divisors of all sections Qj . However, every non zero polynomial of
degree m has at any point some non zero derivative of order ℓ 6 m. Therefore, at any
point where the θi generate the tangent space to JkV, we can find some non vanishing
section Qj . By the assumptions on the θi, the base locus of the Qj ’s is contained in the
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union of p−1
k (Y) ∪ (JkV)

sing; there is of course no way of getting a non zero polynomial at
points of Y where P vanishes. Finally, we observe that jk(f)(C) 6⊂ (JkV

sing (otherwise f is
constant). Therefore jk(f)(C) ⊂ p−1

k (Y) and thus f(C) ⊂ Y, i.e. f(C) ⊂ Ys = Y ∩Xs.

10.5. Corollary. Let X ⊂ Pn+1 × PNd be the universal hypersurface of degree d in Pn+1. If

d > dn is taken so large that conditions (10.3) and (10.4) are met with A−mB ample, then

the generic fiber Xs of the universal family X → U satisfies the Green-Griffiths conjecture,

namely all entire curves f : C → Xs are contained in a proper algebraic subvariety Ys ⊂ Xs,

and the Ys can be taken to form an algebraic subset Y ⊂ X.

This is unfortunately not enough to get the hyperbolicity ofXs, because we would have to
know that Ys itself is hyperbolic. However, one can use the following simple observation due
to Diverio and Trapani [DT10]. The starting point is the following general, straightforward
remark. Let E → X be a holomorphic vector bundle let σ ∈ H0(X,E) 6= 0; then, up to
factorizing by an effective divisor D contained in the common zeroes of the components of
σ, one can view σ as a section

σ ∈ H0(X,E⊗ OX(−D)),

and this section now has a zero locus without divisorial components. Here, when n > 2,
the very generic fiber Xs has Picard number one by the Noether-Lefschetz theorem, and so,
after shrinking U if necessary, we can assume that OX(−D) is the restriction of OPn+1(−p),
p > 0 by the effectivity of D. Hence D can be assumed to be nef. After performing this
simplification, A−mB is replaced by A−mB+D, which is still ample if A−mB is ample.
As a consequence, we may assume codimY > 2, and after shrinking U again, that all Ys
have codimYs > 2.

10.6. Additional statement. In corollary 10.5, under the same hypotheses (10.3) and

(10.4), one can take all fibers Ys to have codimYs > 2.

This is enough to conclude that Xs is hyperbolic if n = dimXs 6 3. In fact, this is clear
if n = 2 since the Ys are then reduced to points. If n = 3, the Ys are at most curves, but
we know by Ein and Voisin that a generic hypersurface Xs ⊂ P4 of degree d > 7 does not
possess any rational or elliptic curve. Hence Ys is hyperbolic and so is Xs, for s generic.

10.7. Corollary. Assume that n = 2 or n = 3, and that X ⊂ Pn+1 × PNd is the universal

hypersurface of degree d > dn > 2n + 1 so large that conditions (10.3) and (10.4) are met

with A−mB ample. Then the very generic hypersurface Xs ⊂ Pn+1 of degree d is hyperbolic.

§10.C. Proof of the Green-griffiths conjecture for generic hypersurfaces in Pn+1

The most striking progress made at this date on the Green-Griffiths conjecture itself is
a recent result of Diverio, Merker and Rousseau [DMR10], confirming the statement when
X ⊂ Pn+1

C is a generic hypersurface of large degree d, with a (non optimal) sufficient lower
bound d > 2n

5

. Their proof is based in an essential way on Siu’s strategy as developed in
§ 10.B, combined with the earlier techniques of [Dem95]. Using our improved bounds from
§ 9.D, we obtain here a better estimate (less than doubly exponential, actually of exponential
order one O(exp(n1+ε)).

10.8. Theorem. A generic hypersurface X ⊂ Pn+1 of degree d > dn with

d2 = 286, d3 = 7316, dn =

⌊
n4

3

(
n log(n log(24n))

)n
⌋

for n > 4,
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satisfies the Green-Griffiths conjecture.

Proof. Let us apply Theorem 9.46 with V = TX , r = n and k = n. The main starting
point is the well known fact that T ∗

Pn+1 ⊗OPn+1(2) is semipositive (in fact, generated by its
sections). Hence the exact sequence

0 → OPn+1(−d) → T ∗
Pn+1|X → T ∗

X → 0

implies that T ∗
X ⊗ OX(2) > 0. We can therefore take γ = ΘO(2) = 2ω where ω is the

Fubini-Study metric. Moreover detV ∗ = KX = OX (d− n− 2) has curvature (d− n − 2)ω,
hence ΘdetV ∗ + rγ = (d+ n− 2)ω. The Morse integral to be computed when A = OX(p) is

∫

X

(
cn,n,n(d+ n− 2)n − c′n,n,n(d+ n− 2)n−1(p+ 2n)

)
ωn,

so the critical condition we need is

d+ n− 2 >
c′n,n,n
cn,n,n

(p+ 2n).

On the other hand, Siu’s differentiation technique requires m
n2 (1 +

1
2
+ . . .+ 1

n
)A −mB to

be ample, where B = OX (n2 +2n) by Merker’s result 10.2. This ampleness condition yields

1

n2

(
1 +

1

2
+ . . .+

1

n

)
p− (n2 + 2n) > 0,

so one easily sees that it is enough to take p = n4 − 2n for n > 3. Our estimates (9.48) and
(9.49) give the expected bound dn.

Thanks to 10.6, one also obtains the generic hyperbolicity of 2 and 3-dimensional
hypersurfaces of large degree.

10.9. Theorem. For n = 2 or n = 3, a generic hypersurface X ⊂ Pn+1 of degree d > dn is

Kobayashi hyperbolic.

Using more explicit calculations of Chern classes (and invariant jets rather than Green-
Griffiths jets) Diverio-Trapani [DT10] obtained the better lower bound d > d3 = 593 in
dimension 3. In the case of surfaces, Paun [Pau08] obtained d > d2 = 18, using deep results
of McQuillan [McQ98].

One may wonder whether it is possible to use jets of order k < n in the proof of 10.8 and
10.9. Diverio [Div08] showed that the answer is nagative (his proof is based on elementary
facts of representation theory and a vanishing theorem of Brückmann-Rackwitz [BR90]):

10.10. Proposition ([Div08]). Let X ⊂ Pn+1 be a smooth hypersurface. Then

H0(X,EGG
k,mT

∗
X) = 0

for m > 1 and 1 6 k < n. More generally, if X ⊂ Pn+s is a smooth complete intersection

of codimension s, there are no global jet differentials for m > 1 and k < n/s.
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applications, Thèse, Paris. Ann. Ecole Normale, 45 (1928), 255–346.

[CKM88] Clemens, H., Kollár, J., Mori, S.: Higher dimensional complex geometry. Astérisque 166, 1988.
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Abstract

We present a proof of the Tits type alternative for automorphism groups
of compact Kähler manifolds which is recently obtained by De-Qi Zhang.
Several related results will be discussed.

Classification AMS 2010 : 14J50, 14E07, 32M05, 32H50, 32Q15.
Keywords: Tits alternative, topological entropy, dynamical degree, amenable
group, mixed Hodge-Riemann theorem.

1 Introduction

In this paper, we will present a proof of the Tits type alternative obtained by
De-Qi Zhang in [50] which confirms a conjecture by Keum-Oguiso-Zhang [27].
This nice result is intimately connected to developments in complex dynamics
of several variables. So we will survey some results from holomorphic dynamics
which are related to the Tits type alternative and to its proof.

Several statements in the paper are purely algebraic and one can ask if they
can be obtained by purely algebraic methods and also if they can be extended to
automorphisms of algebraic manifolds over a finite field. The question is far from
the author’s competence. So only analytical tools will be discussed here and we
refer the reader to a recent paper by Esnault-Srinivas [20] which is a first step to
study similar questions for finite fields.

Let X be a compact Kähler manifold, e.g. a complex projective manifold, of
dimension k. Denote by Aut(X) the group of all holomorphic automorphisms of
X. Following a result by Bochner-Montgomery, Aut(X) is a complex Lie group
of finite dimension [4], see also [1, 4, 40] and the references therein for results on
upper bounds of the dimension.

The group Aut(X) may have an infinite number of connected components.
Let Aut0(X) denote the connected component of the identity. Elements in this
subgroup are those induced by global holomorphic vector fields on X. They are
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almost characterized by the property that the associated actions on cohomology
preserve a Kähler class. More precisely, Fujiki and Lieberman proved that the
group of all automorphisms preserving a given Kähler class is a finite union of
connected components of Aut(X), see [22, 30] and Theorem 5.1 below.

Quite recently, ideas from complex dynamics allowed to study the ”discrete
part” of Aut(X). Inspired by results in [16], a Tits type alternative was conjec-
tured and proved in some cases by Keum-Oguiso-Zhang in [27], see also [36, 49].
The conjecture was fully obtained by De-Qi Zhang in [50]. His theorem corre-
sponds to the second assertion of the following theorem.

Theorem 1.1. Let X be a compact Kähler manifold of dimension k and of Ko-
daira dimension κX . Define κ := max(κX , 0) if κX < k and κ := k−1 otherwise.
Let G be a group of holomorphic automorphisms of X which does not contain any
free non-abelian subgroup. Then G admits a finite index subgroup G′ satisfying
the following properties:

1. G′ is solvable; in other words, Aut(X) satisfies the Tits alternative, see also
Theorem 5.3;

2. The set N ′ of zero entropy elements of G′ is a normal subgroup of G′ and
G′/N ′ is a free abelian group of rank at most k − κ− 1.

The entropy of an automorphism was originally introduced as a dynamical
invariant. However, thanks to results by Gromov and Yomdin [25, 47], it can
be also considered as an algebraic invariant. The notion, its properties and its
relations with the dynamical degrees of automorphism will be presented in Section
3.

A main tool in the proof of Theorem 1.1 is a mixed version of the classical
Hodge-Riemann theorem. It will be discussed in Section 2. In Section 4, we
will survey some results on meromorphic fibrations which are preserved by an
automorphism. These results will be applied to the Iitaka’s fibration of X and are
used to obtain the rank estimate in Theorem 1.1. Finally, the proof of Theorem
1.1 will be given in Section 5.

We deduce from Theorem 1.1 the following important consequence, see [16,
50]. We say that a group G of automorphisms of X has positive entropy if all
elements of g, except the identity, have positive entropy.

Corollary 1.2. Let G be a group of automorphisms of X. Assume that G is
abelian and has positive entropy. Then, G is a free abelian group of rank at most
k − κ− 1.

The rank estimates in Theorem 1.1 and Corollary 1.2 are optimal as shown
in the following example.

Example 1.3. Consider the natural action of SL(k,Z) on the complex torus
Ck/(Zk + iZk). The Kodaira dimension of the torus is zero. By a theorem of
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Prasad-Raghunathan [38], the action on the right of SL(k,Z) \ SL(k,R) of the
group of diagonal matrices in SL(k,R) admits compact orbits. These compact
orbits can be identified to quotients of Rk−1 by subgroups of SL(k,Z). We deduce
that SL(k,Z) admits free commutative subgroups of rank k− 1 which are diago-
nalizable. The elements of these subgroups, except the identity, admit eigenvalues
with modulus larger than 1. They can be identified to rank k − 1 free commu-
tative groups of automorphisms on the considered complex torus. It is then not
difficult to check that such groups have positive entropy.

This example suggests the following open problem which was stated in the
arXiv version of [16].

Problem 1.4. Classify compact Kähler manifolds of dimension k ≥ 3 admitting
a free commutative group of automorphisms of rank k − 1 which is of positive
entropy.

In dimension k = 2, many K3 surfaces and rational surfaces admit positive
entropy automorphisms, see e.g. [2, 3, 8, 12, 32, 33, 34, 41] and also [19, 26, 29, 37].
In higher dimension, some partial results on the above problem were obtained in
[51]. We can also ask the same question for groups of rank k−p and for manifolds
of dimension large enough, e.g. for groups of rank k − 2 with k ≥ 4.

Corollary 1.2 and the Margulis super-rigidity theorem [31] play a crucial role in
a result of Cantat on the action of a simple lattice on compact Kähler manifolds.
His result gives an affirmative answer to a version of Zimmer’s problem in the
case of holomorphic group actions, see also [48]. The following statement is
slightly stronger than the one given in [5] where the rank bound was k instead of
k −max(κX , 0).

Theorem 1.5. Let Γ be a lattice of a simple algebraic Lie R-group G. Assume
that Γ admits a representation in Aut(X) with infinite image. Then the real rank
of G is at most k −max(κX , 0).

We refer to the paper by Cantat [5] for the proof, see also [6, 7] for more
results in this direction.

Acknowledgments. The author would like to thank Gilles Courtois, Viet-
Anh Nguyen, Nessim Sibony, Tuyen Trung Truong for their helps during the
preparation of this paper.

2 Mixed Hodge-Riemann theorem

In this section, we will recall the mixed version of the classical Hodge-Riemann
theorem which is used for the main results in this paper. We refer to the books
by Demailly [9] and Voisin [43] for basic notions and results on Hodge theory.
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Let X be a compact Kähler manifold of dimension k as above. For 0 ≤ p, q ≤
k, denote by Hp,q(X,C) the Hodge cohomology group of bidegree (p, q). We often
identify Hk,k(X,C) with C via the integration of maximal bidegree forms on X.
Define for all 0 ≤ p ≤ k

Hp,p(X,R) := Hp,p(X,C) ∩H2p(X,R).

As a consequence of the Hodge theory, we have

Hp,p(X,C) = Hp,p(X,R)⊗R C.

Denote by K the Kähler cone of X, i.e. the set of all classes of Kähler forms
on X, see [11] for a characterization of K . This is a strictly convex open cone
in H1,1(X,R). The closed cone K is called the nef cone and its elements are the
nef classes of X.

To each class Ω ∈ Hk−2,k−2(X,R), we associate the quadratic form QΩ on
H1,1(X,R) defined by

QΩ(α, β) := −α ` β ` Ω for α, β ∈ H1,1(X,R).

For any non-zero class Ω′ ∈ Hk−1,k−1(X,R), define the primitive subspace PΩ′ of
H1,1(X,R) associated to Ω′ by

PΩ′ :=
{
α ∈ H1,1(X,R) : α ` Ω′ = 0

}
.

By Poincaré duality, this is a hyperplane of H1,1(X,R). We have the following
result, see [14].

Theorem 2.1. Let c1, . . . , ck−1 be Kähler classes on X. Define Ω := c1 ` · · · `
ck−2 and Ω′ := Ω ` ck−1. Let h1,1 denote the dimension of H1,1(X,R). Then, the
quadratic form QΩ has signature (h1,1 − 1, 1) and is positive definite on PΩ′.

When the classes cj are equal, we obtain the classical Hodge-Riemann theo-
rem. The Hodge-Riemann theorem for higher bidegree cohomology groups, the
hard Lefschetz’s theorem and the Lefschetz decomposition theorem can also be
generalized in the same way.

Note that all these results are due to Khovanskii [28] and Teissier [44] when
X is a projective manifold and the cj’s are integral classes. A linear version was
obtained by Timorin in [45]. Gromov proved in [24] that QΩ is semi-positive on
PΩ′ . His result is in fact enough for our purpose.

Corollary 2.2. Let α, β and cj be nef classes. Define Ω := c1 ` · · · ` ck−2.
Then, we have

|QΩ(α, α)||QΩ(β, β)| ≤ |QΩ(α, β)|2.
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Proof. Note that since α, β and the cj’s are nef classes, QΩ(α, α), QΩ(β, β) and
QΩ(α, β) are negative. By continuity, we can assume that α, β and the cj’s
are Kähler classes. Define A := |Q(α, α)|, B := |Q(α, β)|, C := |Q(β, β)| and
Ω′ := Ω ` ck−1 for some Kähler class ck−1.

In order to obtain the corollary, we only have to consider the case where α
and β are not collinear. So the plane generated by α and β intersects PΩ′ along
a real line. Let aα+ bβ be a point in this real line with (a, b) 6= (0, 0). Since QΩ

is positive defined on PΩ′ , we deduce that

Aa2 + 2Bab+ Cb2 = −QΩ(aα + bβ, aα + bβ) ≤ 0.

It follows that B2 ≥ AC.

Let Kp be the set of all the classes of strictly positive closed (p, p)-forms in
Hp,p(X,R). Denote by K ∗

p the dual cone of Kk−p with respect to the Poincaré
duality. These cones are strictly convex and open. We also have K = K1.

Definition 2.3. Let Θ be a class in K
∗
p \{0} with p ≤ k−2. We say that Θ is a

weak Hodge-Riemann class (wHR-class for short) if for all Kähler classes cj, the
quadratic form QΩ is semi-positive on PΩ′ , where Ω := Θ ` c1 ` · · · ` ck−p−2

and Ω′ := Ω ` ck−p−1.

By continuity, if Θ is wHR and the cj’s are nef classes such that Ω′ 6= 0, then
the quadratic form QΩ is still semi-positive on the hyperplane PΩ′ . Observe also
that the set of wHR-classes is closed in K

∗
p \ {0}. By Theorem 2.1, if Θ is a

product of nef classes or a limit of such products, then it is a wHR-class. The
following result is obtained exactly as in Corollary 2.2.

Proposition 2.4. Let Θ be a wHR class in K
∗
p \ {0}. Let cj be nef classes and

define Ω := Θ ` c1 ` · · · ` ck−p−2. Then, we have

|QΩ(α, α)||QΩ(β, β)| ≤ |QΩ(α, β)|2.

For any class Θ ∈ K
∗
p, denote by K (Θ) the closure of Θ ` K in K

∗
p+1. We

call it the nef cone relative to Θ or the Θ-nef cone. It is closed, strictly convex
and contained in the linear space Θ ` H1,1(X,R). It contains the cone Θ ` K
and can be strictly larger than this cone; in other words, Θ ` K is not always
closed. Observe that if Θ is a wHR-class, so are the classes in K (Θ) \ {0}.

Proposition 2.5. Let π : X ′ → X be a holomorphic map between compact Kähler
manifolds. If Θ′ is a wHR-class on X ′ such that π∗(Θ

′) 6= 0, then π∗(Θ
′) is a

wHR-class on X. In particular, if Θ is the class of an irreducible analytic subset
of X then Θ is wHR.

Proof. If c is a nef class on X then π∗(c) is a nef class on X ′. Therefore, the
first assertion is a direct consequence of Definition 2.3. For the second assertion,
assume that Θ is the class of an irreducible analytic subset of X. If the analytic
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set is smooth, it is enough to apply Theorem 2.1 to this manifold. Otherwise,
we use a resolution of singularities and the first assertion allows us to reduce the
problem to the smooth case.

Lemma 2.6. Let Θ be a class in K
∗
p, M a class in Hq,q(X,R) and Θ′ a class

in K (Θ). Assume that Θ ` M is in K
∗
p+q and write Θ′ = Θ ` L with L ∈

H1,1(X,R). Then Θ ` M ` L is a class in K (Θ ` M) and it does not depend
on the choice of L.

Proof. The independence of the choice of L is obvious. Since Θ′ is in K (Θ) there
is a sequence of Kähler classes Ln such that Θ ` Ln → Θ ` L. We deduce that
Θ ` M ` Ln converge to Θ ` M ` L. Therefore, the last class belongs to
K (Θ `M).

Definition 2.7. Let Θ and Θ′ be two classes in Hp,p(X,R). We say that they
are numerically almost equivalent and we write Θ 'n Θ′ if

(Θ−Θ′) ` c1 ` . . . ` ck−p = 0

for all classes cj ∈ H1,1(X,R).

Note that for Θ in K
∗
p we have Θ 6'n 0 if and only if Θ 6= 0. We will need

the following proposition which uses the ideas from [16, 18, 50].

Proposition 2.8. Let Θ be a wHR-class in K
∗
p. Let Θ1 and Θ2 be two classes

in K (Θ). Write Θj = Θ ` Lj with Lj ∈ H1,1(X,R). Assume that Θ ` L1 `
L2 = 0. Then, we also have Θ ` L2

1 = Θ ` L2
2 = 0. Moreover, there is a pair of

real numbers (t1, t2) 6= (0, 0) such that Θ ` (t1L1 + t2L2) 'n 0.

Proof. By Lemma 2.6, the classes Θ ` L1 ` L2 and Θ ` L2
j belong to K

∗
p+2 and

depend only on Θj but not on the choice of Lj. Observe also that we only need
to consider the case where Θ1 and Θ2 are linearly independent. So Θ1,Θ2 belong
to K

∗
p+1 \ {0} and L1, L2 are linearly independent. Denote by H the real plane

in H1,1(X,R) generated by L1 and L2.
Let c1, . . . , ck−p−1 be Kähler classes. Define Ω := Θ ` c1 ` · · · ` ck−p−2 and

Ω′ := Ω ` ck−p−1. We deduce from the hypothesis on Θ ` L1 ` L2 and the
definition of QΩ that QΩ is semi-negative on H. Since Θ is a wHR-class, QΩ is
semi-positive on PΩ′ . It follows that QΩ vanishes on H ∩ PΩ′ .

Consider a pair of real numbers (t1, t2) 6= (0, 0) such that t1L1 + t2L2 belongs
to PΩ′ . We have

Θ ` (t1L1 + t2L2)2 ` c1 ` . . . ` ck−p−2 = 0.

Hence,
Θ ` (t21L

2
1 + t22L

2
2) ` c1 ` . . . ` ck−p−2 = 0.

Since Θ ` L2
j ∈ K

∗
p+2, we conclude that Θ ` L2

j = 0 if tj 6= 0.
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Recall that we suppose Θj ∈ K
∗
p+1 \ {0}. Therefore, Lj does not belong to

PΩ′ . Thus, tj 6= 0 and Θ ` L2
j = 0. We can assume that t1 = 1 and write

t := t2. The number t is the unique real number such that L1 + tL2 ∈ H ∩ PΩ′ .
By Cauchy-Schwarz’s inequality applied to the restriction of QΩ to PΩ′ , we have
QΩ(L1 + tL2, c) = 0 for every c in the hyperplane PΩ′ . This together with the
first assertion in the proposition implies that QΩ(L1 + tL2, c) = 0 for every c ∈
H1,1(X,R). Then, it follows from the Poincaré duality that

Θ ` (L1 + tL2) ` c1 ` . . . ` ck−p−2 = 0.

In order to obtain the last assertion in the proposition, it remains to check
that t is independent of cj. By definition, t depends symmetrically on the cj’s.
However, the last identity, which is stronger than the property L1 + tL2 ∈ PΩ′ ,
shows that it does not depend on ck−p−1. We conclude that t does not depend
on cj for every j. This completes the proof of the proposition.

3 Topological entropy and dynamical degrees

The topological entropy of a map is a dynamical invariant. In the case of holo-
morphic automorphisms of a compact Kähler manifold, results by Gromov and
Yomdin imply that the topological entropy is in fact an algebraic invariant.

Let f be a holomorphic automorphism of X. It defines a dynamical system
on X. Denote by fn := f ◦ · · · ◦ f , n times, the iterate of order n of f . If x is a
point of X, the orbit of x is the sequence of points

x, f(x), f 2(x), . . . , fn(x), . . .

The topological entropy of f measures the divergence of the orbits or in some sense
it measures the rate of expansion of the ”number” of orbits one can distinguish
when the time n goes to infinity. The formal definition is given below.

Definition 3.1. Let ε > 0 and n ∈ N. Two points x and y in X are said to be
(n, ε)-separated if we have for some integer 0 ≤ j ≤ n− 1

dist(f j(x), f j(y)) > ε.

Definition 3.2. Let N(ε, n) denote the maximal number of points mutually
(n, ε)-separated. The (topological) entropy of f is given by the formula

ht(f) := sup
ε>0

lim sup
n→∞

logN(ε, n)

n
= lim

ε→0
lim sup
n→∞

logN(ε, n)

n
·

Note that the notion of separated points depends on the metric on X but the
topological entropy is independent of the choice of the metric. So the topological
entropy is a topological invariant.
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The pull-back operator f ∗ on differential forms induces a graded automor-
phism of the Hodge cohomology ring of X

f ∗ :
⊕

0≤p,q≤k

Hp,q(X,C)→
⊕

0≤p,q≤k

Hp,q(X,C).

A similar property holds for the de Rham cohomology ring which can be identified
to the real part of the Hodge cohomology ring. We have a graded automorphism

f ∗ :
⊕

0≤m≤2k

Hm(X,R)→
⊕

0≤m≤2k

Hm(X,R).

The last operator preserves a lattice on which it is identified to

f ∗ :
⊕

0≤m≤2k

Hm(X,Z)

torsion
→

⊕
0≤m≤2k

Hm(X,Z)

torsion
·

In particular, on a suitable basis, the map f ∗ : Hm(X,R) → Hm(X,R) is given
by a square matrix with integer entries. When X is a projective manifold, we
can also consider the action of f on Néron-Severi groups.

The following algebraic invariants were implicitly considered in Gromov [25],
see also [17, 21, 39].

Definition 3.3. We call dynamical degree of order p of f the spectral radius
dp(f) of the linear morphism f ∗ : Hp,p(X,C)→ Hp,p(X,C) and we call algebraic
entropy of f the number

ha(f) := max
0≤p≤k

log dp(f).

It follows from the above discussion that each dp(f) is a root of a monic
polynomial with integer coefficients. In particular, it is an algebraic number.

If ω is a Kähler form on X, it is not difficult to see that the dynamical degrees
can by computed with the formula

dp(f) = lim
n→∞

[ ∫
X

(fn)∗(ωp) ∧ ωk−p
]1/n

= lim
n→∞

[
(fn)∗{ω}p ` {ω}k−p

]1/n

= lim
n→∞

[ ∫
X

ωp ∧ (fn)∗(ω
k−p)

]1/n

= lim
n→∞

[
{ω}p ` (fn)∗{ω}k−p

]1/n

.(3.1)

We see that d0(f) = dk(f) = 1 and dp(f) = dk−p(f
−1).

The following result is a consequence of a theorem by Gromov [25] and another
theorem by Yomdin [47]. It shows that the topological entropy of a holomorphic
automorphism can be computed algebraically.

Theorem 3.4. We have
ht(f) = ha(f).
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Gromov theorem implies that ht(f) ≤ ha(f). A similar property holds for all
meromorphic self-maps on compact Kähler manifolds, see [17].

Yomdin theorem says that if V ⊂ X is a real manifold, smooth up to the
boundary, then the volume growth of the sequence fn(V ), n ≥ 0, is bounded by
ht(f). More precisely, we have

ht(f) ≥ lim sup
n→∞

1

n
log volfn(V ),

where we use the m-dimensional volume vol(·) with m := dimR V . Yomdin’s
theorem holds for all smooth maps on compact real manifolds.

Applying Yomdin theorem to real compact manifolds without boundary in
X, we obtain that

ht(f) ≥ log ρm(f)

if ρm(f) is the spectral radius of f ∗ : Hm(X,R) → Hm(X,R). In particular, we
obtain the reverse of the above Gromov’s inequality.

Let ρp,q(f) denote the spectral radius of f ∗ : Hp,q(X,C) → Hp,q(X,C). Ar-
guing as above, we obtain

ht(f) ≥ log ρp,q(f).

This together with Gromov’s inequality yields

ρp,q(f) ≤ max
0≤p≤k

dp(f).

In fact, the following more general result holds, see [13].

Proposition 3.5. We have for 0 ≤ p, q ≤ k

ρp,q(f) ≤
√
dp(f)dq(f).

This inequality also explains why the dynamical degrees dp(f) play a more
important role than the degrees ρp,q(f), p 6= q, in the dynamical study of f .
A similar property holds for general meromorphic self-maps on compact Kähler
manifolds.

The following result is a direct consequence of Corollary 2.2 and the identity
(3.1).

Proposition 3.6. The function p 7→ log dp(f) is concave in p, that is,

dp(f)2 ≥ dp−1(f)dp+1(f) for 1 ≤ p ≤ k − 1.

In particular, there are two integers 0 ≤ r ≤ s ≤ k such that

1 = d0(f) < · · · < dr(f) = · · · = ds(f) > · · · > dk(f) = 1.

We obtain the following corollary, see [16].
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Corollary 3.7. The automorphism f has positive entropy if and only if d1(f) > 1
(resp. dk−1(f) > 1). Moreover, in this case, there is a number A > 1 depending
only on the second Betti number of X such that

ht(f) ≥ logA and dp(f) ≥ A for 1 ≤ p ≤ k − 1.

Proof. The first assertion is a consequence of Theorem 3.4 and Proposition 3.6.
Assume now that f has positive entropy. We have dp(f) > 1 for 1 ≤ p ≤ k − 1.
It suffices to prove that d1(f) ≥ A and dk−1(f) ≥ A. We only have to check the
first inequality since dk−1(f) = d1(f−1).

It follows from Proposition 3.5 that d1(f) is the spectral radius of f ∗ :
H2(X,R)→ H2(X,R). So it is the largest root of a monic polynomial of degree
b2 with integer coefficients, where b2 := dimH2(X,R) denotes the second Betti
number of X. If this polynomial admits a coefficient of absolute value larger
than 2b2b2! then it admits a root of modulus larger than 2. In this case, we have
d1(f) ≥ 2. Otherwise, the polynomial belongs to a finite family and hence d1(f)
belongs to a finite set depending only on b2. The result follows.

4 Fibrations and relative dynamical degrees

We will consider the restriction of an automorphism to analytic sets which may
be singular. In general, a resolution of singularities gives us maps which are no
more holomorphic. So it is useful to extend the notion of dynamical degrees to
meromorphic maps.

For the moment, let (X,ω) be a compact Kähler manifold. Let f : X → X
be a meromorphic map which is dominant, i.e. its image contains a Zariski open
subset of X. The dynamical degree of order p of f is defined by

(4.1) dp(f) = lim
n→∞

[ ∫
X

(fn)∗(ωp) ∧ ωk−p
]1/n

.

It is not difficult to see that the definition does not depend on the choice of ω.
The existence of the above limit is not obvious. It is based on some result on the
regularization of positive closed currents [17], see also [10]. Dynamical degrees
are bi-meromorphic invariants. More precisely, we have the following result, see
[17].

Theorem 4.1. Let f and g be dominant meromorphic self-maps on compact
Kähler manifolds X and Y respectively, of the same dimension k. Let π : X → Y
be a bi-meromorphic map. Assume that g◦π = π◦f . Then, we have dp(f) = dp(g)
for 0 ≤ p ≤ k.

So we can extend the notion of dynamical degrees to meromorphic maps on
varieties by using a resolution of singularities. Note that Proposition 3.6 still
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holds in this case except we only have dk(f) ≥ 1 with equality when f is a
bi-meromorphic map.

The last theorem can be viewed also as a consequence of Theorem 4.2 below.
Consider now a dominant meromorphic map g : Y → Y , where Y is a compact
Kähler manifold of dimension l ≤ k. Let π : X → Y a dominant meromorphic
map and assume as above that g ◦ π = π ◦ f . So f preserves the meromorphic
fibration defined by π.

We can define the dynamical degree of f relative to the fibration by

dp(f |π) := lim
n→∞

[ ∫
π−1(y)

(fn)∗(ωp) ∧ ωk−l−p
]1/n

,

where y is a generic point in Y . The definition does not depend on the generic
choice of y and the function p 7→ log dp(f |π) is concave on p. The following result
relates the dynamical degrees of f and the ones of g, see [15].

Theorem 4.2. Let f, g, π be as above. Then, we have for 0 ≤ p ≤ k

dp(f) = max
max(0,p−k+l)≤s≤min(p,l)

ds(g)dp−s(f |π).

Note that the domain of s in the last formula is exactly the set of s such that
ds(g) and dp−s(f |π) are meaningful. In the case where k = l, we necessarily have
s = p and d0(f |π) = 1. So the last formula implies Theorem 4.1. We will also
apply the last theorem to the case of pluricanonical fibrations of X.

Let KX denote the canonical line bundle of X. Let H0(X,KN
X ) denote the

space of holomorphic sections of KN
X and H0(X,KN

X )∗ its dual space. Assume
that H0(X,KN

X ) has a positive dimension. If x is a generic point in X, the family
Hx of sections which vanish at x is a hyperplane of H0(X,KN

X ) passing through
0. So the correspondence x 7→ Hx defines a meromorphic map

πN : X → PH0(X,KN
X )∗

from X to the projectivization of H0(X,KN
X )∗ which is called a pluricanonical

fibration of X. Let YN denote the image of X by πN . The Kodaira dimension of
X is κX := maxN≥1 dimYN . When H0(X,KN

X ) = 0 for every N ≥ 1, the Kodaira
dimension of X is defined to be −∞. We have the following result, see [35, 42].

Theorem 4.3. Let f : X → X be a dominant meromorphic map. Assume that
κX ≥ 1. Then f preserves the pluricanonical fibration πN : X → YN . Moreover,
the map gN : YN → YN induced by f is periodic, i.e. gmN = id for some integer
m ≥ 1.

We deduce that dp(gN) = 1 for every p. This property can also be deduced
from a weaker property that gN is the restriction to YN of a linear map on
PH0(X,KN

X )∗ which is a consequence of the definition of gN . The following
result is a consequence of Corollary 3.7 and Theorem 4.2.

11



Corollary 4.4. Let f be a holomorphic automorphism of X. Assume that 0 ≤
κX ≤ k − 1. Let YN , πN , gN be as above. Then

ht(f) = max
1≤p≤k−dimYN−1

dp(f |πN) and d1(f) = d1(f |πN).

In particular, f has positive entropy if and only if d1(f |πN) ≥ A, where A > 1 is
the constant given in Corollary 3.7.

5 Tits alternative for automorphism groups

We are now ready to give the proof of Theorem 1.1. We first recall two important
results due to Fujiki and Lieberman [22, 30].

Theorem 5.1. Let c be a Kähler class on X. Denote by Autc(X) the group of
elements g of Aut(X) such that g∗(c) = c. Then Autc(X) is a finite union of
connected components of Aut(X).

Let Alb(X) denote the Albanese torus of X and φ : X → Alb(X) the Albanese
map. The identity component of the automorphism group of Alb(X) is denoted
by A(X). This is the group of translations on Alb(X) which is isomorphic to
Alb(X) as complex Lie groups. It is not difficult to see that any automorphism g
of X induces an automorphism h of Alb(X) such that h ◦ φ = φ ◦ g. So we have
a natural Lie group morphism

ψ : Aut0(X)→ A(X).

Theorem 5.2. The kernel ker(ψ) of ψ is a linear algebraic C-group.

We recall also the following version of Tits’ theorem [46].

Theorem 5.3. Let G be a linear R-group. Then, it satisfies the Tits alternative,
that is, any subgroup of G either has a free non-abelian subgroup or virtually
solvable, i.e. possesses a solvable subgroup of finite index.

The following result gives us the first assertion of Theorem 1.1.

Theorem 5.4. The group Aut(X) satisfies the Tits alternative.

We first prove a preliminary lemma.

Lemma 5.5. Let A be a group and B a normal subgroup of A. Assume that B
and A/B are virtually solvable. Then A is virtually solvable.

Proof. Let π : A → A/B be the canonical group morphism. If D is a solvable
finite index subgroup of A/B, we can replace A by π−1(D) in order to assume
that A/B is solvable. Let

{1} = D0 / D1 / · · · / Dm−1 / Dm = A/B
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be a subnormal series such that Dj is normal in A/B and Dj+1/Dj is abelian for
every 0 ≤ j ≤ m− 1. We can use here the derived series of A/B.

By lattice theorem (correspondence theorem), there is a subnormal series

B = B0 / B1 / · · · / Bm−1 / Bm = A

such that Bj is normal in A and Bj/Bj−1 = Dj/Dj−1 for 1 ≤ j ≤ m. Recall
that B is virtually solvable. We will show that B1 satisfies the same property
and then using a simple induction, we obtain that A is virtually solvable. So in
order to simplify the notation, we can assume that m = 1 or equivalently A/B
is abelian.

Let C be a solvable finite index subgroup of B. We can replace C by the
intersection of bCb−1 with b ∈ B in order to assume that C is normal in B.
Without loss of generality, we can also assume that C is a maximal normal
solvable subgroup of B with finite index. The maximality and the lattice theorem
imply that B/C admits no solvable normal subgroup different from {1}. Since B
is normal in A, we have a−1Ca ⊂ B for every a ∈ A. We claim that C is normal
in A, i.e. a−1Ca = C for every a ∈ A.

Taking into account this property, we first complete the proof of the lemma.
Observe that if a is an element of A then b 7→ a−1ba induces an automorphism
of the group B/C. Let A′ denote the set of all elements a ∈ A such that the
above automorphism is identity. Since B/C is a finite group, A′ is a finite index
subgroup of A.

Since A/B is abelian, A′′ := [A′, A′] is a subgroup of B. By construction, if
a′ is an element of A′ and b an element of B, then [a′, b] is an element of C. We
deduce that [A′′, A′′] is a subgroup of C; in particular, it is solvable. Thus, A′ is
solvable. It remains to prove the above claim.

Define D := a−1Ca. Since b 7→ a−1ba is an automorphism of B, D is a
maximal normal solvable subgroup of B with finite index and B/D is isomorphic
to B/C. So it suffices to check that D ⊂ C. The natural short exact sequence

{1} −→ D −→ B −→ B/D −→ {1}

induces the following one

{1} −→ D

C ∩D
π1−→ B

C ∩D
−→ B

D
−→ {1}.

Similarly, we have

{1} −→ C

C ∩D
−→ B

C ∩D
π2−→ B

C
−→ {1}.

Since π1 is injective and π2 is surjective, the image of π2 ◦ π1 is a normal
subgroup of B/C. On the other hand, this subgroup should be solvable since D
is solvable. We deduce from the maximality of C that the image of π2 ◦ π1 is
equal to {1}. Hence, D ⊂ C. This completes the proof of the lemma.
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Proof of Theorem 5.4. Let G be a subgroup of Aut(X) which does not con-
tain any free non-abelian subgroup. We have to show that G admits a solvable
subgroup of finite index. Consider the natural group morphism

ρ : Aut(X)→ GL(H2(X,R)).

By Theorem 5.3, ρ(G) is virtually solvable. By Lemma 5.5, we only have to check
that G ∩ ker ρ is virtually solvable.

By Theorem 5.1, G ∩ ker(ρ) is a finite extension of G ∩Aut0(X). So we only
have to check that G ∩ Aut0(X) is virtually solvable. Since ψ(G ∩ Aut0(X)) is
abelian, by Lemma 5.5, it suffices to show that kerψ ∩ G is virtually solvable.
But this is a consequence of Theorems 5.2 and 5.3. �

We now turn to the proof of the second assertion in Theorem 1.1. Let G be a
group as in this theorem. By Theorem 5.4, G is virtually solvable. We will need
the following version of the Lie-Kolchin theorem due to Keum-Oguiso-Zhang [27].

Theorem 5.6. Let H be a virtually solvable group acting linearly on a strictly
convex closed cone C of finite dimension. Then, H admits a finite index subgroup
H ′ and a non-zero vector v ∈ C such that the half-line R+v is invariant by H ′.

This result was obtained by induction on the derived length of a suitable finite
index solvable subgroup of G. The case where G is abelian is a consequence of
the classical Perron-Frobenius theorem.

Observe that in the case κX = k the second assertion in Theorem 1.1 is a
direct consequence of Theorem 4.3 since in this case every automorphism has
zero entropy. Assume now that κX ≤ k − 1. Fix now an integer N such that
dimYN = κX , where YN is as defined in Section 4. In order to simplify the
notation, define π := πN , Y := YN and κ := max(κX , 0). If κX = −∞, we
consider that Y is a point. Let Θκ denote the class of a generic fiber of π. In
general, the generic fibers of π are not necessarily irreducible. However, by Stein’s
factorization theorem [23, Ch. 10.6], their irreducible components have the same
cohomology class. Therefore, by Proposition 2.5, Θκ is a wHR-class in K

∗
κ \{0}.

By Theorem 4.3, this class is fixed under the action of Aut(X).

Lemma 5.7. There is a finite index subgroup G′ of G such that for every κ ≤
p ≤ k−1, there exists a wHR-class Θp in K

∗
p \{0} and a character χp : G′ → R∗

of G′ such that g∗(Θp) = χp(g)Θp for g ∈ G′. Moreover, we have Θp ∈ K (Θp−1)
when p ≥ κ+ 1.

Proof. We construct Θp by induction on p. The class Θκ was already constructed
above and we can take G′ = G. Assume that Θp−1 was constructed. Then, G′

induces an affine action on a basis of the strictly convex cone K (Θp−1). By
Theorem 5.6, replacing G′ by a suitable finite index subgroup, we can find a
class Θp ∈ K (Θp−1) \ {0} whose direction is invariant by G′. Since Θp−1 is a
wHR-class, Θp is also a wHR-class.

14



Consider the group morphism φ : G′ → Rk−κ−1 given by

φ(g) :=
(

logχκ+1(g), . . . , logχk−1(g)
)
.

The following lemma will permit to show that Im(φ) is discrete.

Lemma 5.8. We have ‖φ(g)‖ ≥ 1
2

log dk−1(g) for all g ∈ G′.

Proof. Assume that ‖φ(g)‖ < 1
2

log dk−1(g) for some g ∈ G′. Then, we have

(5.1) dk−1(g)−1/2 < χp(g) < dk−1(g)1/2

for every p. Recall that dk−1(g) = d1(g−1) = d1(g−1|π), see Corollary 4.4. Let Θp

be as in Lemma 5.7 and write Θp = Θp−1 ` Lp with some class Lp ∈ H1,1(X,R).
Since g−1 preserves K (Θκ), it follows from the classical Perron-Frobenius

theorem that there is a class Θ ∈ K (Θκ) \ {0} depending on g such that

(g−1)∗(Θ) = d1(g−1|π)Θ = dk−1(g)Θ

or equivalently
g∗(Θ) = dk−1(g)−1Θ.

Write Θ = Θκ ` L with L ∈ H1,1(X,R).
By Lemma 2.6, Θp ` L does not depend on the choice of L and it is not

difficult to see that

(5.2) g∗(Θp ` L) = χp(g)dk−1(g)−1Θp ` L.

Since g∗ = id on Hk,k(X,R) and χk−1(g)dk−1(g)−1 6= 1, we deduce that Θk−1 `
L = 0. Let q ≤ k − 1 be the smallest integer such that Θq ` L = 0.

Since Θ belongs to K
∗
κ+1\{0}, we have Θ 6'n 0. Therefore, we have q ≥ κ+1.

We have Θq−1 ` Lq ` L = 0. By Proposition 2.8, there is a pair of real numbers
(t1, t2) 6= (0, 0) such that

Θq−1 ` (t1Lq + t2L) 'n 0.

Using the action of g∗ and the relation (5.2), we obtain that

Θq−1 `
(
t1χq(g)Lq + t2χq−1(g)dk−1(g)−1

)
'n 0.

The last two identities together with (5.1) yield Θq−1 ` L 'n 0. By Lemma 2.6,

Θq−1 ` L belongs to K
∗
q. Thus, Θq−1 ` L = 0. This contradicts the minimality

of q. The lemma follows.

End of the proof of Theorem 1.1. When ht(g) = 0, the spectral radius of g∗

on ⊕Hm(X,R) is equal to 1. Since g∗ is given by a matrix with integer entries,
we deduce that all eigenvalues of g∗ have modulus 1. It follows that φ(g) = 0.
Conversely, if φ(g) = 0, by Lemma 5.8, dk−1(g) = 1; thus, by Corollary 3.7, we
get ht(g) = 0. So we have N ′ = kerφ. In particular, N ′ is a normal subgroup of
G′. The group G′/N ′ is isomorphic to φ(G′). By Corollary 3.7 and Lemma 5.8,
φ(G′) is a discrete subset of Rk−κ−1. So G′/N ′ is a free abelian group of rank
≤ k − κ− 1. This finishes the proof of the theorem. �
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École Norm. Sup. (4) 37 (2004), no. 5, 759-768.

[6] Cantat S., Zeghib A.: Holomorphic actions of higher rank lattices in dimension
three. Preprint (2009). arXiv:0909.1406

[7] Cantat S., Zeghib A.: Holomorphic actions, Kummer examples, and Zimmer Pro-
gram. Preprint (2010). arXiv:1011.4768

[8] Coble A.B.: Algebraic geometry and theta functions. New York, American Math-
ematical Society (Colloquium Publications, vol. 10) (1929).

[9] Demailly J.-P.: Complex analytic and differential geometry. Available at
http://www.fourier.ujf-grenoble.fr/∼demailly

[10] Demailly J.-P.: Regularization of closed positive currents and intersection theory.
J. Algebr. Geom. 1, No.3 (1992), 361-409.

[11] Demailly J.-P., Paun M.: Numerical characterization of the Kähler cone of a
compact Kähler manifold. Ann. of Math. (2) 159 (2004), no. 3, 1247-1274.

[12] Diller J.: Cremona transformations, surface automorphisms, and plane cubics.
With an appendix by Igor Dolgachev. Michigan Math. J. 60 (2011), no. 2, 409-
440.

[13] Dinh T.-C.: Suites d’applications méromorphes multivaluées et courants lami-
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10. Société Mathématique de France, Paris, 2002.
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A FINITENESS THEOREM FOR GALOIS
REPRESENTATIONS OF FUNCTION FIELDS OVER

FINITE FIELDS (AFTER DELIGNE)

HÉLÈNE ESNAULT AND MORITZ KERZ

Abstract. We give a detailed account of Deligne’s letter [13] to
Drinfeld dated June 18, 2011, in which he shows that there are
finitely many irreducible lisse Q̄`-sheaves with bounded ramifica-
tion, up to isomorphism and up to twist, on a smooth variety
defined over a finite field. The proof relies on Lafforgue’s Lang-
lands correspondence over curves [27]. In addition, Deligne shows
the existence of affine moduli of finite type over Q. A corollary
of Deligne’s finiteness theorem is the existence of a number field
which contains all traces of the Frobenii at closed points, which
was the main result of [12] and which answers positively his own
conjecture [9, Conj. 1.2.10 (ii)].

1. Introduction

In Weil II [9, Conj. 1.2.10] Deligne conjectured that if X is a normal
connected scheme of finite type over a finite field, and V is an irre-
ducible lisse Q̄`-sheaf of rank r, with finite determinant, then

(i) V has weight 0,
(ii) there is a number field E(V ) ⊂ Q̄` containing all the coefficients

of the local characteristic polynomials det(1− tFx|Vx), where x
runs through the closed points of X and Fx is the geometric
Frobenius at the point x,

(iii) V admits `′-companions for all prime numbers `′ 6= p.

As an application of his Langlands correspondence for GLr, Lafforgue
[27] proved (i), (ii), (iii) for X a smooth curve, out of which one deduces
(i) in general. Using Lafforgue’s results, Deligne showed (ii) in [12].
Using (ii) and ideas of Wiesend, Drinfeld [15] showed (iii) assuming
in addition X to be smooth. A slightly more elementary variant of
Deligne’s argument for (ii) was given in [18].

Date: July 17, 2012.
The first author is supported by the SFB/TR45 and the ERC Advanced Grant

226257, the second author by the DFG Emmy Noether-Nachwuchsgruppe “Arith-
metik über endlich erzeugten Körpern”.
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2 HÉLÈNE ESNAULT AND MORITZ KERZ

Those conjecture were formulated with the hope that a more mo-
tivic statement could be true, which would say that those lisse sheaves
come from geometry. On the other hand, over smooth varieties over
the field of complex numbers, Deligne in [11] showed finiteness of geo-
metric variations of pure Hodge structures of bounded rank, a theorem
which, in weight one, is due to Faltings [19]. Those are always regular
singular, while lisse Q̄`-sheaves are not necessarily tame. However, any
lisse sheaf has bounded ramification (see Proposition 3.9 for details).
Furthermore, one may twist a lisse Q̄`-sheaf by a character coming from
the ground field. Thus it is natural to expect:

Theorem 1.1 (Deligne). There are only finitely many irreducible lisse
Q̄`-sheaves up to twist on X with suitably bounded ramification at in-
finity.

Deligne shows this theorem in [13] by extending his arguments from
[12]. A precise formulation is given in Theorem 2.1 based on the ram-
ification theory explained in Section 3.3.

Our aim in this note is to give a detailed account of Deligne’s proof
of this finiteness theorem for lisse Q̄`-sheaves and consequently of his
proof of (ii). For some remarks on the difference between our method
and Deligne’s original argument for proving (ii) in [12] see Section 2.4.

In fact Deligne shows a stronger finiteness theorem which comprises
finiteness of the number of what we call generalized sheaves on X.
A generalized sheaf consists of an isomorphism class of a semi-simple
lisse Q̄`-sheaf on every smooth curve mapping to X, which are assumed
to be compatible in a suitable sense. These generalized sheaves were
first studied by Drinfeld [15]. His main theorem roughly says that if
a generalized sheaf is tame at infinity along each curve then it comes
from a lisse sheaf on X, extending the rank one case treated in [35],
[36]. Deligne suggests that a more general statement should be true:

Question 1.2. Does any generalized sheaf with bounded ramification
come from a lisse Q̄`-sheaf on X?

For a precise formulation of the question see Question 2.3. The
answer to this question is not even known for rank one sheaves, in
which case the problem has been suggested already earlier in higher
dimensional class field theory. On the other hand Deligne’s finiteness
for generalized sheaves has interesting consequences for relative Chow
groups of 0-cycles over finite fields, see Section 2.3.

Some comments on the proof of the finiteness theorem: Deligne uses
in a crucial way his key theorem [12, Prop. 2.5] on curves asserting that
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a semi-simple lisse Q̄`-sheaf is uniquely determined by its characteris-
tic polynomials of the Frobenii at all closed points of some explicitly
bounded degree, see Theorem 5.1. This enables him to construct a
coarse moduli space of generalized sheaves Lr(X,D) as an affine scheme
of finite type over Q, such that its Q̄`-points correspond to the gener-
alized sheaves of rank r and bounded ramification by the given divisor
D at infinity.

We simplify Deligne’s construction of the moduli space slightly. Our
method yields less information on the resulting moduli, yet it is enough
to deduce the finiteness theorem. In fact finiteness is seen by showing
that irreducible lisse Q̄`-sheaves up to twist are in bijection with (some
of) the one-dimensional irreducible components of the moduli space
(Corollary 7.2).

We give some applications of Deligne’s finiteness theorem.
Firstly, it implies the existence of a number field E(V ) as in (ii)

above, see Theorem 2.6. This number field is in fact stable by an
ample hyperplane section if X is projective, see Proposition 7.4.

Secondly, as mentioned above the degree zero part of the relative
Chow group of 0-cycles with bounded modulus is finite (Theorem 2.5).

Deligne addresses the question of the number of irreducible lisse Q̄`-
sheaves with bounded ramification. In [14] some concrete examples on
the projective line minus a divisor of degree ≤ 4 are computed. In Sec-
tion 8 we formulate Deligne’s qualitative conjecture. This formulation
rests on emails he sent us and on his lecture in June 2012 in Orsay on
the occasion of the Laumon conference.

Acknowledgment: Our note gives an account of the 9 dense pages
written by Deligne to Drinfeld [13]. They rely on [12] and [15] and
contain a completely new idea of great beauty, to the effect of show-
ing finiteness by constructing moduli of finite type and equating the
classes of the sheaves one wants to count with some of the irreducible
components. We thank Pierre Deligne for his willingness to read our
note and for his many enlightening comments.

Parts of the present note are taken from our seminar note [18]. They
grew out of discussions at the Forschungsseminar at Essen during sum-
mer 2011. We thank all participants of the seminar.

We thank Ngô Bao Châu and Phùng Hô Hai for giving us the pos-
sibility to publish this note on the occasion of the first VIASM Yearly
Meeting.

2. The finiteness theorem and some consequences
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2.1. Deligne’s finiteness theorem (weak form). We begin by for-
mulating a version of Deligne’s finiteness theorem for `-adic Galois
representations of functions fields. Later in this section we introduce
the notion of a generalized `-adic representation, which is necessary in
order to state a stronger form of Deligne’s finiteness result. We also
explain applications to a conjecture from Weil II [9, Conj. 1.2.10 (ii)]
and to Chow groups of 0-cycles.

Let SmFq be the category of smooth separated schemes X/Fq of finite
type over the finite field Fq. We fix once for all an algebraic closure
F ⊃ Fq. To X ∈ SmFq connected one associates functorially the Weil
group W (X) [9, 1.1.7 ], a topological group, well-defined up to an inner
automorphism by π1(X⊗Fq F) when X is geometrically connected over
Fq. If so, then it sits in an exact sequence

0→ π1(X ⊗Fq F)→ W (X)→ W (Fq)→ 0.

There is a canonical identification W (Fq) = Z.
We fix a prime number ` with (`, q) = 1. Let Rr(X) be the set of

lisse Q̄`-Weil sheaves on X of dimension r up to isomorphism and up to
semi-simplification. For X connected, a lisse Q̄`-Weil sheaf on X is the
same as a continuous representations W (X)→ GLr(Q̄`). As we do not
want to talk about a topology on Q̄` we define the latter continuous
representations ad hoc as the homomorphisms which factor through a
continuous homomorphism W (X)→ GLr(E) for some finite extension
E of Q`, see [9, (1.1.6)].

The weak form of the finiteness theorem says that the number of
classes of irreducible sheaves in Rr(X) with bounded wild ramification
is finite up to twist. Let us give some more details. Let X ⊂ X̄ be a
normal compactification of the connected scheme X such that X̄ \X is
the support of an effective Cartier divisor on X̄. Let D ∈ Div+(X̄) be
an effective Cartier divisor with support in X̄ \ X. In Section 3.3 we
will define a subset Rr(X,D) of representations whose Swan conductor
along any smooth curve mapping to X̄ is bounded by the pullback of
D to the completed curve. We show that for any V ∈ Rr(X) there is
a divisor D with V ∈ Rr(X,D), see Proposition 3.9.

For V ∈ Rr(X,D) we have the notion of twist χ · V by an element
χ ∈ R1(Fq).

Theorem 2.1 (Deligne). Let X ∈ SmFq be connected and D ∈ Div+(X̄)
be an effective Cartier divisor with support in X̄ \ X. The set of ir-
reducible sheaves V ∈ Rr(X,D) is finite up to twist by elements of
R1(Fq).
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In particular the theorem implies that for any integer N > 0 there
are only finitely many irreducible V ∈ Rr(X,D) with det(V )⊗N = 1.
Theorem 2.1 is a consequence of the stronger Finiteness Theorem 2.4.

Remark 2.2. Any irreducible lisse Weil sheaf on X is a twist of an
étale sheaf, Proposition 4.3. So the theorem could also be stated with
étale sheaves instead of Weil sheaves.

2.2. Existence problem and strong finiteness. By Cu(X) we de-
note the set of normalizations of closed integral subschemes of X of
dimension one.

We say that a family (VC)C∈Cu(X) with VC ∈ Rr(C) is compatible if
for all pairs (C,C ′) we have

VC |(C×XC′)red = VC′ |(C×XC′)red ∈ Rr((C ×X C ′)red).

We write Vr(X) for the set of compatible families – also called gener-
alized sheaves.

It is not difficult to see that the canonical map Rr(X) → Vr(X) is
injective, Proposition 4.1. One might ask, what is the image of Rr(X)
in Vr(X).

With the notation as above we can also define the set Vr(X,D) of
generalized sheaves with bounded wild ramification, see Definition 3.6.
Deligne expresses the hope that the following question about existence
of `-adic sheaves might have a positive answer.

Question 2.3. Is the map Rr(X,D) → Vr(X,D) bijective for any
Cartier divisor D ∈ Div+(X̄) with support in X̄ \X?

To motivate the question one should think of the set of curves Cu(X)
together with the systems of intersections of curves as the 2-skeleton of
X. To be more precise, the analogy is as follows: For a CW -complex S
let S≤d be the union of i-cells of S (i ≤ d), i.e. its d-skeleton. Assume
that S≤0 consists of just one point.
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CW -complex S (with S≤0 =
{∗})

Variety X/Fq

1-sphere S1 with topo-
logical fundamental group
π1(S1) = Z

Finite field Fq with Weil
group W (Fq) = Z

S1-bouquet S≤1 Set of closed points |X|
2-cell in S Curve in Cu(X)

Relation in π1(S) coming
from 2-cell

Reciprocity law on curve

2-skeleton S≤2 System of curves Cu(X)

Local system on S Lisse Q̄`-Weil sheaf on X

In the sense of this analogy, Deligne’s Question 2.3 is the analog of
the fact that the fundamental groups of S and S≤2 are the same [23,
Thm. 4.23], except that we consider only the information contained
in `-adic representations, in addition only modulo semi-simplification,
and that there is no analog of wild ramification over CW -complexes.

For D = 0 a positive answer to Deligne’s question is given by Drinfeld
[15, Thm 2.5]. His proof uses a method developed by Wiesend [36] to
reduce the problem to Lafforgue’s theorem. For r = 1 and D = 0 it
was first shown by Schmidt–Spiess [35] using motivic cohomology, and
later by Wiesend [37] using more elementary methods.

The strong form of Deligne’s finiteness theorem says that Theo-
rem 2.1 remains true for generalized sheaves. We say that a generalized
sheaf V ∈ Vr(X) on a connected scheme X is irreducible if it cannot
be written in the from V1 ⊕ V2 with Vi ∈ Vri(X) and r1, r2 > 0. In
Appendix B, Proposition B.1, we give a proof of the well known fact
that a sheaf V ∈ Rr(X) is irreducible if and only if its image in Vr(X)
is irreducible.

The main result of this note now says:

Theorem 2.4 (Deligne). Let X ∈ SmFq be connected and D ∈ Div+(X̄)
be an effective Cartier divisor supported in X̄\X. The set of irreducible
generalized sheaves V ∈ Vr(X,D) is finite up to twist by elements from
R1(Fq).

The theorem implies in particular that for a given integer N > 0
there are only finitely many V ∈ Vr(X,D) with det(V )⊗N = 1. Fol-
lowing Deligne we will reduce the theorem to the one-dimensional case,
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where it is a well known consequence of the Langlands correspondence
of Drinfeld–Lafforgue. Some hints how the one-dimensional case is re-
lated to the theory of automorphic forms are given in Section 4.3. The
proof of Theorem 2.4 is completed in Section 7.

Idea of proof. The central idea of Deligne is to define an algebraic mod-
uli space structure on the set Vr(X,D), such that it becomes an affine
scheme of finite type over Q. In fact Vr(X,D) will be the Q̄`-points of
this moduli space. One shows that the irreducible components of the
moduli space over Q̄` are ‘generated’ by certain twists of generalized
sheaves, which implies the finiteness theorem, because there are only
finitely many irreducible components.

Firstly, one constructs the moduli space structure of finite type over
Q for dim(X) = 1. Then one immediately gets an algebraic structure
on Vr(X,D) in the higher dimensional case and the central point is to
show that Vr(X,D) is of finite type over Q for higher dimensional X
too.

The main method to show the finite type property is a result of
Deligne (Theorem 5.1), relying on Weil II and the Langlands corre-
spondence, which says that for one-dimensional X there is a natural
number N depending logarithmically on the genus of X̄ and the degree
of D such that V ∈ Vr(X,D) is determined by the polynomials fV (x)
with deg(x) ≤ N . Here for V ∈ Vr(X,D) we denote by fV (x) the
characteristic polynomial of the Frobenius at the closed point x ∈ |X|,
see Section 4.1 for a precise definition.

2.3. Application: Finiteness of relative Chow group of 0-cycles.
It was shown by Colliot-Thélène–Sansuc–Soulé [8] and by Kato–Saito
[24] that over a finite field, the Chow group of 0-cycles of degree 0 of a
proper variety is finite.

Assume now that X ⊂ X̄ is a compactification as above and let
D ∈ Div+(X̄) be an effective Cartier divisor with support in X̄ \ X.
For a curve C ∈ Cu(X) and an effective divisor E ∈ Div+(C̄) with
support in C̄ \ C, where C̄ is the smooth compactification of C, let

Pk(C)(E) = {g ∈ k(C)×|ordx(1− g) ≥ multx(E) + 1 for x ∈ C̄ \ C}
be the unit group with modulus well known from the ideal theoretic
version of global class field theory. Set

CH0(X,D) = Z0(X)/im[
⊕

C∈Cu(X)

Pk(C)(φ̄
∗D)].

Here φ̄ : C̄ → X̄ is the extension of the natural morphism φ : C →
X. A similar Chow group of 0-cycles is used in [17], [31] to define
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generalized Albanese varieties. For D = 0 and X̄ \X a simple normal
crossing divisor it is isomorphic to the Suslin homology group H0(X)
[34]. For dim(X) = 1 it is the classical ideal class group with modulus
D + E, where E is the reduced divisor with support X̄ \X.

From Deligne’s finiteness Theorem 2.4 and class field theory one
immediately obtains a finiteness result which was expected to hold in
higher dimensional class field theory.

Theorem 2.5. For any D ∈ Div+(X̄) as above the kernel of the degree
map from CH0(X,D) to Z is finite.

2.4. Application: Coefficients of characteristic polynomial of
the Frobenii at closed points. In [9, Conjecture 1.2.10] Deligne
conjectured that sheaves V ∈ Rr(X) with certain obviously necessary
properties should behave as if they all came from geometry, i.e. as if
they were `-adic realizations of pure motives over X. In particular they
should not only be ‘defined over’ Q̄`, but over Q̄. In this section we
explain how this latter conjecture of Deligne (for the precise formulation
see Corollary 2.7 below), follows from Theorem 2.4.

In fact Corollary 2.7 is the main result of Deligne’s article [12]. His
proof uses Bombieri’s upper estimates for the `-adic Euler characteristic
of an affine variety defined over a finite field, (and Katz’ improvement
for the Betti numbers) in terms of the embedding dimension, the num-
ber and the degree of the defining equations, which rests, aside of Weil
II, on Dwork’s p-adic methods. In [18] it was observed that one could
replace the use of p-adic cohomology theory by some more elementary
ramification theory. After this Deligne extended his methods in [13] to
obtain the Finiteness Theorem 2.4.

For V ∈ Vr(X) and x ∈ |X| one defines the characteristic polynomial
of Frobenius fV (x) ∈ Q̄`[t] at the point x, see Section 4.1. Let E(V )
be the subfield of Q̄` generated by all coefficients of all the polynomials
fV (x) where x ∈ |X| runs through the closed points.

Theorem 2.6. Let D ∈ Div+(X̄) be an effective Cartier divisor with
support in X̄ \X. For V ∈ Vr(X,D) irreducible with det(V ) of finite
order, the field E(V ) is a number field.

In Section 7 we deduce Theorem 2.6 from Theorem 2.4. By associ-
ating to V ∈ Rr(X) its generalized sheaf in Vr(X), one finally obtains
Deligne’s conjecture [12, Conj. 1. 2.10(ii) ] from Weil II.

Corollary 2.7. For V ∈ Rr(X) irreducible with det(V ) of finite order
the field E(V ) is a number field.
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In fact by Proposition 3.9 there is a divisorD such that V ∈ Rr(X,D).
Then apply Theorem 2.6 to the induced generalized sheaf in Vr(X,D).

3. Ramification theory

In this section we review some facts from ramification theory. We work
over the finite field Fq. In fact all results remain true over a perfect
base field of positive characteristic and for lisse étale `-adic sheaves.

3.1. Local ramification. We follow [28, Sec. 2.2]. Let K be a com-
plete discretely valued field with perfect residue field of characteristic
p > 0. Let G = Gal(K̄/K), where K̄ is a separable closure of K. There
is a descending filtration (I(λ))0≤λ∈R by closed normal subgroups of G
with the following properties:

•
⋂
λ′<λ I

(λ′) = I(λ),

•
⋂
λ∈R I

(λ) = 0,

• I(0+) is the unique maximal pro-p subgroup of the inertia group

I(0), where I(λ+) is defined as
⋃
λ′>λ I

(λ′).

Let G → GL(V ) be a continuous representation on a finite dimen-
sional Q̄`-vector space V with ` 6= p.

Definition 3.1. The Swan conductor of V is defined as

Sw(V ) =
∑
λ>0

λ dim(V I(λ+)

/V I(λ)).

The Swan conductor is additive with respect to extensions of `-adic
Galois representations, it does not change if we replace V by its semi-
simplification.

For later reference we recall the behavior of the Swan conductor
with respect to direct sum and tensor product. If V, V ′ are two Q̄`-G-
modules as above and V ∨ denotes the dual representation, then

Sw(V ⊕ V ′) = Sw(V ) + Sw(V ′)(3.1)

Sw(V ⊗ V ′)
rank(V )rank(V ′)

≤ Sw(V )

rank(V )
+

Sw(V ′)

rank(V ′)
(3.2)

Sw(V ∨) = Sw(V )(3.3)

3.2. Global ramification (dim = 1). Let X/Fq be a smooth con-
nected curve with smooth compactification X ⊂ X̄. Let V be in
Rr(X).

The Swan conductor Sw(V ) is defined to be the effective Cartier
divisor ∑

x∈|X̄|

Swx(V ) · [x] ∈ Div+(X̄).
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Here Swx(V ) is the Swan conductor of the restriction of the represen-

tation class V to the complete local field frac(ÔX̄,x). We say that V is
tame if Sw(V ) = 0.

Clearly the Swan conductor of V is the same as the Swan conductor
of any twist χ · V, χ ∈ R1(Fq).

Let φ : X ′ → X be an étale covering of smooth curves with compact-
ification φ̄ : X̄ ′ → X̄. By DX̄′/X̄ ∈ Div+(X̄) we denote the discriminant

[32] of X̄ ′ over X̄, cf. Section 3.3.

Lemma 3.2 (Conductor-discriminant-formula). For V ∈ Rr(X) with
φ∗(V ) tame the inequality of divisors

Sw(V ) ≤ rank(V ) DX̄′/X̄

holds on X̄.

Proof. By abuse of notation we write V also for a sheaf representing
V . There is an injective map of sheaves on X

V → φ∗ ◦ φ∗(V )

For any x ∈ |X|

Swx(V ) ≤ Swx(φ∗ ◦ φ∗(V )) ≤ rank(V ) multx(DX̄′/X̄).

The second inequality follows from [30, Prop. 1(c)]. �

Definition 3.3. Let D ∈ Div+(X̄) be an effective Cartier divisor. The
subset Rr(X,D) ⊂ Rr(X) is defined by the condition Sw(V ) ≤ D. If
V ∈ R(X) lies in Rr(X,D), we say that its ramification is bounded by
D.

Let Fqn be the algebraic closure of Fq in k(X).

Definition 3.4. For a divisor D ∈ Div+(X̄) we define the complexity
of D to be

CD = 2g(X̄) + 2 degFqn (D) + 1,

where g(X̄) is the genus of X̄ over Fqn and degFqn is the degree over
Fqn . Here we assume that X is geometrically connected.

Proposition 3.5. Assume X/Fq is geometrically connected. For D ∈
Div+(X̄) with supp(D) = X̄ \X and for V ∈ Rr(X, rD), the inequality

dimQ̄` H
0
c (X ⊗Fq F, V ) + dimQ̄` H

1
c (X ⊗Fq F, V ) ≤ rank(V ) CD

holds.
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Proof. Grothendieck-Ogg-Shafarevich theorem says that

χc(X ⊗Fq F, V ) = (2− 2g(X̄)) rank(V )−
∑

x∈X̄\X

(rank(V ) + sx(V )),

see [28, Théorème 2.2.1.2]. Furthermore

dim H0
c (X ⊗Fq F, V ) ≤ r and

dim H2
c (X ⊗Fq F, V ) = dim H0(X ⊗Fq F, V ∨) ≤ r.

�

3.3. Global ramification (dim ≥ 1). We follow in idea of Alexander
Schmidt for the definition of the discriminant for higher dimensional
schemes.

Let X be a connected scheme in SmFq . Let X ⊂ X̄ be a normal
compactification of X over k such that X̄ \ X is the support of an
effective Cartier divisor on X̄. Clearly, such a compactification always
exists.

Let Cu(X) be the set of normalizations of closed integral subschemes
of X of dimension one. For C in Cu(X) denote by φ : C → X the
natural morphism. By C̄ we denote the smooth compactification of C
over Fq and by φ̄ : C̄ → X̄ we denote the canonical extension.

Recall that in Section 2 we introduced the set of lisse Q̄`-Weil sheaves
Rr(X) and of generalized sheaves Vr(X) on X of rank r.

Definition 3.6. For V ∈ Rr(X) or V ∈ Vr(X) and D ∈ Div+(X̄) an
effective Cartier with support in X̄ \X we (formally) write Sw(V ) ≤ D
and say that the ramification of V is bounded by D if for every curve
C ⊂ Cu(X) we have

Sw(φ∗(V )) ≤ φ̄∗(D)

in the sense of Section 3.2. The subsets Rr(X,D) ⊂ Rr(X) and
V(X,D) ⊂ V(X) are defined by the condition Sw(V ) ≤ D.

In the rest of this section we show that for any V ∈ Rr(X) there is
an effective divisor D with Sw(V ) ≤ D.

Let ψ : X ′ → X be an étale covering (thus finite) and let ψ̄ : X̄ ′ → X̄
be the finite, normal extension of X ′ over X̄.

Definition 3.7 (A. Schmidt). The discriminant I(DX̄′/X̄) is the co-
herent ideal sheaf in OX̄ locally generated by all elements

det(TrK′/K(xi xj))i,j

where x1, . . . , xn ∈ ψ∗(OX̄′) are local sections restricting to a basis of
K ′ over K. Here K = k(X) and K ′ = k(X ′).



12 HÉLÈNE ESNAULT AND MORITZ KERZ

Clearly, I(DX̄′/X̄)|X = OX . This definition extends the classical def-
inition for curves [32], in which case I(DX̄′/X̄) = OX̄(−DX̄′/X̄), where

X ⊂ X̄ and X ′ ⊂ X̄ ′ are the smooth compactifications.
The following lemma is easy to show.

Lemma 3.8 (Semi-continuity). In the situation of Definition 3.7 let
φ̄ : C̄ → X̄ be a smooth curve mapping to X̄ with C = φ̄−1(X) non-
empty. Let C ′ be a connected component of C ×X X ′ and let C ′ ↪→ C̄ ′

be the smooth compactification. Then

φ̄−1(I(DX̄′/X̄)) ⊂ OC̄(−DC̄′/C̄).

Proposition 3.9. For V ∈ Rr(X) there is an effective Cartier divisor
D ∈ Div+(X̄) such that Sw(V ) ≤ D.

Proof. By Remark 2.2 we can assume that V is an étale sheaf on X.
Then there is a local field E ⊂ Q̄` finite over Q` with ring of integers
OE such that V comes form an `-adic OE-sheaf V1. Let Ê be the finite
residue field of OE. There is a connected étale covering ψ : X ′ → X
such that ψ∗(V1⊗OE Ê) is trivial. This implies that ψ∗(V ) is tame. Let
D1 ∈ Div+(X̄) be an effective Cartier divisor with support in X̄ \ X
such that OX̄(−D1) ⊂ I(DX̄′/X̄) and set D = rank(V )D1. With the
notation of Lemma 3.8 we obtain

φ̄∗(D1) ≥ DC̄′/C̄

As the pullback of V to C ′ is tame we obtain from Lemma 3.2 the first
inequality in

Sw(φ∗(V )) ≤ rank(V )DC̄′/C̄ ≤ φ̄∗(D).

�

Remark 3.10. We do not know any example for a V ∈ Vr(X) for
which there does not exist a divisor D with Sw(V ) ≤ D. If such an
example existed, it would in particular show, in view of Proposition 3.9,
that not all generalized sheaves are actual sheaves.

We conclude this section by a remark on the relation of our ram-
ification theory with the theory of Abbes-Saito [4]. We expect that
for V ∈ Rr(X), Sw(V ) ≤ D is equivalent to the following: For every
open immersion X ⊂ X1 over Fq with the property that X1 \ X is a
simple normal crossing divisor and for any morphism h : X1 → X̄, the
Abbes-Saito log-ramification Swan conductor of h∗(V ) at a maximal
point of X1 \X is ≤ the multiplicity of h∗(D) at the maximal point.
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For D = 0 this equivalence is shown in [26] relying on [36]. For r = 1
it is known modulo resolution of singularities by work of I. Barrientos
(forthcoming PhD thesis, Universität Regensburg).

4. `-adic sheaves

4.1. Basics. For X ∈ SmFq we defined in Section 2 the set Rr(X) of
lisse Q̄`-Weil sheaves on X of rank r up to isomorphism and up to
semi-simplification and the set Vr(X) of generalized sheaves. Clearly,
Rr and Vr form contravariant functors from SmFq to the category of
sets.

For V ∈ Rr(X) taking characteristic polynomial of Frobenius defines
a function

fV : |X| → Q̄`[t], fV (x) = det(1− t Fx, Vx̄).

For V ∈ Vr(X) we can still define fV (x) by choosing a curve C ∈ Cu(X)
such that C → X is a closed immersion in a neighborhood of x and we
set fV (x) = fVC (x). It follows from the definition that fV (x) does not
depend on the choice of C.

We define the trace

tnV : X(Fqn)→ Q̄`, tnV (x) = tr(Fx, Vx̄)

for V ∈ Rr(X) and similarly for V ∈ Vr(X).

We define Pr to be the affine scheme over Q whose points Pr(A) with
values in a Q-algebra A consist of the set of polynomials 1+a1t+ · · ·+
art

r ∈ A[t] with ar ∈ A×. Mapping (αi)1≤i≤r with αi ∈ A× to

(1− α1t) · · · (1− αrt) ∈ A[t]

defines a scheme isomorphism

(4.1) Gr
m/Sr

'−→ Pr,

where Sr is the permutation group of r elements.
For d ≥ 1 the finite morphism Gr

m → Gr
m which sends (α1, . . . , αr) to

(αd1, . . . , α
d
r) descends to Pr to define the finite scheme homomorphism

ψd : Pr → Pr.
Let Lr(X) be the product

∏
|X|Pr with one copy of Pr for every

closed point of X. It is an affine scheme over Q which if dim(X) ≥ 1
is not of finite type over Q. Denote by πx : Lr(X)→ Pr the projection
onto the factor corresponding to x ∈ |X|. We make Lr into a con-
travariant functor from SmFq to the category of affine schemes over Q
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as follows: Let f : Y → X be a morphism of schemes in SmFq . The
image of (Px)x∈|X| ∈ Lr(A) under pullback by f is defined to be(

ψ[k(y):k(f(y))]Pf(x)

)
y∈|Y | ∈ Lr(A).

For N > 0 we similarly define L≤Nr (X) to be the product over all
x ∈ |X| with deg(x) ≤ N over Fq, with the corresponding forgetful
morphism Lr(X)→ L≤Nr (X).

Putting things together we get morphisms of contravariant functors

(4.2) Rr(X) −→ Vr(X)
κ:V 7→fV−−−−−→ Lr(X)(Q̄`).

Proposition 4.1. For X ∈ SmFr the maps Rr(X) → Lr(X)(Q̄`) and

Vr(X)
κ−→ Lr(X)(Q̄`) are injective.

Proof. We only have to show the injectivity for Rr(X), since the curve
case for Rr(X) implies already the general case for Vr(X). We can
easily recover the trace functions tnV from the characteristic polynomials
fV . The Chebotarev density theorem [20, Ch. 6] implies that the traces
of Frobenius determine semi-simple sheaves, see [28, Thm. 1.1.2]. �

In Section 5 we will prove a much stronger result, saying that a finite
number of characteristic polynomials fV (x) are sufficient to recover V
up to twist, as long as V runs over `-adic sheaves with some fixed
bounded ramification and fixed rank.

For later reference we recall the relation between Weil sheaves and
étale sheaves from Weil II [9, Prop. 1.3.4]. We say that V ∈ Rr(X) is
étale if it comes from a lisse étale Q̄`-sheaf on X.

Proposition 4.2. For X connected and V ∈ R1(X), which we con-
sider as a continuous homomorphism V : W (X)→ Q̄×` , the geometric
monodromy group im(π1(XF̄)) ⊂ W (X)/ ker(V ) is finite, in particular
the monodromy group W (X)/ ker(V ) is discrete. The sheaf V extends
to a continuous homomorphism π1(X) → Q̄×` , i.e. V is étale, if and
only if im(V ) ⊂ Z̄×` .

Proposition 4.3. For X connected an irreducible V ∈ Rr(X) is étale
if and only if its determinant det(V ) is étale. In particular there is
always a twist χ · V with χ ∈ R1(Fq) which is étale.

4.2. Implications of Langlands. In this section we recall some con-
sequences of the Langlands correspondence of Drinfeld and Lafforgue
[27] for the theory of `-adic sheaves.

The following theorem is shown in [27, Théorème VII.6].
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Theorem 4.4. For X ∈ SmFq connected of dimension one and for
V ∈ Rr(X) irreducible with determinant of finite order the following
holds:

(i) For an arbitrary, not necessarily continuous, automorphism σ ∈
Aut(Q̄`/Q), there is a Vσ ∈ Rr(X), called σ-companion, such
that

fVσ = σ(fV ),

where σ acts on the polynomial ring Q̄`[t] by σ on Q̄` and by
σ(t) = t.

(ii) V is pure of weight 0.

Later, we deduce from the theorem that σ-companions exist for ar-
bitrary V ∈ Rr(X) in dimension one, not necessarily of finite determi-
nant, see Corollary 4.7.

For dim(X) arbitrary and V ∈ R1(X), which we consider as a con-
tinuous homomorphism V : W (X)→ Q̄×` , the σ-companion Vσ simply
corresponds to the continuous map σ ◦ V : W (X)→ Q̄×` . In fact σ ◦ V
is continuous, because W (X)/ ker(V ) is discrete by Proposition 4.2.

From Lafforgue’s theorem one can deduce certain results on higher
dimensional schemes.

Corollary 4.5. Let X be a connected scheme in SmFq of arbitrary
dimension. For an irreducible V ∈ Rr(X) the following are equivalent:

(i) V is pure of weight 0,
(ii) there is a closed point x ∈ X such that Vx̄ is pure of weight 0,
(iii) there is χ ∈ R1(Fq) pure of weight 0 such that the determinant

det(χ · V ) is of finite order.

Proof. (iii) ⇒ (i):
For a closed point x ∈ X choose a curve C/k and a morphism φ :
C → X such that x is in the set theoretic image of φ and such that
φ∗V is irreducible. A proof of the existence of such a curve is given in
an appendix, Proposition B.1. Then by Theorem 4.4 the sheaf φ∗V is
pure of weight 0 on C, so Vx̄ is also pure of weight 0.

(i) ⇒ (ii): Trivially.

(ii) ⇒ (iii):
Choose χ ∈ R1(Fq) such that (χ|k(x))

⊗r = det(Vx̄)
∨. By Proposition 4.2

it follows that the determinant det(χ · V ) has finite order. �

Let W be the quotient of Q̄×l modulo the numbers of weight 0 in
the sense of [9, Def. 1.2.1] (algebraic numbers all complex conjugates
of which have absolute value 1).
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Corollary 4.6. A sheaf V ∈ Rr(X), resp. a generalized sheaf V ∈
Vr(X), can be decomposed uniquely as a sum

V =
⊕
w∈W

Vw

with the property that Vw ∈ Rr(X), resp. Vw ∈ Vr(X), such that for
each point x ∈ |X|, all eigenvalues of the Frobenius Fx on Vw lie in the
class w.

Corollary 4.7. Assume dim(X) = 1. For V ∈ Rr(X) and an au-
tomorphism σ ∈ Aut(Q̄`/Q), there is a σ-companion to V , i.e. Vσ ∈
Rr(X) such that

fVσ = σ(fV ).

Proof. Without loss of generality we may assume that V is irreducible.
In the same way as in the proof of Corollary 4.5 we find χ ∈ R1(Fq)
such that χ ·V has determinant of finite order. A σ-companion of χ ·V
exists by Theorem 4.4 and a σ-companion of χ exists by the remarks
below Theorem 4.4. As the formation of σ-companions is compatible
with tensor products, Vσ = (V · χ)σ · (χσ)∨ is a σ-companion of V . �

Deligne showed a compatibility result [10, Thm. 9.8] for the Swan
conductor of σ-companions.

Proposition 4.8. Let V and Vσ be σ-companions on a one-dimensional
X ∈ SmFq as in as in Corollary 4.7. Then Sw(V ) = Sw(Vσ).

Recall from (4.2) that there is a canonical injective map of sets

Vr(X)
κ−→ Lr(X)(Q̄`). In the following corollary we use the notation of

Section 3.3.

Corollary 4.9. For X ∈ SmFq and an effective Cartier divisor D ∈
Div+(X̄) with support in X̄ \X the action of Aut(Q̄`/Q) on Lr(X)(Q̄`)
stabilizes α(Vr(X)) and α(Vr(X,D)).

Remark 4.10. Drinfeld has shown [15] that Corollary 4.7 remains true
for higher dimensional X ∈ SmFq . His argument relies on Deligne’s
Theorem 2.6.

4.3. Proof of Thm. 2.1 (dim = 1). Theorem 2.1 for one-dimensional
schemes is a well-known consequence of Lafforgue’s Langlands corre-
spondence for GLr [27]. LetX ∈ SmFq be of dimension one with smooth
compactification X̄, L = k(X). The Langlands correspondence says
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that there is a natural bijective equivalence between cuspidal automor-
phic irreducible representations π of GLr(AL) (with values in Q̄`) and
continuous irreducible representations of the Weil group σπ : W (L)→
GLr(Q̄`), which are unramified almost everywhere. For such an auto-
morphic π one defines an (Artin) conductor Ar(π) ∈ Div+(X) and one
constructs an open compact subgroup K ⊂ GLr(AL) depending only
on Ar(π) such that the space of K invariant vectors of π has dimension
one, see [22].

The divisor Ar(π) has support in X̄\X if and only if σπ is unramified
over X. Moreover

Swx(σπ) + r ≥ Arx(π)

for x ∈ |X̄|.
For an arbitrary compact open subgroup K ⊂ GLr(AL) the number

of cuspidal automorphic irreducible representations π with fixed central
character and which have a non-trivial K-invariant vector is finite by
work of Harder, Gelfand and Piatetski-Shapiro, see [29, Thm. 9.2.14].

Via the Langlands correspondence this implies that for given D ∈
Div+(X̄) with support in X̄ \X and for given W ∈ R1(X) the number
of irreducible V ∈ Rr(X) with det(V ) = W and with Sw(V ) ≤ D is
finite. Recall that the determinant of σπ corresponds to the central
character of π via class field theory.

4.4. Structure of a lisse Q̄`-sheaf over a scheme over a finite
field. Let the notation be as above. The following proposition is shown
in [5, Prop. 5.3.9].

Proposition 4.11. Let V be irreducible in Rr(X).

(i) Let m be the number of irreducible constituents of VF. There is
a unique irreducible V [ ∈ Rr/m(XFqm ) such that

– the pullback of V [ to X ⊗Fq F is irreducible,

– V = bm,∗V
[, where bm is the natural map X ⊗Fq Fqm → X.

(ii) V is pure of weight 0 if and only if V [ is pure of weight 0.
(iii) If V ′ ∈ Rr(X) is another sheaf on X with V ′F = VF, then there

is a unique sheaf W ∈ R1(Fqm) with

V ′ = bm,∗(V
[ ⊗W ).

A special case of the Grothendieck trace formula [28, (1.1.1.3)] says:

Proposition 4.12. Let V and m be as in Proposition 4.11. For n ≥ 1
and x ∈ X(Fqn)

tnV (x) =
∑

y∈XFqm
(Fqn )

y 7→x

tnV [(y).
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Concretely, tnV (x) = 0 if m does not divide n.

5. Frobenius on curves

We now present Deligne’s key technical method for proving his finite-
ness theorems. It strengthens Proposition 4.1 on curves by allowing us
to recover an `-adic sheaf from an effectively determined finite number
of characteristic polynomials of Frobenius.

Our notation is explained in Section 2 and Section 4.1. Through-
out this section X is a geometrically connected scheme in SmFq with
dim(X) = 1.

Theorem 5.1 (Deligne). The natural map

Rr(X,D)
κN−→ L≤Nr (X)(Q̄`)

is injective if

(5.1) N ≥ 4r2dlogq(2r
2CD)e

Here for a real number w we let dwe be the smallest integer larger or
equal to w. Theorem 5.1 relies on the Langlands correspondence and
weight arguments form Weil II. The Langlands correspondence enters
via Corollary 4.6.

We deduce Theorem 5.1 from the following trace version, which does
not rely on the Langlands correspondence.

Proposition 5.2. If V, V ′ ∈ Rr(X,D) are pure of weight 0 and satisfy
tnV = tnV ′ for all

(5.2) n ≤ 4r2dlogq(2r
2 CD)e,

then V = V ′.

Prop. 5.2 ⇒ Thm. 5.1. Let V, V ′ ∈ Rr(X,D). We write

V =
⊕
w∈W

Vw and V ′ =
⊕
w∈W

V ′w

as in Corollary 4.6. The condition αN(V ) = αN(V ′) implies αN(Vw) =
αN(V ′w), thus tnVw = tnV ′w for all w ∈ W and all n as in (5.2). By
Proposition 5.2, applied to some twist of weight 0 of Vw and V ′w by the
same χ, this implies Vw = V ′w for all w ∈ W . �
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5.1. Proof of Proposition 5.2. Let J be the set of irreducible W ∈
Rs(X), 1 ≤ s ≤ r, which are twists of direct summands of V ⊕V ′. Set
I = J/twist. Choose representative sheaves Si ∈ R(X) which are pure
of weight 0 (i ∈ I). In particular this implies that HomX⊗FqF(Si1 , Si2) =
0 for i1 6= i2 ∈ I by Proposition 4.11. Also for each i ∈ I we have

Si = bmi,∗S
[
i

for positive integers mi and irreducible S[i ∈ R(XFqmi ) with the nota-
tion of Proposition 4.11.

It follows from Proposition 4.11 that there are Wi,W
′
i ∈ R(Fqmi )

pure of weight 0 such that

V =
⊕
i∈I

bmi,∗(S
[
i ⊗Q̄` Wi)

and
V ′ =

⊕
i∈I

bmi,∗(S
[
i ⊗Q̄` W

′
i ).

For n > 0 set
In = {i ∈ I, mi|n}.

Lemma 5.3. The functions

tnSi : X(Fqn)→ Q̄` (i ∈ In)

are linearly independent over Q̄` for n ≥ 2 logq(2r
2CD).

Proof. Fix an isomorphism ι : Q̄`
∼→ C. Assume we have a linear

relation

(5.3)
∑
i∈In

λi t
n
Si

= 0, λi ∈ Q̄`,

such that not all λi are 0. Multiplying by a constant in Q̄×` , we may
assume that |ι(λi◦)| = 1 for one i◦ ∈ In and |ι(λi)| ≤ 1 for all i ∈ In.
Set

〈Si1 , Si2〉n =
∑

x∈X(Fqn )

tnHom(Si1 ,Si2 )(x)

for i1, i2 ∈ In. Observe that

tnHom(Si1 ,Si2 ) = tnS∨i1
· tnSi2 .

Multiplying (5.3) by tnS∨i◦
and summing over all x ∈ X(Fqn) one obtains

(5.4)
∑
i∈In

λi 〈Si◦ , Si〉n = 0.

Claim 5.4. One has
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(i)

|ι〈Si◦ , Si〉n| ≤ rank(Si◦)rank(Si) CD qn/2

for i 6= i◦,
(ii)

|mi◦ q
n − ι〈Si◦ , Si◦〉n| ≤ rank(Si◦)

2 CD qn/2.

Proof of (i):
By [9, Théorème 3.3.1] the eigenvalues α of F n onHk

c (X⊗FqF,Hom(Si◦ , Si◦))
for k ≤ 1 fulfill

|ια| ≤ qn/2.

On the other hand

dimQ̄`(H
0
c (X ⊗Fq F,Hom(Si◦ , Si))) + dimQ̄`(H

1
c (X ⊗Fq F,Hom(Si◦ , Si))) ≤

rank(Si◦)rank(Si) CD

by Proposition 3.5. In fact the we have

Sw(Hom(Si◦ , Si)) ≤ rank(Si◦)rank(Si)D

by (3.1) - (3.3). Under the assumption i 6= i◦ one has

H2
c (X ⊗Fq F,Hom(Si◦ , Si)) = HomX⊗FqF(Si, Si◦)⊗ Q̄`(−1) = 0

by Poincaré duality. Putting this together and using Grothendieck’s
trace formula [28, 1.1.1.3] one obtains (i).

Proof of (ii):
It is similar to (i) but this time we have

dimQ̄` H
2
c (X ⊗Fq F,Hom(Si◦ , Si)) = mi◦

and for an eigenvalue α of F n on

H2
c (X ⊗Fq F,Hom(Si◦ , Si)) = HomX⊗FqF(Si, Si◦)⊗ Q̄`(−1)

we have α = qn. This finishes the proof of the claim.

Since under the assumption on n from Lemma 5.3

CD rank(Si◦)
∑
i∈In

rank(Si) < qn/2,

we get a contradiction to the linear dependence (5.3).
�
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By Proposition 4.12 for any n ≥ 0 we have

tnV =
∑
i∈In

tnWi
tnSi

and
tnV ′ =

∑
i∈In

tnW ′i t
n
Si
.

Under the assumption of equality of traces from Theorem 5.2 and using
Lemma 5.3 we get

(5.5) Tr(F n,Wi) = Tr(F n,W ′
i ) i ∈ In

for
2 logq(2r

2CD) ≤ n ≤ 4r2dlogq(2r
2 CD)e.

In particular this means that equality (5.5) holds for

n ∈ {miA,mi (A+ 1), . . . ,mi (A+ 2r − 1)},
whereA = d2 logq(2r

2CD)e. So Lemma 5.5 applied to the set {b1, . . . , bw}
of eigenvalues of Fmi of Wi and W ′

i (so w ≤ 2r) shows that Wi = W ′
i

for all i ∈ I.

Lemma 5.5. Let k be a field and consider elements a1, . . . , aw ∈
k, b1, · · · bw ∈ k× such that

F (n) :=
∑

1≤j≤w

aj b
n
j = 0

for 1 ≤ n ≤ w. Then F (n) = 0 for all n ∈ Z.

Proof. Without loss of generality we can assume that the bj are pairwise
different for 1 ≤ j ≤ w. Then the Vandermonde matrix

(bnj )1≤j,n≤w

has non-vanishing determinant, which implies that aj = 0 for all j. �

6. Moduli space of `-adic sheaves

In Section 4.1 we introduced an injective map

κ : Vr(X)→ Lr(X)(Q̄`)

from the set of generalized `-adic sheaves to the Q̄`-points of an affine
scheme Lr(X) defined over Q, which is not of finite type over Q if
dim(X) ≥ 1. Assume that there is a connected normal projective
compactification X ⊂ X̄ such that X̄ \X is the support of an effective
Cartier divisor on X̄. We use the notation of Section 4.1.

The existence of the moduli space of `-adic sheaves on X is shown
in the following theorem of Deligne.
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Theorem 6.1. For any effective Cartier divisor D ∈ Div+(X̄) with
support in X̄ \X there is a unique reduced closed subscheme Lr(X,D)
of Lr(X) which is of finite type over Q and such that

Lr(X,D)(Q̄`) = κ(Vr(X,D)).

Uniqueness is immediate from Proposition A.1. In Section 6.2 we
construct Lr(X,D) for dim(X) = 1. In Section 6.3 we construct
Lr(X,D) for general X. Before we begin the proof we introduce some
elementary constructions on Lr(X).

6.1. Direct sum and twist as scheme morphisms. For r = r1 +r2

the isomorphism

Gr1
m ×Q Gr2

m
'−→ Gr

m

together with the embedding of groups Σr1 × Σr2 ⊂ Σr1+r2 induces a
finite surjective map

−⊕− : Pr1 ×Q Pr2 → Pr, (P,Q) 7→ PQ(6.1)

via the isomorphism (4.1). We call it the direct sum.

There is a twisting action by Gm

Gm ×Q Pr → Pr, (α, P ) 7→ α · P
defined by the diagonal action of Gm on Gr

m

(α, (α1, . . . , αr)) 7→ (α · α1, . . . , α · αr)
and the isomorphism (4.1).

We now extend the direct sum and twist morphisms to L(X).
By taking direct sum on any factor of L(X) we get for r1 + r2 = r a

morphism of schemes over Q
(6.2) −⊕− : Lr1(X)× Lr2(X)→ Lr(X)

Note that the direct sum is not a finite morphism in general, since we
have an infinite product over closed points of X.

The twist is an action of Gm

(6.3) Gm ×Q Lr(X)→ Lr(X)

given by

(α, (Px)x∈|X|) 7→ α · (Px)x∈|X| = (αdeg(x) · Px)x∈|X|
where we take the degree of a point x over Fq.

Let k be a field containing Q and Pi ∈ Lri(k), i = 1, . . . , n. Assume
ri > 0 for all i and set r = r1 + · · ·+ rn.
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Lemma 6.2. The morphism of schemes over the field k

ρ : Gn
m → Lr(X), (αi)i=1,...,n 7→ α1 · P1 ⊕ · · · ⊕ αn · Pn

is finite.

Proof. In fact already the composition of ρ with the projection to one
factor Pr of Lr(X), corresponding to a point x ∈ |X|, is finite. To see
this write this morphism as the composition of finite morphisms over
k

Gn
m

ψdeg(x)−−−−→ Gn
m

·(P1,...,Pn)−−−−−−→ Pr1 × · · · × Prn
⊕−→ Pr.

�

6.2. Moduli over curves. In this section we prove Theorem 6.1 for
dim(X) = 1. The dimension one case of Theorem 2.1 was shown in
Section 4.3. In particular we get:

Lemma 6.3. There are up to twist only finitely many irreducible direct
summands of the sheaves V ∈ Rr(X,D) = Vr(X,D).

Step 1:
Consider V1 ⊕ · · · ⊕ Vn ∈ Rr(X,D) and the map
(6.4)
(R1(Fq))n → Lr(X)(Q̄`), (χ1, . . . , χn) 7→ κ(χ1 · V1 ⊕ · · · ⊕ χn · .Vn)

This map is just the induced map on Q̄`-points of the finite scheme
morphism over k = Q̄` from Lemma 6.2, where we take Pi = κ(Vi). By
Proposition A.3 there is a unique reduced closed subscheme L(Vi) of
Lr(X)⊗ Q̄` of finite type over Q̄` such that L(Vi)(Q̄`) is the image of
the map (6.4).

Step 2:
By Lemma 6.3 there are only finitely many direct sums

(6.5) V1 ⊕ · · · ⊕ Vn ∈ Rr(X,D)

with Vi irreducible up to twists χi 7→ χi · Vi with χi ∈ R1(Fq). Let

Lr(X,D)Q̄` ↪→ Lr(X)⊗Q Q̄`

be the reduced scheme, which is the union of the finitely many closed
subschemes L(Vi) ↪→ Lr(X) ⊗Q Q̄` corresponding to representatives
of the finitely many twisting classes of direct sums (6.5). Clearly
Lr(X,D)Q̄`(Q̄`) = κ(Rr(X,D)) and Lr(X,D)Q̄` is of finite type over
Q̄`.

Step 3:
By Corollary 4.9 the automorphism group Aut(Q̄`/Q) acting on Lr(X)
stabilizes κ(Rr(X,D)). Therefore by the descent Proposition A.2 the
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scheme Lr(X,D)Q̄` ↪→ Lr(X)⊗Q Q̄` over Q̄` descends to a closed sub-
scheme Lr(X,D) ↪→ Lr(X). This is the moduli space of `-adic sheaves
on curves, the existence of which was claimed in Theorem 6.1.

From the proof of Lemma 6.2 and the above construction we deduce:

Lemma 6.4. For any x ∈ |X| the composite map

Lr(X,D)→ Lr(X)
πx−→ Pr

is a finite morphism of schemes.

6.3. Higher dimension. Now the dimension d = dim(X) of X ∈
SmFq is allowed to be arbitrary. In order to prove Theorem 6.1 in
general we first construct a closed subscheme Lr(X,D) ↪→ Lr(X) such
that

Lr(X,D)(Q̄`) = κ(Vr(X,D))

relying on Theorem 6.1 for curves. However from this construction it
is not clear that Lr(X,D) is of finite type over Q. The main step is to
show that it is of finite type using Theorem 5.1.

Step 1:
We define the reduced closed subscheme Lr(X,D) ↪→ Lr(X) by the
Cartesian square (in the category of reduced schemes)

Lr(X,D) //

��

Lr(X)

��∏
C∈Cu(X)

Lr(C, φ̄
∗(D)) //

∏
C∈Cu(X)

Lr(C)

where Cu(X) is defined in Section 2.2. Clearly, from the curve case of
Theorem 6.1 and the definition of Vr(X,D) we get

Lr(X,D)(Q̄`) = κ(Vr(X,D)).

Step 2:
Let C be a purely one-dimensional scheme which is separated and of
finite type over Fq. Let φi : Ei → C (i = 1, . . . ,m) be the normaliza-
tions of the irreducible components of C and let φ : E =

∐
iEi → C

be the disjoint union. Let D ∈ Div+(Ē) be an effective divisor with
supports in Ē \ E. Here Ē is the canonical smooth compactification
of E. Define the reduced scheme Lr(C,D) by the Cartesian square (in
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the category of reduced schemes)

Lr(C,D) //

��

∏
j=1,...,m Lr(Ej, Dj)

��∏
i=1,...,m Lr(Ei, Di) //

∏
i 6=j Lr((Ei ×C Ej)red)

Step 3:
By an exhaustive system of curves on X we mean a sequence (Cn)n≥0 of
purely one-dimensional closed subschemes Cn ↪→ X with the properties
(a) – (d) listed below. We write φ : En → X for the normalization of
Cn. For a divisor D′ ∈ Div+(Ēn) we let CD′ be the maximum of the
complexities of the irreducible components of En⊗F, see Definition 3.4.

(a) Cn ↪→ Cn+1 for n ≥ 0,
(b) En(Fqn)→ X(Fqn) is surjective,
(c) the fields of constants of the irreducible components of En (n ≥

0) are bounded,
(d) the complexity Cφ̄∗n(D) of En satisfies

Cφ̄∗n(D) = O(n).

Lemma 6.5. Any X ∈ SmFq admits an exhaustive system of curves.

The proof of the lemma is given below.

Let now (Cn) be an exhaustive system of curves on X. Set Dn =
φ̄∗n(D) ∈ Div+(Ēn). An immediate consequence of (a)–(d) and the
Riemann hypothesis for curves is that for n � 0 any irreducible com-
ponent of Cn+1 meets Cn. This implies by Lemma 6.4 that the tower
of affine schemes of finite type over Q

· · · → Lr(Cn+1, Dn+1)
τ−→ Lr(Cn, Dn)→ · · ·

has finite transition morphisms. Clearly, Lr(X,D) maps to this tower.
Since the complexities of the irreducible curves grow linearly in n and
the fields of constants are bounded, Theorem 5.1 implies that there is
N ≥ 0 such that the map

Lr(Cn+1, Dn+1)(Q̄`)→ L≤nr (En+1)

is injective for n ≥ N . As this map factors through

τ : Lr(Cn+1, Dn+1)(Q̄`)→ Lr(Cn, Dn)(Q̄`)

by (b), we get injectivity of τ on Q̄`-points for n ≥ N . Consider the
intersection of the images

In =
⋂
i≥0

τ i(Lr(Cn+i, Dn+i)) ↪→ Lr(Cn, Dn),
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endowed with the reduced closed subscheme structure. Then the tran-
sition maps in the tower

· · · → In+1 → In → · · ·
are finite and induce bijections on Q̄`-points for n ≥ N . By Proposi-
tion A.4 we get an N ′ ≥ 0 such that In+1 → In is an isomorphism of
schemes for n ≥ N ′. So we get a closed immersion

Lr(X,D)→ lim←−
n

Lr(Cn, Dn) ∼= lim←−
n

In
'−→ IN ′ ,

and therefore Lr(X,D) is of finite type over Q.

Proof of Lemma 6.5. Using Noether normalization we find a finite num-
ber of finite surjective morphisms

η̄s : X̄ → Pd, s = 1, . . . , w

with the property that every point x ∈ |X| is in the étale locus of one
of the ηs = η̄s|X . See [25, Theorem 1] for more details.

Claim 6.6. For a point y ∈ Pd(Fqn) there is a morphism φy : P1 → Pd
of degree < n with y ∈ φy(P1(Fqn)).

Proof of Claim. The closed point y lies in an affine chart

Ad
Fq = Spec (Fq[T1, . . . , Td]) ↪→ PdFq

and gives rise to a homomorphism Fq[T1, . . . , Td]→ Fqn . We choose an
embedding SpecFqn ↪→ A1

Fq = Spec (Fq[T ]) and a lifting

Fq[T1, . . . , Td]→ Fq[T ]

with deg(φ(Ti)) < n (1 ≤ i ≤ d). By projective completion we obtain a
morphism φy : P1

Fq → PdFq of degree less than n factoring the morphism

y → Pd.
�

For x ∈ |X| of degree n choose a lift x ∈ X(Fqn) and an s such
that x is in the étale locus of ηs. Furthermore choose φy : P1 → Pd
as in the claim with y = ηs(x). Clearly x lifts to a smooth point of
(P1 ×Pd X)(Fqn) contained in an irreducible component which we call
Z. Let φx : Cx → X be the normalization of the image of Z in X.
Then x ∈ φx(Cx(Fqn)).

We assume now that we have made the choice of the curve φx : Cx →
X above for any point x ∈ |X|. As usual φ̄x : C̄x → X̄ denotes the
smooth compactification of Cx. From the Riemann-Hurwitz formula
[21, Cor. 2 ] we deduce the growth property

Cφ̄∗x(D) = O(deg(x))
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for the complexity of C̄x. Furthermore it is clear that the fields of
constants of the curves Cx are bounded. Therefore the subschemes

Cn =
⋃

deg(x)≤n

φx(Cx) ↪→ X

satisfy the conditions (a)–(d) above. �

7. Irreducible components and proof of finiteness
theorems

Recall that we defined irreducible generalized sheaves in Section 2
and that in Section 6 we constructed an affine scheme Lr(X,D) of finite
type over Q, the Q̄`-points of which are in bijection with generalized
sheaves of rank r with ramification bounded by D. For this we had to
assume that X̄ is a normal projective variety defined over Fq and D is
an effective Cartier divisor supported in X̄ \X.

The following theorem describes the irreducible components of Lr(X,D)
over Q̄ or, what is the same, over Q̄`.

Theorem 7.1. A) Given V1, . . . , Vm irreducible in V(X) such that
V1⊕. . .⊕Vm ∈ Vr(X,D), there is a unique irreducible component
Z ↪→ Lr(X,D)⊗ Q̄ such that

Z(Q̄`) = {κ(χ1 · V1 ⊕ . . .⊕ χm · Vm) |χi ∈ R1(Fq)}(7.1)

B) If Z ↪→ Lr(X,D)⊗Q̄ is an irreducible component, then there are
V1, . . . , Vm irreducible in Vr(X,D) such that (7.1) holds true.

Proof. We first prove B). Let d be the dimension of Z, so Q̄(Z) has
transcendence degree d over Q̄. Let κ(V ) ∈ Z(Q̄`) be a geometric
generic point, corresponding to ι : Q̄(Z) ↪→ Q̄`.

By definition, the coefficients of the local polynomials fV (x), x ∈ |X|
span ι(Q̄(Z)). The subfield K of Q̄` spanned by the (inverse) roots of
the fV (x) is algebraic over ι(Q̄(Z)), and thus has transcendence degree
d over Q̄ as well.

Writing

V = ⊕w∈WVw(7.2)

thanks to Corollary 4.6, the number m of such w with Vw 6= 0 is ≥ d.
Indeed those w have the property that they span K.

On the other hand, the map (6.4) corresponding to the decompo-
sition (7.2) is the Q̄`-points of a finite map with source Gm

m, which is
irreducible, and has image contained in Z. So we conclude m = d and
that the morphism Gm

m → Z is finite surjective.
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We prove A). By Corollary 4.6, the Vi have the property that there
is a wi ∈ W such that all the inverse eigenvalues of the Frobenius Fx
on Vi lie in the class of wi. Replacing Vi by χi ·Vi for adequately chosen
χi ∈ R1(Fq), we may assume that wi 6= wj in W if i 6= j. We consider
the irreducible reduced closed subscheme Z ↪→ Lr(X,D)⊗ Q̄` defined
by its Q̄`-points {κ(χ1 · V1 ⊕ . . .⊕ χm · Vm) | χi ∈ R1(Fq)}. Let Z ′ be
an irreducible component of Lr(X,D)⊗ Q̄` containing Z. Thus by B),

Z ′(Q̄`) = {κ(χ′1 · V ′1 ⊕ . . . χ′m′ · V ′m′) | χ′i ∈ R1(Fq)}.

So there are χ′i such that

V1 ⊕ . . .⊕ Vm = χ′1V
′

1 ⊕ . . .⊕ χ′m′V ′m′(7.3)

As V ′j is irreducible for any j ∈ {1, . . . ,m′}, it is of class w for some
w ∈ W in the sense of Corollary 4.6. So for each j ∈ {1, . . . ,m′}, there
is a i ∈ {1, . . . ,m} with χ′j · V ′j ⊂ Vi, and thus χ′j · V ′j = Vi as Vi is
irreducible. This implies m = m′ and the decompositions (7.3) are the
same, up to ordering. So Z = Z ′. �

Corollary 7.2. A generalized sheaf V ∈ Vr(X,D) is irreducible if
and only if κ(V ) lies on a one-dimensional irreducible component of
Lr(X,D)⊗Q̄`. In this case κ(V ) lies on a unique irreducible component
Z/Q̄`. The component Z has the form

Z(Q̄`) = {κ(χ · V ) |χ ∈ R1(Fq)}

and it does not meet any other irreducible component.

Remark 7.3. If Question 2.3 had a positive answer and using a more
refined analysis of Deligne [13] one could deduce that the moduli space
Lr(X,D) is smooth and any irreducible component is of the from Gs1

m×
As2 (s1, s2 ≥ 0).

Proof of Theorem 2.4. Using the Chow lemma [1, Sec. 5.6] we can as-
sume without loss of generality that X̄ is projective. By Corollary 7.2,
the set of one-dimensional irreducible components of Lr(X,D) ⊗ Q̄ is
in bijection with the set of irreducible generalized sheaves on X up to
twist by R1(Fq). Since Lr(X,D) is of finite type, there are only finitely
many irreducible components. �

Proof of Theorem 2.6. By Corollary 4.9 and there is a natural action
of Aut(Q̄`/Q) on Vr(X,D) compatible via fV with the action on Q̄`[t]
which fixes t. Let N > 0 be an integer such that det(V )⊗N = 1. For
σ ∈ Aut(Q̄`/Q) we then have

1 = σ(det(V )⊗N) = det(σ(V ))⊗N ,
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Then Theorem 2.4, (see also the remark following the theorem), implies
that the orbit of V under Aut(Q̄`/Q) is finite. Let H ⊂ Aut(Q̄`/Q)
be the stabilizer group of V . As [Aut(Q̄`/Q) : H] < ∞ we get that
E(V ) = Q̄H

` is a number field. �

In order to effectively determine the field E(V ) for V ∈ Rr(X) with
X ∈ SmFq projective one can use the following simple consequence of a
theorem of Drinfeld [15], which itself relies on Deligne’s Theorem 2.6.

Proposition 7.4. For X/Fq a smooth projective geometrically con-
nected scheme and H ↪→ X a smooth hypersurface section with dim(H) >
0 consider V ∈ Rr(X). Then E(V ) = E(V |H).

Proof. Observe that the Weil group of H surjects onto the Weil group
of X, so we get an injection Rr(X) → Rr(H). By [15] Corollary 4.7
remains true for higher dimensional smooth schemes X/Fq, i.e. for
any σ ∈ Aut(Q̄`/Q) there exists a σ-companion Vσ to V . By the
above injectivity, the sheaves V and V |H have the same stabilizer G in
Aut(Q̄`/Q). We get

E(V ) = Q̄G
` = E(V |H).

�

8. Deligne’s conjecture on the number of irreducible
lisse sheaves of rank r over a smooth curve with

prescribed local monodromy at infinity

Let C be a smooth quasi-projective geometrically irreducible curve
over Fq, C ↪→ C̄ be a smooth compactification. One fixes an algebraic
closure F ⊃ Fq of Fq. For each point s ∈ (C̄ \ C)(F), one fixes a
Q̄`-representation Vs of the inertia

I(s) = Gal(Ksep
s /Ks)

where Ks is the completion of the function field K = k(C) at s. We
write

I(s̄) = P o
∏
`′ 6=p

Z`(1),

where P is the wild inertia, a pro-p-group. A generator ξ`′ of Z`′(1), `′ 6=
p, acts on Vs for all s ∈ (C̄ \ C)(F) . Since the open immersion
j : C ↪→ C̄ is defined over Fq, if s ∈ (C̄ \ C)(F) is defined over Fqn , for
any conjugate point s′ ∈ (C̄ \ C)(F), the group I(s′) is conjugate to
I(s) by Gal(F/Fq). One requires the following condition to be fulfilled.

i) If s′ ∈ (C̄ \ C)(F) is Gal(F/Fq)-conjugate to s, the conjugation
which identifies I(s′) and I(s) identifies Vs′ and Vs.
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Let V be an irreducible lisse Q̄` sheaf of rank r on C⊗FqF such that the
set of isomorphism classes of restrictions {V ⊗Ks} to SpecKs is the set
{Vs} defined above with the condition i). Then if for a natural number
n ≥ 1, V is F n invariant, V descends to a Weil sheaf on C ⊗Fq Fqn . By
Weil II, (1.3.3), det(V ) is torsion. Thus by the dimension one case of
Theorem 2.1 the cardinality of the set of such F n-invariant sheaves V
is finite.

If such a V exists, then the set {Vs̄} satisfies automatically

ii) For any `′ 6= p, ξ`′ acts trivially on ⊗s∈(C̄\C)(F)det(Vs).

Indeed, as det(V ) is torsion, a p power det(V )p
N

has torsion t prime
to p, thus defines a class in H1(C ⊗Fq F, µt). The exactness of the

localization sequence H1(C⊗FqF, µt)
res−→ ⊕s∈(C̄\C)(F)Z/t

sum−−→ H2(C̄⊗Fq
F, µt) = Z/t implies that the sum of the residues is 0. This shows ii).

Furthermore, if such a V exists, then the set {Vs̄} satisfies automat-
ically

iii) The action of ξ`′ on Vs is quasi-unipotent for all `′ 6= p and all
s ∈ (C̄ \ C)(F).

Indeed, this is Grothendieck’s theorem, see [33, Appendix].

Given a set {Vs} for all s ∈ (C̄ \ C)(F), satisfying the conditions i),
ii), iii), Conjecture 8.1 predicts a qualitative shape for the cardinality
of the F n invariants of the set M of irreducible lisse Q̄` sheaves on
C ⊗Fq F of rank r with V ⊗Ks isomorphic to Vs.

If V is an element of M , then H0(C̄⊗Fq F, j∗End(V )) = Q̄`, spanned

by the identity. Indeed, a global section is an endomorphism V
f−→ V

on C ⊗Fq F. f is defined by an endomorphism of the Q̄` vector space
Va which commutes with the action of π1(C̄, a), where a ∈ C(F) is
a given closed geometric point. Since this action is irreducible, the
endomorphism is a homothety. We write End(V ) = End(V )0 ⊕ Q̄`,
where End(V )0 is the trace-free part, thus j∗End(V ) = j∗End(V )0⊕Q̄`.
Thus H0(C̄ ⊗Fq F, j∗End0(V )) = 0. The cup-product

j∗End(V ))× j∗End(V )→ j∗Q̄` = Q̄`

obtained by composing endomorphisms and then taking the trace in-
duces the perfect duality

H i(C̄ ⊗Fq F, j∗End0(V ))×H2−i(C̄ ⊗Fq F, j∗End0(V ))→ H2(C̄ ⊗Fq F, Q̄`).

(8.1)
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For i = 1, the bilinear form (8.1) is symplectic. We conclude that
H2(C̄⊗FqF, j∗End0(V )) = 0 and thatH1(C̄⊗FqF, j∗End0(V )) is even di-
mensional. But dim H1(C̄⊗Fq F, Q̄`) = 2g thus H1(C̄⊗Fq F, j∗End(V ))
is even dimensional as well. We define

2d = dim H1(C̄ ⊗Fq F, j∗End(V )).

Conjecture 8.1. (Deligne’s conjecture)

i) There are finitely many Weil numbers ai, bj of weight between
0 and 2d such that

N(n) =
∑
i

ani −
∑
j

bnj

ii) If M 6= ∅, there is precisely one of the numbers ai, bj of weight
2d and moreover, it is one of the ai and is equal to qd.

An example where M = ∅ is given by C̄ = P1, C is the complement
of 3 rational points {0, 1,∞}, the rank r is 2 and the Vs are unipotent,
so in particular, the Swan conductor at the 3 points is 0. Indeed, fixing
`′, the inertia groups I(s) at the 3 points, which depend on the choice
of a base point, can be chosen so the product over the 3 points of
the ξ`′ is equal to 1. Thus the set {Vs, s = 0, 1,∞} is defined by 3
unipotent matrices A0, A1, A∞ in GL(2, Q̄`) such that A0 · A1 · A∞ =
1. Since A0 · A1 is then unipotent, A0 and A1, and thus A∞, lie in
the same Borel subgroup of GL(2, Q̄`). Thus the 3 matrices have one
common eigenvector. Since the tame fundamental group is spanned
by the images of I(0), I(1), I(∞), a Q̄`-sheaf of rank 2 with V ⊗ Ks

isomorphic to Vs is not irreducible. Thus M = ∅.
Two further examples are computed in [14]. For the first case [14,

section 7], C = P1 \ D where D is a reduced degree 4 divisor, with
unipotent Vs̄. The answer is N(n) = qn. For the second case, C =
P1 \ D where D is a reduced non-irreducible degree 3 divisor with
unipotent Vs̄ with only one Jordan block (a condition which could be
forced by the irreducibility condition for V ). Then N(n) = qn as well.

Appendix A

In this appendix we gather a few facts on how to recognize through
their closed points affine schemes of finite type as subschemes of affine
schemes not necessarily of finite type.

Proposition A.1. Let k be an algebraically closed field, let Y be an
affine k-scheme. Then the map

Z 7→ Z(k)
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embeds the set of reduced closed subschemes Z ↪→ Y of finite type into
the power set P(Y (k)).

Proof. Choose a filtered direct system Bα ⊂ B = k(Y ) of affine k-
algbras (of finite type), such that B = lim−→α

Bα. Set Yα = SpecBα.
Consider two closed subschemes

Z1 = SpecB/I1 ↪→ Y, Z2 = SpecB/I2 ↪→ Y(A.1)

of finite type over k such that Z1(k) = Z2(k) ⊂ Y (k). After replacing
the direct system α by a cofinal subsystem we can assume that Bα →
B/I1 and Bα → B/I2 are surjective. Hilbert’s Nullestellensatz for the
closed subschemes Z1 ↪→ Yα and Z2 → Yα implies I1 ∩ Bα = I2 ∩ Bα.
So I1 = I2 and the closed subschemes (A.1) agree. �

Proposition A.2. Let k be a characteristic 0 field, let K ⊃ k be an
algebraically closed field extension. Let Y be an affine scheme over k,
and Z ↪→ Y ⊗kK be a closed embedding of an affine scheme of a finite
type. If the subset Z(K) of Y (K) is invariant under the automorphism
group of K over k, then there is a reduced closed subscheme Z0 ↪→ Y
of finite type over k such that

(Z ↪→ Y ⊗k K) = (Z0 ↪→ Y )⊗k K.

Proof. Let G = Aut(K/k), B = k(Y ), Z = Spec ((B⊗kK)/I). The G-
stability of Z(K) ⊂ Y (K) and Proposition A.1 imply that I ⊂ B⊗kK
is stable under G. Then [6, Sec. V.10.4] implies that I0 = IG ⊂ B
satisfies I0 ⊗k K = I. Set Z0 = SpecB/I0.

�

Proposition A.3. Let k be an algebraically closed field, let ϕ : Z → Y
be an integral k-morphism of affine schemes, with Z of finite type over
k. Then there is a uniquely defined reduced closed subscheme X ↪→ Y
of finite type over k such that

ϕ(Z(k)) = X(k).

Proof. Write Y = SpecB, Z = SpecC, for commutative k-algebras
B, C with C of finite type over k. Without loss of generality assume
that B and C are reduced. There are finitely many elements of C
which span C as a k-algebra. They are integral over B. This defines
finitely many minimal polynomials, thus finitely many coefficients of
those polynomials in B. Thus there is an affine k-algebra of finite type
B0 ⊂ B containing them all. It follows that C is finite over B0. Choose
a filtered inverse system Yα = SpecBα of affine k-schemes of finite type,
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such that Bα ⊂ B and

Y = SpecB = lim←−
α

Yα.

The morphisms ϕα : Z
ϕ−→ Y → Yα are all finite. Let Xα = SpecCα ↪→

Yα be the (reduced) image of ϕα. We obtain finite ring extensions
Cα ⊂ C. By Noether’s basis theorem the filtered direct system Cα
stabilizes at some α0. Then

X = SpecCα0 = lim←−
α

SpecCα ↪→ Y

is of finite type over k and satisfies ϕ(Z(k)) = X(k). �

Proposition A.4. Let k be an algebraically closed field of characteris-
tic 0, let Y be an affine k-scheme, such that Y = SpecB = lim←−n Yn, n ∈
N is the projective limit of reduced affine schemes Yn of finite type. If

the transition morphisms induce bijections Yn+1(k)
∼=−→ Yn(k) on closed

points, then there is a n0 ∈ N such that Yn → Yn0 is an isomorphism
for all n ≥ n0. In particular, Y → Yn0 is an isomorphism as well.

Proof. Applying Zariski’s Main Theorem [2, Thm.4.4.3], one con-
structs inductively affine schemes of finite type Ȳn, Ȳ0 = Y0, together
with an open embedding Yn ↪→ Ȳn, such that the transition morphisms
Yn+1 → Yn extend to finite transition morphisms Ȳn+1 → Ȳn. On the
other hand, the assumption implies that the morphisms Yn+1 → Yn
are birational on every irreducible component. So the same property

holds true for Ȳn+1 → Ȳn. One thus has a factorization Ỹ0 → Ȳn → Y0

for all n, where Ỹ0 → Y0 the normalization morphism. Since Ỹ0 is of
finite type, there is a n0 such that Ȳn → Ȳn0 is an isomorphism for all
n ≥ n0. Thus the composite morphism Yn → Yn0 → Ȳn0 is an open
embedding for all n ≥ n0, and thus Yn+1 → Yn is an open embedding
as well. Since it induces a bijection on points, and the Yn are reduced,
the transition morphisms Yn+1 → Yn are isomorphisms for n ≥ n0. �

Remark A.5. If in Proposition A.4, one assumes in addition that the
transition morphisms Yn+1 → Yn are finite, then one does not need
Zariski’s Main Theorem to conclude.

Appendix B

In the proof of Corollary 4.5 we claim the existence of a curve with
certain properties. The Bertini argument given in [27, p. 201] for the
construction of such a curve is, as such, not correct. We give a complete
proof here relying on Hilbert irreducibility instead of Bertini.

Let X be in SmFq .
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Proposition B.1. For V ∈ Rr(X) irreducible and a closed point x ∈
X, there is an irreducible smooth curve C/Fq and a morphism ψ : C →
X such that

• ψ∗(V ) is irreducible,
• x is in the image of ψ.

Lemma B.2. For an irreducible Q̄`-étale sheaf V on X there is a
connected étale covering X ′ → X with the following property:
For a smooth irreducible curve C/Fq and a morphism ψ : C → X the
implication

C ×X X ′ irreducible =⇒ ψ∗(V ) irreducible

holds.

Proof. Choose a finite normal extension R of Z` with maximal ideal
m ⊂ R such that V is induced by a continuous representation

ρ : π1(X)→ GL(R, r).

Let H1 be the kernel of π1(X)→ GL(R/m, r) and let G be the image
of ρ. The subgroup

H2 =
⋂

ν∈Hom(H1,Z/`)

ker(ν)

is open normal in π1(X) according to [3, Th. Finitude]. Indeed observe
that H1/H2 = Hab

1 /` is Pontryagin dual to H1
ét(XH1 ,Z/`), where XH1

is the étale covering of X associated to H1. Since the image of H1 in G
is pro-`, and therefore pro-nilpotent, any morphism of pro-finite groups
K → π1(X) satisfies:

(K → π1(X)/H2 surjective ) =⇒ (K → G surjective ).

(Use [6, Cor. I.6.3.4].)
Finally, let X ′ → X be the Galois covering corresponding to H2. �

Proof of Proposition B.1. We can assume that X is affine. By Propo-
sition 4.3 we can, after some twist, assume that V is étale. Let X ′ be
as in the lemma. By Noether normalization, e.g. [16, Corollary 16.18],
there is a finite generically étale morphism

f : X → Ad.

Let U ⊂ Ad be an open dense subscheme such that f−1(U) → U is
finite étale. Let y ∈ Ad be the image of x. Choose a linear projection
π : Ad → A1 and set z = π(y) and consider the map h : U → A1. By
definition, Uk(A1) ⊂ Ad−1

k(A1).
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Let F = k(Γ) ⊃ k(A1) be a finite extension such that X ′ ⊗k(A1) F
is irreducible and the smooth curve Γ→ A1 contains a closed point z′

with k(z′) = k(y).

It is easy to see that there is an F̂ -point in Uk(A1) which specializes
to y. By Hilbert irreducibility, see [15, Cor. A.2], we find an F -point
u ∈ Uk(A1) which specializes to y and such that u does not split in
X ′ ×A1 Γ.

Let v ∈ X be the unique point over u. By the going-down theorem
[7, Thm. V.2.4.3] the closure {v} contains x. Finally, we let C be the

normalization of {v}. �
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Hanoi lectures on the arithmetic of hyperelliptic curves

Benedict H. Gross
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1 Introduction

Manjul Bhargava and I have recently proved a result on the average order of the 2-Selmer groups of
the Jacobians of hyperelliptic curves of a fixed genus n ≥ 1 over Q, with a rational Weierstrass point
[2, Thm 1]. A surprising fact which emerges is that the average order of this finite group is equal to
3, independent of the genus n. This gives us a uniform upper bound of 3

2
on the average rank of the

Mordell-Weil groups of their Jacobians over Q. As a consequence, we can use Chabauty’s method to
obtain a uniform bound on the number of points on a majority of these curves, when the genus is at
least 2.

We will state these results more precisely below, after some general material on hyperelliptic curves
with a rational Weierstrass point. We end with a short discussion of hyperelliptic curves with two
rational points at infinity. I want to thank Manjul Bhargava, Ngô Báo Châu, Brian Conrad, and Jerry
Wang for their comments.

2 Hyperelliptic curves with a marked Weierstrass point

For another treatment of this basic material, see [5]. Chevalley considers the more general case of a
double cover of a curve of genus 0 in [3, Ch IV,§9].

Let k be a field and let C be a complete, smooth, connected curve over k of genus n ≥ 1. Let O be a k-
rational point of C, and let U = C−{O} be the corresponding affine curve. The k-algebra H0(U,OU)
of functions on C which are regular outside of O is a Dedekind domain with unit group k∗. The subset
L(mO) of functions with a pole of order ≤ m at O and regular elsewhere is a finite-dimensional
k-vector space.

We henceforth assume that the vector space L(2O) has dimension equal to 2. There cannot be a
function having a simple pole at O and regular elsewhere, as that would give an isomorphism of C
with P1 (and we have assumed that the genus of C is greater than 0). Hence L(2O) is spanned by
the constant function 1 and a function x with a double pole at O. We normalize the function x by

1



fixing a non-zero tangent vector v to C at the point O and choosing a uniformizing parameter π in
the completion of the function field at O with the property that d

dv
(π) = 1. We then scale x so that

x = π−2 + · · · in the completion. This depends only on the choice of tangent vector v, not on the
choice of uniformizing parameter π adapted to v. The other functions in L(2O) with this property all
have the form x + c, where c is a constant in k. If we replace the tangent vector v by v∗ = uv with
u ∈ k∗, then x∗ = u2x+ c.

It follows that the space L((2n − 1)O) contains the vectors {1, x, x2, . . . xn−1}. Since these functions
have different orders of poles at O, they are linearly independent. But the dimension of L((2n− 1)O)
is equal (2n − 1) + (1 − n) = n by the theorem of Riemann-Roch. Hence these powers of x give a
basis for L((2n−1)O). Since they all lie in the subspace L((2n−2)O), they give a basis for that space
too. Hence the dimension of L((2n− 2)O) is equal to the genus n. It follows from the Riemann-Roch
theorem that the divisor (2n− 2)O is canonical.

The Riemann-Roch theorem also shows that the dimension of L((2n)O) is equal to n + 1, so a basis
is given by the vectors {1, x, x2, . . . , xn}. Similarly, the dimension of L((2n+ 1)O) is equal to n+ 2.
Hence there is a function y with a pole of exact order (2n + 1) at O, which cannot be equal to a
polynomial in x. We use the uniformizing parameter π to normalize the function y by insisting that
y = π−(2n+1) + · · · in the completion. Again, this depends only on the tangent vector v. The other
functions in L((2n+1)O) with this property all have the form y+qn(x), where qn(x) is a polynomial of
degree≤ nwith coefficients in k. If we replace v by v∗ = uv with u ∈ k∗, then y∗ = u2n+1y+qn(u2x).

It is then easy to show that the algebra H0(U,OU) is generated over k by the two functions x and y,
and that they satisfy a single polynomial relation G(x, y) = 0 of the form

y2 + pn(x)y = x2n+1 + p2n(x) = F (x),

where pn and p2n are polynomials in x of degree ≤ n and ≤ 2n respectively. Indeed, the (3n + 4)
vectors {y2, xny, xn−1y, . . . , xy, y, x2n+1, x2n, . . . , x, 1} all lie in the vector space L((4n+2)O), which
has dimension 3n + 3. Hence they are linearly dependent. Since there are no linear relations in the
spaces with poles of lesser order, this relation must involve a non-zero multiple of y2 and a non-zero
multiple of x2n+1. By our normalization, we can scale the relation so that the multiple is 1. Hence the
k-algebra H0(U,OU) is a quotient of the ring k[x, y]/(G(x, y) = 0). Since the k-algebra k[x] + yk[x]
gives the correct dimensions of L(mO) for all m ≥ 0, there are no further relations, and the affine
curve U = C − {O} is defined by an equation of this form. The affine curve U is non-singular if and
only if a certain universal polynomial ∆ in the coefficients of pn(x) and p2n(x) takes a non-zero value
in k [5, Thm 1.7]. Of course, changing the choice of the functions x and y in L(2O) and L((2n+ 1)O)
changes the equation of the affine curve.

In the case when the genus of C is equal to 1, the pair (C,O) defines an elliptic curve over the field k.
The polynomial relation above is Tate’s affine equation for U (see [8, §2])

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and the condition for smoothness is the non-vanishing of the discriminant ∆(a1, a2, a3, a4, a6). The
closure of this affine curve defines a smooth cubic in P2. For n ≥ 2, the closure of the affine equation
of degree 2n+ 1 in P2 is not smooth, but one has a smooth model for C defined by gluing [6, Ch II, Ex
2.14].
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All of this works over a general field k, but there are some important simplifications when the charac-
teristic of k does not divide 2(2n+ 1). First, if the characteristic of k is not equal to 2, we can uniquely
choose y∗ = y − pn(x)/2 to complete the square of the above equation and obtain one of the simpler
form

y2 = x2n+1 + c1x
2n + c2x

2n−1 + · · ·+ c2nx+ c2n+1 = F (x).

The automorphism ι of C defined by ι(x, y) = (x,−y) is the unique involution which fixes the ra-
tional point O, and y is the unique normalized element in L((2n + 1)O) which is taken to its nega-
tive. The automorphism ι acts as −1 on the space of holomorphic differentials, which is spanned by
{dx/2y, xdx/2y, . . . , xn−1dx/2y}. The differential dx/2y has divisor (2n − 2)O and the differential
−xn−1dx/2y is dual to the tangent vector v at O. In this case, the fact that U is smooth is equivalent
to the non-vanishing of the discriminant of the polynomial F (x), and the polynomial ∆ is given by the
formula ∆ = 42n disc(F ) (see [5, 1.6]).

Next, when the characteristic of k does not divide 2n + 1, we can replace x by x − c1/(2n + 1) to
obtain an equation of the form

y2 = x2n+1 + c2x
2n−1 + · · ·+ c2nx+ c2n+1 = F (x).

This equation is uniquely determined by the triple (C,O, v), where v is a non-zero tangent vector
at the point O. In particular, the moduli problem of triples (C,O, v) is rigid, and represented by
the complement of the discriminant hypersurface (∆ = 0) in affine space of dimension 2n. The
automorphism ι of (C,O) defines an isomorphism from (C,O, v) to (C,O,−v). If we replace v∗ = uv
with u ∈ k∗, then x∗ = u2x and y∗ = u2n+1y. The coefficients cm in the polynomial F (x) are scaled
by the factor u2m, and the discriminant ∆ of the model is scaled by the factor u2(2n+1)(2n) in k∗.

3 The height of the pair (C,O)

We first assume that k = Q is the field of rational numbers. To each pair (C,O) we will associate a
positive real number H(C,O), its height. Choose a non-zero tangent vector v at the point O so that
the coefficients cm of the corresponding equation of (C,O, v) are all integers with the property that no
prime p has the property that p2m divides cm for all m. We call such an equation minimal. Then v is
unique up to sign, and the integers cm which appear in this minimal equation are uniquely determined
by the pair (C,O). We then define

H(C,O) = Max{|cm|(2n+1)(2n)/m}.

The factor (2n+1)(2n) is added in the exponent so that the heightH(C,O) and the discriminant ∆ have
the same homogeneous degree. Clearly there are only finitely many pairs (C,O) with H(C,O) < X
for any positive real number X , so the height gives a convenient way to enumerate hyperelliptic curves
over Q of a fixed genus n with a rational Weierstrass point. The number of pairs with H(C,O) < X
grows like a constant times X(2n+3)/(4n+2).

In the case when the genus of C is equal to 1, the minimal equation has the form

y2 = x3 + c2x+ c3
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with c2 and c3 both integers, not respectively divisible by p4 and p6 for any prime p. We note that
this is not necessarily a global minimal model at the primes p = 2 and p = 3 (cf. [6, Ch VII]). The
discriminant is given by the formula ∆ = 24(−4c32 − 27c23) and the height is given by the formula
H(C,O) = Max{|c2|3, |c3|2}. The number of elliptic curves with height less than X grows like a
constant times X5/6.

More generally, suppose that k is a number field, and that (C,O) is a pair over k. Choose a non-zero
tangent vector v so that the equation determined by the triple (C,O, v)

y2 = x2n+1 + c2x
2n−1 + · · ·+ c2n+1

has coefficients in the ring A of integers of k. We define the height H(C,O) by modifying the naive
height of the point (c2, c3, . . . , c2n+1) in weighted projective space, using the notion of “size” defined
in [4]. Namely, define the fractional ideal

I = {α ∈ k : α4c2, α
6c3, . . . , α

4n+2c2n+1 ∈ A}.

Then I contains A and I = A if and only if the coefficients cm are not all divisible by P 2m, for every
non-zero prime ideal P of A. We define the height of the pair by

H(C,O) = (N(I))(2n+1)(2n)
∏
v|∞

Max{|cm|(2n+1)(2n)/m
v },

where the product is taken over all infinite places v of k. The product formula shows that this definition
is independent of the choice of non-zero tangent vector v. When k = Q, the choice of a minimal
integral equation gives N(I) = 1 and we are reduced to the previous definition. In general, the number
of pairs with H(C,O) < X is finite, and again grows like a constant (depending on the arithmetic of
k) times X(2n+3)/(4n+2) (cf. [4, Thm A]).

Let S be a real-valued function on pairs (C,O) over k. We say that the average value of S is equal to
L if the ratios

(
∑

H(C,O)<X

S(C,O))/(
∑

H(C,O)<X

1)

tend to the limiting value L as X → ∞. If R is a property of pairs (C,O) over Q, we define the
function SR on pairs by SR(C,O) = 1 if the pair satisfies property R and SR(C,O) = 0 otherwise.
We say that the proportion of pairs satisfying property R is equal to r if the ratios

(
∑

H(C,O)<X

SR(C,O))/(
∑

H(C,O)<X

1)

tend to the limiting value r as X → ∞. If this limit exists, then clearly 0 ≤ r ≤ 1. If the liminf is
greater than r, we say the proportion is greater than r.

For example, let R be the property that O is the only k-rational point of the curve C. When the genus
of C satisfies n ≥ 2 we suspect that the proportion of pairs (C,O) with this property is equal to 1.
When the genus of C is equal to 1, we suspect that this proportion is equal to 1

2
.
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4 The 2-torsion subgroup and the 2-descent

Let (C,O) be a pair as above, defined over a field k whose characteristic is not equal to 2. Let

y2 = F (x) = x2n+1 + c1x
2n + · · · .

be an affine equation for U = C − {O}. In this section we will use the separable polynomial F (x) to
describe the 2-torsion subgroup J [2] of the Jacobian J of C as a finite group scheme over k. We will
then explicitly calculate the map in Galois cohomology involved in the 2-descent. For more details,
see [7].

Since disc(F ) 6= 0, the k-algebra L = k[x]/(F (x)) is étale. Let λ be the image of x in L, so
L = k + kλ + · · · + kλ2n. Let ks denote a separable closure of k and let G = Gal(ks/k). The
set Hom(L, ks) of homomorphisms of k-algebras has cardinality 2n + 1 and has a left action of G, so
defines a homomorphism G → S2n+1 up to conjugacy. We will see that the kernel of this homomor-
phism fixes the subfield of ks generated by the 2-torsion points in the Jacobian.

Since C(k) is non-empty, the points of the Jacobian J(K) over any extension field K of k are isomor-
phic to the quotient of the abelian group of divisors of degree zero on C which are rational over K by
the subgroup of principal divisors div(f) with f in K(C)∗. For each root β of the polynomial F (x) in
ks, we define the point Pβ = (β, 0) on C and the divisor dβ = (Pβ)− (O) of degree zero. The class of
dβ has order 2 in the Jacobian, as 2dβ = div(x − β). It follows from the Riemann-Roch theorem that
the 2n+ 1 classes dβ in J [2](ks) satisfy a single linear relation over Z/2Z:∑

β

dβ = div(y).

They therefore span a finite subgroup of order 22n. Since this is the order of the full group J [2](ks),
we have found a presentation of the 2-torsion over the separable closure. The Galois group acts on
the 2n + 1 classes dβ through the homomorphism G → S2n+1, so we have an isomorphism of group
schemes over k

J [2] ∼= ResL/k µ2/µ2
∼= (ResL/kGm/Gm)[2],

where Res denotes the restriction of scalars. Since 2n+ 1 is odd, we have a splitting

ResL/k µ2 = µ2 ⊕ (ResL/k µ2)N=1,

where the latter subgroup is the kernel of the norm map N : ResL/k µ2 → µ2. Hence J [2] ∼=
(ResL/k µ2)N=1. This splitting also allows us to compute the Galois cohomology groups

H0(k, J [2]) = J [2](k) = {α ∈ L∗ : α2 = N(α) = 1}

H1(k, J [2]) = (L∗/L∗2)N≡1,

where the subscript N ≡ 1 means that the norm of a class in (L∗/L∗2) is a square in k∗.

The homomorphism 2 : J → J is a separable isogeny, so is surjective on points over ks. The kernel
is the group scheme J [2], so taking the long exact sequence in Galois cohomology, we obtain a short
exact sequence

0→ J(k)/2J(k)
δ−→ H1(k, J [2])→ H1(k, J)[2]→ 0.
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If P = (a, b) is a k-rational point on the curve C with b 6= 0, and d = (P ) − (O) is the class
of the corresponding divisor of degree zero in J(k), then the image δ(d) is the class of (a − λ) in
H1(k, J [2]) = (L∗/L∗2)N≡1 [7, Thm 1.2]. Note that (a− λ) is an element of L∗ with N(a− λ) = b2

in k∗.

We remark that the elementary nature of the 2-torsion is almost a defining property of hyperelliptic
curves with a marked Weierstrass point. For a general curve of genus n ≥ 1 over the field k (of char-
acteristic 6= 2), the 2-torsion on the Jacobian is rational over ks and generates a finite Galois extension
M = k(J [2](ks)) of k. The Galois group of M/k acts Z/2Z-linearly on J [2](ks) ∼= (Z/2Z)2n and
preserves the Weil pairing 〈, 〉 : J [2] × J [2] → µ2, which is strictly alternating and non-degenerate.
Hence the group Gal(M/k) is isomorphic to a subgroup of the finite symplectic group Sp2n(2). When
the curve is hyperelliptic with a k-rational Weierstrass point, the Weil pairing is given on the generators
of J [2] by

〈dβ, dβ〉 = +1

〈dβ, dβ′〉 = −1,

and the Galois group of M/k is isomorphic to the subgroup of S2n+1 ⊂ Sp2n(2) which is determined
by the étale algebra L.

We will see in the final section that the situation is similar (but a bit more complicated) for a hyperellip-
tic curve of genus n ≥ 2 with a pair of k-rational points {O,O′}which are switched by the hyperelliptic
involution ι. In that case, the Galois group of M/k is isomorphic to a subgroup of S2n+2 ⊂ Sp2n(2).

5 The 2-Selmer group

We henceforth assume that k = Q, although we expect that the results in this section will extend to
the case when k is a number field [9]. Let (C,O) be a hyperelliptic curve of genus n ≥ 1 with a
Q-rational Weierstrass point O. The group H1(Q, J [2]) is infinite, but contains an important finite
subgroup, the 2-Selmer group Sel(J, 2). This is the subgroup of cohomology classes whose restriction
to H1(Qv, J [2]) lies in the image δ(J(Qv)/2J(Qv)) of the local descent map, for all places v [8, §7].
The assertion that the subgroup Sel(J, 2) defined in this manner is finite is the first half of the Mordell-
Weil theorem; the proof uses the finiteness of the class group and the finite generation of the unit group
for number fields. Since the 2-Selmer group contains the image of J(Q)/2J(Q) under the inclusion δ,
an upper bound on its order gives an upper bound on the rank of the finitely generated group J(Q).

Here is a simple example, which illustrates the partial computation of a 2-Selmer group. Suppose that
C is given by an integral equation y2 = F (x) = x2n+1 + · · · . Assume further that the polynomial F (x)
is irreducible and that the discriminant of F (x) is square-free. Then the the algebra L = k[x]/(F (x))
is a number field with ring of integers AL = Z[x]/F (x). In this case, one can show that the local image
δ(J(Qp)/2J(Qp)) is contained in the unit subgroup of elements with even valuation in (L∗p/L

∗2
p )N≡1

for all finite primes p. It is equal to the unit subgroup when p is odd, and has index 2n in the unit
subgroup when p = 2. Hence the 2-Selmer group is a subgroup of the finite group (L∗(2)/L∗2)N≡1
consisting of those elements in (L∗/L∗2)N≡1 which have even valuation at all finite primes. To see that
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this group is finite, note that we have an exact sequence

1→ (A∗L/A
∗2
L )N=1 → (L∗(2)/L∗2)N≡1 → Pic(AL)[2]→ 1,

where the map to Pic(AL)[2] takes the class of αwith (α) = a2 to the class of the ideal a. The 2-Selmer
group is the subgroup of this finite group which is defined by the local descent conditions at the places
v = 2 and v = ∞. If we assume further that F (x) has only one real root, so that (A∗L/A

∗2
L )N=1 has

order 2n by the unit theorem, then the only local conditions remaining are at the place v = 2.

In general, the local conditions at a finite set of bad places for C, which always include v = 2 and
v = ∞, can be difficult to compute. It is therefore much easier to obtain an upper bound on the order
of the Selmer group Sel(J, 2) than it is to determine its exact order. For some explicit computations
with elliptic curves, see [6, Ch X]. The main result in [2, Th 1] gives the average order of this group,
when we consider all hyperelliptic curves with a marked Weierstrass point over Q.

Proposition 1 When the pairs (C,O) of a fixed genus n ≥ 1 are ordered by height, the average order
of the group Sel(J, 2) is equal to 3.

Let m be the rank of the Mordell-Weil group J(Q). Since we have the inequalities 2m ≤ 2m ≤
# Sel(J, 2) we obtain the following corollary.

Corollary 2 When the pairs (C,O) of a fixed genus n ≥ 1 are ordered by height, the average rank of
the Mordell-Weil group J(Q) is less than or equal to 3

2
.

More precisely, the limsup of the average rank is less than or equal to 3
2
, as we do not know that the

limit defining the average rank exists. We suspect that the limit does exist, and is equal to 1
2
.

The proof of Proposition 1 has an algebraic and an analytic part. The algebraic part of the proof
identifies the elements in the 2-Selmer group of J , for any pair (C,O) of genus n over Q, with certain
orbits in a fixed linear representation of the split special odd orthogonal group SO(W ) = SO2n+1

over Q. Specifically, we study the stable orbits of SO(W ) on the highest weight submodule V =
Sym2(W )0 in the symmetric square of the standard representation. The vectors in this representation
can be identified with self-adjoint operators T : W → W of trace 0, and a vector is stable if its
characteristic polynomial FT (x) has a non-zero discriminant. Associated to a stable orbit, we obtain a
pencil of quadrics in projective space of dimension 2n + 1 with smooth base locus. The Fano variety
of maximal linear subspaces of the base locus is a homogeneous space of order 2 for the Jacobian of
the hyperelliptic curve defined by the equation y2 = FT (x). The orbits corresponding to classes in the
Selmer group are those operators T where the Fano variety has points over Qv for all places v; we call
these orbits locally solvable. When n = 1, the representation Sym2(W )0 of SO3 = PGL2 is given
by the action on the space of binary quartic forms q(x, y), a vector is stable if the quartic form has a
non-zero discriminant, and the Fano variety is the curve z2 = q(x, y).

Having identified classes in the Selmer group with locally solvable orbits, the analytic part of the proof
estimates the number of locally soluble integral orbits of height less than X as X → ∞. The average
value of the order of the Selmer group actually appears as a sum 3 = 2 + 1, where 2 is equal to the
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Tamagawa number of SO2n+1. This adèlic volume computation, together with some delicate arguments
from the geometry of numbers, gives the average number of non-distinguished orbits (corresponding to
the non-trivial classes in the Selmer group). The distinguished orbits (which all appear near a cusp of
the fundamental domain) cannot be estimated by volume arguments. However, since they correspond
to the trivial class in each Selmer group, the average number of these orbits is 1.

Since the average rank of J(Q) is less than or equal to 3
2
, and this upper bound is less than the genus

n of the curve C once n ≥ 2, one can use the method of Chabauty (as refined by Coleman) to provide
explicit bounds for the number of rational points on a majority (= a proportion greater than 1

2
) of the

pairs (C,O). Here is a sample result, which is due to B. Poonen and M. Stoll. A slightly weaker result
is obtained in [2, Cor 4].

Corollary 3 If n ≥ 3, a majority of the pairs (C,O) have at most 7 rational points, and a positive
proportion of the pairs have only one rational point – the Weierstrass point O.

To be more precise, we do not yet know that the limits defining these proportions exist. What they
show is that the liminf of the ratios is > 1

2
in the first case, and is > 0 in the second.

6 Even hyperelliptic curves

The curves C with a marked Weierstrass point O are often referred to as odd hyperelliptic curves, as
(when the characteristic of k is not equal to 2) they have an equation of the form

y2 = F (x) = x2n+1 + c1x
2n + · · ·

where the separable polynomial F (x) has odd degree. We now make some general remarks on the
”even” case, which is not treated in our paper but for which similar results are expected to hold. For
more details, we refer the reader to the PhD thesis of X. Wang [9].

Let k be a field (not of characteristic 2) and let C be a complete, smooth, connected curve over k of
genus n ≥ 1. Let (O,O′) be a pair of distinct k-rational points on C with L((O) + (O′)) of dimension
equal to 2, and let U = C − {O,O′} be the corresponding smooth affine curve. A similar analysis to
the one we did above shows that the k-algebra H0(U,OU) is generated by functions x (with poles at O
and O′ of order 1) and y (with poles at O and O′ of order n + 1). These functions can be normalized
satisfy a single equation of the form

y2 = F (x) = x2n+2 + c1x
2n+1 + · · · ,

where F (x) has 2n + 2 distinct roots in ks. The automorphism ι of C defined by ι(x, y) = (x,−y) is
the unique involution which switches the two rational points O and O′.

The function y is the unique normalized vector in L((n + 1)(O) + (O′)) which lies in the minus
eigenspace for ι. When the characteristic of k does not divide 2n + 2, we can modify the function x
in L((O) + (O′)) by a constant so that the the above equation has c1 = 0. Then the equation depends
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only on the data (C, (O,O′)) and the choice of a non-zero tangent vector v to C at O. If we replace v
by v∗ = uv with u ∈ k∗, the coefficients of the equation are scaled: c∗m = umcm. When k is a global
field we can define the height of a triple (C, (O,O′)) by considering the coefficients (c2, c3, . . . , c2n+2)
of this equation as a point in weighted projective space and taking its size as above [4]. Since there are
only finitely many triples of a fixed genus n ≥ 1 having height less than any real number X , we can
define the average of a real-valued function S on triples (C, (O,O′)) as before.

The 2-torsion subgroup J [2] of the Jacobian is a bit more complicated to describe. It is generated by
the differences of the 2n + 2 Weierstrass points on C (none of which may be rational over k). Let
L = k[x]/(F (x)), which is an étale k algebra of rank 2n + 2. Then we have an isomorphism of finite
group schemes over k

J [2] ∼= ((ResL/k µ2)N=1)/µ2.

The cohomology groups of J [2] are also a bit more difficult to calculate. For example, the abelian
group {α ∈ L∗ : α2 = N(α) = 1}/{±1} maps into H0(k, J [2]), but this map may not be surjective.
This complicates matters somewhat in the 2-descent.

The class of the divisor d = (O) − (O′) of degree zero is well-defined in J(k)/2J(k). It is usually a
non-trivial element in this quotient of the Mordell-Weil group, although there are some triples where
d is divisible by 2. When the class of d is non-trivial in J(k)/2J(k), it gives rise to a non-trivial class
in the 2-Selmer group. We should mention that Abel [1] found a beautiful criterion, in terms of the
continued fraction of the square root of F (x) in the completion k((1/x)), for the class of d to be of
finite order in the Jacobian J(k).

In the even case, we expect the average order of the 2-Selmer group of the Jacobian to be equal to
6 = 4 + 2. The proof is similar in structure to the odd case. First the classes in the Selmer group
are identified with the locally solvable orbits of the adjoint quotient PSO2n+2 = PSO(W ) of the split
special even orthogonal group SO2n+2 over Q on the representation V = Sym2(W )0 [9]. Then the
average number of these orbits will be determined using arguments from the geometry of numbers. The
contribution of 4 should come from the Tamagawa number of PSO2n+2 over Q and the contribution of
2 from the distinguished classes in the Selmer group whose orbits lie near the cusp. From the average
order of the 2-Selmer group, one can deduce that the average rank of the Mordell-Weil group of the
Jacobian is bounded above by 5

2
= 3

2
+ 1.
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Abstract
This report discuss the question wether or not a given unstable module is the

mod-p cohomology of a space. One first discuss some classical results and give their
relations to homotopy theory and geometric topology. Then one describes more
recent results, emphasizing the use of the space map(BZ/p, X).

1 Introduction

Let p be a prime number, in all the sequel H∗X will denote the the mod p singular
cohomology of the topological space X. All spaces X will be supposed p-complete and
connected.
The singular mod-p cohomology is endowed with various structures :

• it is a graded Fp-algebra, commutative in the graded sense,

• it is naturally a module over the algebra of stable cohomology operations which is
known as the mod p Steenrod algebra and denoted by Ap.

The Steenrod algebra is generated by element Sqi of degree i > 0 if p = 2, β and P i of
degree 1 and 2i(p − 1) > 0 if p > 2. These elements satisfy certain relations named the
Adem relations. As an example in the mod-2 case the relations write:

SqaSqb =

[a/2]∑
0

(
a− 2t

b− t− 1

)
Sqa+b−tSqt

There are two types of relations for p > 2:

P aP b =

[a/p]∑
0

(−1)a+t

(
(p− 1)(b− t)− 1

a− pt

)
P a+b−tP t

for a, b > 0, et :

P aβP b =

[a/p]∑
0

(−1)a+t

(
(p− 1)(b− t)

a− pt

)
βP a+b−iP t+

[(a−1)/p]∑
0

(−1)a+t−1

(
(p− 1)(b− t)− 1

a− pt− 1

)
P a+b−iβP t

for a, b > 0.
An easy consequence of these relations is :
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Theorem 1.1 The elements Sq2i
if p = 2; and β and P pi

if p > 2 form a minimal set of
multiplicative generators.

There is more structure. The cohomology of a space is an unstable module, which means
that for a cohomology class x

• Sqi(x) = 0 if i > |x| if p = 2,

• βεP i(x) = 0 if ε+ 2i > |x|, if p > 2,

One denotes by U the abelian category of unstable modules.

As an example consider H∗BZ/2 ⊗ F2[u], |u| = 1; H∗BZ/p ∼= E(t) ⊗ Fp[x], |t| = 1 and
|x| = 2.
One has Sq1(u) = u2; resp. β(t) = u and P 1(x) = xp.
These, the Cartan formula that gives the action on products, the restriction axiom that
tells that

• Sqd = x2 if |x| = d (p = 2);

• P ix = xp if |x| = 2i (p > 2.

and the instability completely determine the action.

The definition of the suspension of an unstable module is central in the theory. This is
motivated by the suspension theorem for the cohomology of ΣX:

H̃∗ΣX ∼= ΣH̃∗X

with ΣM defined by:

• (ΣM)n ∼= Mn−1,

• θ(Σx) = Σθ(x).

or
ΣM ∼= M ⊗ ΣFp

The category of algebras that are unstable modules, and such that the above properties
relating the two structures hold is called the category of unstable algebras and denoted
by K.

It is a very classical question in homotopy theory to ask wether a certain unstable Ap-
module is the mod p cohomology of a space. The Hopf invariant one problem is a very
famous example, it is the following one.
Given a map f : S2n−1 → Sn, consider the cone Cf of the map. The reduced cohomology
of Cf is of dimension 1 in dimension n and 2n, trivial elsewhere. Denote by gn (resp. g2n)
a generator in degree n (resp. 2n). The Hopf invariant of f is defined (up to a sign) by
the equation

g2
n = H(f)g2n

2



If n is odd one works with mod-2 cohomology. The question is to decide whether H(f)
can take the value 1.
Here are two examples: the self-map of S1, z 7→ z2 whose cone is RP 2, the Hopf map
S3 → S3/S1 ∼= S2 whose cone is CP 2, have both Hopf invariant 1.
Because of the restriction axiom for unstable algebras the equation above rewrites as:

Sqngn = H(f)g2n

So one can reformulate the Hopf invariant one question as follows. Let k be a given
integer, does there exists a 2-cells space, with one cell in dimension h a second one in
dimension n+ h related by the operation Sqn

h n+ h

F2

Sqn

$$
. . . 0 . . . F2

In fact doing that one modifies the question by going to the stable homotopy world.
Because of 1.1 for such a complex to exist n must be a power of 2. So the problem
reduces to complexes as:

h h+ 2k

F2

Sq2k

$$
. . . 0 . . . F2

It corresponds in terms of the Adams spectral sequence for spheres to decide wether or
not the elements hi of the first line of the E2-term persists to infinity.
The problem was solved by John Frank Adams using secondary operations in mod 2
cohomology in a celebrated paper [Ad60 ], the only values of k for which this holds are
0, 1, 2, 3. Later Adams et Michael Atiyah gave a proof based on Adams operations in
K-theory [AA66].
This is strongly linked to a geometrical problem : for which values of k does there exists
a Lie group structure (or a somewhat weaker structure, e.g. H-space structure) on
the sphere Sh? Outside of S0 the sphere needs to be of odd dimension by elementary
differential geometry. The answer is that the only possible values are 1, 3, 7.

The Kervaire invariant one problem is another example, it is equivalent to the existence
of complexes as is shown below:

n n+ 1 n+ 2k

F2

Sq2k

66

Sq1

��
F2 . . . 0 . . . F2

or
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n n+ 1 n+ 2k n+ 1 + 2k

F2

Sq2k

66

Sq1

��
F2

Sq2k

))
. . . 0 . . . F2

Sq1

@@F2

Such complexes are known to exist if k = 0, 1, 2, 3, 4, 5, 6 do not exist if n > 7 after the
recent work of M. Hill, M. Hopkins and D. Ravenel [HHR]. Their proof depends on an
equivariant cohomology theory linked to an height 4 formal group law. The case n = 7
remains unsolved.
Again this question has a geometric counterpart. The question being to know wether or
not a stably framed manifolds is cobordant or not to an exotic differentiable sphere. Here
are examples that are not S1× S1, S3× S3, S7× S7 with the framing induced by the Lie
group, or octonion structure. Homotopy theory tells that such examples can only occur
in dimension 2k − 2, corresponding to the elements h2

i of the second line of the E2-term
of the Adams spectral sequence for spheres.

The preceding examples (as well as others) give evidences for the following ”Local Reali-
sation Conjecture” (LCR) done in a slightly more restricted form by Nick Kuhn [K95].
Let M1 and M2 be two unstable modules. Assume Mi is the reduced cohomology of a
space Xi, and that one is given a map f : ΣkX2 → X1 that induces the trivial map in
cohomology. Then the long exact sequence splits and the cohomology of the cone of f is
an element in Ext1U(M1,Σ

k+1M2). The most famous examples have been described above
as H̃∗RP 2 and H̃∗CP 2.

Conjecture 1.1 Let M1 and M2 be two finite unstable modules. Let k be an integer that
is large enough. Then any non-trivial extension

E ∈ Ext1U(M1,Σ
kM2)

is not the cohomology of a space.

The construction above can be generalised as follows. Suppose given a map f : X2 → X1

and assume it can be factored as a composition of n-maps gi, 1 ≤ i ≤ n, inducing
the trivial map in reduced cohomology. One says that f has Adams filtration at least
n. Splicing together the extensions obtained from the maps gi one gets an element in
ExtnU(H̃∗X1, Σ̃

nH∗X2). This a way to construct the Adams spectral sequence.

In this talk one will now describe another way to get results about the realisation problem.
One will consider a certain unstable module M , assume it is the reduced cohomology
of a space X, and then consider mapping spaces map(S,X), may be pointed, and get
contradictions by looking at the the cohomology of the mapping space. One option for
the space S is to choose Sn. In this case one will consider the space of pointed maps. If
n = 1 one has at hand the Eilenberg-Moore spectral sequence to evaluate the cohomology
of the space of pointed loops. More generally (for any n there is a generalisation of
the former, induced by the Goodwillie-Arone tower. The first case is studied in [?], the
second one in [K08]. This is not what one will describe here. However it is worth to
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mention that what makes possible to use this tools is the nice behaviour of these spectral
sequence with respect to the action of the Steenrod algebra. In particular in the case of
the Eilennberg-Moore spectral sequence the properties of the E2-term

Tor−i,∗H∗X(Fp,Fp)

as Ap-module are well understood ([S98].
Below is the type of results one can get :

Theorem 1.2 Let k be large enough. There does not exist a complex which has as reduced
cohomology the following module :

n n + 1 n + 2k n + 1 + 2k n + 2k+1 n + 1 + 2k+1

F2

Sq2k

77

Sq1

""
F2

Sq2k

((
. . . 0 . . . F2

Sq2k+1

$$
Sq1 99 F2

Sq2k+1

99. . . 0 . . . F2

Sq1

&&
F2

More generally, one would like to have a result as described informally below (at p = 2) :

Theorem 1.3 Let M1, M2, M3 be given finite modules. Let k be large enough. As soon
as there exists x ∈ M1 such that Sq2k+1

Sq2k
x 6= 0 there does not exist a complex which

has as reduced cohomology ”looking like”:the following :

M1

Sq2k

77
. . . 0 . . . Σ2k

M2

Sq2k+1

((
. . . 0 . . . Σ2k+2k+1

M3

One can also consider the space of all maps with S = BZ/p. in this case the Bousfield-
Kan spectral sequence for the cohomology of the mapping space degenerates because of
the properties of H∗BZ/p as an object of the categories U and K. This is what one is
going to do, and show that information about the algebraic structure of the category U
allows to get substantial results.
The results described below are (most of the time, but not all) of a more qualitative
nature. Here is an example [GS12] , conjectured by Kuhn and Stanley Kochman :

Theorem 1.4 [Gérald Gaudens, L. Schwartz] Let X be a space such that H∗X is finitely
generated as an Ap-module. Then H∗X is finite.

The LRC-conjecture implies 1.4, this follows from what will be described later as ”Kuhn’s
trick”. The proofs depends on the algebraic structure of the category U , and as said above,
on the cohomology of mapping spaces.
This result will be a consequence of :

Theorem 1.5 [G. Gaudens, Nguyen The Cuong, L. Schwartz] Let X be an m-cone, for
some m. If QH∗X ∈ Un, then QH∗X ∈ U0

In the next section one describes m-cones and discuss some qualitative results that mo-
tivates interest for spaces with nilpotent cohomology. In section 3 one describes a first
filtration of the category U , a second one is described in section 5.
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2 m-cones and finite Postnikov systems

There are two, dual to some extent, ways to construct spaces in homotopy theory. The
first one is by attaching cells. One says that a space is 0-cone if it is contractible, an
m-cone is the homotopy cofiber (the cone) of any map from a space A to an m− 1-cone.
It is clear that an m-cone has cup-length less than m+1. This means that any (m+1)-fold
product is trivial. In particular any element of positive degree is nilpotent. The following
theorem [FHLT] gives restrictions on the cohomology of an n-cone.

Theorem 2.1 [Yves Félix, Stephen Halperin, Jean Michel Lemaire, Jean Claude Thomas]
If X is 1-connected and the homology is finite dimensional in each degree then

depth(H∗(ΩX; Fp)) ≤ cat(X)

The depth of a graded connected k-algebra R (possibly infinity) is the largest n such that
ExtiR(k,R) = {0}, i < n, cat(X) denotes the Lusternick-Schnirelman category of X. This
is the minimum number of elements of covering of X by contractible subspaces.

Here is the second way to construct spaces: a 1-Postnikov system or GEM (generalized
Eilenberg-Mac Lane space) is a product (may be infinite) of usual Eilenberg-Mac Lane
K(π, n)-spaces. An m-Postnikov system is the homotopy fiber of an (m − 1)-Postnikov
system into a GEM. The m-th Postnikov tower Pm(X) of a space X is a particular case
of an m-system.

Corollary 2.2 Let X be a 1-connected m-cone, assume that the cohomology is finite
dimensional in any degree. Then the p-localisation of X is never a finite p-local Postnikov
system.

This is to be compared with [LS89]:

Theorem 2.3 [Jean Lannes, L. Schwartz] Let Pn(X) be a 1-connected n-Postnikov tower
such that H∗Pn(X) is non-trivial. Then the reduced cohomology H̃∗PnX contains a non
nilpotent element.

A finite 1-connected Postnikov tower is never an n-cone, because the cup length of an
n-cone is bounded by n+ 1. Nevertheless, Jiang Dong Hua [JDG] has shown there exists
a 3-stage Postnikov system with nilpotent cohomology.

3 The Krull filtration on U
The category of unstable modules. U has a natural filtration: the Krull filtration, by
thick subcategories stable under colimits

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

Brcause of the degree filtration the simple objects are the ΣnFp.
The subcategory U0 is the largest thick sub-category generated by simple objects and
stable under colimits. It is the subcategory of locally finite modules. An unstable module
is locally finite if the span over Ap of any x ∈M is finite.
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Having defined by induction Un one defines Un+1 as follows. One first introduces the
quotient category U/Un whose objects are the same of those of U but where morphisms
in U that have kernel and cokernel in U0 are formally inverted. Then (U/Un)0 is defined
as above and Un+1 is the pre-image of this subcategory in U via the canonical projection.
This construction works for any abelian category. One refers to [Gab] for details.
This induces a filtration on any unstable module M , one has [S94]:

Theorem 3.1 Let M ∈ U and Kn(M) be the largest sub-object of M that is in Un, then

M = ∪nKn(M)

As examples one has

• ΣkF (n) ∈ Un \ Un−1, the unstable modules F (n) are the canonical generators of
U , generated in degree n by ιn and F2-basis SqIιn, I an admissible multi-index of
excess less than n;

• H∗BZ/2 ∼= F2[u], does not belong to Un any n but,

• H∗BZ/2 is a Hopf algebra and the n-th step of the primitive filtration PnH
∗BZ/2

is in Un.

There is a characterisation of the Krull filtration in terms of a functor introduced by
Lannes and denoted T .

Definition 3.2 The functor T : U → U is left adjoint to the functor M 7→ H∗BZ/p⊗M .
As the unstable module splits up as the direct sum Fp ⊕ H̃∗BZ/p.
The functor T is isomorphic to the direct sum of the identity functor and of the functor
T̄ left adjoint of M 7→ H̃∗BZ/p⊗M .

It is easy to compute T (ΣnFp) and show that it is isomorphic to ΣnFp.
The functor T has wonderful properties that will be shortly described at the end of this
section. As a consequence one gets [S94]

Theorem 3.3 The following two conditions are equivalent:

• M ∈ Un ,

• T̄ n+1(M) = {0}.

There is also a characterisation of objects in Un of combinatorial nature (as soon as they
are of finite dimension in any degree) [S06]:

Theorem 3.4 A finitely generated unstable A2-module M is in Un if only if its Poincaré
series Σnant

n has the following property. There exits an integer k so that the coefficient
ad can be non trivial only for the values of d such that if α(d− i) ≤ n, for some 0 ≤ i ≤ k.
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In this statement α(k) is the number of 1 in the 2-adic expansion of k. A similar statement
holds for p > 2.

Let F be the category of functors from finite dimensional Fp-vector spaces to all vector
spaces. Define a functor f : U → F by (here V is a finite dimensional Fp-vector space)

f(M)(V ) = HomU(M,H∗(BV ))∗ = TV (M)0

It makes the following diagram commutes :

U0 . . .

f

��

Un−1

f

��

↪→ Un
f

��

↪→ U
f

��
F0 . . . Fn−1 ↪→ Fn ↪→ F

Fn is the sub-category of polynomial functors of degree less than n, which is defined as
follows. Let F ∈ F , let ∆(F ) ∈ F defined by

∆(F )(V ) = ker(F (V ⊕ Fp)→ F (V ))

Then by definition F ∈ Fn if and only if ∆n+1(F ) = 0.
As an an example V 7→ V ⊗n is in Fn.

As announced above below are the main properties of the functor TV , [La92], [S94]

Theorem 3.5 [Lannes] The functor TV commutes with colimits (as a left adjoint). It is
exact. Moreover there is a canonical isomorphism

TV (M1 ⊗M2) ∼= TV (M1)⊗ TV (M2)

A special case of the last property if M1 = ΣFp it writes as

TV (ΣM) ∼= ΣTV (M)

It follows from 3.3 and the preceding theorem that

Corollary 3.6 If M ∈ Um and N ∈ Un then M ⊗N ∈ Um+n

4 Special cases of Kuhn’s conjectures

The following has been conjectured by N. Kuhn. It is implied by the LRC, however not
equivalent.

Theorem 4.1 [Gaudens, Schwartz] Let X be a space such that H∗X ∈ Un then H∗X ∈
U0.

As said above he following corollary was also conjectured by Kuhn and sometimes before
by Stanley Kochman.
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Corollary 4.2 Let X be a space. If H∗X has finitely many generators as unstable module
it is finite.

Indeed, if an unstable module has finitely many generators it is in Un for some n, because
it is a quotient of a finite direct sum of F (k)′s. Then by 1.4 it is in U0. But a finitely
generated locally finite unstable module is finite.

Denote, as usual, by QH∗X the quotient of indecomposable elements ofH∗X:

QH∗X ∼= H̃∗X/(H̃∗X)2

Theorem 4.1 is a consequence of :

Theorem 4.3 Let X be an m-cone, for some m or more generally a space so that any
element in H̃∗X is nilpotent. If QH∗X ∈ Un, then QH∗X ∈ U0

As observed above the reduced cohomology of an n-cone is nilpotent, by that one means
that any element is nilpotent.

There are two cases to distinguish.
In he first one there is a non-nilpotent element in the cohomology of X. Then, as H̃∗X
contains non nilpotent element in degrees d with α(d) arbitrary large, section 5 and 3.4
imply that H∗X 6∈ Un for all n.
In the second case, H̃∗X is nilpotent in the sense defined above. In particular there are
non trivial algebra maps from H∗X into a polynomial algebra. So

HomK(H∗X,H∗BV ) = ∗

This at least true for p = 2. The case p > 2 is also true but needs the results of [LZ86]
and the action of Ap.
If H∗X ∈ Un, then QH∗X ∈ Un and by the theorem QH∗X ∈ U0.
Under this hypothesis proposition 3.9.7 of [S94] (se also [DW]) implies that H∗X ∈ U0,
in fact there is even an equivalence proposition 6.4.5 of the same reference).

Note that all of these results above are unstable. The cohomology of the Eilenberg-Mac
Lane spectrum HZ/p is free monogenic but infinite.

In [K95] Kuhn proved the corollary under additional hypothesis, using the Hopf invariant
one theorem. One key step is a reduction depending on Lannes’ mapping space theorem
which is going to be described in section 6. In [S98] the corollary is proved for p = 2
using the Eilenberg-Moore spectral sequence, the argument is claimed to extend to all
primes. However it is observed that one has to take care of a differential dp−1 in the
Eilenberg-Moore spectral sequence. As Gaudens observed the method of [S98] does not
work without some more hypothesis, alike the triviality of the Bockstein homomorphism.

For p = 2 in [K08] Kuhn gives a proof depending on the Goodwillie-Arone spectral
sequence. Manfred Stelzer and his student s get results for p > 2, however observed that
the proof do not extend directly for p > 2.
The theorem is proved now using only the Bott-Samelson theorem and Lannes’ mapping
space theorem.
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5 The nilpotent filtration

Above one has considered spaces so that any element in H̃∗X is nilpotent and on intro-
duced the terminology ”nilpotent” for the cohomology. The restriction axiom allows to
express this in term of the action of the Steenrod algebra. More precisely (for p = 2) it
is equivalent to ask that the operation Sq0 : x 7→ Sq|x|x is ”nilpotent” on any element. It
makes it possible to extend this definition to any unstable module.

Definition 5.1 One says that an unstable module M is nilpotent if for any x ∈M there
exists k such that Sqkx = 0.

In particular an unstable module is 0-connected. A suspension is nilpotent. In fact one
has the following:

Proposition 5.2 An unstable module M is nilpotent if and only if it is the colimit of
unstable modules which have a finite filtration whose quotients are suspensions.

This allows to extend easily the definition for p > 2.
More generally one can define a filtration on U . It is filtered by subcategories N ils, s ≥ 0,
N ils is the smallest thick subcategory stable under colimits and containing k-suspensions.

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . .

By very definition any M ∈ N ils is (s− 1)-connected..

Proposition 5.3 Any M has a convergent decreasing filtration {Ms}s≥0 with Ms/Ms+1
∼=

ΣsRs(M) where Rs(M) is a reduced unstable module, i.e. does not contain a non trivial
suspension.

Only the second part of the proposition needs a small argument see [S94] or [K95]. The
following results are easy consequences of the commutation of T with suspension, the
definition, and of 3.5. Just the last needs a small amount of additional care because T
does not commutes with limits.

Proposition 5.4 One has the following properties

• if M ∈ N ilm, N ∈ N iln then M ⊗N ∈ N ilm+n;

• if M ∈ N ilm then T (M) ∈ N ilm,

• M ∈ Un if and only if for any s f(Rs(M)) ∈ Fn.

The following is easy:

Proposition 5.5 The indecomposable elements of an augmented unstable algebra are in
N il1.

Let us introduce (following N. Kuhn) for M an unstable module a function wM : N →
Z ∪∞.

wM(i) = deg f(Ri(M))

The following lemma is a consequence of 3.6 and 5.4:
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Lemma 5.6 M ∈ N ils ⇒ T (M) ∈ N ils
Let M be such that wM(i) ≤ i, wT(M) the tensor algebra on M . Then the function wT(M)

has the same property.

Below are two statements that imply 4.3

Let X be a space, define wX = wH∗X and qX = wQH∗X .

Theorem 5.7 (Gaudens, Nguyen T. Cuong, Schwartz) Let X be such that H̃∗X ∈
N il1. The function qX either is equal to 0 or qX − Id takes at least one positive (non
zero) value.

Theorem 5.8 (Gaudens, Schwartz) Let X be such that H̃∗X ∈ N il1. The function
wX either is equal to 0 or wX − Id takes arbitrary large values.

6 Lannes’ theorem and Kuhn’s reduction, beginning

of the proof

X p-complete, 1-connected, assume that TH∗X is finite dimensional in each degree. Fol-
lowing François Xavier Dehon and Gaudens hese conditions could be relaxed using Morel’s
machinery of profinite spaces. The following theorem of Lannes is the major geometrical
application of 3.5. It has lot of applications, in particular in the theory of p-compact
groups (Dwyer and Wilkerson) and of p-local groups (Robert Oliver). The evaluation
map :

BZ/P ×map(BZ/p,X)→ X

induces a map in cohomology :

H∗X → H∗BZ/P ⊗H∗map(BZ/P,X)

and by adjunction
TH∗X → H∗map(BZ/p,X)

Theorem 6.1 (Lannes) Under the hypothesis mentionned above the natural map TH∗X →
H∗map(BZ/p,X) is an isomorphism of unstable algebras.

Kuhn considers the homotopy cofiber ∆(X), of the natural map x → map(BZ/p,X).
reduction is to consider the cofiber ∆(X) of X → map(BZ/p,X). Then 6.1 immediatly
yields :

H∗(∆(X)) ∼= T̄H∗X

As a consequence if H∗X ∈ Un \ Un−1, then H∗∆(X) ∈ Un−1 \ Un−2.

Given an augmented unstable algebra K he indecomposable functor Q does commute
with T :

T (Q(K)) ∼= Q(TK)

but this is not true with T̄ . However if K is a Hopf algebra it is true, in particular let Z
be an H-space, then (CCS)
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Proposition 6.2 QH∗map∗(BZ/p∧n, Z) = T̄ nQH∗Z.

On the way one notes that these authors proved the following beautiful result :

Theorem 6.3 (Castellana, Crespo, Scherer) Let X be an H-space such that QH∗X ∈
Un, then QH∗ΩX ∈ Un−1

In order to prove 5.7 or 5.8 one shows a space cannot be such that H̃∗X ∈ N il1 and such
that qX is not 0 and les or equal to Id (one adapts in the second case). Kuhn’s reduction
allows us to suppose that the reduced mod-p cohomology is exactly s-nilpotent, s > 0
and that Rs(H

∗X) ∈ U1 \ U0.

Let Z be ΩΣX, then H∗Z ∼= T(H̃∗X)

The first part of the proof consists of i the following chain of implications:

• qX ≤ Id⇒ wX ≤ Id, in fact this hols for any unstable algebra K;

• wX ≤ Id⇒ wZ ≤ Id, this follows from 5.6;

• wZ ≤ Id⇒ T̄ nH∗Z is (ns− 1)-connected;

• T̄ nH∗Z (ns− 1)-connected ⇒ map∗(B
∧n, Z) (ns− 1)-connected, this follows from

6.2.

It follows that :

Proposition 6.4 H̃∗Z ∈ N ils, T̄ n(H∗Z) is (ns−1)-connected, thus map∗(B
∧n, Z) (ns−

1)-connected.

Then, one gets a non trivial algebraic map (of unstable algebras)

ϕ∗s : H∗Z → ΣsRsH
∗Z → ΣsF (1) ⊂ ΣsH̃∗BZ/p .

It cannot factor through H∗Σs−1K(Z/p, 2), because there are no non trivial map from an
s-suspension (and thus from an unstable module in N ils) to an (s − 1)-suspension of a
reduced module as, H∗K(Z/p, 2), indded

Proposition 6.5 H∗K(Z/P, 2) is reduced.

7 End of the proof, obstruction theory

The contradiction comes from the fact that using obstruction theory one can construct a
factorisation.
Construction of ϕs, K(Z/p, 2) and obstruction theory
The existence of a map realising ϕ∗s is a consequence (using Lannes’ theorem) of the
Hurewicz theorem because map∗(BZ/p, Z) is (s− 1)-connected.
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K(Z/p, 2) is built up, starting with ΣBZ/p, as follows (Milnor’s construction). There is
a filtration ∗ = C0 ⊂ C1 = ΣBZ/p ⊂ C2 ⊂ . . . ⊂ ∪nCn = K(Z/p, 2), a diagram

· · · −−−→ B∗n+1 −−−→ B∗n+2 −−−→ · · ·y y y y
· · · −−−→ Cn −−−→ Cn+1 −−−→ · · ·

and cofibrations, up to homotopy

Σn−1B∧n → Cn−1 → Cn

Σn−2+sB∧n → Σs−1Cn−1 → Σs−1Cn

The obstructions to extend ϕs : ΣsBZ/p→ Z to Σs−1K(Z/p, 2) are in the groups

[Σn+s−2(BZ/p)∧n, Z] = πn+s−2map∗(BZ/p∧n, Z)

but map∗(BZ/p∧n, Z) is (ns − 1)-connected. As ns − 1 ≥ n + s − 2 they are trivial. It
follows one can do the extension, this is a contradiction.
To prove the last theorem it is now enough to observe that w∆(X) = wX − 1...
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